
Boosting the Permissiveness of Dynamic
Information-Flow Tracking by Testing

Arnar Birgisson, Daniel Hedin, and Andrei Sabelfeld

Chalmers University of Technology, 412 96 Gothenburg, Sweden

Abstract. Tracking information flow in dynamic languages remains an
open challenge. It might seem natural to address the challenge by runtime
monitoring. However, there are well-known fundamental limits of dy-
namic flow-sensitive tracking of information flow, where paths not taken
in a given execution contribute to information leaks. This paper shows
how to overcome the permissiveness limit for dynamic analysis by a novel
use of testing. We start with a program supervised by an information-
flow monitor. The security of the execution is guaranteed by the mon-
itor. Testing boosts the permissiveness of the monitor by discovering
paths where the monitor raises security exceptions. Upon discovering a
security error, the program is modified by injecting an annotation that
prevents the same security exception on the next run of the program.
The elegance of the approach is that it is sound no matter how much
coverage is provided by the testing. Further, we show that when the
mechanism has discovered the necessary annotations, then we have an
accuracy guarantee: the results of monitoring a program are at least as
accurate as flow-sensitive static analysis. We illustrate our approach for
a simple imperative language with records and exceptions. Our experi-
ments with the QuickCheck tool indicate that random testing accurately
discovers annotations for a collection of scenarios with rich information
flows.

1 Introduction

In a dynamically loaded web mashup that involves sensitive information from
several parties, how do we prevent information leakage? A web mashup consol-
idates independent web services, potentially by mutually distrusting providers,
into an integrated web service. For example, a web mashup to display the loca-
tion of secret objects (say vehicles collecting cash from ATMs) might make use
of a map service (such as Google Maps) for enhanced visualization. The map
service code needs access to the secrets in order to display them. At the same
time, the map service needs access to its servers to load new map components
on demand. How do we ensure that the map service does not leak secrets back
to its servers?

The state of the art in web mashup security [24] leaves the question open.
A range of approaches from separation to full integration has been suggested,
tailored to web mashup scenarios such as online ads, where access-control policies

are sufficient. However, the problem of tracking information in mashups after
access has been granted remains largely unsolved. Of particular challenge is
handling the dynamic nature of programming languages like JavaScript that
manipulate information in web mashups.

With the above scenario as our long-term motivation, the goal of this paper
is a practical mechanism for tracking information flow in dynamic languages.

It might seem natural to address dynamic languages with dynamic analysis.
Dynamic enforcement of secure information flow can be done similarly to dy-
namic type checking: values are decorated with labels representing the security
of each value, and for each operation the labels are checked at runtime. The data
labels may change over time, which means that the analysis is flow-sensitive.

Flow-sensitive enforcement is one where an assignment such as x := e prop-
agates the security level of the expression e to the variable x. On the other
hand, a flow-insensitive system assigns security levels that do not change. Such
a system disallows the assignment if the level of the expression is not at least as
restrictive as the level of the variable. Flow-sensitivity allows an information-flow
policy to be specified in terms of sources, where information enters the system,
and sinks, where information exits the system, rather than on syntactic vari-
ables inside the program. This frees the programmer from explicitly managing
security levels of local variables. Since variables can be reused for different pur-
poses, flow-sensitivity also has the potential of accepting more programs that
are secure.

However, there are well-known fundamental limits of dynamic flow-sensitive
tracking of information flow [9, 29, 5, 22]. Flow-sensitivity introduces a channel
for leaking information though the labels themselves, which is possible to exploit
even though labels may not be observable in the language.

public = 1; temp = 0;

if (secret) temp = 1;

if (!temp) public = 0;

Fig. 1. Flow-sensitivity at-
tack

Consider the program in Figure 1, assuming
secret to hold 0 or 1 initially. The program copies
secret into public. However, a purely dynamic
monitor faces challenges to detect this flow. In-
deed, when secret is 1, then public is never ac-
cessed after branching on secret . When secret is
0, then the assignment of 0 to public takes place inside of a conditional that
branches on a variable temp that has not been touched since its initialization. In
both cases, the problem is the branches that are not executed, which are missed
by purely dynamic analysis. In general, it is not possible to have sound dynamic
flow-sensitive information-flow enforcement that is strictly more permissive than
flow-sensitive static analysis [22].

This implies that a purely dynamic information-flow monitor must be either
unsound (i.e., there are false negatives) or imprecise (i.e., there are false positives
that are accepted by static analysis). In this design space, the no-sensitive-
upgrade [32, 2] discipline shows how to achieve soundness. This discipline states
that the original label of a variable under assignment must be taken into account,
and if it is not at least as restrictive as the level of the control-flow context,
upgrading its level is disallowed. With this discipline, the program above is

stopped if it reaches the assignment to temp because it attempts an upgrade in
the secret control-flow context.

Hence, no-sensitive-upgrade provides soundness at the price of permissive-
ness. Of particular concern is that for programs like one in Figure 1, the permis-
siveness of monitoring is worse than that of static analysis. Indeed, flow-sensitive
static analysis [12] is able to detect the flow in the program above, and ensure
that both temp and public become secret after the conditional. On the other
hand, secure programs with flow-sensitive manipulation of dynamic data struc-
tures are out of reach for static analysis, implying that many interesting pro-
grams are rejected due to the crude approximation by static analysis. This means
that neither static nor dynamic analysis as is provide a satisfactory solution to
the problem of false positives.

