
PrivatePool:
Privacy-Preserving Ridesharing

Per Hallgren
Chalmers University of Technology, Sweden

Claudio Orlandi
Aarhus University, Denmark

Andrei Sabelfeld
Chalmers University of Technology, Sweden

Abstract—Location-based services have seen tremendous devel-
opments over the recent years. These services have revolutionized
transportation business, as witnessed by the success of Uber, Lyft,
BlaBlaCar, and the like. Yet from the privacy point of view, the
state of the art leaves much to be desired. The location of the
user is typically shared with the service, opening up for privacy
abuse, as in some recently publicized cases. This paper proposes
PrivatePool, a model for privacy-preserving ridesharing. We
develop secure multi-party computation techniques for endpoint
and trajectory matching that allow dispensing with trust to third
parties. At the same time, the users learn of a ride segment
they can share and nothing else about other users’ location. We
establish formal privacy guarantees and investigate how different
riding patterns affect the privacy, utility, and performance trade-
offs between approaches based on the proximity of endpoints vs.
proximity of trajectories.

I. INTRODUCTION

Location-based services (LBS) have seen tremendous de-
velopments over the recent years. These services have revolu-
tionized transportation business, as witnessed by the success
of Uber [52], Lyft [31], and the like. These technologies
leverage the idea of ridesharing. The up-and-coming service
BlaBlaCar [2] epitomizes the simplicity of ridesharing: a user
may advertise that they are traveling between two points, but
can take a passenger user or ride with another user. The
obvious benefit for the users is to reduce the cost of travel.

Motivation: Yet from the privacy point of view, the state
of the art leaves much to be desired. The location of the user
is typically shared with the service, opening up for privacy
abuse. The ridesharing app Uber, connecting passengers with
private drivers, has been the subject of much privacy debate.
Uber and its employees have been allegedly involved in
privacy-violating activities from stalking journalists and VIPs
to tracking one-night stands [1].

Beyond ridesharing, digitalization of transportation systems
and development of self-driving cars [53] opens up further
opportunities, which is expected to drive collection of un-
precedented amounts of data. With the advent of self-driving
cars, such as the Tesla Model 3 [54], the market will sport a
fully digitalized car with autopilot functionality in the hands of
consumers. In the near future consumers will hold technology
that can provide automated commuting services. To optimize
such services, the daily itinerary of end users is needed,
such that users who travel to and from the same approximate
area can be transported together. When this occurs, users are
expected to provide the service provider with their private
location data. This raises alarming privacy concerns.

Overall, the sensitivity of the private location information
in ridesharing applications poses a major challenge: how to
preserve privacy without hampering the functionality of the
ridesharing services?

Privacy-preserving ridesharing: We propose PrivatePool,
a model for privacy-preserving ridesharing. Our goal is to
provide the unhampered functionality of ridesharing applica-
tions without compromising privacy through means of secure
multi-party computation (SMC) [3], [11], where participants
can jointly compute a function based on private inputs.

This work focuses on flexible ridesharing, similar in that
respect to BlaBlaCar we accommodate users that are will-
ing to divert from their original path. The economical and
environmental savings have impact on whether ridesharing is
feasible. This can be manifested by a maximum deviation from
each user’s path and a minimum overlap of the trajectories for
desirable ridesharing. Intuitively it is harder for the user to
deviate in the middle of the trip than at the beginning or end,
which means that the deviation allowed is not constant. For
instance, if a ride is shared over a larger distance, such as
between cities, it would likely be acceptable for the users
to use public transport to coordinate within the origin or
destination city, but a rendezvous near the center of the trip is
much more restricted.

In contrast to BlaBlaCar, however, we are interested in
ridesharing with no trust to third parties. We envision that
our approach will accommodate a decentralized version for
ridesharing services that will break away from the traditional
full disclosure of user location. As such, our work is a step
in the direction of building theoretical foundations for such a
decentralized service, that – in the long run – has potential to
lead to practical systems for solving problems like the ones
publicized in [1].

To the best of our knowledge, this paper presents the first
model for privacy-preserving ridesharing. To accommodate
flexible privacy-preserving ridesharing, we draw on two key
building blocks: one is based on proximity of the journeys’
start- and endpoints and the other one is based on intersection
of the routes between the start- and endpoints.

There has been much recent work on secure multi-party
computation of proximity testing [56], [47], [46], [7], [32],
[35], [44], [15], [41], where the goal is to compute whether
two parties are close to each other without revealing their
relative distances and positions to each other or to any third
party. However, proximity testing by itself does not solve the

ridesharing problem. First, we need a method to securely
extend proximity testing to yield a match when both the
respective start and endpoints are within desirable proximity. A
naı̈ve application of proximity protocols on the start/endpoints
would violate privacy: if for two rides the start points are far
but the endpoints are close, the naı̈ve approach would reveal
the proximity of the endpoints in the absence of a shared ride.
Second, flexible ridesharing in some scenarios necessitates
considering trajectories and not only the start- and endpoints.

Indeed, since we are interested in flexible ridesharing, the
start/endpoints might be actually far enough while there is still
a large segment of the route that can be shared by the users.
A typical example is an intercity ride that starts and ends
in different parts of the origin and destination cities. In this
scenario, we draw on the private set intersection (PSI) [6].
By applying PSI to sets representing trajectories/routes, we
can compute whether there is a sufficient overlap to warrant a
shared ride. Again, PSI by itself does not solve the ridesharing
problem either. Recall that we only want to reveal a match
when there is a sufficient segment that overlaps between the
users’ trajectories. This motivates the need for a threshold
private set intersection (T-PSI) protocol, enabling us to achieve
private and flexible trajectory matching. As a side remark, we
note that the term threshold set intersection, or over-threshold
set-union, has also been used in the literature to describe the
scenario when one wants to disclose all elements among n
users’ private input sets which occurs in the input of at least a
threshold number t users [24], [25]. This scenario is different
from the one considered in the paper.

Finally, achieving the above goals would only make sense
if it yields techniques that provide utility, respect privacy, and
have feasible computation overhead. We thus set out to eval-
uate these techniques on a collection of realistic ridesharing
patterns. In the evaluation, it is also our goal to compare our
approach with respect to generic secure multi-party techniques,
with the focus on the state of the art technique of garbled
circuits [55].

Contributions: We develop the first model for privacy-
preserving ridesharing. On the policy side, the model accom-
modates flexible ride sharing, allowing to be parametric in how
long the users are willing to travel to meet up for a shared ride
and for how long a ride they require in a successful match.
On the enforcement side, we develop two independently
interesting enforcement mechanisms. It enables ride matching
by both the proximity of start- and endpoints and by trajectory
matching. For endpoint matching we build on top of existing
work utilizing additively homomorphic encryption to create
a privacy-preserving protocol. At the core of the trajectory
matching, we design a novel threshold private set intersection
(T-PSI) protocol, for which we establish rigorous privacy
guarantees. The main technical contribution is the definition
and construction of a so called threshold key encapsulation
mechanism (T-KEM). We present an overview of realistic ride
patterns and evaluate our mechanisms with respect to these
patterns. Benchmarking against the patterns demonstrates that
we benefit from the generality of our approach: start/endpoint

matching and trajectory matching excel on different patterns.
At the same time, our benchmarks also show that our tech-
niques are preferable over a generic approach, as implemented
by garbled circuits.

Limitations: While the cryptographic techniques evalu-
ated can be called practical out-of-context, a fully-fledged
ridesharing system needs more work before it is useful in
practice. On the one hand, practically-oriented research results
are needed to show how to use SMC in general without
information leakage from a running system. As SMC works
on the application layer, it is oblivious to information on other
levels such as IP addresses etc. Lacking an outlook for a
secure full system, in this first effort for privacy in ridesharing
applications several details which could be privacy-sensitive
are left for future work. This includes the time of the ride and
the identity of the users.

On the other hand, further foundational work is needed
in terms of scalability to large numbers of users. The state
of the art is making great leaps in this direction, such that
is now possible to efficiently compute a fixed function of
many users [21]. However, state-of-the art SMC protocols are
only efficient for a limited number of users for cases like
ours where each party wants to evaluate a different function,
as the question “who can I share a ride with?” is context-
sensitive. This limitation is shared with the entire line of work
on privacy-preserving location proximity protocols (e.g., [56],
[35], [44], [15]).

Overview: The rest of the paper is organized as follows.
Section II presents ridesharing concepts, such as feasibility,
and discusses ridesharing patterns. Section III presents the
concepts of proximity testing and private set intersection, key
building blocks in our approach. Section IV present a novel
mechanism for threshold private set intersection, which allows
us to parameterize the privacy of trajectory matching. Sec-
tion V details the threshold key encapsulation mechanism that
lies at the heart of our cryptographic construction. Section VI
presents the experiments that illustrate that different patterns
benefit from the different mechanisms in our approach. Sec-
tion VII discusses related work. Section VIII concludes.

II. RIDESHARING CONCEPTS

This section presents the basics of our ridesharing model
and characterizes ridesharing feasibility. Based on these, we
discuss different patterns where ridesharing is feasible, of
which two are studied further in Sections III, IV and VI.

A. Modeling ridesharing

The model considers users who set out on trips as defined in
Definition 1, traveling from one point to another. To describe
such trips, we consider the map as an undirected, unweighted
graph G = (V,E), where V is the set of vertices and E ⊆
V ×V is the set of edges. An edge e can be imagined as being
a two-way road section, connecting two coordinates.

The model does not include the identities of the users or
the time frame in which a user is willing to participate in
ridesharing, and does not say anything about whether or not a

2

S
0 S 4

S3
S1 S2

Fig. 1. The five common ridesharing segments

service provider is involved in the exchange. Only the abstract
view of the two parties exchanging location data is considered,
leaving protection of other private information and detailing
what data is shared with service providers and third parties
for future work.

Definition 1 (Trip). Given a graph G = (V,E), a trip T is
an acyclic sequence of consecutive vertices vi ∈ V , where
vs = v0 is the origin and vf = v|T |−1 is the destination, such
that (vi, vi+1) ∈ E for all i ∈ {0, . . . , |T | − 2}.

A set of consecutive vertices in a trip T is called a segment
as per Definition 2.

Definition 2 (Segment). Given a graph G = (V,E), a
segment S of a trip T in G is an acyclic sequence of
consecutive vertices v ∈ V , such that S is a subsequence
of T .

Users conduct trips by traversing the graph using the
shortest path from their origin to their destination. The set
of vertices visited when traversing the shortest path is called
the user’s trajectory. Users are considered as traveling with
constant speed for the scope of this work, such that both
the spatial and temporal cost of traversing a road section is
equivalent. How the graph and the trajectories are constructed
are out of the scope of this work. If the application need to
take e.g. traffic congestion into account, the segment length
function d(·) should be updated to accommodate this.

