
Cryptographically-Masked Flows

Aslan Askarov Daniel Hedin Andrei Sabelfeld

Department of Computer Science and Engineering
Chalmers University of Technology

412 96 Göteborg, Sweden

In Proc. 13th International Static Analysis Symposium, Seoul, Korea, August 2006. LNCS.© Springer-Verlag

Abstract. Cryptographic operations are essential for many security-critical sys-
tems. Reasoning about information flow in such systems is challenging because
typical (noninterference-based) information-flow definitions allow no flow from
secret to public data. Unfortunately, this implies that programs with encryption
are ruled out because encrypted output depends on secret inputs: the plaintext and
the key. However, it is desirable to allow flows arising from encryption with secret
keys provided that the underlying cryptographic algorithm is strong enough. In
this paper we conservatively extend the noninterference definition to allow safe
encryption, decryption, and key generation. To illustrate the usefulness of this
approach, we propose (and implement) a type system that guarantees noninter-
ference for a small imperative language with primitive cryptographic operations.
The type system prevents dangerous program behavior (e.g., giving away a secret
key or confusing keys and non-keys), which we exemplify with secure imple-
mentations of cryptographic protocols. Because the model is based on a standard
noninterference property, it allows us to develop some natural extensions. In par-
ticular, we consider public-key cryptography and integrity, which accommodate
reasoning about primitives that are vulnerable to chosen-ciphertext attacks.

1 Introduction

Cryptographic operations are ubiquitous in security-critical systems. Reasoning about
information flow in such systems is challenging because typical information-flow defi-
nitions allow no flow from secret to public data. The latter requirement underliesnon-
interference[11, 16], which demands that public outputs are unchanged as secret inputs
are varied. While traditional noninterference breaks in the presence of cryptographic
operations, the challenge is to distinguish between breaking noninterference because of
legitimate use of sufficiently strong encryption and breaking noninterference due to an
unintended leak.

A common approach to handling cryptographic primitives in information-flow aware
systems is by allowingdeclassificationof encryption results. The intention of declas-
sification is that the result of encryption can be released to the attacker. Declassifi-
cation, however, is a versatile mechanism: different declassification dimensions cor-
respond to different reasons why information is released [29, 4]. Attempts at framing
cryptographically-masked flows into different dimensions have been made although, as
we discuss, not always with satisfactory results.

In this paper, we introduce cryptographic primitives into an information-flow set-
ting while preserving a form of noninterference property. This is achieved by building

(a) Noninterference (b) Encryption

(c) Possibilistic noninterference (d) Cryptographically-masked flows

Fig. 1. From noninterference to cryptographically-masked flows

in the model a basic assumption that attackers may not distinguish between ciphertexts
and that decryption using the wrong key fails. Although this assumption is stronger
than some probabilistic and computational cryptographic models (which allow some
information to leak when comparing ciphertexts), we argue that it can still be reason-
able, and that it opens up possibilities for tracking information flow in the presence of
cryptographic primitives in expressive programming languages.

The intuition behind our approach is sketched below and illustrated in Figure 1,
where dashed and solid lines correspond to secret and public values, respectively. Fix-
ing some public (low) inputxL and varying secret (high) input fromxH to yH may
not reflect on a public outputz′L of a system that satisfies noninterference (illustrated
in Figure 1(a)). Suppose the system in question involves encryption, such as in the pro-
gramz = enc(k, x) for some secret keyk. Clearly, noninterference is broken: variation
in the secret input fromxH to yH may cause variation in the public output fromz′L to
z′′L (illustrated in Figure 1(b)).

However, noninterference can be recovered if the result of encryption is possibly
any valuev. This means that variation of the high input fromxH to yH does not af-
fect the public output—any valuev is a possible public output in both cases. This form
of noninterference is known aspossibilistic noninterference[24] (illustrated in Fig-
ure 1(c)). Overall, although low outputs might depend on low inputs and ciphertexts, no
observation about possible low outputs may reveal information about changes in high
inputs (illustrated in Figure 1(d)).

This paper makes a case for possibilistic noninterference as a natural model for
cryptographically-masked flows. Further, we have designed and implemented a secu-
rity type system that provably enforces possibilistic noninterference for an imperative
language with primitive cryptographic operations and communication channels. The
type system prevents dangerous program behavior (e.g., giving away a secret key or
confusing keys or non-keys), which we exemplify with secure implementations of cryp-
tographic protocols. Because the model is based on a standard noninterference property,
it allows us to develop some natural extensions. In particular, we consider public-key
cryptography and integrity, which accommodates reasoning about primitives that are
vulnerable to chosen-ciphertext attacks.

2

sec. levels σ ::= L | H
key levels γ ::= P | S
global decls. gd ::= global x γ | ch τ

basic types t ::= int | encγ τ
prim. types τ ::= t σ | key γ | (τ1, τ2)
local decls. ld ::= x τ

expressions e ::= n | x | e1 op e2 | encγ (e1, e2) | decγ (e1, e2) | newkey γ | (e1, e2)
| fst(e) | snd(e)

statements c ::= skip | x := e | if e then b1 else b2 | while e do b | out(ch, e)
| in(x, ch)

block b ::= {ld1; . . . ldn; c1; . . . ; cm}
actor actor ::= A b program prog ::= gd1; . . . gdn; actor1 . . . actorm

Fig. 2. Syntax

2 Language

We explore how to model cryptographic flows in a small imperative language equipped
with primitive encryption functions, dynamic key generation, and channels for commu-
nication. This section introduces the syntax and semantics of the language. For space
reasons we are forced to omit the standard features of the language. The complete rules
can be, however, found in the full version of this paper [3].