This paper shows how to achieve the best of the two worlds without resorting
to full-scale static analysis. We overcome the permissiveness limit for dynamic
analysis by a novel use of testing. We show that testing boosts the permissive-
ness of dynamic information-flow enforcement by discovering places in code for
automatic injection of upgrade annotations. Upon discovering a security error,
the program is modified by injecting an annotation that prevents the same secu-
rity exception on the next run of the program. Further, we show that when the
mechanism has discovered the necessary annotations, then we have an accuracy
guarantee: the results of monitoring a program are at least as accurate as flow-
sensitive static analysis. The process leads to a program that is never blocked by
the monitor because sensitives upgrades have been “tested away”. Importantly,
eradicating sensitive upgrades is not at the price of unnecessarily pushing up
security levels for data: we show that the levels are never pushed above what is
demanded by the static approach. This allows us significant reduction of false
positives while in total absence of false negatives.

The elegance of the approach is that it is sound no matter how much cover-
age is provided by the testing. In contrast to fuzzing or vulnerability and pen-
etration testing, it is not the original program that is tested but its monitored
counterpart. This guarantees security, thanks to the soundness of the monitor.
As discussed above, we gain permissiveness in the sense that the monitor stops
less programs and accuracy in the sense that the results of monitoring a program
are at least as accurate as flow-sensitive static analysis.

We illustrate our approach for a simple imperative language with references
and exceptions. Our experiments with the random testing tool QuickCheck [7]
indicate that random testing accurately discovers annotations for a collection
of scenarios with rich information flows. We are able to further enhance the
permissiveness by delayed upgrades, which records the reference to be upgraded
but does not perform the actual upgrade until just before entering sensitive
context.

We envision that our method can be applied most productively during the
software development and testing phase, when our approach can help discovering
upgrade annotations before the code is shipped.

2 Background

The dynamic features of languages like JavaScript offer on their own a compelling
argument for dynamic information-flow enforcement. In addition, independent
of language features, functionality provided by the execution environment may
pose challenges for static analyses. Consider, for instance, the API provided by
the DOM [11] in combination with Google maps. When creating a new Google
map we need to pass the part of the page where the map should be drawn.
Typically, this is done by assigning an id to the element and fetching it with
getElementById as illustrated below.

<script type="text/javascript" label="google">

new google.maps.Map(document.getElementById("map_canvas"));

...

<div id="map_canvas" label="google"></div>

<form>

From an information-flow perspective we want to enforce that the Google
code is only allowed send back the parts of the page labeled ’google’. This en-
tails that the analysis must treat getElementById differently depending on which
element is fetched (something which cannot be statically decided in general — in
particular since the page may be dynamically changing). For a dynamic analysis
this poses no problem, since the elements are tagged with their labels.

Speaking more generally, dynamic analysis has the ability to handle data
with dynamic structure, e.g., heaps, with high precision. Consider the following
example, where l1 and l2 are aliases.

l1 = new {}; l1.f = 1; l2 = l1; l2.f = h;

A flow-sensitive static analysis must take the alias into account and update the
type of both l1, and l2. In general aliasing is not decidable, and the program
would be rejected by static analyses like Jif [19]. Dynamic analyses do not have
this problem, since the label of f is stored with the value of f .

However, as shown in the introduction, dynamic enforcement of secure in-
formation flow has fundamental limits for flow-sensitivity under secret control.
Secret control or secret context refers to the commands inside conditionals and
loops with guards that contain secrets. Promising steps in the direction of over-
coming these limits are privatization operations [3] or upgrade [10] commands
that enable the upgrade of labels before entering secret contexts. This work
makes use of upgrade commands for the security levels of values (upg), the
structure of heap objects (upgs) and exceptions (upge), all explained below.

Values Consider the following example, where the public variable l is assigned
to under secret control. This causes the monitor to block on a sensitive upgrade.

if (h) l = 1;

By inserting an upgrade that upgrades the label of l before the execution of the
conditional we make sure that execution is not stopped.

l = upg(l,secret); if (h) l = 1;

Structure If structured data, like records, is changed under secret control the
structure of the data may encode secrets. In general, the security labels associ-
ated with the different parts of structured data might not be enough to model the
security level of the structure. The reason for this is that not only the presence of
certain data may encode secrets but also the absence, and it’s not necessarily the
case that the security level of the absence of data can be read from the security
level of the presence of other data. In such cases, if the absence is visible to the
program, the security model of the structured data must be extended to model
absence.

Using records as an example, consider for instance the following program,
where the field f is added to o depending on the secret h.

o = new {}; if (h) o.f = 1;

Following the general explanation above, after execution, the presence or absence
of f encodes the value of h. In the case h is true the field f will be present, and
the fact that its presence is secret is recorded in the security label of the value of
f . However, in the case h is false the field f will not be present and its absence
encodes information about h. Since the absence of fields is visible via record
projection, as is explained in Section 3, records are equipped with a structure
label. The structure label of records can be understood as an upper bound of the
context in which the record may have been modified, or in the terms of absent
fields as the upper bound on the security level of the non-existence of the absent
fields.

Returning to the example above, o has public structure, which causes the
execution of the secret conditional of the example to be stopped — adding a
field would require upgrade of the structure label under secret control. In order
to allow for the addition, the structure of the record can be upgraded before the
secret context.

o = new {}; upgs(o,secret); if (h) o.f = 1;

Exceptions Exceptions pose a significant challenge for secure information flow
due to the non-local transfer of control. In the example below the value of h is
copied into l.

try { if (h) throw; l = 0; } catch { l = 1; }

The standard static solution to this is to type commands following a potential
exception in a secret context as under secret control [20, 18]. Since the majority
of commands in languages like JavaScript can cause exceptions and due to the
possibility of non-local transfer of control this can cause a significant amount of
code to be typed under secret control. Following [10] we adopt a more permissive
discipline and introduce a special exception label that tracks the level at which
exceptions are allowed to be thrown. Initially, the exception label is public, which
allows the body of the try above to execute in public context (in the case h = 1
the monitor will stop with a security violation). To allow for exceptions in secret
contexts the language provides an upgrade, which can be inserted before the
secret context as follows.

try { l = upg(l, secret); upge(secret);

if (h) throw; l = 0; }

catch { l = 1; }

This upgrade causes the subsequent commands of the try, and of the handler to
be considered to be a secret context. After the try, the exception label is once
again lowered.