When utilizing ridesharing, users may deviate from their
trajectory, for the purpose of one user aligning their trip to
the other user’s trajectory. That is, the first user A pays an
extra cost, extending their trip such that it includes a part of
another user B’s trajectory, while B travels exactly along their
trajectory. Given any protocol implementing ridesharing, one
can switch roles and rerun the protocol to symmetry between
A and B. Users are restricted to sharing a ride during a
single segment, which leads to five segments of significance
during A’s trip, called the ridesharing segments of the trip, as
illustrated in Figure 1. These segments are:

1) S0, the start segment, is a part of the trajectory and
includes at least the vs ∈ T .

2) S1, where the user is traveling to the ridesharing seg-
ment, is a part of neither user’s trajectory.

3) S2 is the ridesharing segment, where the two users can
share a ride.

4) S3 is the counterpart of S1, where the user is traveling
from the ridesharing segment.

5) S4, similarly to S0, is a part of the trajectory, where the
last vertex is vf ∈ T .

In short, S0 and S4 are parts of the trajectory, which would
be also without ridesharing. S1 and S3 are the additional path
that the user travels, leaving their trajectory and aligning with
the other user’s trajectory. Finally, S2 is the part of the trip
where the users share a ride. To make the representation of
a trip more concise, Definition 3 specifies the length of a
segment S as l(S), assuming that we have a Euclidean distance
defined for each edge. Note that l(S) 6= |S|.

Definition 3 (Segment length). Given a segment S for
some trip through a graph G = (V,E), let l(S) =∑|S|−2
i=0 d (S[i], S[i+ 1]), where S[j] is the jth vertex in S and

d(p1, p2) is the Euclidean distance between the two points p1
and p2.

B. Ridesharing feasibility

When ridesharing comes with a low enough cost and high
enough benefit for both parties, it is called feasible ridesharing.
Feasibility is modeled with two parameters.

First, an upper limit as to how much a user is willing to
extend the trip (i.e., deviate from their trajectory) before and
after S2. As previously highlighted, this distance may depend
on how far the user has travelled from their endpoints (i.e.,
how long S0 and S4 are). This is captured using a deviation
function ∆T (v), where T is the user’s trajectory and v ∈ T is a
vertex along the trajectory. The evaluation of ∆T (v) at a vertex
v gives us the user’s deviation limit at that stage of their trip,
which is a measure of how flexible the user is. Ridesharing is
feasible only when l(S1) < ∆T (v0)∧ l(S3) < ∆T (v1), where
S1 and S3 are ridesharing segments of T , v0 ∈ T is the first
vertex in S1 and v1 ∈ T is the last vertex in S3.

Secondly, we model a lower limit of the length of the
ridesharing segment as a distance threshold, called t, simply
called the threshold. This enables the model to be used in
cases where the trip’s economic or environmental cost is to
be reduced by some factor for ridesharing to be feasible.
Concisely, ridesharing is feasible only if l(S2) > t.

Finally, the formalization of a feasible ridesharing scenario
is given in Definition 4. Using ∆(·) and t, most preferences
of a user can be modeled. Note that no restriction on ∆(·)
has been made, it could be an arbitrary function, and may be
defined on a per-user and per-query basis, such that A specifies
the deviation function while making each query.

Definition 4 (Ridesharing feasibility). For any fixed threshold
t and deviation function ∆, given two trajectories PA and PB
for users A and B in G = (V,E), ridesharing is feasible
for A along a segment S = {ps, . . . , pf} of PB if and only
if l(S) > t and there exist two points PA[i] and PA[j], with
i < j, such that:

dist(PA[i], ps) < ∆PA
(PA[i])

∧ dist(PA[j], pf) < ∆PA
(PA[j])

3

Fig. 2. The paths barely intersect while the endpoints are close

Another important measure is how much A’s total trip is
extended by utilizing ridesharing. This is bounded by ∆, as
per Theorem 1.

Theorem 1 (Maximum trip extension). If ridesharing is feasi-
ble for A for a trip T with ridesharing segments Si, i ∈ {0..4}
and where v0 ∈ T is the first vertex in S1 and v1 ∈ T is the
last vertex in S3, the total trip will have a length shorter than
l(T) + 2(∆T (v0) + ∆T (v1)).

Proof. Let the skipped segment of A’s original trip be Ss =
T \ (S0 ∪ S4). Now, assume by contradiction that the total
trip is extended by more than 2d with d = ∆T (v0) + ∆T (v1)
such that 2d ≤ l(S1) + l(S2) + l(S3)− l(Ss), which gives us
Equation 1.

l(Ss) + 2d ≤ l(S1) + l(S2) + l(S3) (1)

By construction, from the first vertex of S2 to the first vertex of
Ss, the maximum distance is ∆T (v0). Similarly, the distance
from the last vertex of Ss to the last vertex of S2 is at most
∆T (v1), which gives Equation 2.

l(S1) + l(S3) < d (2)

Using Equation 2, we we can substitute l(S1) and l(S3) in
Equation 1, and see that l(Ss) + 2d < l(S2) + d. Now we
can apply Equation 2 again, on the left-hand side, to arrive
at l(Ss) + l(S1) + l(S3) + d < l(S2) + d, or simply l(S1) +
l(Ss)+ l(S3) < l(S2). This implies that the shortest path from

Fig. 3. The paths intersect substantially while the endpoints are far

the first vertex of S2 to the last vertex of S2 is via S1, Ss,
and S3. Therefore, S2 is not a part of any shortest path in G,
and thus not a part of B’s trajectory.

C. Ridesharing patterns

This section discusses distinct ridesharing patterns which
can be captured with the model.

The proximity-based pattern is a convenient ridesharing pat-
tern. In this pattern, there is only a short commute before and
after the ridesharing segment, making the effort for changing
means of transport low. Formally, a proximity-based pattern is
characterized by that l(S0) = l(S4) = 0. Such scenarios are
easy to find in sparsely connected areas, which is a common
situation close to bodies of water, such as rivers with few
bridges or lakes. One example is the San Francisco Bay Area
as depicted in Figure 2 which shows two trips from Berkley to
Redwood City. In this example, the trajectories intersect only
a insignificant part of the trip, but where ridesharing clearly
is possible as the origins and destinations are only 10 minutes
walking distance from each other.

On the other hand, many applications are likely interested
in detecting ridesharing patterns where the travelled distance
is minimized, which is captured by the intersection-based
pattern. Consider for instance the one depicted in Figure 3,
where the extra distance travelled to enable ridesharing is
not relevant. Both users would either way travel along the
ridesharing segment. In this case the endpoints are far apart,

4

>r<r

Fig. 4. Ridesharing pattern with small overlap and far endpoints

but the overlap between the two trajectories is roughly half
the trip, which is a reasonable distance to utilize ridesharing.
This pattern is likely to be found if users travel via common
junction points, e.g. along major highways.

Both the western and the eastern route are acceptable to each
party in Figure 2. This highlights a case that is not implicitly
captured by the described model. In the case when B could go
both the western and the eastern route, but where the eastern
one is negligibly shorter, but A cannot take the eastern route (A
is e.g. going from Redwood City to downtown San Francisco).
However to capture such cases it suffices to do a separate
matching for each acceptable route. An alternative approach
is to let A and B meet in the middle, as if both are willing
to deviate by some distance, more rides can be shared. This
setting can be trivially captured by adding B’s deviation limit
to that of A for every vertex.

While the above patterns are common, we note that there are
yet other scenarios, for instance several scenarios would match
a hybrid pattern of the above two as depicted in Figure 4. In
this case the origins (similar for the destinations) are close
but an overlap occurs much later. Correspondingly for the Bay
Area example in Figure 2, assuming the origins are the south
endpoints, if either user would have continued their journey
farther north, only the origin endpoints would be closer than
the deviation limit, and the intersection would be smaller than
t (for reasonable parameters).

Having presented the ridesharing concepts and patterns,
we are now ready to describe our mechanisms for achieving
privacy-preserving ridesharing.

III. PRIVACY-PRESERVING RIDESHARING

This section details how to privately detect the concrete
patterns given above. As will be shown, the two patterns
depicted in Figure 5 and Figure 6 are amenable to SMC. The
first pattern can be realized using privacy-preserving proximity
testing with a few modifications and the second pattern is
exactly the use case for private set intersection.

A. Privately detectable patterns

Given the patterns above, the question remains how to
design an algorithm to efficiently detect ridesharing scenarios
– and further, to design algorithms that are amenable to SMC.
The goal of privacy-preserving ridesharing is to disclose the
ridesharing segment only if ridesharing is feasible, and no
information otherwise.

Two of the distinct patterns turn out to be susceptible
to SMC techniques. These two patterns result in enforcing
either of the two criteria t ≥ l(T) − ∆T (T0) − ∆T (T|T |−1)

<r

Fig. 5. Ridesharing pattern with maximum ridesharing segment

>T

Fig. 6. Ridesharing pattern with minimum cost

and ∆T (·) = 0 for proximity-based and intersection-based
patterns, respectively (where again t is the threshold and ∆T

is the deviation function). That is, in the first case the shared
trip is as long as the full trip, except for possibly the cost
of A traveling to and from B’s starting point as illustrated
in Figure 5. In the second case, the shortest paths intersect,
and there’s no extra distance to travel to enable ridesharing as
illustrated in Figure 6.

A straightforward “bruteforce” algorithm that attempts find-
ing the longest possible ridesharing segment is to find the first
vertex vf ∈ A which is closer than ∆PA

(vf) to any point
on B’s trajectory and last vertex vl ∈ A which is closer
than ∆PA

(vl) to any point on B’s trajectory. Ridesharing
is then feasible if between vf and vl if dist(vf , vl) > t.
However, such an algorithm does not have any apparent
efficient implementation using SMC.

Instead, we now outline algorithms for proximity-based and
intersection-based ridesharing patterns, which are amenable to
SMC. Proximity-based patterns are detected by checking that
the start and endpoints are close. As seen in Section III-B,
this can be achieved with SMC with private proximity testing.
Intersection-based patterns can be detected by computing the
intersection I = PA ∩ PB , and conclude that ridesharing is
feasible when l(I) > t. As seen in Section IV, this is achieved
through our new primitive T-KEM.

For the hybrid pattern (and others), there appear to be no ap-
parent efficient privacy-preserving solution. One could imag-
ine detecting proximity endpoints and subsequently check-
ing for intersection. However, such an approach would leak
endpoint proximity even if it is impossible to share a ride.
Of course, generic SMC solutions could be used to achieve
the sought functionality, but as we will see in Section VI-B
such solutions are as of yet not efficient enough for most
applications.

How many scenarios do not match the patterns detailed
above, and how relevant they are for practical applications,
is hard to judge without empirical data. To shed some light
on the matter, we have carried out experiments on real-world
data from the New York City taxi services, as detailed in Sec-

5

tion VI-A. The experiments show that using both approaches
can achieve up to 92% of the effectiveness of the entire model,
and that both endpoint-based matching and intersection-based
matching excel on different rides.