SyntaxThe syntax of the language is defined in Figure 2. Letx ∈ VarName range over
the set of variable names andch ∈ ChanName range over the set of channel names.
A programconsists of a sequence ofglobal declarationsfollowed by a sequence of
actors. A global declaration is either a declaration of aglobal keyor the declaration
of a channel. Global keys are declared by associating a variable name with akey level.
Values and keys have correspondingsecurity levels. Values are eitherpublic (low)L or
secret (high)H. The key levels declare the maximum value security level the key can
safely encrypt. In particular, a key of levelSmay safely encrypt public and secret values,
whereas a key of levelP may only safely encrypt public values. LetKeyLvl = {S, P}
be the set of key levels. Global keys are assumed to have appropriate values at the
beginning of the execution of a program and correspond to initial shared secrets between
the actors of the program. Achannelis declared by associating a channel name with
the type of the messages that will be sent over the channel. LetA range over the set
of actor names. An actor is defined by naming ablock, representing the code of the
actor. A block is simply a sequence of variable declarations followed by a sequence of
commands. Variables are local to the block in which they are declared. The commands
include the standard commands of an imperative language and commands for sending
on and receiving from a given channel. Apart from expressions for generating new keys
and for encryption and decryption, expressions are standard: integers, variables, total
binary operators, pair formation, and projection.

SemanticsThe semantics of the system is defined as a big-step operational semantics.
The actors of a program run concurrently and interact with each other by sending and
receiving messages on the declared channels. We refrain from modeling the semantics
for the entire system and instead provide semantics for isolated actors. Thus we delib-
erately ignore information flows via races and other flows that may arise in concurrent

3

systems (cf. [27]). First we define the values and environments, which are used in the
following definition of the semantics of expressions and commands. Letn ∈ Z range
over theintegersandk ∈ Key = KeyP∪KeyS range overkeys, whereKeyP andKeyS
are disjoint. Thevaluesare built up by theordinary values, integers, keys andpairs of
values, together with theencrypted valuesu ∈ U = UP ∪ US.

values∈ Value v ::= n | k | (v1, v2) | u
The system is parameterized over twosymmetric encryption schemes—one for each

key levelγ—represented by triplesSEγ = (Kγ , Eγ ,Dγ), where

– Kγ is akey generationalgorithm that on each invocation generates a new key.
– Eγ is a probabilistic encryption algorithm that takes a keyk ∈ Keyγ , a value

v ∈ Value and returns a ciphertextu ∈ Uγ .
– Dγ is a deterministic decryption algorithm that takes a keyk ∈ Keyγ , a cipher-

text u ∈ Uγ and returns a valuev ∈ Value or fails. Decryption should satisfy
Dγ(k, Eγ(k, v)) = v.

The reason for the use of different encryption schemes for different security levels is
to lay the ground for an extension of the system into amulti-levelsystem, i.e. a system
with more than two security levels. In such a system we would have one encryption
schema at each security level, trusted to encrypt values up to and including the security
level. We shall assume that the keys setsKeyP andKeyS of the two different encryption
schemes are distinct; letpk range overKeyP andsk overKeyS.

Input and output is modeled in terms of streams of values with the cons opera-
tion “·” and the distinguished empty streamε. Thefull environmentE consists of four
components: (i) the variable environmentM , which is a stack of mappings from vari-
able names to lifted values (values joined with a special value for undefinedValue• =
Value ∪ {•}); (ii) the key-stream environmentG, which maps an encryption scheme
level to thestream of keysgenerated by successive use of the key generator (letks range
over streams of keys); (iii) the input environmentI and (iv) the output environmentO,
which map channel names to streams of values.

Semantics of ExpressionsThe evaluation of expressions has the form〈(M,G), e〉 ⇓
〈G′, v〉: evaluating an expression in a given variable and key-stream environment yields
a value and a possibly updated key-stream environment. The semantics of integers,
variables, total binary operators, pair formation, and projection are entirely standard.

Figure 3 presents the rules specific to the treatment of cryptography; the rest of the
rules can be found in [3]. Key generation(S-NEWKEY) takes the level of the key to be
generated and returns the topmost element in the key stream associated to that level in
the key-stream environment. Encryption(S-ENC)and decryption(S-DEC)both use the
encryption schemesSEγ introduced above.

Semantics of CommandsCommands are state transformers of the form〈E, c〉 ⇓ E′:
the commandc yields the new environmentE′ when run in the environmentE. The
semantics of the commands is entirely standard for a while language with channels—
everything specific to encryption is in the expressions. For space reasons the semantics
of the commands is not presented here but can be found in [3].

4

(S-NEWKEY)
G(γ) = k · ks

〈(M, G), newkey γ〉 ⇓ 〈G[γ 7→ ks], k〉

(S-ENC)

〈(M, G), e1〉 ⇓ 〈G′, k〉 〈(M, G′), e2〉 ⇓ 〈G′′, v〉 k ∈ Keyγ

u = Eγ(k, v)

〈(M, G), encγ (e1, e2)〉 ⇓ 〈G′′, u〉

(S-DEC)

〈(M, G), e1〉 ⇓ 〈G′, k〉 〈(M, G′), e2〉 ⇓ 〈G′′, u〉 k ∈ Keyγ

v = Dγ(k, u)

〈(M, G), decγ (e1, e2)〉 ⇓ 〈G′′, v〉

Fig. 3. Semantics of Expressions

3 Security

This section states the assumptions our semantic model makes on the underlying en-
cryption schema and shows how these assumptions lead up to a natural formulation
of possibilistic noninterference. The section concludes by investigating the relation be-
tween our assumptions and common cryptographic attacker models.

Encryption Model As was mentioned above, this paper only considersprobabilistic
encryption schemes. A probabilistic encryption scheme is a triple(K, E ,D) where the
encryption algorithm is a function from a key, a plaintext, and some initialrandom
data, referred to as theinitial vector. Such an algorithm will produce a set of possible
ciphertexts for each plaintext-key pair, one ciphertext for each initial vector.

To be able to formulate and prove possibilistic noninterference for our system we
need to demand two properties of the underlying encryption schemes. The first property
is the assumption that an adversary can learn nothing about the plaintext or the key by
observing the ciphertext. This property, known as Shannon’sperfect secrecy[30], is
used to justify ourindistinguishabilityrelation on ciphertexts.