Manual upgrade annotations open the possibility of improving the permis-
siveness of the monitored program. However, they come at a price of placing
the heavy annotation burden on the programmer. It forces the programmer to
be aware of the monitor the programs will run under. As this is undesirable,
and sometimes impossible (e.g., with legacy code), our goal is to fully relieve
the programmer from the annotation burden. With the background set, we pro-
ceed to describe a method that applies testing for automatically discovering and
injecting upgrade instructions to boost the permissiveness of the monitor.

3 Monitor and rewriting

This section introduces the language — a simple JavaScript-inspired language
with records and exceptions, its monitor semantics, which is essentially a distilled
version of the monitor of [10], and establishes the soundness of the monitor.

3.1 Syntax and semantics

Figure 2 shows the syntax of expressions and commands, as well as supporting
structures. Values v consist of strings, numbers, a special value undefined, to-
gether with the pointers. Records are maps from values to values, and the heap
µ is a partial map from pointers to records. A reference is a pair of a pointer
and a value, referring to a particular field in a record.

Values stored in records, as well as the components of a reference, are deco-
rated with a security label σ; the structure label of records is written after the
semicolon inside the curly braces.

As is common [8, 31] we assume that the labels form a predefined lattice, and
do not consider the case where labels are not know a priori or where the structure
of the lattice can be modified dynamically. Without loss of generality, we will
use a simple two-level lattice described by public v secret, where v denotes the
lattice order. Let t and u denote least upper bound, and greatest lower bound,
and let ⊥ and > denote public and secret labels.

Expressions consist of literals for the primitive values, variables, projections
of records, and pure binary operators. Lefthand sides make up a subset of expres-
sions that can be assigned to, and will evaluate to references. Righthand sides of
assignments can be expressions or record allocations, optionally annotated with
an explicit upgrade of the value or structure label.

The commands are standard, apart from the upge command, which upgrades
the current exception label. Variables represent string-keyed fields in a distin-
guished record µ(0). This record, referred to as the global record, is in line with
how variables are handled in JavaScript and simplifies the semantics.

Expressions e ::= n | ’s’ | x | e[e] | undefined | e ∗ e
Pointers p ∈ N0

Values v, w ::= n | ’s’ | undefined | p
References ρ ::= (pσ, vσ)
Lefthand sides l ::= x | l[e]
Righthand sides r ::= e | new {} | upg(r, σ) | upgs(r, σ)
Records o ::= {v 7→ vσ, . . . , v 7→ vσ ;σ}
Heap µ : Pointers ↪→ Records
Commands c ::= skip | l := r | c ; c | upge(σ)

| if e then c else c | while e do c | try c catch c | throw

Fig. 2. Notation and syntax

Evaluation and dereferencing is detailed in Figure 3. We write [[·]]µ for the
evaluation of expressions and lefthand sides in a heap µ. This evaluation returns
either a labeled value or a reference and is free of side-effects. Dereferencing
a reference further resolves it to a value by looking it up in the heap. The
dereferenced value has a label that takes into account also the security labels of
the expressions used to build the reference itself. This ensures that values that
are reached via secret pointers have a secret label. Dereferencing is written (·)∗µ,
and for convenience we define it for values as identity and write [[e]]∗µ instead of
([[e]]µ)∗µ.

Dereferencing a non-existing field succeeds with the undefined value. This
means that the existence of fields can be probed by record projection.

Note that evaluation and dereferencing are not total functions. In particular,
the expression e1[e2] is not valid if [[e1]]∗ is not a pointer value. In our formaliza-
tion such cases cause the evaluation to get stuck, while in practice they might
result in throwing reference exceptions.

Let E denote environments, consisting of pairs of a heap and an exception
label. We define the semantics of the language and the monitor as a big step
relation →. An initial configuration 〈 c | pc, E 〉 consists of a command c, a se-
curity label pc, and an environment E. The label pc represents the level of the
current control context, and is updated by conditional branches and iteration.

The relation → relates an initial configuration to an execution result, if one
exists. A terminating execution of a command c in an environment E may result
in one of the following: (i) In the case of successful termination, the term Ok E′,
where E′ is the resulting environment. (ii) In the case of an uncaught exception,
the term Throw E′, where E′ is then environment in which the exception was
thrown. (iii) A security stop Stop(t, σ), where t is either a reference to a field
(p, w), the term struct(p) representing the structure label of a record, or exception
representing the runtime exception level.

A stop indicates that the program has reached a point, where the corre-
sponding entity requires at least the security level σ for the monitor to be sound.
For instance, attempting to write to a public field under secret control results
in a Stop((p, w),>), where (p, w) identifies the field, and > signifies that the
field must be at least > for the write to be accepted. Similarly, attempting
to add a field to a record with public structure under secret control results in
Stop(struct(p),>), where p identifies the record that must be have secret struc-

[[n]]µ = n
⊥

[[s]]µ = s
⊥

[[undefined]]µ = undefined
⊥

[[x]]µ = (0
⊥
, ’x’
⊥
)

[[e1 ∗ e2]] = (v1 ∗ v2)σ1tσ2 where v
σ1
1 = [[e1]]

∗
and v

σ2
2 = [[e2]]

∗

[[e1[e2]]]µ = (p
σ1 , v

σ2) where p
σ1 = [[e1]]

∗
µ, and v

σ2 = [[e2]]
∗
µ

(v
σ
)
∗
µ = v

σ
(p
σp , w

σw)
∗
µ =

{
vσptσwtσv if µ(p) = {. . . , w 7→ vσv , . . . ;σs}
undefinedσptσwtσs otherwise and µ(p) = {. . . ;σs}

Fig. 3. Evaluation and dereferencing

ture for the addition to be accepted. Finally, attempting to throw an exception
under secret control with a public exception level results is Stop(exception,>),
indicating that the exception level must be > for the exception to be accepted.
From such a stop and its corresponding execution tree, we determine a location
in the source program where an explicit upgrade command needs to be inserted
to avoid that particular stop. This process is described in Section 4.