B. Proximity-based Ridesharing

For the first pattern, depicted in Figure 5, the users A and B
want to check whether their start- and endpoints are closer than
a fixed limit r (∆A(·) = ∆B(·) = r). To check if two points
are close is often called proximity testing, for which there are
several privacy-preserving solutions with different strengths
and weaknesses, such as the amount of privacy provided,
the number of roundtrips, and performance requirements [35],
[44], [15].

However, in addition to checking the proximity of two
endpoints, a construction is needed that allows to disclose a
result only if both endpoints are close to each other. This is not
trivial to achieve with an arbitrary proximity testing solution.
Luckily, there are several solutions based on homomorphic
encryption, where it’s common to represent a positive response
as encryption of 0, and a negative response as an encryption
of a uniformly random value. This enables the two results to
be multiplied to create an “or” operator, or added to create an
“and” operator. Thus, when the start and endpoint results have
been computed, they can be added to produce the final result.

We pick the InnerCircle approach by Hallgren et al. [15]
as a starting point because allows for the lowest round-trip
time amongst protocols in the literature. The protocol is also
among the better when it comes to other properties such
as number of roundtrips and the level of privacy provided.
The construction requires an unfortunate restriction in terms
of precision, where discretization up to 10 or 100 meters is
required. This imprecision is likely not mission-critical in a
ride-sharing application and thus the boost in performance as
compared to other approaches outweighs this drawback.

As with other recent efficient approaches [35], [44], it
works with additively homomorphic encryption utilizing well-
studied cryptosystems. Further motivating this choice is that
the line of work by Hallgren et al. is amenable to composition
while protecting against malicious adversaries [14] with few
modifications.

The construction is briefly detailed here to highlight the
necessary adjustments. The user A holds the private key, for
which B has the corresponding public key. A queries B for
proximity by issuing a request with a triplet (xA, yA, x

2
A+y2A).

B computes the squared euclidean distance as:

D = x2A + y2A + x2B + y2B − 2 (xAxB + yAyB)

B can do all of these computations in the encrypted domain
as they are only linear operations and thus supported by an
additively homomorphic encryption system. Next, B needs
just to compare D with the radius value r, which is done
by encoding the comparison in a set

{(D − i) ρi|i ∈ {0..r2}}

Where each ρi is an independent random number in the
plaintext space. The set is sent to A in a random order, such
that A only can deduce whether ∃i ≤ r2 : i = D, which is
equivalent to D ≤ r2.

Now back to the ridesharing setting. For B to be able to
combine the proximity checks for the origin and destination,
the ciphertexts in the result arrays need to be multiplied. Using
additively homomorphic means that multiplications of cipher-
texts cannot be computed locally. A common workaround is
to send blinded values to A, who can decrypt, multiply, and
encrypt the result before sending it back [27]. The blinding
is then removed and computation can proceed normally at
B’s side. Finally, as mentioned earlier, the two proximity
results are added and the result is sent back. Though the
multiplications incur an overhead, consecutive outsourced
multiplications will introduce only a logarithmic number of
round trips [16].

C. Intersection-based Ridesharing

The second pattern, as shown in Figure 6, is for users
who want to minimize the deviation and find a trip such
that ∆T (·) = 0. That is, the user is looking for trips that
overlap perfectly with their own trip, which as highlighted
previously is solvable using PSI. Recent research has yielded
ad-hoc solutions for PSI [39] which are highly efficient.
However, applying PSI directly would always disclose the
intersection, regardless of its size. For instance, with two
orthogonal trajectories which only intersect at a single point,
disclosing this point does not provide information useful for
ridesharing, but leaks privacy-sensitive location-information.
Thus, as outlined in Section IV, we define a novel ad-hoc
protocol for threshold-conditioned PSI which does not have
these fallacies.

There are also efficient solutions utilizing generic circuits
to achieve PSI [17]. These are by construction amenable
to composition with other methods, and are therefore an
interesting comparison to our novel scheme. We outline a
performance comparison in Section VI-B.

D. Practical applicability of SMC

The above mentioned techniques share restrictions that
apply to SMC in general. As highlighted in Section I, these
are both in terms of scalability in the number of users, and in
terms of complete system-wide enforcement.

There is much work to be done before privacy of location-
data can be guaranteed when considering a running appli-
cation on existing operating systems for mobile devices.
This can be seen through various side-channel attacks on
location data [29], [48], [34], [38], [33], including vectors
such as power consumption and carrier signal strength. While
anonymization techniques such as onion routing may be used
to escape threats from internet infrastructure providers, cellular
network providers provide further complications which are
harder to tackle with existing hardware. Theoretical models for
security, such as the one used in this work, try to minimize the
trust that is needed to be placed in a party. Instead of the user

6

completely trusting the service provider, one allows the user
to place trust in technology/cryptography. Though there are no
current solution that frees the user from trusting anything but
cryptography as per the above issues, reducing the amount of
trust the user has to place on a service provider or other users
is still of tangible value.

In terms of scalability, there are no solutions that are
asymptotically comparable to that of using a trusted third
party. While there are many solutions for secure multiparty
computations, such that any number of parties can jointly
compute a function without the communication, the restriction
is to compute a single function. These solution are very useful
if the function has the same output no matter who issues
the query, such as services for auctions or elections, or when
only one party is interested in the output, perhaps according
to a business agreement. However, when the question is no
longer ”Who made the highest bid?” or ”Who had the most
votes?”, but rather ”Can I share a ride with someone?”, the
query is not so easily answered. The solutions proposed in
this work are both peer-to-peer, which means that a user
needs to communicate with every other party to check for
ridesharing opportunities, and thus requires O(n) parties to
communicate. This may make the solution hard to apply in
various scenarios, but even with recent and very promising
works focusing specifically on scalability, each party needs
to communicate for every evaluation of a function [21], [13],
which again requires O(n) communication.

There are many more issues to consider when trying to build
a system utilizing SMC. One such issue is secure key distri-
bution. We leave this issue, as well as identity management
in general, out of scope and subject to future work. Further,
the adversary considered in this work is passive, while many
applications need to be secure against active adversary. Both
the technique for endpoint matching and for set intersection
can be adjusted to give heightened security against active
adversaries at the cost of performance [14], [42]. As seen in
Section VI-B, the choice of a weaker adversarial model allows
us to cater for many applications, while this may not be the
case if using a slower (though more secure), version.

IV. THRESHOLD PSI

In this section we describe our solution to the problem of
securely evaluating the threshold private set intersection (T-
PSI) between the sets of two parties, called the sender and
the receiver, in the presence of a passive adversary and static
corruption. The sender and receiver have as inputs two sets A
and B respectively, both of size n. At the end of the protocol
the receiver should learn (A ∩ B) if |A ∩ B| ≥ t for some
predetermined threshold t or nothing otherwise.

The sender learns nothing. Though the aim with this work
is privacy-preserving ridesharing, we hypothesize that the T-
PSI construction is useful in many other areas. For instance, it
could be applied to dating applications; If Alice requires her
future husband to share at least two of her hobbies, it makes
little sense to reveal any of Alice’s hobbies to Bob if they
share only one.

Before proceeding further, let us outline some basic con-
cepts as often used in the SMC literature in Definition 5,
Definition 6 and Definition 7.

Definition 5 (Negligible functions). A function ε : N → R is
said to be negligible if

∀ c ∈ N. ∃ nc ∈ N. ∀n≥nc
|ε(n)| ≤ n−c

That is, ε decreases faster than the inverse of any polynomial.

Definition 6 (Indistinguishability). The two random variables
X(n, a) and Y (n, a) (where n is a security parameter and
a represents the inputs to the protocol) are called compu-
tationally indistinguishable and denoted X

c≡ Y if for any
probabilistic polynomial time (PPT) adversary A the function
δ(n) is negligible:

δ(n) = |Pr[A(X(n, a)) = 1]− Pr[A(Y (n, a)) = 1]|

Definition 7 (Semantic Security). A public key encryption
scheme E is semantically secure or IND-CPA secure if the
advantage of any PPT adversary of winning the below game
against C is negligible. The game is won if the attacker outputs
b′ = b.

1) A outputs two different plaintexts (m0,m1).
2) C flips a random b ∈ {0, 1}
3) C outputs E(mb)
4) A outputs b’

Now for a brief outline of simulation-based proofs, for
which our definition follows from common definitions of
secure multi-party computation in the passive (or honest-but-
curious) adversarial model [10], [30], but is here simplified for
the case with two parties. For two parties Alice and Bob, where
Alice has inputs −→x and Bob inputs −→y , the model formalizes
the output of a protocol as f(−→x ,−→y) = (g(−→x ,−→y), h(−→x ,−→y)).
The function f is called the functionality of the protocol.
The functions g and h are functions describing all outputs
presented to Alice and Bob from the execution of the protocol,
respectively.

Definition 8 (Privacy). Privacy for deterministic functional-
ities holds when the overall knowledge of each party after
the execution of the protocol, called the party’s view, can be
computed from the inputs and outputs of that party. This is
called that the view can be simulated. That is, for the two-
party case with Alice and Bob as described above, one must
show that:

{SAlice(−→x , g(−→x ,−→y))} c≡ {viewAlice(−→x ,−→y)}

{SBob(−→y , h(−→x ,−→y))} c≡ {viewBob(−→x ,−→y)}

where SAlice and SBob are the simulators for Alice and Bob,
respectively.

A. Phasing&Co.

The last few years have seen a large improvement in the
efficiency of protocols for PSI, most notably the Phasing

7

protocol [40] and its improvements [39], [26]1. For the sake
of exposition we choose to abstract as much as possible the
properties of the Phasing protocol to clearly communicate the
main changes which are necessary to turn this into a T-PSI
protocol. From a very high-level point of view, the Phasing
protocol proceeds in two stages:

Phasing – Stage 1: Masks Generation: In the first stage
the sender and the receiver compute sets of random strings
called “masks” based on their input sets. In particular, at the
end of the first stage, the sender learns (for each element a ∈
A) a set of random masks Ma = (m1, . . . ,mj). Similarly, for
each b ∈ B the receiver learns a set of random masks Mb =
(m1, . . . ,mk) under the constraint that, if a = b, then |Ma ∩
Mb| = 1. At the same time, choosing masks of appropriate
lengths ensures that if a ∈ A but a 6∈ B then ∀b ∈ B, Ma ∩
Mb = ∅. The first stage of Phasing can be used directly in our
final construction, to reuse the subroutine we write for short:

Phasing(A,B)→ (U, (V,RV))

Where U = {Ma|a ∈ A} is output to the sender, and V =
{Mb|b ∈ B} and RV is output to the receiver. RV is a reverse-
mapping needed by the receiver to find which element in B
is masked by a given mask. We define a function to find the
reverse mapping, RevMask(Mb,RV) → b, such that for any
element b ∈ B it returns the item b masked by Mb.