The second property is anauthenticity propertyneeded in the treatment of decryp-
tion. More precisely we are assuming that decryption using thewrongkey fails:

D(k, E(k′, v)) = ⊥ if k 6= k′

Insufficiency of Standard NoninterferenceThe prevailing notion when defining con-
fidentiality in the analysis of information flows is noninterference. Noninterference is
typically formalized as the preservation of alow-equivalencerelation under the exe-
cution of a program: if a program is run in two low-equivalent environments then the
resulting environments should be low-equivalent. For ordinary values like integers low-
equivalence demands that public values are equal. However, from the assumption that
an adversary can learn nothing about the plaintext from observing the ciphertext it is
secure to treat all ciphertexts of the same length1 as low-equivalent. However appealing
this may be, such a treatment leads the ability of masking implicit flows in ciphertexts.
Consider the program on Listing 1 for some public channelch and encryption with
secret keyk:

1 We do not assume that encryption hides the length of messages.

5

l := enc(k, a);
out(ch, l);
if (h) then l := enc(k, b) else skip;
out(ch, l);

Listing 1. Occlusion

If all encrypted values are consid-
ered equal then we cannot distinguish
between the first and the second output
value, even though it is clear that the
equality/inequality of the first and the
second value reflects the secret valueh.

Possibilistic NoninterferenceTo address this problem we use a variant of noninter-
ference known as possibilistic noninterference, which allows us to create a notion of
low-equivalence that disallows the above example without disallowing intuitively se-
cure uses. Before we formalize our notion of possibilistic noninterference, let us lift the
evaluation relation to a set of results as follows:

〈E, c〉 ⇓ Ê iff Ê = {E′ | 〈E, c〉 ⇓ E′}
With this we can formulate our notion of possibilistic noninterference. LetE1 ∼Σ E2

denote that the environmentsE1 andE2 are low-equivalent w.r.t the environment type
Σ. A pair of commands,c1 andc2 are noninterfering if

NI(c1, c2)Σ ≡ ∀E1, E2 . E1 ∼Σ E2∧
〈E1, c1〉 ⇓ Ê1 ∧ Ê1 6= ∅ ∧ 〈E2, c2〉 ⇓ Ê2 ∧ Ê2 6= ∅ =⇒

∀E′
1 ∈ Ê1∃E′

2 ∈ Ê2 . E′
1 ∼Σ E′

2

That is, two commands are consideredequivalentif, for every pair of low-equivalent
environmentsin which the commands terminateit holds that there exists thepossibility
that each environment produced by the first command when run in the first environment
can be produced by the second command when run in the second environment.

By only considering environments for which the commands terminate, we ignore
the issue with crashes. This is equivalent to saying that normal and abnormal termina-
tion cannot be distinguished by the attacker.

Adequacy of the ModelThe choice of possibilistic noninterference does not automat-
ically solve the above problem—using the full low-equivalence relation on ciphertexts
would lead to the same danger of masking insecure flows. Instead the low-equivalence
relation has to be crafted carefully to avoid masked insecure flows and at the same time
allow secure usage of encryption primitives. We will now show how this can be done
for probabilistic encryption schemes. Consider first what happens in the above example.
Let two low-equivalent environmentsE1 andE2 s.t.h is true in the first andfalse in
the second. The result of running theif statement of the example above in the second
environmentE2 is the singleton set̂E2 = {E2}. However, the result of running it in
the first environment is the set of environmentsÊ1 = {E1[l = c] | encrypt(b) = c},
where each c is obtained by encryptingb under the same key but with different initial
vectors. The demand of possibilistic noninterference is that for each environment inÊ1

there should exists a low-equivalent environment inÊ2. This is only the case if all ci-
phertexts{c | encrypt(b) = c} are low-equivalent. Thus, any low-equivalence relation
that does not consider the different ciphertexts originating from one plaintext and one

6

key to be the equivalent will prevent this kind of masking. However, we must make sure
that each ciphertext produced by one plaintext and key has a low-equivalent ciphertext
for each other choice of plaintext and key.

Fortunately, for probabilistic encryption schemes we can easily form a low-equiva-
lence relation

.= with these properties by regarding ciphertextswith the same random
initial vector to be equivalent:

∀k1, k2, v1, v2 . E(k1, v1, iv) .= E(k2, v2, iv)

whereiv ranges over initial vectors. This relation has the following properties: (i) differ-
ent ciphertexts produced by one plaintext and one key will have different initial vectors
and will not be low-equivalent, and (ii) since each plaintext and key will produce ci-
phertexts using all initial vectors, for each ciphertext produced by one plaintext and key
there will be exactly one low-equivalent ciphertext for every other choice of plaintext
and key.

Relation to Computational Adversary ModelsThe perfect secrecy and authenticity de-
mands on the encryption schemes are fairly strong. However, there are schemes for
which the probability of breaking these assumptions is provably negligible.

The first demand that the ciphertexts should give no information about the plaintexts
is commonly relaxed to the notion ofsemantic security under chosen plaintext attack
(SEM-CPA) by assuming that the adversary haslimited computational power. Semantic
security states that “Whatever is efficiently computable about the cleartext given the
cyphertext, is also efficiently computable without the cyphertext” [17]. 2

In the same way we may allow a relaxation of the demand of authenticity, which
can be implemented by combiningMessage Authentication Code(MAC) with a SEM-
CPA encryption scheme to form a new scheme that is both secure (SEM-CPA) and
authenticity preserving (INT-PTXT)[6]. A scheme is INT-PTXT if the chance that an
adversary can produce ciphertextsC s.t.M = Dk(C) 6= ⊥ andM was never a para-
meter ofEk(·) is negligible. To see that the probability of a successful decryption using
the wrong key is negligible under an INT-PTXT scheme consider the following. If a
ciphertextC = Ek(M) decrypts successfully using another key than was used to con-
struct the message i.e.M ′ = Dk′(C) for k′ 6= k then the scheme cannot be INT-PTXT,
sinceM ′ was never a parameter ofEk′(·).

