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ABSTRACT
Modern web and mobile applications are complex entities
amalgamating different languages, components, and plat-
forms. The rich features span the application tiers and com-
ponents, some from third parties, and require substantial
efforts to ensure that the insecurity of a single component
does not render the entire system insecure. As of today,
the majority of the known approaches fall short of ensuring
security across tiers.

This paper proposes a framework for end-to-end security,
by tracking information flow through the client, server, and
underlying database. The framework utilizes homogeneous
meta-programming to provide a uniform language for pro-
gramming different components. We leverage .NET meta-
programming capabilities from the F# language, thus en-
abling language-integrated queries on databases and interop-
erable heterogeneous execution on the client and the server.
We develop a core of our security enforcement in the form of
a security type system for a functional language with muta-
ble store and prove it sound. Based on the core, we develop
JSLINQ, an extension of the WebSharper library to track in-
formation flow. We demonstrate the capabilities of JSLINQ
on the case studies of a password meter, two location-based
services, a movie rental database, an online Battleship game,
and a friend finder app. Our experiments indicate that JS-
LINQ is practical for implementing high-assurance web and
mobile applications.

1. INTRODUCTION
There is no such thing as a free lunch - building secure and

robust web applications is a complex and error prone task.
A recurrent fact attested by investigations from security or-
ganizations and communities of security experts [8, 4], and
very frequently reported by the media [9, 7], is that vulnera-
bilities in web and mobile applications dominate the classifi-
cations of the most dangerous security attacks. The reason
can be attributed to different factors, including the myr-
iad of programming languages, technologies and platforms
which are used to build modern applications. This process
requires substantial efforts and skills on the programmer’s
side for getting the application logic right, let alone secure
and reliable. In this paper, we set out to study the challenge
of heterogeneity and provide practical solutions with formal
evidence, that help a programmer to build web and mobile
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applications in a secure manner. In particular, we focus on
vulnerabilities that go beyond injection attacks and affect
the business logic of the entire web application.

A closer look at a typical web architecture shows that
web applications are often distributed over several tiers: (a)
a client tier, where most of the UI logic runs in a web
browser as JavaScript and HTML including third-party li-
braries; (b) a server tier, where the bulk of the application
logic is executed in a language like F#, Java or other; (c)
and a database tier that serves as persistent store and ex-
ecutes e.g. SQL code. Common security attacks rely on
the fact that applications are implemented in different lan-
guages that span tiers with different trust relationships. As
a result, many security policies are application-specific and
tightly connected to the application logic and the trust re-
lationships between the involved parties.

Motivating Scenarios: The following scenarios illus-
trate the need for cross-tier security analysis and policies.
Password Meter: The first scenario considers a client-side
password meter, which is a program used to estimate the
strength of passwords provided by users. It is important that
the chosen password is not leaked to an application server
or other third parties. A reasonable security policy treats
the password field as sensitive, and the third-party and the
RPC functions used to communicate with the application as
public, while enforcing that no sensitive information flows to
the public destinations.
Location-based Service: The second scenario is a location-
based service, which uses location information to query a
web service for the list of nearby points of interest, and a
third-party map library to display these points. However,
users concerned about privacy may not want to reveal the
exact coordinates of their location. A reasonable security
policy allows for a declassification function to obfuscate the
real location, and only send approximate coordinates to the
location server. Moreover, the map library should only be
used to display the points of interest and not to, for instance,
leak the browser’s cookie to the library provider.
Friend Finder App: The third scenario is a mobile app. The
user wants to know if a friend is using a certain app, say
WhatsApp, without revealing the friend’s phone number to
the remote server in case they are not using that app. This
can be avoided by using a hash function to hide the phone
number before sending it to the database server, which in
turn compares the hashed value to the list of its users’ phone
numbers and replies whether or not that user is using the
app. A reasonable policy considers the phone address book
as sensitive and ensures that only hashed values are sent to
the untrusted application server for discovery.