Phasing – Stage 2: Computing the Intersection: In the
second stage of the Phasing protocol the sender sends the set
U = {Ma|a ∈ A} to the receiver, who can then compute the
intersection of U and each Mb to determine whether b is in
the intersection. We define the procedure Isect to reuse in the
final protocol:

Procedure Isect(U, V,RV):
Z ← []
for Mi ∈ V do :

if U ∩Mi = 1 then:
Z ← Z :: RevMask(Mi,RV)

return Z

Security of Phasing: For completeness, we show how
to construct simulators for our high-level view of Phasing,
called SPHG

S and SPHG
R for the both the sender and receiver,

respectively. The claims follow from the proofs of the concrete
instances of phasing protocols [40], [39], [26]. The privacy of
the overall protocol follows from the following two properties
about the first stage of Phasing:
• in the view of the receiver for the first stage the masks

which are not in the intersection are computationally
indistinguishable from uniform random strings.

• the sender does not learn anything about the set B of the
receiver during the first stage. Formally, the view of the
sender (and in particular Ma∀a ∈ A) can be simulated
without access to the input B.

1The term “Phasing” first appeared in [39] but here we use it as a general
term for the whole family of protocols.

The proof of the Phasing protocol [40] implicitly contains the
proof of these two properties.

Since the sender does not receive any messages during the
second stage and the first stage satisfies the property that it is
possible to simulate Ma without access to B, then the protocol
is secure against passively corrupt senders. Formally, there
exists a simulator for the sender SPHG

S (A) → U that takes as
input the input set A and produces a set of masks U which is
indistinguishable from the view of the sender in a real protocol
execution.

To argue the security of Phasing against a passively corrupt
receiver, the authors construct a simulator that produces a set
U to contain the desired intersection with V (consistent with
the input B and the output V), and otherwise populates the set
U with uniformly random strings. In a nutshell, the simulator
for the receiver (U, V)← SPHG

R (B,Z) works as follows:
1) The simulator SPHG

R (B,Z) parses its input and checks
that Z ⊆ B and aborts otherwise;

2) The simulator samples uniformly random masks from
{0, 1}λ for the receiver V = {Mb|b ∈ B}.

3) The simulator constructs the set of masks for the sender
U in the following way: for every b ∈ Z ∩ B, the
simulator picks a random mask from Mb and adds it
to U . Then, the simulator fills U with n − |Z| random
masks.

This simulation is indistinguishable from the view of the
receiver in a real execution of the protocol. We now extract a
property which is needed later in our construction and which
is satisfied using SPHG

R above:

Definition 9 (Phasing – Sender’s Privacy). We define a game
between an adversary A and a challenger C:

1) A outputs two sets (A,B)
2) C flips a random coin b ∈ {0, 1}
3) If b = 0, C output Phasing(A,B)
4) If b = 1, C outputs SPHG

R (B,A ∩B)

We say that the Phasing protocol satisfies sender’s privacy if
for all PPT A the probability that A guesses b correctly is at
most a negligible factor away from 1/2.

In the following, we will make use of the fact that the output
of Phasing is indistinguishable from random. In particular
this implies that it is indistinguishable from the T-KEM.Gen
method (which is defined below), which allows to compose
T-KEM and Phasing in Section IV-C.

Efficiency of Phasing: For completeness, we also recall
that in [40] the Phasing subroutine is implemented using
a form of oblivious pseudorandom function (OPRF) which
is in turn constructed efficiently thanks to oblivious transfer
(OT) extension [19]. A trivial implementation of the Phasing
subroutine using the OT induced OPRF would lead to the
output of the sender U to have size n2 (and the output of the
receiver V to have size n). Combining the OPRF with clever
data structures (e.g., Cuckoo hashing), the authors of Phasing
managed to turn the size of the output of both parties to be
O(n) (|U | ≤ 2.4n for reasonable sizes of n), which greatly
improves in the overall complexity of the protocol.

8

B. Threshold Key Encapsulation Mechanism (T-KEM)

To construct a T-PSI protocol from the Phasing protocol
family we introduce a new cryptographic tool which we choose
to call threshold key encapsulation mechanism or T-KEM. A
T-KEM is defined as follows:

Definition 10 (T-KEM). A T-KEM scheme is a tuple of
algorithms (Gen,Encap,Decap) with the following syntax:
• The generation algorithm

Gen(1λ)→ u

on input a security parameter λ, outputs random values
u from {0, 1}λ.

• The key encapsulation algorithm

Encap(U, t)→ (k,H)

on input a set of strings U = {u|u ∈ {0, 1}λ} and a
threshold t, outputs a random key k ∈ {0, 1}λ and a
“hint” H .

• The key decapsulation algorithm

Decap(V,H)→ k′

on input a set of strings V = {v|v ∈ {0, 1}λ} and a hint
H outputs either k′ = k or some failure symbol ⊥.

The idea of a T-KEM is that the two parties both have a
set of random numbers, from which they want to derive a
common key if and only if the two sets overlap by a threshold
number of t items. As an example, one can imagine a single
set being generated at random and then stored on two separate
unreliable storage units. Both parties retain one storage unit.
Later on, the two users want to establish a secure channel
between them by using the material on the storage units. As
long as the storage is not “too faulty” i.e., the intersection
between the two (now different) sets of keys is larger than
some threshold t, then the two parties will be able to derive
the same key. In the PSI setting, the keys will be generated
using the Phasing scheme, which will guarantee the necessary
overlap only if the initial sets have a large enough overlap.

We say that a T-KEM is correct if, for all V,U s.t. |V ∩U | ≥
t the following probability is at most negligible

Pr[Decap(V,H) 6= k|(k,H)← Encap(U, t)]

We define security of T-KEM with the following game
between an adversary A and a challenger C.

Definition 11 (T-KEM security). We say that a T-KEM is
secure if for all PPT adversary A, the probability that A
outputs b′ = b in the following game is at most a negligible
factor away from 1/2:

1) A chooses t′ < t and outputs t′

2) For all i = 1..t, C runs ui ← Gen(1λ)
3) C defines V = {ui}i=1..t′ and U = {ui}i=1..t

4) C computes (k0, H)← Encap(V, t)
5) C samples randomly k1 ← {0, 1}λ and b← {0, 1}
6) C outputs (U,H, kb) to A
7) A outputs b′

C. T-PSI from Phasing and T-KEM

We now describe how to construct a T-PSI scheme using the
introduced building blocks, namely the Phasing subroutine,
a T-KEM, and any IND-CPA secure symmetric encryption
scheme (Ek, Dk) for a key k.

Definition 12 (Threshold PSI functionality). For any T-PSI
protocol, the functionality is given as:

TPSI(A,B)→ (⊥, Z)

where

Z =

{
A ∩B if |A ∩B| ≥ t
∅ otherwise

That is, the sender learns nothing and the receiver learns
the intersection if and only if the size of the intersection is
greater than t.

Now for a concrete protocol which, as shown later, produces
the above functionality. The sender and receiver, with input
sets A and B respectively, start by running the Phasing
subroutine to calculate U and V . Then, the sender runs TPSIS

using U and the threshold t and sends the output to the
receiver. The receiver runs TPSIR using the received input
from the sender as well as V to compute the final result Z.

Procedure TPSIS(U, t):
(U0, U1)← split(U)
(k,H)← Encap(U0, t)
C ← Ek(U1)
return (C,H)

Proc. TPSIR(V,RV , C,H):
(V0, V1)← split(V)
k′ ← Decap(V0, H)
if k′ = ⊥ then :

return ∅
else :

U1 ← Dk′(C)
Z ← Isect(U1, V1, RV)
return Z

Elements in U and V are 2λ bits. The split subroutine
enables creation of U0 and V0 as the sets containing all the
top λ bits from all the masks in U, V and U1, V1 to be the sets
containing all the bottom λ bits from all the masks in U, V .
Splitting the masks in two is needed to avoid circular security
issues between the T-KEM and the encryption scheme.

Definition 13 (Phasing/T-KEM T-PSI). The protocol for
Phasing/T-KEM T-PSI proceeds as follows:

1) The sender with input A and receiver with input B
jointly run

(U, (V,RV))← Phasing(A,B)

The sender retains U and the receiver retains (V,RV).
2) The sender runs

(C,H)← TPSIS(U, t)

and sends (C,H) to the receiver.
3) The receiver concludes the protocol by computing

Z ← TPSIR(V,RV , C,H)

and outputting Z.

9

Security of T-PSI: As highlighted before, the construction
should respect the functionality described in Definition 12.
Thus, Theorem 2 captures the security goal of our protocol.

Theorem 2 (Phasing/T-KEM security). The protocol specified
in Definition 13 securely implements the privacy-preserving
threshold set intersection functionality (Definition 12) in the
presence of passive adversaries

Proof. The security of the protocol follows from the security
of the building blocks. It is trivial to argue security against a
passively corrupt sender, since the view of the sender in the
T-PSI protocol is exactly the same as in the original Phasing
protocol (the sender does not receive any extra messages).

We now argue security against a passively corrupt receiver.
To do so, we need to construct a simulator that, having access
to the desired input/output of the receiver (e.g., B and Z and in
particular not to the sender’s input A), constructs a simulated
view which is computationally indistinguishable from the
view of the receiver in the real protocol. The simulator is
constructed with two main cases – when an intersection larger
than t is known, and when it is not.

With known threshold: If |A ∩ B| ≥ t, we simply run the
simulator of the Phasing protocol. In particular, the simulator
runs SPHG

R (B,A ∩B) to compute sets of masks (U, V). Now
the simulator parses U = (U0, U1) and V = (V0, V1),
computes (k,H)← Encap(U0, t), encrypts C = Ek(U1) and
adds (C,H) to the simulated view. Any adversary that can
distinguish between this view and the view in the real protocol
can be used to break the security of the Phasing subroutine
using the following reduction: the reduction chooses an arbi-
trary set B′ such that A∩B = A∩B′ and outputs A,B′ to the
challenger and receives (U, V). Now the reduction completes
the view of the protocol by recomputing (k,H,C) and adding
(C,H) to the view, which is passed to the adversary against
the protocol simulator. By the construction of Definition 9,
when b = 0 this corresponds to the real view of the protocol
execution and when b = 1 this corresponds to the simulated
run, hence the reduction breaks Definition 9 with the same
advantage as the adversary for the overall protocol.