On Semantic SecurityWe believe that it is possible to prove a general result that if a
program with SEM-CPA + INT-PTXT encryption primitives is secure w.r.t. possibilis-
tic noninterference then it is also semantically secure. This result is likely to involve
restrictions onkey cycles, which are a known problem when reconciling the formal and
computational views of cryptography [2], or demanding that the underlying schema is
secure in the presence of such cycles (cf.KDM security[7]).

With such a result at hand, we shall be able to capitalize on the modularity of our
approach. For a given language and type system, as soon as we can prove that all well-
typed programs are noninterfering, we automatically get semantic security. This opens

2 There is another frequently used notion of security under a computationally limited adversary,
IND-CPA. IND-CPA has been shown to be equivalent to SEM-CPA [17, 6].

7

up possibilities for reasoning about expressive languages and type systems, where all
we have to worry about are noninterference proofs (which are typically simpler than
proofs of computational soundness).

4 Types

The syntax of the types is defined in Figure 2. Aprimitive typeis either asecurity anno-
tated basic type, a pair of primitive types or akey type. The security annotation assigns
a security level to the basic type expressing whether it issecretor public. The types of
encrypted values arestructural in the sense that the type reflects the original type of
the encrypted values as well as the level of the key that was used in the encryption. For
instance,encS (int H) L is the type of a secret integer that has been encrypted with
a secret key once andencS (encS (int H) L) L is the type of an integer that has been
encrypted with a secret key twice. The type of the variable environmentΩ is a map
from variables to primitive types, the type of the input environment and the output en-
vironment alikeΘ is a map from channel names to primitive types, and the key-stream
environment defines its own type (in the domain of the environment). The type of the
entire environment,Σ, is the pair of a variable type environment and a channel type
environment.

Well-formed ValuesWell-formedness defines the meaning of the types ignoring the
security annotations. The well-formedness is entirely standard and is omitted for space
reasons.

Low-equivalenceIn Figure 4 we formalize the low-equivalence relation. For complex
types, i.e., pairs and environments, low-equivalence is defined structurally by demand-
ing the parts of the complex type to be low-equivalent w.r.t. the corresponding type.
Any values are low-equivalent w.r.t. a secret type. Integers are low-equivalent w.r.t.
a public integer type if they are equal. Low-equivalence for keys is slightly different
since keys are not annotated with a security level—only a key level—whose meaning
is defined by well-formed values as different sets. Even though it is semantically mean-
ingful to add a security level to key types—the values of keys can be indirectly affected
by computation—we have chosen not to. Instead, a public key is considered to be of
low security and a secret key of high security. Thus, public keys are low-equivalent if
they are equal, and any two secret keys are low-equivalent.

The most interesting rule is the rule defining low-equivalence w.r.t. a public en-
cryption type(LE-ENC-L1) and (LE-ENC-L2). These two rules define the difference in
meaning between encryption with a secret and a public key. First, in both rules, the en-
crypted values must be low-equivalent w.r.t. the low-equivalence relation of encrypted
values. Second, there must exist a pair of low-equivalent keys w.r.t. the key type of the
encryption type that decrypt the encrypted value to two values. This is where the rules
differ. Since ciphertexts created by public keys can be decrypted by anyone with access
to the public keys, we have to demand that the inside of the encrypted value contains
only public values. This is done in the(LE-ENC-L2) rule, which demands that the inside

8

(LE-KEY-L)
pk• ∼key P pk•

(LE-KEY-H)
sk•1 ∼key S sk•2

(LE-INT-L)
n• ∼int L n•

(LE-INT-H)
n•1 ∼int H n•2

(LE-ENC-L3) • ∼encP τ L •
(LE-ENC-H)

u•1 ∼encγ τ H u•2

(LE-PAIR)
v11 ∼τ1 v21 v12 ∼τ2 v22

(v11, v12) ∼(τ1,τ2) (v21, v22)

(LE-MEM)
∀x ∈ dom (Ω) M1(x) ∼Ω(x) M2(x)

M1 ∼Ω M2

(LE-INENV)
∀ch ∈ dom(Θ) . I1(ch) ∼Θ(ch) I2(ch)

I1 ∼Θ I2

(LE-OUTENV)

∀ch ∈ dom(Θ) .
O1(ch) ∼Θ(ch) O2(ch)

O1 ∼Θ O2

(LE-KGEN)
G1(S) ∼ G2(S) G1(P) ∼ G2(P)

G1 ∼ G2

(LE-KGENP)

pk1 ∼key P pk2

K1 ∼P K2

pk1 ·K1 ∼P pk2 ·K2
(LE-KGENS)

sk1 ∼key S sk2

K1 ∼S K2

sk1 ·K1 ∼S sk2 ·K2

(LE-ENC-L1)

∃vi, ki . vi = Dγ(ki, ui) i = 1, 2 k1 ∼key S k2 v1 ∼τ v2

u1
.
= u2

u1 ∼encS τ L u2

(LE-ENC-L2)

∃vi, ki . vi = Dγ(ki, ui) k1 ∼key P k2 v1 ∼tolow(τ) v2

u1
.
= u2

u1 ∼encP τ L u2

Fig. 4. Low-equivalence

is not only low-equivalent w.r.t. its typeτ , but low-equivalent w.r.t.tolow(τ), which is
defined as follows:

tolow(t σ) = t L tolow(key P) = key P tolow((τ1, τ2)) = (tolow(τ1), tolow(τ2))

The (LE-ENC-L1) rule can be seen as encoding the power of the attackers. For en-
cryption with secret keys the demand is only that the resulting values should be low-
equivalent w.r.t. the primitive type,τ , of the encryption type. This way, we demand
low-equivalence inside encrypted values and make certain that that the result of de-
crypting low-equivalent encrypted values will result in low-equivalent values and that
secret values are not stored inside encrypted values that are created by public keys.