These are all examples of how a security attack can occur
across all three tiers of an application. Hence, a satisfactory
security analysis needs to express and validate policies for
applications that span client, server and database tiers.
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Attacker Model: Different attacker models arise in multi-
tier web applications. Sensitive or untrusted data may orig-
inate from any of the components, for instance it can be a
user location from the client, a password from the database
or an authentication key from the server. Consequently, any
tier can be subject to unintentional or malicious information
leaks toward another tier. The policies for the first two sce-
narios constrain the sensitive data of a trusted client wrt.
an untrusted third-party library and a (partially) trusted
server. The third scenario illustrates policies for a trusted
client wrt. to a completely untrusted server. The client
can also be untrusted. For example a trusted server, af-
ter authenticating a user, may read his personal data from
a trusted database and send back a customized web page,
however, no information about other users in the database
should flow to the client. Meaningful combinations of tiers
and attacker models will be discussed in Section 4. We do
not address network attackers who intercept, alter or deny
communication between tiers, while techniques like SSL can
be used to prevent these types of attacks.

State of the Art: Information-flow control (IFC) tracks
sensitive (untrusted) data throughout the computation en-
suring that no illegal information flows from sensitive (un-
trusted) sources toward public (trusted) sinks. This provides
end-to-end security guarantees as required in the scenarios
above. In general, we mark sources and sinks with labels
from a lattice of security levels that expresses the trust
relationships between parties. E.g., horizontal privilege-
escalation attacks can be prevented by assigning separate
security labels for separate users. A large body of work has
studied dynamic and static enforcement techniques for all
levels of the hardware and software stack [22, 34], includ-
ing web applications [26] and distributed systems [42]. The
majority of these works tackles the problem of information
flow for different components in isolation [38, 29, 23]. This
is unsatisfactory because tracking information across tiers is
necessary for end-to-end security. A few works, as discussed
in Section 5, bridge IFC across components allowing for poli-
cies that regulate information flows for a web application as
a whole. Noteworthy, recent frameworks integrate database
queries into programming languages for client and server ap-
plications providing a uniform way to program an entire web
application, including reasoning about security [18, 16, 15].

Contributions: In this paper we leverage homogeneous
meta-programming to obtain a uniform language for rea-
soning about web and mobile application security across the
client-server-database boundaries. The .NET facilities pro-
vide support for language-integrated queries on databases
and interoperable heterogeneous execution for client and
server applications, embedding them seamlessly in the F#
language [40]. This allows to implement an entire web or
mobile application as a simple F# program and then let the
compiler split the code transparently for each tier. In this
work we enrich a subset of the language with security types
which allow to express security policies. We implement the
security types by custom attributes as a separate F# module
on top of existing fully-fledged development in F#, provid-
ing a complete separation between the program code and the
security policy. We then execute the security type check as
a separate verification step followed by the F# compilation
and thus leaving the F# type system untouched. Finally,
we split the program into three parts, producing JavaScript

and HTML code to run on the browser, SQL code to run on
the database and F# code to run on the server.

On the formal side (Section 2), we develop a model for a
functional language with references (a subset of F#), quo-
tations and antiquotations, and establish the soundness of
the security type system. Our soundness proof extends and
generalizes the proof technique introduced by Pottier and
Simonet [30] with support for arbitrary data types and de-
classification policies. The query language is based on the
one introduced by Cheney et al. [14] and uses quotation and
normalization of quoted terms to model the semantics of the
database language. For simplicity, our results assume a two-
point security lattice for confidentiality, however, they apply
to arbitrary lattices, including integrity, in a similar fashion.

On the practical side (Section 3), we have implemented
JSLINQ, an extension of WebSharper [10] and LINQ [1]
libraries with IFC. With JSLINQ, a developer can use a
fully-fledged language such as F# for writing secure web
and mobile applications. A security analyst is expected to
know what sources and sinks are sensitive, which is a rea-
sonable assumption so long as they are partially trusted. If
the developer is malicious, one can leverage techniques from
[27, 31] to automatically extract sources and sinks used by
the application (this is out of scope in this work). The pol-
icy module requires to specify security signatures once and
only for the APIs that are actually used, thus making it
easier and less time-consuming for the programmer. Our
experience shows that JSLINQ provides a good trade-off
between annotation burden and security assurance for de-
velopers with some security background, while user studies
with non-expert developers are subject to future work.