Unlike expressions, the evaluation of righthand sides can have side-effects,
and we use the same relation notation → as for commands for the evaluation of
righthand sides. Evaluation of a configuration 〈 r | pc, E 〉 can result in a labeled
value and an updated environment Ok(vσ, E′), or a security stop Stop(t, σ),
which carries the same meaning as above. Evaluation of a righthand side can
never throw an exception.

For space reasons, the full set of inference rules defining the semantics can
be found in the full version of this paper [4]. To give the reader an insight into
the monitor, we exemplify with the rule for successful execution of the internal
#put operator, which handles record updates.

put

[[l]]µ = (pσp , wσw) µ(p) = {. . . , w 7→ vσ0
0 , . . . ;σs}

(pc t ε t σp) u σw v σs pc t ε t σp t σw v σ0
o′ = µ(p)[w 7→ vσvtpctεtσptσw ;σs t σw]

〈#put(l, vσv) | pc, µ, ε 〉 → Ok(µ[p 7→ o′], ε)

#put(l, v) is an internal command that performs the writing part of as-
signments, writing a value v to a field represented by the lefthand side l. The
evaluation is split into three cases: one succeeding and two stopping. To allow the
update we require that σ0, the previous label of the value, is above the control
context, as well as above the combined labels of the reference from l. In addi-
tion, since writing with a secret key can affect the structure, the key’s security
label σw must be added to the structure label of the record. For this reason we
demand that if σw is secret then either pc t ε t σp is public, or the structure
label of the record σs is secret. These conditions ensure that the label of the
value is independent of secrets. When they are satisfied, the record is updated
with the new labeled value, its label raised to include the control context and
the reference labels. The cases where the conditions are not satisfied correspond
to the two stopping cases: one demanding the upgrade of the value of the field,
and one demanding the upgrade of the structure label.

3.2 Soundness

As is common [31], we use termination-insensitive noninterference (TINI) as our
semantic security condition. TINI offers the possibility of liberal enforcement
well suited for dynamic monitors, while only allowing low-bandwidth leaks. Like
other typical semantic security conditions TINI is undecidable.

Noninterference can be stated as the preservation of a family of low-equivalence
relations under execution. For languages with heaps, the family is indexed over a
bijection on low-reachable pointers ensuring that the low-reachable parts of low-
equivalent heaps are isomorphic. Low-equivalence guarantees that low-reachable
public values are equal — for the secret parts no demands are made. In addition
it guarantees that the labeling is independent of secrets. For space reasons, the
low-equivalence relation ∼ can be found in the full version of this paper [4].

TINI states that successful execution in low-equivalent environments results
in low-equivalent environments. Let C denote any non-Stop configuration.

Theorem 1 (TINI). For any program c, β, and two heaps µ1 and µ2 such that
µ1 ∼β µ2, we have that if 〈 c | ⊥, µi,⊥〉 → Ci for i = 1, 2 then there is a β′ such
that C1 ∼β′ C2.

This means that the resulting (low-reachable) public parts of the heap are
independent of secrets; whatever choice of secret values in the initial heaps, the
produced results are equal in their public values. The proof of this and further
theorems are contained in the full version of the paper [4].

4 Rewriting

To improve the permissiveness of the dynamic monitor, executions resulting
in stops (found by, e.g., testing) are used to patch the program with explicit
upgrades to prevent the stop from occurring again.

A heap is called initial if it contains no records other than the global record,
itself containing only primitive (non-pointer) values. Let µ0 range over initial
heaps. Given a derivation tree of an execution 〈 c | ⊥, µ0,⊥〉 → Stop(t, σ), the
different cases for t dictate how the program needs to be rewritten in order to
prevent that particular stop.

case t = (p, w): This stop indicates that the program attempted to assign
to the field w of the record at heap location (with pointer) p, which would
have resulted in upgrading its existing security level in secret context, or over a
secret reference. In order to make this run succeed, the field must be explicitly
upgraded.

In the case that p = 0, i.e., the upgrade refers to a variable in the program.
The execution tree is used to see where the program entered the secret context
in order to insert an upgrade command just before that point. In this case w is
a string value with the name of the variable, which is converted to an identifier
x and the command x := upg(x, σ) is inserted before the secret context.

if (h) l = 1; y l = upg(l,secret); if (h) l = 1;

If p 6= 0 however, the reference is to a field in a record other than the global
record, and may be built from a lefthand side containing arbitrary expressions.
Building an upgrade command that refers to the same field at a different place
in the program requires complex tracking of heap mutations. Instead of inserting
an upgrade command before an enclosing conditional, the execution tree is used
to find an assignment to the field in a public context and over public pointers.
Such an assignment exists, because the record is not in the initial heap, and the
stop indicates that the field of the record must already exist with a public label.
This implies that the field was added in a public context over a public pointer.
The assignment is converted to an upgrade, by wrapping its righthand side with
upg and the label σ. This ensures that the field is labeled as secret from that
point in the program.