SubtypingThe subtyping is entirely standard; it allows public information to be seen
as secret with the exception of invariant subtyping for keys. The subtyping relation
for primitive types,<:, and the subtyping relation for security levels,v, defines the
corresponding join operators. The subtyping relation can be found in [3].

Expression Type RulesThe type rules for expressions are of the formΩ, pc ` e : τ .
Figure 5 defines typing rules for non-standard expressions, while the rest of the rules
can be found in [3]. The generation of a new key with the requested security level results
in a key with that security level if the requested level is not below the context type. The

9

(T-NEWKEY)
pc v lvl(key γ)

Ω, pc ` newkey γ : key γ
(T-ENC1)

Ω, pc ` e1 : key S
Ω, pc ` e2 : τ

Ω, pc ` encS (e1, e2) : encS τ L

(T-ENC2)

Ω, pc ` e1 : key P
Ω, pc ` e2 : τ lvl(τ) = σ

Ω, pc ` encP (e1, e2) : encP τ σ
(T-DEC)

Ω, pc ` e1 : key γ
Ω, pc ` e2 : encγ τ σ

Ω, pc ` decγ (e1, e2) : τσ

Fig. 5. Type Rules of Expressions

reason for this is that we assume that the public-key stream is publicly observable. En-
cryption with secret keys will always result in public encrypted values. Encryption with
public keys is possible on any value but produces a result that is as secret as the origi-
nal value. Both the type rule for key generation and the type rule for public encryption
makes use of functionlvl(·) that computes the security level of the given value:

lvl(t σ) = σ lvl((τ1, τ2)) = lvl(τ1) t lvl(τ2) lvl(key P) = L lvl(key S) = H

Decryption is allowed only if the key level of the key used for decryption matches the
key level of the encrypted value. The result of the decryption is tainted by the security
level of the encrypted values. The taint function is defined as follows:

(t σ)σ′ = t (σ t σ′) (τ1, τ2)σ = (τσ
1 , τσ

2) (key P)L = key P (key S)σ = key S

Command Type RulesAs with expressions most of the rules are standard for a secu-
rity type system (cf. [34]). As is standard, following Denning’s original approach to
analyzing programs for secure information flow [13], in order to prevent implicit flows
the notion ofsecurity contextis defined. The security context of a program point is de-
fined to be the least upper bound of the security levels of the conditional expressions
of the enclosing conditionals. The context affects the the commands with side-effects,
i.e., variable assignment, input, and output. A block of local declarations followed by a
sequence of statements is checked by first adding the declared variables to the variable
environment and then checking all statements in the new type environment. The type
rule for sequences of statements(T-SEQ)checks all statements of the sequence.If and
while are the two constructs that can lead to indirect flows since they affect the control
flow. Thus, the body of theif and thewhile are checked in the context of the security
level of the control expression. This way, when a branch is depending on a secret the
body of that branch is prevented from causing any low side effects. The type rules of
commands can be found in [3].

5 Soundness

The main soundness theorem of the paper states that well-typed programs are noninter-
fering. Typically, for typed programming languages, the soundness is phrased in terms

10

of progress, i.e. well-typed programs can always be evaluated in well-formed environ-
ments, andpreservation, i.e. after this step has been made the resulting environment is
well formed. It may be interesting to note that the way we have avoided to model error
makes this system not satisfy progress: decryption with the wrong key or computing
with an uninitialized variable will prevent evaluation. The well known solution is to
model failure in the semantics. To keep the presentation cleaner we refrain from this.

The soundness theorem states that well-typed programs are noninterfering. Sec-
tion 3 lifts the evaluation relation of commands to sets and formulates noninterference
for commands. Before giving the formulation of the soundness theorem we must lift the
codomain of the evaluation relation of expressions to sets and formulate noninterference
for expressions:

〈(M, G), e〉 ⇓ 〈G′, v̂〉 iff v̂ = {v | 〈(M, G), e〉 ⇓ 〈G′, v〉}
With this we can define noninterference for expressions, which is equivalent to the

noninterference of statements defined above. Put simply, if two expressionse1 ande2

are run in low-equivalent key-stream and variable environments, yielding pairs of new
key-stream environments and results, then these results should be low-equivalent:

NI (e1, e2)Ω,τ ≡ ∀M1,M2, G1, G2 . M1 ∼Ω M2 ∧G1 ∼ G2∧
〈(Mi, Gi), ei〉 ⇓ 〈G′i, v̂i〉 ∧ v̂i 6= ∅ =⇒

G′1 ∼ G′2 ∧ ∀v1 ∈ v̂1 ∃v2 ∈ v̂2 . v1 ∼τ v2

We arrive at the soundness theorems for expressions and commands, both proved by
induction on type derivation [3].

Theorem 1. Soundness for expressionsΩ, pc ` e : τ =⇒ NI (e, e)Ω,τ

Theorem 2. Soundness for commandsΣ, pc ` c =⇒ NI (c, c)Σ

6 Extensions

In this section we consider two extensions: integrity and public-key cryptography.

Integrity Confidentiality classifies information into public and secret, i.e., information
that may or may not be given to the world, respectively. Dually, integrity classifies in-
formation intountrusted(or low-integrity) andtrusted(or high-integrity), i.e., whether
the information may or may not have beenaffectedby the world.

Tracking the integrity of data enables us to explore some additional dimensions of
cryptography: weaknesses of the encryption algorithms and the effect of encryption
on integrity. Consider for example, a primitive that is vulnerable to chosen ciphertext
attacks. With integrity controls, it is natural to express the restriction that untrusted
encrypted values may not be decrypted.

In the presence of integrity the security levels for values are pairs of the form(σ, ι),
whereσ is a confidentiality level, andι is a corresponding integrity level. The follow-
ing tables define two functions—safeE(α, (σ, ι)) andsafeD(α, (σ, ι))—that indicate

11

if it is safe to encrypt (decrypt) a plaintext (ciphertext) of security level(σ, ι) with an
encryption scheme that has propertyα. Hereα ranges over standard notions [5]—IND-
CCA (indistinguishable under chosen-ciphertext attacks) and IND-CPA (indistinguish-
able under chosen-plaintext attacks).