We demonstrate the capabilities of JSLINQ on several
realistic case studies (Section 4), including the scenarios
discussed above, a password meter and an online Battle-
ship game. The case studies leave out user interfaces and
other boilerplate code, and only focus on the security-critical
parts of the applications to demonstrate the potential of
our technique. Moreover, compositionality of the security
type checking makes the approach scalable to arbitrary lines
of code. The experiments show that JSLINQ is useful for
building secure applications and it enjoys several advantages
compared to existing tools (Section 5 and Table 2).

A precursor of our approach is SELINQ by Schoepe et
al. [36]. SELINQ uses a security type system to enforce poli-
cies for server-database applications written in F#, as we
do. Rather than enriching F# with security types, SELINQ
implements a subset of the language presented in Section 2
and uses a compiler implemented in Haskell to type check
and generate F# executable code. By contrast, JSLINQ
closes the end-to-end loop by supporting client-side, includ-
ing third-party code, for fully-fledged F# applications. A
distinguishing feature of JSLINQ is that security type check-
ing does not interfere with the normal development process.
In practical terms, this translates to a big gain as the pro-
grammers can use a production-grade system to develop ap-
plications, yet leverage a security type system to verify the
critical parts of the code. Moreover, practicality of JSLINQ
is supported by several case studies and security policies.
Declassification allows us to handle richer policies, e.g. only
friends can view a user’s profile data, while dynamic policies
would require extending the type system with techniques
from [43]. While both SELINQ and JSLINQ use the frame-
work by Cheney et al. [14], JSLINQ significantly extends



that formalism with mutable references and declassification
using a different technique to show noninterference.

While our main focus is on multi-tier application-level at-
tacks, JSLINQ inherits protection against XSS and SQL
injection attacks from its components, respectively, from
WebSharper and LINQ. Such attacks are impossible due to
strong typing [32], similar to frameworks as GWT. For in-
stance, an SQL injections are prevented by the use of LINQ,
which leverages the underlying F# type system to strongly
type all database queries.

The full details of the framework, including semantics and
proofs, and the code for JSLINQ are available online [11].

2. FRAMEWORK
In this section we present the formal underpinnings of

the framework. The client and the server components are
written in the host language, while the database component
is written in the quoted language. The framework consists
of a functional language with mutable storage and support
for product types, records, lists, quotations and antiquota-
tions, the security type system, and shows that the type
system enforces noninterference and declassification policies
with respect to the operational semantics. The host and
the quoted language represent a core of the F# language as
implemented by JSLINQ.

2.1 Language
The language is presented in Figure 1. It includes the

usual constructs of a functional language with references,
extended with quotations and antiquotations to account for
database queries. The syntax consists of security levels,
types, and terms. x denotes a sequence of entities x.

` ::= L | H (security types)

b ::= bool` | int` | float` | string` (base types)

t ::= b | unit | t `→ t | t ref` | t ∗ t | {f : t} | (t list)` | Expr〈t〉
(general types)

T ::= ({f : b}) list` (database tables)

Γ,∆,M ::= · | Γ, x : t | ∆, x : t | M, l : t (type environment)

e ::= () | c | x | l | op(e) | lift e | fun(x)→ e (terms)

| rec f(x)→ e | (e, e) | fst e | snd e | {f = e} | e.f
| yield e | [] | e @ e | for x in e do e | exists e
| if e then e else e | if e then e | run e | <@ e @> | (% e )
| database(x) | ref e | !e | e := e

Figure 1: Syntax of language and types

We remark on some of the interesting constructs: c de-
notes built-in constants, such as booleans, integers, floats
and strings. op denotes built-in operators, such as addition
and logical connectives. if e1 then e2 else e3 evaluates to
e2 if e1 evaluates to true and to e3 otherwise. The language
includes mutable state. Terms ref e (reference creation), !e
(dereference) and e := e (assignment) denote, respectively,
allocating, dereferencing and updating memory locations. ()
denotes a value of type unit. Database queries are modelled
by quoted expressions <@ e @> of type Expr〈t〉. The lan-
guage allows only closed quoted terms, since this simplifies
the semantics of the language and is still able to express all

the desired concepts. Quoted functions can be expressed by
abstracting in the quoted term as opposed to abstracting on
the level of the host language. (% e ) denotes antiquotation
of the expression e, and allows splicing of quoted expressions
into quoted expressions in a type-safe way. lift e lifts an ex-
pression of type t to type Expr〈t〉. for x in e1 do e2 is used
to express list comprehensions where x is bound successively
to elements in e1 when evaluating e2. The results of eval-
uating e2 for each element are then concatenated. run e
denotes running a quoted expression e, which involves gen-
erating an SQL query based on the quoted term. e1 @ e2

denotes concatenation of e1 and e2. exists e evaluates to
true if and only if the expression e does not evaluate to
the empty list. This can be used to check if the result of a
query is empty. if e1 then e2 evaluates to e2 if e1 evaluates
to a non-empty list and to [] otherwise. yield e denotes a
singleton list consisting of expression e.