Without known threshold: The more interesting case is
of course when |A ∩ B| < t. In this case the simula-
tor runs the Phasing simulator SPHG

R (B, ∅) and receives the
masks U∗, V ∗ such that U∗ ∩ V ∗ = ∅. Next the simulator
parses U∗ = (U∗0 , U

∗
1) and V ∗ = (V ∗0 , V

∗
1), computes

(k∗, H∗)← Encap(U∗0 , t), encrypts C∗ = Ek∗(U
∗
1) and adds

(C∗, H∗) to the simulated view. Note that the distribution of
the simulated view is different from the distribution in the real
protocol. In particular in the real protocol U, V are such that
|U ∩V | = |A∩B| < t while in the simulation |U∗∩V ∗| = 0.
We argue that the views are computationally indistinguishable
anyway. We do so by a sequence of hybrid games, where
hybrid 0 is identical to the real protocol. In the first hybrid
we replace k with k∗ (the simulated key), and therefore we
replace C = Ek(U1) with C ′ = Ek∗(U1). Any adversary
that can distinguish between these two hybrids can be used
to break the security of the underlying T-KEM scheme (in

the reduction the adversary here has only |A ∩ B| < t of
the necessary masks). In the second hybrid we replace the
encrypted masks U1 with the simulated masks U∗1 . That is, in
the view we replace C ′ = Ek∗(U1) with C∗ = Ek∗(U

∗
1). Any

adversary that distinguishes between these two hybrids can be
used to break the IND-CPA security of the encryption scheme
(note that the reduction here does not need to know the key).
Since the second hybrid is identical to the simulated view, this
concludes the proof.

V. IMPLEMENTING T-KEM

This section describes an implementation of the T-KEM
algorithms that satisfies the security requirements. Our tech-
niques are based on polynomial interpolation, and can be seen
as an extension of the well known Shamir’s secret sharing [45]
scheme.

1) Encapsulation: Given a threshold t, we implement
Encap(B, t) on an input set B with |B| = n > t in the follow-
ing way: first we parse every element in B as (xBi , y

B
i) ∈ F×F

where F is an appropriately large (exponential) finite field.
Then we define a polynomial p of degree n − 1 from the n
points known to B as p(xBi) = yBi and the output key as
k = p(0)

The hint is composed of n − t additional points (xhi , y
h
i)

with yhi = p(xhi) as well as a hash of the key ck = R(k)
(where R is modeled as a random oracle) which allows to
detect correct decapsulation:

H = (ck = R(k), {(xhi , yhi)}i∈{1,...,n−t})

2) Decapsulation: The decapsulation process Decap(H,A)
works as follows: first parse A as (xAi , y

A
i) ∈ F×F; then, for

every subset A′ ⊆ A with |A′| = t, define a polynomial p′

using the points in H and in A′, then compute a candidate
key k′ = p′(0) and check if R(k′) = ck. If yes, then output
k = k′, otherwise proceed with the next subset A′.

The correctness follows from the basic fact that if two
polynomials p, p′ of degree n − 1 agree on n points, then
p = p′ [45].

To show security as per Definition 11, we make the fol-
lowing argument. Security follows from the fact that (in the
random oracle model) ck can only be used to verify if k′ = k
but otherwise leak no information about k. Consider the worst
case, in which the adversary has t′ = t−1 correct points. Then
even given the n−t hints the adversary only has n−1 points on
a n− 1 degree polynomial, which means that the best chance
of guessing k is |F|−1. Since ck can only be used to verify
guesses, then the only way of distinguishing the real k0 from
the random key k1 (in the security game of Definition 11)
is to invert the random oracle, and the probability that an
adversary can do this by querying the oracle q = poly(λ)
times is bounded by q/|F| which is negligible if the size of F
is exponential in the security parameter.

In terms of efficiency, the main bottlenecks in the solution
described above is to construct the hint during encapsulation,
and how to reconstruct the key k from the receiver’s set and the

10

hints during decapsulation. How to accomplish encapsulation
and decapsulation in the context of ridesharing is detailed in
Appendix A. Encapsulation is rather straight-forward with a
running time of O(n3). Interestingly, for the corner case when
any overlap of the input sets are sequential, as is the case
for ridesharing applications, decapsulation can be optimized
to give an asymptotic running time of O(n2).

VI. EXPERIMENTS

This section details experiments to assert both the effec-
tiveness and efficiency of our two-faceted approach. First,
we present a study of taxi trips in New York City. This
study compares how many trips the two privacy-preserving
approaches find in comparison to a plaintext implementation.
Secondly, the efficiency of the two approaches are evaluated,
and compared to a set intersection protocol implemented in a
generic SMC framework using garbled circuits.

A. Study of Taxi rides

To determine the effectiveness of the privacy-preserving
approaches, we have evaluated our approach on real-world
data of taxi rides in New York City, as publicly provided by the
New York City Taxi and Limousine Commission (TLC) [50].
We have used this data to find typical movements in a dense
city, assuming the user would also be willing to travel using
other means than by taxi to go from their origin to their
destination. Given any two taxi rides, we assign one to be
party A, who is willing to deviate from their route, and the
other party B who sticks to their shortest route. TLC reveals
only the origin and destination of the users. To calculate the
route, we have used the open source software Routino [43],
utilizing street data from OpenStreetMap [37].2

The taxi dataset is very large, but there are surprisingly
few rides that happen at the same time such that the users
could have shared a cab in practice. We conjecture that the
paths computed from the taxi trips are realistic movement
patterns, but that the times the rides take place are likely
widely different from users prone to use ride-sharing services
in order to e.g. commute. Even though taxi trips in New York
City do not generalize to mobility patterns in general (it is
even likely that users of the yellow non-bookable cabs differ
from users of the green pre-booked cabs within New York
City alone), this data at least give some indicative intuition
for ridesharing in a dense city. Thus, in this study we opt
to not look at the time of day at all, and instead view each
file in the dataset as a time-frame in which ridesharing is
feasible from a timing perspective. Files are grouped month
by month, which means we effectively get a relative measure
between the different patterns which is roughly averaged
over time of day, and weekday, and so forth. Though the
magnitude of ridesharing opportunities calculated in the study
is an over-approximation, the goal is not to find how many
ridesharing opportunities exist, but which pattern detects the
most ridesharing opportunities.

2Map data copyrighted OpenStreetMap contributors and available from
http://www.openstreetmap.org

As the TLC dataset is vast, the “bruteforce” algorithm
(outlined in Section III) is the bottleneck in the comparison.
To make the comparison feasible, only 1000 trips from every
even month of 2015 for the green cab dataset was used. The
dataset was considered as asymmetric, such that both parties
can assume the role of A or B, giving roughly one million
possible ridesharing opportunities every month and a total of
6 million for all months.

The number of ridesharing opportunities found when using
intersection-based matching, endpoint-based matching, and
when brute-forcing all points according to the “bruteforce”
algorithm outlined were counted. The bruteforce algorithm
captures all rides caught by the model. We assume that for
this dataset, users are willing to deviate most the start and end
of their trajectory, and not at all in the middle. The intuition
is that the user familiar to the areas close to home and/or
work, but less comfortable with improvising further along the
route. A second-degree polynomial was used to implement the
deviation function ∆, as shown in Equation 3.

∆T (i) = 4i2
r0
|T |2

− 4i
r0
|T |

+ r0 (3)

In Equation 3, r0 is how much the user is willing to deviate
at the endpoints, and i is the index of a vertex such that
∀i : vi ∈ T . This gives a ”happy-smiley-face” curve with
root at |T |/2 with y = r0 at x = 0 and x = |T |. Note
that the indices of the positions rather than the positions
themselves does lead to some imprecision. But Equation 3
gives an intuitive estimation with the right sign on the derivate
in almost all points.

Table I illustrates the effectiveness of the two different ap-
proaches on this dataset. In the table, t says what percentage of
the trip must be shared for ridesharing to be deemed feasible,
and r0 is the deviation allowed at the start and endpoints
(with ∆T (·) as per Equation 3). It shows the number of found
ridesharing opportunities by both approaches in PrivatePool
(PP), intersection-based matching (IS) and endpoint-based
matching (EP) compared to capturing all opportunities when
applying the entire model. The results show that effectiveness
is heavily reliant on the parameters, ranging from over 92%
to 14% when utilizing both approaches, 11% to 0.3% for
endpoint matching, and 92% to 2.5% when using only inter-
section. PrivatePool thus captures the vast majority as covered
by the model, but which privacy-preserving approach to use
depends on the needs of the user. Even though the highest
results were achieved with intersection-based matching, the
experiments confirm that endpoint matching is sometimes
preferable to the intersection-based approach.

B. Benchmarks

To benchmark the different approaches, the two patterns as
outlined in Section II were investigated, again using OSM and
Routino. The shortest path for several likely routes from intra-
city rides to trips over 1000 km, were used to determine the
size of the input set to use for the benchmarks. As seen in
Table II, the standard deviation is very large, meaning that the

11

TABLE I
EFFECTIVENESS OF PRIVACY-PRESERVING APPROACHES (IN PERCENT)

t r0 = 500 r0 = 1000 r0 = 2000
PP IS EP PP IS EP PP IS EP

20% 92.6 92.29 0.31 61.3 59.98 1.31 36.91 31.92 4.99
50% 75.57 74.64 0.93 45.73 42.3 3.43 25.26 16.01 9.25
80% 28.76 26.24 2.52 15.06 9.26 5.8 13.57 2.48 11.09

TABLE II
ROAD SEGMENT LENGTHS FROM OPENSTREETMAP DATA

Number of Distance(m) Average (m) Standard
sections deviation (m)
230 12013 52.46 81.87
123 19801 162.30 160.13
626 143165 229.06 217.20
1856 610581 329.15 285.69
2420 623177 257.62 231.94
2142 735975 343.75 305.62
3440 931475 270.86 308.35
2868 974107 339.77 299.89

road sections are of very varying size. Further, it is visible that
for shorter trips, the road segments are shorter, likely because
a highway contains long road sections.

The implementations measure only CPU time, and leaves
out networking. Benchmarks were done on a single machine
with 16GB RAM and an Intel i7-4790 CPU at 3.60GHz.

1) Implementation details: For the different approaches,
separate implementations were used. For endpoint matching,
the implementation is built on top of the original python code
for proximity testing by Hallgren et al., whereas for the T-PSI
a new C++ prototype for T-KEM was developed for integration
into the work by Pinkas et al.[40], but should also be compat-
ible with the most efficient Phasing subroutine from the work
of Kolesnikov et al. [26]. For a comparison to generic circuit-
based approaches, a Java implementation (called FastGC) for
PSI by Huang et al. [17] was used. For each implementation
there are different perks and drawbacks, and in many ways
the comparison is unfair (e.g. by programming language).
However, regarding performance the results firmly position
the different solutions asymptotically relative to each other.
Exactly how they are configured is detailed in the following.

For the end-point matching, we are able to achieve very
good results for coarse grained precision. The implementation
is using 1024 bit keys for the Paillier cryptosystem, and a
“radius value” of 4, with an imprecision of 500 meters. This
means that proximity is checked in a 2 km range, where
however both false negatives and false positives are possible
up to 500 meters.