(H,H) (L,L) (H,L) (L,H)
IND-CCA safe safe safe safe
IND-CPA safe safe safe safe

(H,H) (L,L) (H,L) (L,H)
IND-CCA safe safe safe safe
IND-CPA safe - - safe

safeE(α, (σ, ι)) safeD(α, (σ, ι))

In this way we can provide different type rules for different assumptions on the
vulnerability properties of the encryption and decryption algorithms:

(T-ENC*)
Ω, pc ` e1 : key S Ω, pc ` e2 : τ lvl(τ) = (σ, ι) safeE(α, (σ, ι))

Ω, pc ` encα
S (e1, e2) : encS τ (L, H)

(T-DEC*)
Ω, pc ` e1 : key γ safeD(α, (σ, ι)) Ω, pc ` e2 : encγ τ (σ, ι)

Ω, pc ` decα
γ (e1, e2) : τ (σ,ι)

A Note on the Integrity of KeysThe current model allows very limited interaction with
keys apart from encryption. Since the values of keys cannot be programmatically in-
spected, the power of the attacker is limited to choice between secure keys. Thus, the
model cannot in its present form distinguish between encryption with high and low-
integrity keys w.r.t.confidentiality. The intuition is clear: since the attacker can only
choose between secure keys, that choice will give different but safe encrypted values.

Public-Key CryptographyEven though the present system deals only with symmetric-
key cryptography, there is nothing in the model that prevents modeling public-key cryp-
tography. The set of secret keys would contain theprivatekeys and the set of public keys
would contain thepublic keys, where the private keys and the public keys are dual. In
this system values encrypted with public keys would be considered public, since only
actors with access to the private keys would be able to decrypt them.

However, public-key cryptography is most interesting in the presence of integrity.
In the same way we can model that encryption of secrets using secret keys results in
public values, we can model that encryption raises the integrity of the encrypted value
to the integrity of the key, which corresponds to signing.

7 Programming with encryption: Examples

We have implemented a prototype of the type system and mechanically type-checked
two applications: secure backup and a Wide-Mouthed-Frog protocol implementation. In
both examples the type system prevents dangerous insecurities such as sending sensitive
unencrypted data over a public channel or not using a secret key for encryption. This
section discusses some interesting fragments of these implementations.

12

Secure Data BackupIn the secure backup scenario a low-confidentiality channel is used
for sending sensitive information to the remote storage. Listing 2 presents the code for
the backup operation. Here and below we slightly simplify the syntax with respect to
Figure 2 for the sake of readability.

1 global K secret;
2 backup enc secret (int high) low;
3
4 actor Backup {
5 data int high;
6 ctxt enc secret (int high) low;
7 data := ...
8 ctxt := encrypt(K, data);
9 out backup ctxt;

10 }

Listing 2. Backup code

Here, the global declarations contain
secret keyK and low channelbackup.
The type of the latter says that only en-
crypted high integers may be sent over
this channel.

Lines 5 and 7 declare and initial-
ize a high integer variabledata. Line 6
declares the variablectxt of type enc

secret (int high) low. On line 8 the
value of variabledata is encrypted with secret keyK and the resulting ciphertext is as-
signed to the variablectxt. Since type ofctxt matches the type of thebackup channel
it might be sent over this channel. This is done by theout command on line 9.

1 actor Restore {
2 data int high;
3 ctxt enc secret (int high) low;
4 in ctxt backup;
5 data := decrypt(K, ctxt);
6 }

Listing 3. Recovery code

When recovering data, an actor reads
the data from the public channel and de-
crypts it. Assuming the same global dec-
larations Listing 3 presents the recovery
code. Here, line 4 reads data from the
backup channel. It’s decrypted using the
keyK on line 5.

An example of an easy-to-overlook error is to have the following line in place of
line 9 in the body of actorBackup: out backup data;. This is an insecurity that the
type system rejects. Generally, in the secure backup example the type system ensures
that secret data is encrypted before it is sent over thebackup channel, thus preventing
accidental leaks.

Wide-Mouthed-Frog ProtocolThe Wide-Mouthed-Frog protocol [8] is a simple key
exchange protocol with trusted server and timestamps. In this protocol secret keysKAS

andKBS are shared between server S and principals A and B, respectively. Principal A
generates a fresh session keyKAB , which is transferred to B in two messages:

1. A → S : A, {TA, B,KAB}KAS

2. S → B : {TS , A, KAB}KBS

The first message consist of A’s name and a tuple encrypted with the shared keyKAS .
This tuple contains three elements—a timestampTA, the name of principal B, and a
generated keyKAB . Upon receipt of this message, S decrypts it, checks the timestamp,
replacesTA with its own timestampTS , encrypts it with keyKBS , and forwards the
resulting message to B. Principal B then checks whether the second message is timely.

Obviously, there is more to implementation of the protocol than expressed by the
two-step description. Our type system guarantees that implementations do not introduce
information-flow leaks in the protocol. Listing 4 presents the implementation of this
protocol for principal A. The full version of this paper [3] contains the implementation
for the server S and principal B.)

13

1 global Kas secret;
2 chanS <int low, enc secret
3 (<int low, <int low, key secret>>) low>;
4 chanAB enc secret (int high) low;
5 actor A {
6 idA int low; idB int low; tsA int low;
7 messageToB int high;
8 Kab key secret;
9 // ... initialization

10 Kab := newkey (secret);
11 out chanS <idA,
12 encrypt(Kas, <tsA,<idB, Kab>>)>;
13 out chanAB encrypt (Kab, messageToB);
14 }

Listing 4. WMF Implementation

This program declares two chan-
nels:chanS for communicating with the
server, andchanAB for sending mes-
sages to B, once the key has been ex-
changed. The type of the channelchanS

corresponds to the first message in the
protocol—a pair consisting of a low in-
teger and an encryption with secret key
of a three-element tuple (expressed by
nested pairs). Since the level of the key
used for encrypting this tuple issecret,
it is safe to label the result of encryption
aslow. The body of theactor declaration defines low-confidentiality variablesidA and
idB that stand for the names of the principals; variabletsA stores the current timestamp;
the high-confidentiality variablemessageToB contains the information that A wants to
send to B.