Security type language: Security types are defined by
annotating a standard type language for a functional frag-
ment with quotations and references with security levels
`. The security levels are taken from the two-element lat-
tice 〈{L, H},v〉 consisting of a level L for low-confidentiality
(dually high-integrity) information and a level H for high-
confidentiality (dually low-integrity) information. The or-
dering relation requires that L v H. The types are split into
base types (b), which can occur as types of columns in tables
(T ), and general types (t) which include unit, functions, ref-
erences, tuples, records, lists, and quoted expression types.
Function types include a level `, which is a lower bound on
the level of locations that might be written to when the func-
tion is called. To avoid such leakages the function is only
allowed to write to memory cells with security levels greater
than `. Reference types t ref`, besides the security level t
of the value stored at the associated location, carry a level
` which represents the security level of the reference itself.
This is because references are themselves first-class values
and can hence be used to leak confidential information.

As is common, a database is a collection of tables. Each
table consists of at least one named column, each of which
equipped with a fixed security type. The security levels
on types for database columns express the confidentiality
of the data contained in that column. In particular, each
database is given a type signature Σ to express security poli-
cies for databases. A type signature describes tables as lists
of records. Each record field corresponds to a column in the
sense that the field name matches the name of the column
in the database. The security level of a column is specified
by using a suitable type for the corresponding field in the
record. The ordering of elements in a list is irrelevant.

Types are equipped with a subtyping relation v, which is
an extension of the lattice ordering relation. The subtyping
relation is standard [30, 24], therefore we do not report it
here. With a little abuse of notation, we use the subtyp-
ing relation to compare security annotations ` with types
t. In particular, if the type carries a security annotation `′,
we compare the security levels ` v `′. Otherwise, we need
to open the type and look inside the type constructor as
described in Figure 5 in the Appendix.

To illustrate the addition of security levels to the type
system in the case of multi-tier applications, consider an
example involving a database of people locations and friends,
LocationDB. The locations are confidential, while the names
are not, which leads to the following type for LocationDB.



LocationDB :
{ People :
{ Id : int^L; Name : string^L;
Lon : float^H; Lat : float^H } list^L

; Friends :
{ Id1 : int^L ; Id2 : int^L } list^L

}

Suppose John wants to know whether there are any friends
within the range of 1km from his current location. We can
query the database for the list of John’s friends and later
calculate the distance relative to John’s location. This can
be done by iterating once over all friends in the database to
retrieve the list of John’s friends and twice over all people in
the database to retrieve the result information. After finding
John’s Id in the database, we check that whenever it occurs
in the Friends table as Id1, the corresponding friend as Id2
occurs in the People table as Id. In that case, the name, the
latitude and the longitude of that friend is returned as part
of the result.
let db = <@ database "LocationDB" @>
type ResultType={name:string^L; lon:float^H; lat:float^H}

let friendsLoc : Expr < ResultType list^L > =
<@ for f in (% db).Friends do

for p1 in (% db).People do
for p2 in (% db).People do
if (p1.Name = "John") && (p1.Id = f.Id1) &&

(f.Id2 = p2.Id) then
yield ({name = p2.Name; lon = p2.Lon; lat = p2.Lat})

@>

The information flow policy for the program is specified
by giving a type annotation to the quoted expression that
generates the query, i.e., a type annotation for friendsLoc.
In particular the name component of the result is public,
while the location information is confidential as described
by ResultType. This matches the policy specified for the
database contents, i.e., LocationDB, in which the name of
people are public while their locations are not. Changing
the security annotation of the name field from public to con-
fidential should result in a type error, since the security level
of the Name field of the result is public. The example so far
illustrates secure information flows from the database to the
server for an attacker model where the server is untrusted.