As the data received from OpenStreetMap does not cor-
respond to equal-sized chunks (road sections have different
lengths), the data needs to be processed to be a good fit for
the two PSI solutions. For an application that needs to be
precise in the intersection threshold t, the road sections would
need to be split into sections as long as the distance unit of
OpenStreetMap. This would greatly increase the size of the
input set for the PSI solutions. For the scope of this work,
these smaller input sizes suffices to evaluate the efficiency

relative to the other approaches, and as will be seen below the
used inputs are enough to see roughly for which size of the
input the different solutions are useful. For our benchmarks,
the input set corresponds to using the start coordinate of
each road section. Though this much imprecision often would
cause the intersection to be either half or twice as long as
the intended threshold, plaintext preprocessing can be used to
attune precision and mitigate this issue once parameters are
fixed for a certain application.

The T-KEM implementation uses λ = 128, utilizing the
Intel Intrinsic [12] instruction set for operations in a field
of size 2128 and t was set to 80% of the total set size. On
the sender side, parallelization is trivial, and the sender thus
computes hints in parallel using OpenMP [36]. Though the
benchmarks shown do not include the Phasing subroutine, the
full original protocol needs under 0.3 seconds for 4096-bit set
sizes [40], rendering it almost negligible in the comparison.

The GC solution for PSI uses 80-bit security and 32-bit
strings for the input elements. For the scope of this work it was
chosen to not include the threshold computation. The addition
of the extra comparison should yield significantly slower
results for the generic solution. However, the asymptotic result
shown in the following section should not change – for large
sets the generic solution should outperform our threshold
version. To determine how much larger the set needs to be
for a threshold GC solution to outperform our T-PSI protocol
is left for future work.

2) Results: Benchmarks using the three prototypes show
that all are feasible enforcements in some situations, see
Figure 7. Table III shows the average time taken to check
for ridesharing opportunities using endpoint-matching, T-PSI,
and FastGC set intersection. Experiments were run 25 times
to minimize noise, with a less than 10% standard deviation.

The end-point matching performs independently of the size
of the set, however suffers greatly with improved precision.
At r = 25 (80 meter precision) the implementation finishes in
9.2 seconds, and at r = 100 (20 meter precision) in 124.43
seconds. At this stage, the derivate tapers off (for small r the
increase in running time is close to quadratic, for large r it’s
close to linear), but large values of r are out of reach for
practical applications with the chosen approach.

For the intersection-based solutions, the FastGC implemen-
tation is only preferable over T-PSI for very large sets, and
though it outperforms our threshold variant for paths longer
than 500 items as per Table III, both implementations are
arguably too slow to be used in practice at this stage. Thus,
the T-PSI implementation is preferable over FastGC for any
application where the user cannot tolerate large delays, such
as consumer-facing applications. Overall, the benchmarks are
very encouraging results for using SMC techniques. Though
indeed some configurations are very impractical, for most
settings there are alternatives that yield satisfying results. The
endpoint matching and intersection approaches are both very
efficient for low-precision applications in the general case, and
T-PSI can be used with full precision for shorter trips. Both
could be used in many applications, and for any consumer-

12

TABLE III
BENCHMARKS (SECONDS)

Number of End-point T-PSI FastGC
sections match (r=4) Sender Receiver Total PSI
32 0.352 0.014 0.008 0.022 2.485
64 0.367 0.046 0.031 0.077 2.915
128 0.361 0.174 0.187 0.362 3.918
256 0.363 0.695 1.388 2.083 5.593
512 0.372 2.778 10.79 13.57 8.665
1024 0.354 11.12 85.67 96.78 15.100
2048 0.353 44.34 683.8 728.1 30.263
4092 0.371 176.8 5450 5627 62.154

0.01

0.1

1

10

100

1000

10000

1000 2000 3000 4000

time (s)

Path length (number of sections)

EPM
T-PSI

FastGC

Fig. 7. Visualization of the benchmark results

facing such as ridesharing they outperform generic techniques
by orders of magnitude.

Much important work within SMC is of a more theoretical
nature, and is thus not able to show that SMC is applicable to
at least some real-world scenarios, e.g. using T-PSI for short
trips. These experiments show how to use SMC as a part of a
product in the emerging area of digital transportation services.
Indeed, though all evaluated approaches need to use a degraded
precision in the general case, the achieved running time is well
within reach of practical applications with acceptable precision
for many settings.

VII. RELATED WORK

As discussed in recent surveys [28], [49], location privacy
is an increasingly important topic. Relating to the privacy
of a user’s trajectory, much prior research relates to re-
identification [8], [4], whereas our work focuses on mini-
mizing disclosure of location data. The focus of hiding the
identity of a user stems from the common fact that many
existing parties has a trace of a user’s whereabouts and wants
to publish statistical facts about crowds. E.g. a provider of
public transport which uses electronic tickets often knows
where a user enters and exits a vehicle, and might want to
contribute anonymized data for urban planning [23]. Instead,
this work focuses on the case where a service provider, who
anyways needs to know the identity of their customers, wants
to minimize the data disclosure to e.g. reduce the risk of
security breaches or to conform to emerging regulations, such
as the data protection regulation by the European Union [51].

There is extensive literature on the problem of how to test
for the proximity of two points as provided by two different
users, without revealing more than the proximity result [56],
[47], [46], [7], [32], [35], [44], [15]. However, most work
considers a single proximity result in isolation. There are
some exceptions, such as the work by Hallgren et al. [16]
to account for moving parties. In the spirit of Hallgren et al.,
we utilize multiplication of two proximity results to check
whether both are positive. There are several ad-hoc solutions
which are not amenable to this approach [47], [46], [7],
[32]. Further work uses additive homomorphic encryption for
location proximity [56], [35], [44], [15].

The first problem considered for SMC was the millionaires
problem, where two parties wanted to find which was the
greater of two integers [55], from which equality testing [5]
and subsequently set intersection are natural steps [6]. Set
intersection is an important primitive needed to build many
larger applications, as discussed in several works [17], [40],
[39]. Set intersection has been implemented both using homo-
morphic encryption [18], [22], garbled circuits [17], and ad-
hoc solutions [40], [39], [26]. Of these, the ad-hoc solutions
perform better than the other techniques for small input
sizes, with garbled circuit-based solutions being asymptoti-
cally faster for large input sets [40].

VIII. CONCLUSIONS

We have presented an approach to specifying and enforc-
ing privacy in ridesharing applications. Our investigation of
ridesharing patterns has elucidated the benefits of a two-fold
approach: (i) ride matching based on the proximity of start-
and endpoints of the rides and (ii) ride matching based on the
overlap of the ride trajectories. We have therefore developed
privacy-preserving mechanisms for (i) start/end point matching
and (ii) private trajectory matching. For the former, we have
built on recent work on location proximity based on homo-
morphic encryption. For the latter, we have designed a novel
protocol for threshold private set intersection (dubbed T-PSI),
based on Shamir’s secret sharing scheme.

We have evaluated the effectiveness of our approach on the
real-world data from the New York City Taxi and Limou-
sine Commission, confirming that the endpoint-based and
intersection-based mechanisms are both useful.

We have prototyped and benchmarked these mechanisms
and contrasted them with a general-purpose approach based
on garbled circuits. The evaluation shows that for any ap-
plication that requires termination under 10 seconds, both
of our mechanisms outperform the generic garbled-circuit
approach. The benchmarks also indicate that precision can be
traded to achieve running time in under a second using either
homomorphic encryption or the T-PSI protocol.

Our results open up for promising future work tracks. On
the theoretical side, we plan to investigate multi-key protocols
for ridesharing. If successful, this will allow us to boost the
scalability of the approach by significantly simplifying the key
distribution phase. On the practical side, we plan to build a

13

fully-fledged ridesharing app, drawing on the infrastructure
developed in our prototype.

Acknowledgments: Thanks are due to Peter Druschel
and Rijurekha Sen for inspiring discussions on the scenario
of private ridesharing. This work was partly funded by the
European Community under the ProSecuToR project, COST
Action IC1306, Danish Independent Research Council and the
Swedish research agency VR.

REFERENCES

[1] C. Bessette, “Does Uber Even Deserve Our Trust?”
http://www.forbes.com/sites/chanellebessette/2014/11/25/
does-uber-even-deserve-our-trust/, Nov. 2014.

[2] “BlaBlaCar - Trusted carpooling,” https://www.blablacar.com/.
[3] D. Chaum, C. Crépeau, and I. Damgård, “Multiparty unconditionally

secure protocols (extended abstract),” in Proceedings of the 20th
Annual ACM Symposium on Theory of Computing, May 2-4, 1988,
Chicago, Illinois, USA, J. Simon, Ed. ACM, 1988, pp. 11–19.
[Online]. Available: http://doi.acm.org/10.1145/62212.62214

[4] R. Chen, B. C. M. Fung, and B. C. Desai, “Differentially private
trajectory data publication,” CoRR, vol. abs/1112.2020, 2011. [Online].
Available: http://arxiv.org/abs/1112.2020

[5] R. Fagin, M. Naor, and P. Winkler, “Comparing information without
leaking it,” Commun. ACM, vol. 39, no. 5, pp. 77–85, 1996. [Online].
Available: http://doi.acm.org/10.1145/229459.229469

[6] M. J. Freedman, K. Nissim, and B. Pinkas, “Efficient private matching
and set intersection,” in Advances in Cryptology - EUROCRYPT
2004, International Conference on the Theory and Applications of
Cryptographic Techniques, Interlaken, Switzerland, May 2-6, 2004,
Proceedings, ser. Lecture Notes in Computer Science, C. Cachin and
J. Camenisch, Eds., vol. 3027. Springer, 2004, pp. 1–19. [Online].
Available: \url{http://dx.doi.org/10.1007/978-3-540-24676-3 1}

[7] D. Freni, C. R. Vicente, S. Mascetti, C. Bettini, and C. S. Jensen,
“Preserving location and absence privacy in geo-social networks,”
in Proceedings of the 19th ACM Conference on Information and
Knowledge Management, CIKM 2010, Toronto, Ontario, Canada,
October 26-30, 2010, J. Huang, N. Koudas, G. J. F. Jones, X. Wu,
K. Collins-Thompson, and A. An, Eds. ACM, 2010, pp. 309–318.
[Online]. Available: http://doi.acm.org/10.1145/1871437.1871480

[8] G. Ghinita, “Private queries and trajectory anonymization: a dual
perspective on location privacy,” Trans. Data Privacy, vol. 2, no. 1, pp.
3–19, 2009. [Online]. Available: http://www.tdp.cat/issues/abs.a018a09.
php

[9] A. A. Ghorbani, V. Torra, H. Hisil, A. Miri, A. Koltuksuz,
J. Zhang, M. Sensoy, J. Garcı́a-Alfaro, and I. Zincir, Eds., 13th
Annual Conference on Privacy, Security and Trust, PST 2015,
Izmir, Turkey, July 21-23, 2015. IEEE, 2015. [Online]. Available:
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7193739

[10] O. Goldreich, The Foundations of Cryptography - Volume 2, Basic
Applications. Cambridge University Press, 2004.