The new key is generated on line 10. Line 12 constructs the first message of the
protocol and sends it to the server. Line 13 uses the newly generated key and sends the
secret message to the principal B.

In this example, the type system prevents non-secret session keys in the key estab-
lishment protocol. As in the previous example, it also guarantees that secret information
may not leave the system unless it is encrypted with a secret key.

8 Related work

As mentioned in the introduction, declassification models are sometimes used to jus-
tify cryptographic primitives in languages with information-flow control. Declassifi-
cation mechanisms facilitate information release. A recent classification of declassifi-
cation [29] suggests that information release policies represent aspects ofwhat is de-
classified, bywhom, whenandwherein the system. These correspond to dimensions
of information release. The relation of our model to declassification is somewhat sub-
tle, because masking does not actually model information release. Hence, none of the
release dimensions is directly suitable for cryptographically-masked flows.

Furthermore, attempts at framing cryptographically-masked flows into different di-
mensions do not always lead to satisfactory results. For example, releasing the differ-
ence between two values of a secret whenever the results of its encryption are different
can be a deceptive policy when assumptions about the underlying cryptographic primi-
tives are not explicitly stated. If the underlying encryption function is bijective (assum-
ing the key is fixed) then releasing the result of encryption is equivalent to releasing
the secret itself. This phenomenon applies to typical policies from thewhatdimension,
such as delimited release [28].

Another example of releasing the secret itself, together with the result of a cryp-
tographic primitive applied to the secret, can be found in [9]. The password checker
example is based on matching the hash of the password with the hash of a user query.

The password has a labelH
certÃ L, which means that the level of the password is even-

14

tually declassified from high to low. This, however, allows the password itself to be
released to the attacker in cleartext.

Nevertheless, declassification is meaningful in the context of cryptographic com-
putation when the attacker is capable of learning some information from ciphertext.
Temporal policies expresswhen, at earliest, the attacker might learn the secret. Volpano
and Smith’s relative secrecy [33, 32] guarantees that the attacker cannot learn the secret
in polynomial time in the size of the secret. Approaches by Laud [20, 21], Laud and
Vene [22], provide computational guarantees for a simple imperative language but with
the assumption that keys can be statically distinguished. Mitchell et al. [23, 25] reason
about security with respect to polynomial-time attackers for a form of theπ calculus.

A source of our inspiration is Abadi’s secrecy model for symmetric-key crypto-
graphic protocols [1]. This model assumes that an attacker is unable to decrypt cipher-
texts encrypted with secret keys. Compared to [1], we end up with simpler typing rules.
For example, because of the probabilistic encryption assumption, we do not need to deal
with explicit confounders. In addition, our approach accommodates natural extensions
with integrity and public-key cryptography. Another source of inspiration is a logi-
cal relations technique by Sumii and Pierce that facilitates manual security proofs for
cryptographic protocols [31]. This technique is not accompanied by static enforcement
mechanisms (such as a type system), however.

Gordon and Jeffrey [18] extend Abadi’s work to multiple security levels that may be
dynamically created and may become compromised. This and other work within Gor-
don and Jeffrey’s Cryptyc project, however, relies on trace-based properties (such as
correspondence) that are weaker than noninterference. Dam and Giambiagi’s work on
admissibility[12, 15] focuses on protocol implementation, with the goal that informa-
tion leaks in the implementation must adhere to those declared in protocol specification.

Duggan’s and Chothia et al.’s cryptographic types [14, 10] help enforce security for
a distributed programming language. This is realized through a combination of static
and dynamic checks, leading to access-control guarantees (albeit without information-
flow guarantees) for secrecy and integrity. Myers et al.’s qualified robustness [26] is
based on a possibilistic treatment ofendorsement, operation dual to declassification.

Hicks et al. [19] define a notion ofnoninterference modulo trusted functions, which
requires parts of programs free of cryptographic functions to be in a certain sense in-
distinguishable. The cryptographic functions are trusted to release information if their
security labels satisfy trust constraints. It is a worthwhile direction for future work to
formally investigate the relation tononinterference modulo trusted functions. We do not
expect it to be straightforward because the definition of the indistinguishability relation
from [19] involves two-level semantics.

9 Conclusions and future work
We have developed an approach to tracking information flow in the presence of crypto-
graphic operations, based on possibilistic noninterference. We have argued that a possi-
bilistic treatment of cryptographic operations leads to a natural model of attackers that
may not distinguish between ciphertexts. This model has a close connection to prob-
abilistic encryption and, we believe, it naturally connects to computational adversary
models (cf. Section 3).

15

Our case for possibilistic noninterference is driven by the possibility of capitalizing
on the available machinery for reasoning about noninterference in programming lan-
guages. We have demonstrated that possibilistic noninterference can be provably and
straightforwardly enforced via a security-type system for a language that includes cryp-
tographic primitives and message passing. The type system is amenable to extensions,
including integrity and public-key cryptography, which makes it attractive for develop-
ing secure implementations of non-trivial cryptographic protocols. We plan to explore a
semantic justification of these extensions, crystallizing guarantees provided by the typ-
ing rules, and to consider cases studies in which it is critical to achieve these guarantees.

AcknowledgmentsWe wish to thank Martín Abadi and Peeter Laud for helpful com-
ments. This work was supported, in part, by the Swedish Research Council and, in part,
by the Information Society Technologies programme of the European Commission, Fu-
ture and Emerging Technologies under the IST-2005-015905 MOBIUS project.

References

1. M. Abadi. Secrecy by typing in security protocols.J. ACM, 46(5):749–786, September 1999.
2. M. Abadi and P. Rogaway. Reconciling two views of cryptography (the computational

soundness of formal encryption).J. of Cryptology, 15(2):103–127, 2002.
3. A. Askarov, D. Hedin, and A. Sabelfeld. Cryptographically-masked flows.