The server uses the result of the database query to calcu-
late the distance between John’s location and his friends lo-
cation, and then send to John the list of nearby friends. The

function dist : (float` ∗ float`) ∗ (float` ∗ float`) `′→ float`

is side-effect free and it computes the Euclidean distance be-
tween two points. The security annotations are parametric
on the security levels of inputs and outputs.
let friendNames : float^L * float^L -> string^L list^L =

<@ fun publicLoc ->
let res = run friendsLoc in
for r in res do
if dist((r.lon, r.lat), publicLoc) <= 1 then
yield ({ name = r.name}) @>

The function friendNames takes as input a public loca-
tion publicLoc, executes the query represented by the func-
tion friendsLoc on the database and returns a list of public
names of nearby friends. Since the location information con-
tained in the result of friendsLoc is confidential, there is
an implicit flow from the location to the list of names. In
fact, a public observer learns that the location of everyone in
the returned list of names is within 1km from the location
publicLoc. Therefore, the security type checking should
fail. However, one may consider acceptable to leak the dis-

tance information as long as the exact location is protected.
This can be achieved by declassifying the function dist, i.e.,
considering its result as public, although part of the input
is confidential. At last, John can call the remote function
friendNames on the client-side by providing his current lo-
cation locJohn.
let locJohn : (float^L, float^L) = GetLocation()

let friends : string^L list^L = friendNames locJohn

The function is executed on the server-side and it interacts
with the database to retrieve information as described above.
Then the list of names of nearby friends is returned back
to John on the client-side. The security type checker will
ensure that there are no insecure information flows, except
the allowed ones, from the database to the client.

2.2 Operational Semantics
The operational semantics of the language evaluates terms

in the context of a mutable store µ and a database Ω. A
partial mapping µ : Loc → V al from locations to values
models the semantics of memory effects. We write µ[l 7→ v]
for a store µ which maps location l to value v, otherwise
agrees with µ. A configuration (e, µ) is a pair of a term e
and a store µ. We write e when µ is empty. We denote
evaluation of a configuration (e, µ) using database data in
Ω to another configuration (e′, µ′) by (e, µ) −→Ω (e′, µ′). Ω
is a function that maps database names to the actual con-
tent of the database it refers to, and δ is a function that
maps operators to their corresponding semantics. Σ maps
constants and databases to their respective types. We as-
sume that Ω is consistent with the typing for databases given
in Σ: for each database Ω(db) is assumed to be a value
of type Σ(db). Let −→∗Ω be the reflexive-transitive closure
of −→Ω. Evaluation and normalization of the quoted lan-
guage is denoted by evalΩ(norm(e)). This evaluation gen-
erates database queries that can be translated to SQL and
executed by actual database servers. For instance, higher-
order features such as nested records or function applica-
tions need to be evaluated to obtain computations that can
be expressed in SQL. The syntax of values and evaluation
contexts can be defined both for the host language and the
quoted language. The quoted language is purely functional
and contains no recursion. The evaluation contexts ensure
that the semantics is call-by-value with left-to-right evalua-
tion of terms. Quotation contexts Q are used to ensure that
there are no antiquotations left of the hole. The evaluation
rules for the host language are standard. For instance, the
rule ((fun(x) → e) v, µ) −→ (e[x 7→ v], µ) defines function
application. We denote the substitution of free occurrences
of variable x in term e with another term e′ by e[x 7→ e′].
The evaluation contexts entail sequentiality and let-binding
between terms; we write e1; e2 for (fun(x) → e2)e1, where
x is not free in e2 and let x = e in e′ for (fun(x)→ e′) e).
Similarly, the evaluation rules for the query language follow
Cheney et al. [14].

2.3 Security Condition
The security condition expresses the notion of noninterfer-

ence for a functional language with references and databases.
Noninterference is an information flow policy that formalizes
computational independence between confidential and pub-
lic information, guaranteeing that no information about the



former can be inferred from the latter. More precisely, this
is expressed as the preservation of an equivalence relation
under pairwise execution; given two inputs that are equal in
the components that are visible to an attacker, evaluation
should result in two output values that also coincide in the
components that can be observed by the attacker. Memory
locations are not directly observable by the attacker, how-
ever their contents may affect the output returned by the
computations and thus leak information. For example, the
program let l = ref trueH in !l uses a public location l,
which stores a confidential value true, to leak that value to
an attacker through the dereference !l.