[11] O. Goldreich, S. Micali, and A. Wigderson, “How to play any
mental game or A completeness theorem for protocols with honest
majority,” in Proceedings of the 19th Annual ACM Symposium
on Theory of Computing, 1987, New York, New York, USA,
A. V. Aho, Ed. ACM, 1987, pp. 218–229. [Online]. Available:
http://doi.acm.org/10.1145/28395.28420

[12] S. Gueron and M. E. Kounavis, “Intel R© carry-less multiplication
instruction and its usage for computing the gcm mode,”
https://software.intel.com/sites/default/files/managed/72/cc/
clmul-wp-rev-2.02-2014-04-20.pdf, Apr. 2014.

[13] S. Halevi, Y. Lindell, and B. Pinkas, “Secure computation on the
web: Computing without simultaneous interaction,” in Advances in
Cryptology - CRYPTO 2011 - 31st Annual Cryptology Conference,
Santa Barbara, CA, USA, August 14-18, 2011. Proceedings, ser.
Lecture Notes in Computer Science, P. Rogaway, Ed., vol. 6841.
Springer, 2011, pp. 132–150. [Online]. Available: http://dx.doi.org/10.
1007/978-3-642-22792-9 8

[14] P. A. Hallgren, M. Ochoa, and A. Sabelfeld, “Bettertimes -
privacy-assured outsourced multiplications for additively homomorphic
encryption on finite fields,” in Provable Security - 9th International
Conference, ProvSec 2015, Kanazawa, Japan, November 24-26, 2015,

Proceedings, ser. Lecture Notes in Computer Science, M. H. Au and
A. Miyaji, Eds., vol. 9451. Springer, 2015, pp. 291–309. [Online].
Available: \url{http://dx.doi.org/10.1007/978-3-319-26059-4 16}

[15] ——, “Innercircle: A parallelizable decentralized privacy-preserving
location proximity protocol,” in 13th Annual Conference on Privacy,
Security and Trust, PST 2015, Izmir, Turkey, July 21-23, 2015, A. A.
Ghorbani, V. Torra, H. Hisil, A. Miri, A. Koltuksuz, J. Zhang,
M. Sensoy, J. Garcı́a-Alfaro, and I. Zincir, Eds. IEEE, 2015, pp. 1–6.
[Online]. Available: \url{http://dx.doi.org/10.1109/PST.2015.7232947}

[16] ——, “Maxpace: Speed-constrained location queries,” in 2016 IEEE
Conference on Communications and Network Security, CNS 2016,
Philadelphia, PA, USA, October 17-19, 2016, 2016.

[17] Y. Huang, D. Evans, and J. Katz, “Private set intersection: Are
garbled circuits better than custom protocols?” in 19th Annual
Network and Distributed System Security Symposium, NDSS 2012,
San Diego, California, USA, February 5-8, 2012. The Internet
Society, 2012. [Online]. Available: http://www.internetsociety.org/
private-set-intersection-are-garbled-circuits-better-custom-protocols

[18] B. A. Huberman, M. K. Franklin, and T. Hogg, “Enhancing privacy
and trust in electronic communities,” in EC, 1999, pp. 78–86. [Online].
Available: http://doi.acm.org/10.1145/336992.337012

[19] Y. Ishai, J. Kilian, K. Nissim, and E. Petrank, “Extending oblivious
transfers efficiently,” in Advances in Cryptology - CRYPTO 2003, 23rd
Annual International Cryptology Conference, Santa Barbara, California,
USA, August 17-21, 2003, Proceedings, ser. Lecture Notes in Computer
Science, D. Boneh, Ed., vol. 2729. Springer, 2003, pp. 145–161.
[Online]. Available: http://dx.doi.org/10.1007/978-3-540-45146-4 9

[20] J. Jung and T. Holz, Eds., 24th USENIX Security Symposium,
USENIX Security 15, Washington, D.C., USA, August 12-14, 2015.
USENIX Association, 2015. [Online]. Available: https://www.usenix.
org/conference/usenixsecurity15

[21] F. Kerschbaum, “Adapting privacy-preserving computation to the
service provider model,” in Proceedings of the 12th IEEE International
Conference on Computational Science and Engineering, CSE 2009,
Vancouver, BC, Canada, August 29-31, 2009. IEEE Computer Society,
2009, pp. 34–41. [Online]. Available: http://dx.doi.org/10.1109/CSE.
2009.261

[22] ——, “Outsourced private set intersection using homomorphic
encryption,” in 7th ACM Symposium on Information, Compuer and
Communications Security, ASIACCS ’12, Seoul, Korea, May 2-4, 2012,
H. Y. Youm and Y. Won, Eds. ACM, 2012, pp. 85–86. [Online].
Available: http://doi.acm.org/10.1145/2414456.2414506

[23] H. Kikuchi and K. Takahashi, “Zipf distribution model for quantifying
risk of re-identification from trajectory data,” in 13th Annual
Conference on Privacy, Security and Trust, PST 2015, Izmir,
Turkey, July 21-23, 2015, A. A. Ghorbani, V. Torra, H. Hisil,
A. Miri, A. Koltuksuz, J. Zhang, M. Sensoy, J. Garcı́a-Alfaro,
and I. Zincir, Eds. IEEE, 2015, pp. 14–21. [Online]. Available:
http://dx.doi.org/10.1109/PST.2015.7232949

[24] L. Kissner and D. X. Song, “Private and threshold set-intersection,”
http://www.dtic.mil/dtic/tr/fulltext/u2/a461119.pdf, 2004.

[25] ——, “Privacy-preserving set operations,” in Advances in Cryptology
- CRYPTO 2005: 25th Annual International Cryptology Conference,
Santa Barbara, California, USA, August 14-18, 2005, Proceedings,
ser. Lecture Notes in Computer Science, V. Shoup, Ed., vol.
3621. Springer, 2005, pp. 241–257. [Online]. Available: http:
//dx.doi.org/10.1007/11535218 15

[26] V. Kolesnikov, R. Kumaresan, M. Rosulek, and N. Trieu, “Efficient
batched oblivious PRF with applications to private set intersection,”
in Proceedings of the 2016 ACM SIGSAC Conference on Computer
and Communications Security, Vienna, Austria, October 24-28, 2016,
E. R. Weippl, S. Katzenbeisser, C. Kruegel, A. C. Myers, and
S. Halevi, Eds. ACM, 2016, pp. 818–829. [Online]. Available:
http://doi.acm.org/10.1145/2976749.2978381

[27] V. Kolesnikov, A. Sadeghi, and T. Schneider, “From dust to dawn:
Practically efficient two-party secure function evaluation protocols and
their modular design,” IACR Cryptology ePrint Archive, vol. 2010,
p. 79, 2010. [Online]. Available: http://eprint.iacr.org/2010/079

[28] J. Krumm, “A survey of computational location privacy,” Personal and
Ubiquitous Computing, vol. 13, no. 6, pp. 391–399, 2009.

[29] J. Krumm and E. Horvitz, “LOCADIO: inferring motion and
location from wi-fi signal strengths,” in 1st Annual International
Conference on Mobile and Ubiquitous Systems (MobiQuitous 2004),
Networking and Services, 22-25 August 2004, Cambridge, MA,

14

USA. IEEE Computer Society, 2004, pp. 4–13. [Online]. Available:
http://dx.doi.org/10.1109/MOBIQ.2004.1331705

[30] Y. Lindell and B. Pinkas, “Secure multiparty computation for privacy-
preserving data mining,” IACR Cryptology ePrint Archive, vol. 2008,
p. 197, 2008. [Online]. Available: http://eprint.iacr.org/2008/197

[31] “Lyft,” https://www.lyft.com/.
[32] S. Mascetti, D. Freni, C. Bettini, X. S. Wang, and S. Jajodia,

“Privacy in geo-social networks: proximity notification with untrusted
service providers and curious buddies,” VLDB J., vol. 20, no. 4,
pp. 541–566, 2011. [Online]. Available: \url{http://dx.doi.org/10.1007/
s00778-010-0213-7}

[33] Y. Michalevsky, A. Schulman, G. A. Veerapandian, D. Boneh,
and G. Nakibly, “Powerspy: Location tracking using mobile
device power analysis,” in 24th USENIX Security Symposium,
USENIX Security 15, Washington, D.C., USA, August 12-14,
2015., J. Jung and T. Holz, Eds. USENIX Association, 2015,
pp. 785–800. [Online]. Available: https://www.usenix.org/conference/
usenixsecurity15/technical-sessions/presentation/michalevsky

[34] K. Muthukrishnan, B. van der Zwaag, and P. J. M. Havinga,
“Inferring motion and location using WLAN RSSI,” in Mobile
Entity Localization and Tracking in GPS-less Environnments, Second
International Workshop, MELT 2009, Orlando, FL, USA, September 30,
2009. Proceedings, ser. Lecture Notes in Computer Science, R. Fuller
and X. D. Koutsoukos, Eds., vol. 5801. Springer, 2009, pp. 163–182.
[Online]. Available: http://dx.doi.org/10.1007/978-3-642-04385-7 12

[35] A. Narayanan, N. Thiagarajan, M. Lakhani, M. Hamburg, and
D. Boneh, “Location privacy via private proximity testing,” in
Proceedings of the Network and Distributed System Security Symposium,
NDSS 2011, San Diego, California, USA, 6th February - 9th
February 2011. The Internet Society, 2011. [Online]. Available:
http://www.isoc.org/isoc/conferences/ndss/11/pdf/1 3.pdf

[36] OpenMP Architecture Review Board, “OpenMP application program
interface version 4.0,” May 2013. [Online]. Available: http://www.
openmp.org/wp-content/uploads/OpenMP4.0.0.pdf

[37] “Openstreetmap,” http://www.openstreetmap.org/.
[38] W. R. Ouyang, A. K. Wong, and C. A. Lea, “Received signal

strength-based wireless localization via semidefinite programming:
Noncooperative and cooperative schemes,” IEEE Trans. Vehicular
Technology, vol. 59, no. 3, pp. 1307–1318, 2010. [Online]. Available:
http://dx.doi.org/10.1109/TVT.2010.2040096

[39] B. Pinkas, T. Schneider, G. Segev, and M. Zohner, “Phasing: Private set
intersection using permutation-based hashing,” in 24th USENIX Security
Symposium, USENIX Security 15, Washington, D.C., USA, August
12-14, 2015., J. Jung and T. Holz, Eds. USENIX Association, 2015,
pp. 515–530. [Online]. Available: https://www.usenix.org/conference/
usenixsecurity15/technical-sessions/presentation/pinkas

[40] B. Pinkas, T. Schneider, and M. Zohner, “Faster private set
intersection based on OT extension,” in Proceedings of the 23rd
USENIX Security Symposium, San Diego, CA, USA, August 20-22,
2014., K. Fu and J. Jung, Eds. USENIX Association, 2014,
pp. 797–812. [Online]. Available: https://www.usenix.org/conference/
usenixsecurity14/technical-sessions/presentation/pinkas

[41] I. Polakis, G. Argyros, T. Petsios, S. Sivakorn, and A. D. Keromytis,
“Where’s wally?: Precise user discovery attacks in location proximity
services,” in Proceedings of the 22nd ACM SIGSAC Conference on
Computer and Communications Security, Denver, CO, USA, October 12-
6, 2015, I. Ray, N. Li, and C. Kruegel, Eds. ACM, 2015, pp. 817–828.
[Online]. Available: http://doi.acm.org/10.1145/2810103.2813605

[42] P. Rindal and M. Rosulek, “Improved private set intersection against
malicious adversaries,” in Advances in Cryptology - EUROCRYPT 2017
- 36th Annual International Conference on the Theory and Applications
of Cryptographic Techniques, Paris, France, April 30 - May 4, 2017,
Proceedings, Part I, ser. Lecture Notes in Computer Science, J. Coron
and J. B. Nielsen, Eds., vol. 10210, 2017, pp. 235–259. [Online].
Available: http://dx.doi.org/10.1007/978-3-319-56620-7 9

[43] “Routino,” http://www.routino.org/.
[44] J. Sedenka and P. Gasti, “Privacy-preserving distance computation

and proximity testing on earth, done right,” in 9th ACM Symposium
on Information, Computer and Communications Security, ASIA CCS
’14, Kyoto, Japan - June 03 - 06, 2014, S. Moriai, T. Jaeger,
and K. Sakurai, Eds. ACM, 2014, pp. 99–110. [Online]. Available:
http://doi.acm.org/10.1145/2590296.2590307

[45] A. Shamir, “How to share a secret,” Commun. ACM, vol. 22, no. 11, pp.