o = new {}; o.f = 0; if (h) o.f = 1; y
o = new {}; o.f = upg(0, secret); if (h) o.f = 1;

case t = struct(p): This stop indicates that an upgrade of a record’s structure
label was needed in secret context, or over a secret pointer. Similar to the second
case above, the structure of the record must be upgraded in a public context
over a public pointer. The execution tree is used to find the last assignment
satisfying these properties where p was the value of the assignment’s righthand
side, and wrap that righthand side with upgs and the appropriate label. Such
an assignment must always exist, as the only record existing in the initial heap
is the global record which always has secret structure. Hence p must point to an
allocated record, and it must have been allocated in a public context—otherwise
the structure of the record would already be public.

o = new {}; if (h) o[h] = 1; y o = upgs(new {}); if (h) o[h] = 1;

case t = exception: This stop is generated when the program attempts to
throw an exception in a context where the exception label ε is not above the pc.
To make this execution succeed, the exception label must be upgraded whether
the secret branch is entered or not. The execution tree is used to determine
the syntactic if or while command in which we enter secret control, and the
program is patched by inserting an upge(σ) before this command.

if (h) throw; y upge(secret); if (h) throw;

In what follows, we will refer to one step of the above process as a rewriting re-
lation on programs. If 〈 c | ⊥, µ,⊥〉 → Stop(t, σ), then we say cyµ c

′ where the
program c′ is obtained by applying the above rules on the proof of the stopped
execution. If 〈 c | ⊥, µ,⊥〉 → C let cyµ c.

The process above describes how to rewrite the program to make one failing run
succeed. Of course, there may be other failing runs so this process is iterated.
Let S be a set of initial heaps and let yS be a relation on programs such that
cyS c

′ iff there exists a heap µ ∈ S such that cyµ c
′ and c 6= c′.

Theorem 2 (Termination). For any set S of initial heaps, any sequence

c0 yS c1 yS c2 yS · · ·

terminates, i.e., there is an n such that cn yµ cn for all µ ∈ S.

The theorem is straightforward, considering that the number of possible up-
grade commands, as well as the number of locations they may be inserted are
bounded given the rewriting procedure above in a finite lattice of security levels.

For a given set S of initial heaps rewriting will produce a program that the
monitor will not stop when run in any of the heaps in S. A program is non-
stopping if the monitor does not stop execution for any initial environment.
Under the assumption that all values, including strings, have finite domains
(which is the case in all practical settings, due to hardware limitations) rewriting
can be used to find non-stopping programs.

Theorem 3. Let T be the set of all initial heaps. The result of rewriting based
on T is non-stopping, i.e., for cy∗T c′, it holds that c′ is non-stopping.

5 Accuracy

Consider the security labeling of the execution environment under execution.
We say that a labeling is more accurate than another if is at least as permissive,
and it is not more secret. In this section we establish that upgrade injection does
not result in a security labeling that is less accurate than that of a standard
flow-sensitive static type system; the contrary, however, is possible.

To show accuracy we adapt a standard flow-sensitive information-flow type
system [18, 19] to the language in Figure 2 and establish its soundness. For space
reasons the development of the type system and its soundness can be found in
the full version of this paper [4].

The type language consists of two different types: primitive types, and record
types. Primitive types are security labels or security labeled record type names.
The use of names to make recursive record types inductive is common practice,
and their meaning in terms of record types is given by a map ρ from record type
names C to record types. Finally, record types are maps from values to primitive
types. Let Γ,∆ ::= (C, ε) denote environment types and exception environment
types respectively, where C is the type of the global record, and ε is the exception
level.

The type judgments for commands are of the form pc, Γ1 `∆ c ⇒ Γ2. The
judgment is read: the command c is well-typed in security context pc, environ-
ment type Γ1 and exception environment type ∆ yielding environment type Γ2.
The intuition is that if c is run in environments that correspond to Γ1 the re-
sult will correspond to either Γ2 or ∆ depending on whether the execution was
successful or resulted in an exception.

With this we can formulate the accuracy result: rewriting executions of well-
typed programs results in well-typed programs w.r.t. the same entry and exit
environment types.

Theorem 4 (Accuracy). For any program c1 and initial heap µ such that
⊥, C,⊥ `∆ c1 ⇒ Γ and δ ` µ : C,⊥ we have that if c1 yµ c2 then ⊥, C,⊥ `∆
c2 ⇒ Γ .

The result implies that the rewriting process produces programs that will be at
least as accurate as a standard static type system. In many cases the upgrade
injection together with dynamic monitoring will be more accurate. This is due
to the possibility of flow-sensitive heap entities, the presence of dead code, or
the possibility of value dependent labels as an example in the next section will
show.

6 Implementation

We have implemented the monitor from Section 3 in Haskell. The implemen-
tation uses QuickCheck [7] to generate random initial heaps and perform the
iterative process of finding stopping executions and automatically injecting up-
grade commands into the input program.

When the monitor encounters the situation that an upgrade is needed but
the control-flow context, the exception label or the reference used does not allow
it, it stops the execution and conveys this information back to the test runner.
The test runner uses this, together with an execution trace collected during the
run, to determine a syntactic location in the original program where an upgrade
command is inserted.

QuickCheck uses generators to perform random testing of Haskell code, by
generating test cases and checking if user-supplied properties hold for it. Our
implementation allows for descriptions of generators of initial heaps, where both
existence, value and labeling of initial variables can be randomized. The monitor
is then tested against the property that running a given program does not result
in a security stop. When QuickCheck finds a stopping case, the test harness
rewrites the program and restarts the testing process.