Technical report, Chalmers University of Technology, June 2006. Located at
http://www.cs.chalmers.se/∼aaskarov/sas06full.pdf.

4. A. Askarov and A. Sabelfeld. Security-typed languages for implementation of cryptographic
protocols: A case study. InProc. European Symp. on Research in Computer Security, volume
3679 ofLNCS, pages 197–221. Springer-Verlag, September 2005.

5. M. Bellare, A. Desa, D. Pointcheval, and P. Rogaway. Relations among notions of security
for public-key encryption schemes. InAdvances in Cryptology- Crypto 98, volume 1462 of
LNCS, pages 26–46, January 1998.

6. M. Bellare and C. Namprempre. Authenticated encryption: Relations among notions and
analysis of the generic composition paradigm. InAdvances in Cryptology - Asiacrypt 2000,
volume 1976 ofLNCS, pages 531–545, January 2000.

7. J. Black, P. Rogaway, and T. Shrimpton. Encryption-scheme security in the presence of
key-dependent messages. InSelected Areas in Cryptography, volume 2595 ofLNCS, pages
62–75. Springer-Verlag, August 2002.

8. M. Burrows, M. Abadi, and R. Needham. A logic of authentication.ACM Transactions on
Computer Systems, 8(1):18–36, February 1990.

9. S. Chong and A. C. Myers. Security policies for downgrading. InACM Conference on
Computer and Communications Security, pages 198–209, October 2004.

10. T. Chothia, D. Duggan, and J. Vitek. Type-based distributed access control. InProc. IEEE
Computer Security Foundations Workshop, pages 170–186, 2003.

11. E. S. Cohen. Information transmission in sequential programs. In R. A. DeMillo, D. P.
Dobkin, A. K. Jones, and R. J. Lipton, editors,Foundations of Secure Computation, pages
297–335. Academic Press, 1978.

12. M. Dam and P. Giambiagi. Confidentiality for mobile code: The case of a simple payment
protocol. InProc. IEEE Computer Security Foundations Workshop, pages 233–244, July
2000.

13. D. E. Denning and P. J. Denning. Certification of programs for secure information flow.
Comm. of the ACM, 20(7):504–513, July 1977.

16

14. D. Duggan. Cryptographic types. InProc. IEEE Computer Security Foundations Workshop,
pages 238–252, June 2002.

15. P. Giambiagi and M. Dam. On the secure implementation of security protocols. InProc.
European Symp. on Programming, volume 2618 ofLNCS, pages 144–158. Springer-Verlag,
April 2003.

16. J. A. Goguen and J. Meseguer. Security policies and security models. InProc. IEEE Symp.
on Security and Privacy, pages 11–20, April 1982.

17. S. Goldwasser and S. Micali. Probabilistic encryption.Journal of Computer and System
Sciences, 28:270–299, 1984.

18. A. Gordon and A. Jeffrey. Secrecy despite compromise: Types, cryptography, and the pi-
calculus. InProc. CONCUR’05, number 3653 in LNCS, pages 186–201. Springer-Verlag,
August 2005.

19. B. Hicks, D. King, and P. McDaniel. Declassification with cryptographic functions in a
security-typed language. Technical Report NAS-TR-0004-2005, Network and Security Cen-
ter, Department of Computer Science, Pennsylvania State University, May 2005.

20. P. Laud. Semantics and program analysis of computationally secure information flow. In
Proc. European Symp. on Programming, volume 2028 ofLNCS, pages 77–91. Springer-
Verlag, April 2001.

21. P. Laud. Handling encryption in an analysis for secure information flow. InProc. European
Symp. on Programming, volume 2618 ofLNCS, pages 159–173. Springer-Verlag, April 2003.

22. P. Laud and V. Vene. A type system for computationally secure information flow. InProc.
Fundamentals of Computation Theory, volume 3623 ofLNCS, pages 365–377, August 2005.

23. P. Lincoln, J. C. Mitchell, M. Mitchell, and A. Scedrov. A probabilistic poly-time framework
for protocol analysis. InACM Conference on Computer and Communications Security, pages
112–121, November 1998.

24. D. McCullough. Noninterference and the composability of security properties. InProc.
IEEE Symp. on Security and Privacy, pages 177–186, May 1988.

25. J. C. Mitchell. Probabilistic polynomial-time process calculus and security protocol analysis.
In Proc. European Symp. on Programming, volume 2028 ofLNCS, pages 23–29. Springer-
Verlag, April 2001.

26. A. C. Myers, A. Sabelfeld, and S. Zdancewic. Enforcing robust declassification and qualified
robustness.J. Computer Security, 2006. To appear.

27. A. Sabelfeld and A. C. Myers. Language-based information-flow security.IEEE J. Selected
Areas in Communications, 21(1):5–19, January 2003.

28. A. Sabelfeld and A. C. Myers. A model for delimited information release. InProc. In-
ternational Symp. on Software Security (ISSS’03), volume 3233 ofLNCS, pages 174–191.
Springer-Verlag, October 2004.

29. A. Sabelfeld and D. Sands. Dimensions and principles of declassification. InProc. IEEE
Computer Security Foundations Workshop, pages 255–269, June 2005.

30. C. E. Shannon. A mathematical theory of communication.Bell System Tech. J., 27:623–656,
1948.

31. E. Sumii and B. Pierce. Logical relations for encryption. InProc. IEEE Computer Security
Foundations Workshop, pages 256–269, June 2001.

32. D. Volpano. Secure introduction of one-way functions. InProc. IEEE Computer Security
Foundations Workshop, pages 246–254, July 2000.

33. D. Volpano and G. Smith. Verifying secrets and relative secrecy. InProc. ACM Symp. on
Principles of Programming Languages, pages 268–276, January 2000.

34. D. Volpano, G. Smith, and C. Irvine. A sound type system for secure flow analysis.J.
Computer Security, 4(3):167–187, 1996.

17