612–613, 1979. [Online]. Available: http://doi.acm.org/10.1145/359168.
359176

[46] L. Siksnys, J. R. Thomsen, S. Saltenis, and M. L. Yiu, “Private
and flexible proximity detection in mobile social networks,” in
Eleventh International Conference on Mobile Data Management,
MDM 2010, Kanas City, Missouri, USA, 23-26 May 2010, T. Hara,
C. S. Jensen, V. Kumar, S. Madria, and D. Zeinalipour-Yazti,
Eds. IEEE Computer Society, 2010, pp. 75–84. [Online]. Available:
\url{http://dx.doi.org/10.1109/MDM.2010.43}

[47] L. Siksnys, J. R. Thomsen, S. Saltenis, M. L. Yiu, and O. Andersen,
“A location privacy aware friend locator,” in Advances in Spatial
and Temporal Databases, 11th International Symposium, SSTD 2009,
Aalborg, Denmark, July 8-10, 2009, Proceedings, ser. Lecture Notes in
Computer Science, N. Mamoulis, T. Seidl, T. B. Pedersen, K. Torp,
and I. Assent, Eds., vol. 5644. Springer, 2009, pp. 405–410. [Online].
Available: \url{http://dx.doi.org/10.1007/978-3-642-02982-0 29}

[48] T. Sohn, A. Varshavsky, A. LaMarca, M. Y. Chen, T. Choudhury,
I. E. Smith, S. Consolvo, J. Hightower, W. G. Griswold, and
E. de Lara, “Mobility detection using everyday GSM traces,” in
UbiComp 2006: Ubiquitous Computing, 8th International Conference,
UbiComp 2006, Orange County, CA, USA, September 17-21, 2006,
ser. Lecture Notes in Computer Science, P. Dourish and A. Friday,
Eds., vol. 4206. Springer, 2006, pp. 212–224. [Online]. Available:
http://dx.doi.org/10.1007/11853565 13

[49] M. Terrovitis, “Privacy preservation in the dissemination of location
data,” SIGKDD Explorations, vol. 13, no. 1, pp. 6–18, 2011.

[50] The City of New York, “Taxi and Limousine Commission trip data,”
http://www.nyc.gov/html/tlc/html/about/trip record data.shtml, 2016.

[51] The European Parliament and the Council of the European Union,
“Article 25: Data protection by design and by default,” http://ec.europa.
eu/justice/data-protection/reform/files/regulation oj en.pdf, Apr. 2016.

[52] “Uber technologies inc.” https://www.uber.com/.
[53] Volvo Car Group, “Volvo cars and uber join forces to

develop autonomous driving cars,” https://www.media.
volvocars.com/global/en-gb/media/pressreleases/194795/
volvo-cars-and-uber-join-forces-to-develop-autonomous-driving-cars,
2016.

[54] Wikipedia, “Tesla model 3 — wikipedia, the free encyclope-
dia,” https://en.wikipedia.org/w/index.php?title=Tesla Model 3&oldid=
750392389, 2016.

[55] A. C. Yao, “How to generate and exchange secrets (extended abstract),”
in 27th Annual Symposium on Foundations of Computer Science,
Toronto, Canada, 27-29 October 1986. IEEE Computer Society, 1986,
pp. 162–167. [Online]. Available: \url{http://dx.doi.org/10.1109/SFCS.
1986.25}

[56] G. Zhong, I. Goldberg, and U. Hengartner, “Louis, lester and
pierre: Three protocols for location privacy,” in Privacy Enhancing
Technologies, 7th International Symposium, PET 2007 Ottawa,
Canada, June 20-22, 2007, Revised Selected Papers, ser. Lecture
Notes in Computer Science, N. Borisov and P. Golle, Eds., vol.
4776. Springer, 2007, pp. 62–76. [Online]. Available: \url{http:
//dx.doi.org/10.1007/978-3-540-75551-7 5}

APPENDIX A
INTERPOLATION OPTIMIZATIONS

Before describing our optimizations, we recall the basics of
polynomial interpolation.

For any given set of n coordinates, there exists a unique
interpolating polynomial of degree n + 1. When using a
polynomial over a field, as in our context, an attacker gains no
advantage from knowing n−1 points. Lagrange interpolation
is used to evaluate a polynomial p(x) of degree n + 1 for
any x, given n arbitrary points. For the input set (xi, yi), with
i ∈ {0, 1, .., n}, we have:

p(x) =

n∑
j=0

yj n∏
m=0,m 6=j

xm − x
xm − xj

15

From the above representation, it’s easy to see that Lagrange
interpolation requires O(n2) time.

1) Decapsulation: Here we exploit the following property
of our specific application: trajectories are ordered sets of
points, we do not need to try every set A′ of size t, but
only sets with consecutive points. In detail, if two trajectories
(xAi , y

A
i) and (xBj , y

B
j) only have an intersection of size t

if there exist a starting point s and a difference d such that
(xAs+i, y

A
s+i) = (xBs+d+i, y

A
s+d+i) for all i = 0..t− 1.

For simplicity, consider the case where A contains n = 2t
points, and we need to find a sequence of t consecutive
points that yields the correct interpolation. There’s a total
of t + 1 sequences of the correct length, and A needs to
attempt to verify each of them towards the check. Let each
such sequence’s dimension be denoted separately as

−→
Xi = {xAi , xAi+1, .., x

A
i+t} ∪ {xh0 , xh1 , .., xht }

−→
Y i = {yAi , yAi+1, .., y

A
i+t} ∪ {yh0 , yh1 , .., yht }

For the first sequence, Decap computes a normal inter-
polation in O(n2) time. For all following sequences, the
interpolation at the x coordinates for Xk can be used to
compute the interpolation of Xk+1. As shown in the following,
this incremental step can be done in O(n) time. Note that the
receiver is only interested in learning p(0). The receiver saves
the numerators and denominators from first run in two vectors−→
O0 (over),

−→
U0 (under), given as:

−→
O0 =

 t∏
m=0,m 6=j

X0
m

∣∣∣∣∣∣ j ∈ {0..t}
 (4)

−→
U0 =

 t∏
m=0,m 6=j

(
X0
m −X0

j

)∣∣∣∣∣∣ j ∈ {0..t}
 (5)

Since each O0
i and U0

i take O(n) time to compute, Equa-
tion 4 and Equation 5 are both clearly O(n2). The following
describes how to compute Ok+1

i and Uk+1
i from Oki and Uki

in linear time, for any k ≥ 0. The transformation from
−→
Ok to−−−→

Ok+1 consists of two steps, the first for j ∈ {0..t − 2} and
the second for j ∈ {t, .., n − 1}. For the case when Ok+1

t−1 ,
we note that is exactly the value Ok0 . For j ∈ {0..t− 2}, the
numerator is calculated as:

Ok+1
j = Okj+1 ·

Xk+1
t

Xk
0

Which intuitively means just including one new factor
Xk+1t and removing the factor Xk

0 . E.g., for k = 0, this
means removing the first x-coordinate x0, and including xt+1.
For j ∈ {t..n− 1}, a similar computation is carried out:

Ok+1
j = Okj ·

Xk+1
t

Xk
0

Clearly, this is constant time for each of the n indexes,
which means that the time for updating from −→o k to −→o k+1 is

O(n). For the denominators, the computations are more ex-
pensive, however the asymptotic runtime is the same. Similarly
as for numerators, we have that for j ∈ {0..t− 2}:

Uk+1
j = Ukj+1 ·

Xk+1
t − xk+1

j

xk0 − x
k+1
j

For j ∈ {t..n− 1}:

Uk+1
j = Ukj ·

Xk+1
t −Xk+1

j

Xk
0 −X

k+1
j

As with the numerators, this is constant time per j, and
thus runs in O(n). Now for the value of Uk+1

t−1 , we have to
recompute the entire denominator.

Uk+1
t−1 =

t∏
m=0,m 6=j

(
Xk+1
m −Xk+1

j

)∣∣ j ∈ {0..t}
This means that the update for the denominators take O(n+

n) = O(n). Further, for each k ∈ {0..t}, after
−→
Ok and

−→
Uk have

been computed, the evaluation of the polynomial is needed.
This is done as:

p(0) =

t∑
j=0

(
yj
oj
uj

)
Which runs in O(n) time. Thus, for k = 0 interpolation

requires O(n2 + n) = O(n2) work, which is followed by t
evaluations that run in O(n) time. In total, the receiver thus
spend O(n2 + n2) = O(n2) time.

2) Encapsulation: The encapsulation algorithm Encap can
not utilize incremental computation during the interpolation
process. However, the denominator is in this case fixed, and
only needs to be computed once.

−→u =

 t∏
m=0,m 6=j

(
xBm − xBj

)∣∣∣∣∣∣ j ∈ {0..t}

The numerator needs complete recomputation for every hint:

−→
Ox =

 t∏
m=0,m 6=j

(
xBm − x

)∣∣∣∣∣∣ j ∈ {0..t}

It’s possible to achieve a speedup for the numerator by
precomputing

−→
P =

[
yj
uj

∣∣∣∣ j ∈ {0..t}]
Then, to compute the y-component of every hint, the sender

computes

p(xhi) = yhi =

t∑
j=0

(
P jO

xh
i
j

)
However, the improvement of precomputing P does not

improve the running time asymptotically.

16