Our experiments have shown that performing this iterative process yields a
rewritten program where enough upgrades have been inserted so that no initial
heap results in a stopped execution. Below we present some of the more illus-
trative experiments which run using an initial heap description that labels h as
secret boolean (i.e., a number with values 0 or 1) and l as public.

l = 1; t = 0;

t = upg(t,secret);

if (h) t = 1;

l = upg(l,secret);

if (!t) l = 0;

Fig. 4. Consistent labeling

Experiment 1: Consider the example of Sec-
tion 1; the implementation discovers the stopped
runs where t and l are upgraded in secret context,
and inserts the needed upgrades immediately be-
fore each conditional. The resulting program is
shown in Figure 4, where the two upgrades have
been inserted where secret context may be en-
tered.

Experiment 2: As described in previous sections, the existence of a field may
encode secret information. For this reason the monitor tracks the security level
of the structure of a record. Thus the program o = new {}; if (h) o[0] = 1; is

stopped by the monitor, and the rewriter turns this stop into the program shown
in Figure 5. Adding the upgs makes adding a field in secret context safe, since
any later projections of non-existing fields will be labeled as secrets.

o = upgs(new {}, secret);

if (h) o[0] = 1;

Fig. 5. Secret structure

Experiment 3: When writing to a field, it is
not sufficient to consider only the control context
to determine if its value or the structure of the
containing record. The choice of field and record,
which is written to, may depend on secret information in the lefthand side used
to refer to it. This is reflected in the security labels of the reference built from
the lefthand side, and is taken into account when updating the record. Consider
the following program.

o = new {}; o[0] = 0; o[1] = 0; o[h] = 1;

First a new record is allocated and initialized to contain two zero-valued fields
with keys 0 and 1 resp. Thereafter, one of the fields is modified depending on the
secret value h. The assignment would label the modified field as secret, but this
would constitute an upgrade which itself depends on the value of h. Thus, the
implementation stops the assignment. Since h is a secret number with values 0 or
1 both fields (but not the structure) will be upgraded, resulting in the following
program.

o = new {}; o[0] = upg(0, secret); o[1] = upg(0, secret); o[h] = 1;

try {

l = upg(l, secret);

upge(secret);

if (h) throw;

l = 0;

} catch { l = 1; }

Fig. 6. Throw under secret con-
trol

Experiment 4: The rewriter is also able to
inject upgrades of the exception label. Recall the
program from Section 2, which attempts to leak
h through the use of exceptions. The implemen-
tation detects this and inserts an upgrade of the
exception label before entering secret context.
This alone is not enough to make the program
run, since this upgrade now makes the assign-
ments to l be under secret control (recall that
the exception label is considered part of the control context). Thus, another it-
eration of rewriting is required to upgrade the variable l itself as well. The result
is shown in Figure 6.

Experiment 5: When a variable needs to be upgraded, the upgrade is in-
serted at the closest point in the program, where the context is strictly lower
than the target level. For lattices with more than two levels there is a risk that
this upgrade will trigger another stop, since the label of the value of the variable
may be lower than the label of the context at this point. This is intentional;
instead of moving the upgrade up, the stop is allowed to trigger another rewrite
in the next iteration. This results in a stepwise upgrade of the variable with the
possibility of a more accurate labeling.

Consider the left program of Figure 7, in which the variables pub, cls and sec

have corresponding security labels from a lattice with public v classifed v secret.
Here, the last assignment requires x to be upgraded to secret. If this is done
at the assignment x = 0, then the runs where cls is true will unnecessarily

x = 0;

if (cls) {

if (x) cls = x;

} else {

if (sec) x = sec;

}

x = 0;

x = upg(x, classified);

if (cls) {

if (x) cls = x;

} else {

x = upg(x, secret);

if (sec) x = sec;

}

Fig. 7. Cascading upgrades

force cls to be upgraded as well. However, x cannot be directly upgraded from
public to secret in the else branch, because that upgrade would be under classified
control. This in turn creates an upgrade of x to classified before entering the outer
if-command. The resulting program is shown on the right in Figure 7.

It is worth noting that this example improves on the precision of a static
type system. As seen from an observer at the classified level, it is a safely visible
decision which branch is taken in the outer conditional, but that decision depends
on the value. Standard type-systems for information flow are not value-sensitive,
and infers that x needs to be secret because of the potential assignment in the
else-branch. In a dynamic setting however, there is no need to upgrade x further
than to classified if that branch is not taken.

Delayed upgrades Upgrading a record field at the point of its last public assign-
ment may be premature. For example, consider the following program.

o = new {}; o[0] = 1; x = o[0]; if (h) o[0] = 42;

Labeling o[0] with secret right in the public assignment to it will unneces-
sarily cause the variable x to have a secret value as well. It is therefore too early
to upgrade o[0] before entering the secret control context. Instead, the upgrade
should be inserted before the conditional. However, note that o[0] may be any
lefthand side, involving arbitrary expressions, and it may not even be the same
one in both assignments. To build a syntactic lefthand side that refers to the
same field as o[0] at a different program point is not possible in general.

o = new {};

o[0] = upg(1, secret, L1);

x = o[0]; // still public

L1: if (h) o[0] = 42;

Fig. 8. Delayed upgrade

Instead, the implementation uses a technique
that avoids premature upgrading via delayed up-
grades. We insert the upgrade command in the
last public assignment, including a program la-
bel which refers to the conditional command
where it should actually be upgraded. The se-
mantics of such a delayed upgrade command resolves the righthand side to a
reference and stores it along with the label L1 in a list of pending upgrades. An
actual upgrade of the reference is only performed just before, and if, a command
with that label is reached. If the labeled command appears in a conditional
block itself, the field in question is not even upgraded at all if that command is
never reached. We note that the stepwise upgrading seen in Figure 7 extends to
non-variables also when delayed upgrades are enabled.

7 Related work

A large body of work targets language-based methods for information-flow secu-
rity [25]. We discuss dynamic methods for information-flow enforcement, which
are most closely related to the focus of this paper. For a general survey of dy-
namic information-flow techniques, we refer to Le Guernic’s thesis [15].

Fenton [9] discusses purely dynamic monitoring for information flow but does
not prove noninterference. Volpano [30] considers a purely dynamic monitor to
prevent explicit (but not implicit) flows. Languages like Perl and PHP support
taint mode to dynamically track explicit flows.

Shroff et al. [27] discuss a purely dynamic monitor that in addition to tracking
explicit flows, provides limited support to discovering implicit flows. The mon-
itor is based on recording dependencies discovered at runtime and propagating
them to subsequent runs of the code. While this method does not guarantee non-
interference, it fits a scenario of tracking common flows in a trusted application.

In a flow-insensitive setting, Sabelfeld and Russo [26] show that a monitor
similar to Fenton’s enforces termination-insensitive noninterference without los-
ing in precision to classical static information-flow checkers. This line of work
has progressed further to extend the monitor to a language with dynamic code
evaluation, communication, and declassification [1], as well as timeout instruc-
tions [21]. Further, Russo et al. [23] investigate the impact of dynamic tree
structures like the DOM on information flow. Their monitor prevents attacks
based on navigating and deleting DOM tree nodes. The monitor derives the se-
curity level of presence for each node from the context of its creation. It keeps
invariants such as the presence level of a parent may not exceed the presence
level of a child.

As discussed earlier, Austin and Flanagan [2, 3] suggest a purely dynamic
monitor for information flow with a limited form of flow sensitivity. They dis-
cuss two disciplines: no sensitive-upgrade, where the execution gets stuck on an
attempt to assign to a public variable in secret context, and permissive-upgrade,
where on an attempt to assign to a public variable in secret context, the public
variable is marked as one that cannot be branched on later in the execution.
Austin and Flanagan [3] discuss inserting privatization operations, which are
akin to our upgrade commands. The insertion takes place when a variable that
was previously upgraded in secret context is about to be branched upon.

Stefan et al. [28] present a library for dynamic information-flow control
in Haskell using a notion of floating labels, related to the concept of program
counter, to restrain the side effects of computations. Even though they do not
allow labels of references (c.f. variables) to change, their primitives allow for the
manipulation of labels that causes related problems. Their solution to this is to
demand the programmer to annotate the program, which is comparable to the
use of upgrades. Magazinius et al. [16] show how to inline a no-sensitive upgrade
monitor into programs in a language with dynamic code evaluation.

Russo and Sabelfeld [22] show that purely dynamic flow-sensitive monitors
do not subsume the permissiveness of flow-sensitive security type systems. They

also provide a framework for hybrid monitors that allows expressing a range of
hybrid monitors as one by Le Guernic et al. [14].

Hedin and Sabelfeld [10] propose dynamic information-flow control for a
core of JavaScript that includes objects, higher-order functions, exceptions, and
dynamic code evaluation. They discuss the usefulness of upgrade annotations
but do not provide methods to generate them. Our paper shows how to re-
lieve the programmer from the burden of upgrade annotations, making dynamic
information-flow control more practical.

Chugh et al. [6] present a hybrid approach to handling dynamic execution.
Their work is staged where a dynamic residual is statically computed in the first
stage, and checked at runtime in the second stage.

Masri et al. [17] develop a method for detecting and debugging information
flows for restricted Java bytecode (no exceptions, multithreading, or exit state-
ments). The method is a form of dynamic program slicing that allows detecting
explicit flows. They also show that static analysis and a preprocessing transfor-
mation can be used to include implicit flows into consideration.

Kang et al. [13] consider taint analysis for implicit flows in trusted code.
They enhance a purely dynamic analysis to propagate selected information about
control-flow dependencies, hitting a middle ground between ignoring implicit
flows and propagating taint along all control dependencies indiscriminately.

Compared to the previous work, a key novelty of this paper is the usage
of testing (rather than static analysis) to boost the permissiveness of dynamic
enforcement.

8 Conclusion

While dynamic information-flow enforcement might seem to be a natural fit for
tackling languages with dynamic data structures, there are fundamental limits
of permissiveness of purely dynamic techniques. This paper demonstrates how
to overcome these limits by testing. We show that testing boosts the permis-
siveness of dynamic information-flow enforcement by discovering places in code
for automatic injection of upgrade annotations. The inference of upgrade an-
notations ensures that the dynamic analysis is more permissive than the static
counterpart, without losing soundness. Our experiments with the QuickCheck
tool suggest that we achieve the permissiveness of hybrid monitors without static
analysis on a collection of scenarios with rich information flows.

Future work includes extending the formalization with functions (which we
have already implemented in our prototype). The upgrade injection mechanism
allows setting the upgrades before functions are called, which enables smooth in-
tegration with third-party libraries. Based on the prototype reported in Section 6
and our approach to tackling the core JavaScript features [10], we pursue the
implementation of information-flow monitor enhanced with upgrade instruction
injection for the full JavaScript language.

Acknowledgments This work was funded by the European Community under the
ProSecuToR and WebSand projects and the Swedish research agencies SSF and

VR. Arnar Birgisson is a recipient of the Google Europe Fellowship in Computer
Security, and this research was supported in part by this Google Fellowship.

References

1. Askarov, A., Sabelfeld, A.: Tight enforcement of information-release policies for
dynamic languages. In: Proc. IEEE Computer Security Foundations Symposium
(Jul 2009)

2. Austin, T.H., Flanagan, C.: Efficient purely-dynamic information flow analysis.
In: Proc. ACM Workshop on Programming Languages and Analysis for Security
(PLAS) (Jun 2009)

3. Austin, T.H., Flanagan, C.: Permissive dynamic information flow analysis. In: Proc.
ACM Workshop on Programming Languages and Analysis for Security (PLAS)
(Jun 2010)

4. Birgisson, A., Hedin, D., Sabelfeld, A.: Boosting the permissiveness of
dynamic information-flow tracking by testing (full version) (Jun 2012),
http://www.hvergi.net/arnar/publications/pdf/testing-full.pdf

5. Cavallaro, L., Saxena, P., Sekar, R.: On the limits of information flow techniques for
malware analysis and containment. In: Proc. Detection of Intrusions and Malware
& Vulnerability Assessment (DIMVA) (Jul 2008)

6. Chugh, R., Meister, J.A., Jhala, R., Lerner, S.: Staged information flow for
JavaScript. In: Proc. ACM SIGPLAN Conference on Programming language De-
sign and Implementation (2009)

7. Claessen, K., Hughes, J.: Quickcheck: a lightweight tool for random testing of
haskell programs. In: Proc. ACM International Conference on Functional Pro-
gramming. pp. 268–279 (2000)

8. Denning, D.E., Denning, P.J.: Certification of programs for secure information
flow. Comm. of the ACM 20(7), 504–513 (Jul 1977)

9. Fenton, J.S.: Memoryless subsystems. Computing J. 17(2), 143–147 (May 1974)
10. Hedin, D., Sabelfeld, A.: Information-flow security for a core of JavaScript. In:

Proc. IEEE Computer Security Foundations Symposium (Jun 2012)
11. Hors, A.L., Hegaret, P.L.: Document Object Model Level 3 Core Specification.

Tech. rep., The World Wide Web Consortium (2004)
12. Hunt, S., Sands, D.: On flow-sensitive security types. In: Proc. ACM Symp. on

Principles of Programming Languages. pp. 79–90 (2006)
13. Kang, M.G., McCamant, S., Poosankam, P., Song, D.: DTA++: Dynamic taint

analysis with targeted control-flow propagation. In: Proc. Network and Distributed
System Security Symposium (Feb 2011)

14. Le Guernic, G., Banerjee, A., Jensen, T., Schmidt, D.: Automata-based confiden-
tiality monitoring. In: Proc. Asian Computing Science Conference (ASIAN’06).
LNCS, vol. 4435. Springer-Verlag (2006)

15. Le Guernic, G.: Confidentiality Enforcement Using Dynamic Information Flow
Analyses. Ph.D. thesis, Kansas State University (2007)

16. Magazinius, J., Russo, A., Sabelfeld, A.: On-the-fly inlining of dynamic security
monitors. In: Proceedings of the IFIP International Information Security Confer-
ence (SEC) (Sep 2010)

17. Masri, W., Podgurski, A., Leon, D.: Detecting and debugging insecure informa-
tion flows. In: Proc. of the 15th International Symposium on Software Reliability
Engineering (ISSRE). pp. 198–209 (2004)

18. Myers, A.C.: JFlow: Practical mostly-static information flow control. In: Proc.
ACM Symp. on Principles of Programming Languages. pp. 228–241 (Jan 1999)

19. Myers, A.C., Zheng, L., Zdancewic, S., Chong, S., Nystrom, N.: Jif: Java informa-
tion flow (Jul 2001), software release. Located at http://www.cs.cornell.edu/jif

20. Pottier, F., Simonet, V.: Information flow inference for ML. ACM TOPLAS 25(1),
117–158 (Jan 2003)

21. Russo, A., Sabelfeld, A.: Securing timeout instructions in web applications. In:
Proc. IEEE Computer Security Foundations Symposium (Jul 2009)

22. Russo, A., Sabelfeld, A.: Dynamic vs. static flow-sensitive security analysis. In:
Proc. IEEE Computer Security Foundations Symposium (Jul 2010)

23. Russo, A., Sabelfeld, A., Chudnov, A.: Tracking information flow in dynamic tree
structures. In: Proc. European Symp. on Research in Computer Security. LNCS,
Springer-Verlag (Sep 2009)

24. Ryck, P.D., Decat, M., Desmet, L., Piessens, F., Joose, W.: Security of web
mashups: a survey. In: Nordic Conference in Secure IT Systems. LNCS (2010)

25. Sabelfeld, A., Myers, A.C.: Language-based information-flow security. IEEE J. Se-
lected Areas in Communications 21(1), 5–19 (Jan 2003)

26. Sabelfeld, A., Russo, A.: From dynamic to static and back: Riding the roller coaster
of information-flow control research. In: Proc. Andrei Ershov International Con-
ference on Perspectives of System Informatics. LNCS, Springer-Verlag (Jun 2009)

27. Shroff, P., Smith, S., Thober, M.: Dynamic dependency monitoring to secure in-
formation flow. In: Proc. IEEE Computer Security Foundations Symposium. pp.
203–217 (Jul 2007)

28. Stefan, D., Russo, A., Mitchell, J., Mazières, D.: Flexible dynamic information
flow control in haskell. In: Proceedings of the 4th ACM symposium on Haskell. pp.
95–106. ACM (2011)

29. Vogt, P., Nentwich, F., Jovanovic, N., Kirda, E., Kruegel, C., Vigna, G.: Cross-
site scripting prevention with dynamic data tainting and static analysis. In: Proc.
Network and Distributed System Security Symposium (Feb 2007)

30. Volpano, D.: Safety versus secrecy. In: Proc. Symp. on Static Analysis. LNCS, vol.
1694, pp. 303–311. Springer-Verlag (Sep 1999)

31. Volpano, D., Smith, G., Irvine, C.: A sound type system for secure flow analysis.
J. Computer Security 4(3), 167–187 (1996)

32. Zdancewic, S.: Programming Languages for Information Security. Ph.D. thesis,
Cornell University (Jul 2002)