To establish the behavior of a secure program from the
perspective of an attacker, we introduce the notion of low-
equivalence denoted by ∼ that demands that parts of values
with types that are annotated with L are equal, while plac-
ing no demands on the high counterparts. Low-equivalence
is formalized as a family of equivalence relations∼t on values
parametrized by types. We omit the subscript on ∼ when
the type is clear from the context and write ∼ for sequences
of values. Built-in values c of base type b are compared us-
ing equality if the values are public. In the case of function
types and quoted expressions, ∼t corresponds to noninterfer-
ence for the bodies of the functions. Moreover, functions are
related by ∼

t
`→t′

if for all input values related by ∼t they

evaluate to values related by ∼t′ and the memory effects
are upper bounded by the security level of the result ` v t′.
Records are related by ∼ if they contain the same fields, and
each field’s contents are also related by ∼. Similarly, tuples
are related by ∼ if the corresponding components are related
by ∼. Two lists are required to have the same length if the
list type is annotated with L, but their contents may differ
based on the element type. Memory locations are compared
using equality if the locations are public.

With this we are ready to define the top-level notion of
security based on noninterference [20]. Since the family of
low-equivalence relations is parametrized by types the defi-
nition is done with respect to the initial host type, the initial
database type and the final result type.

Definition 1 (NI (e1, e2)t,Σ,t′). Two expressions e1 and e2

are noninterfering with respect to the host type t, the database
type Σ and the final type t′ if for all Ωi, vi, v

′
i and µi such

that v1 ∼t v2, Ω1 ∼Σ Ω2, and ei[x 7→ vi] −→∗Ωi
(v′i, µi) for

i ∈ {1, 2} it holds that v′1 ∼t′ v
′
2.

Given an open expression e, NI (e, e)t,Σ,t′ should be read
as e is secure with respect to the security policy expressed
by t, Σ and t′, i.e., no secret parts of host and the database
as defined, respectively, by t and Σ is able to influence the
public parts of the result value as defined by t′. Note that the
definition can represent expressions with multiple inputs by
using record values. Moreover, the noninterference policy is
termination-insensitive [41, 34], namely it ignores leaks via
the observation of (non)termination.

Declassification: Noninterference is overly restrictive
for programs that leak confidential information in a con-
trolled manner, as shown by the example in Section 2.1.
To account for these cases, we extend the framework with
support for declassification policies that regulate what in-
formation can be released by the program. The policies
are expressed in terms of escape hatches from a set D =
{d1, · · · , dk} and correspond to the What dimension in [35].
Escape hatches were introduced to express a similar notion,

called delimited release, for imperative languages [33]. The
security condition is then refined to also take into account
the equivalence between declassification expressions. This
requires to extend the low-equivalence relations used for non-
interference with declassification.

Definition 2 (DNI (e1, e2)D,t,Σ,t′). Two expressions e1 and
e2 are noninterfering with respect to the declassification ex-
pressions D, the host type t, the database type Σ and the
final type t′ if for all Ωi, vi, v

′
i and µi such that v1 ∼t v2,

Ω1 ∼Σ Ω2, dj [x 7→ v1] ∼t,Σ dj [x 7→ v2] and ei −→∗Ωi
(vi, µi)

for i ∈ {1, 2} it holds that v′1 ∼t′ v
′
2.

2.4 Security Type System
The goal of the security type system is to enforce the

notion of noninterference for a functional language with ref-
erences and databases. Typing judgments are of the form
pc,Γ,M ` e : t where pc is the program counter level, Γ is
a typing context mapping variables to types, M is a typing
context mapping locations to types, e is an expression and t
is a type. They denote that expression e has type t in context
pc,Γ,M . We also write H for pc,Γ,M . Intuitively, the pro-
gram counter level approximates the information that can
be learned by observing that the program has reached a par-
ticular point during the execution and it is used to control
implicit flows due to branching on high values. For unifor-
mity, we write pc,Γ,M ` v : t for typing judgments dealing
with values, although pc is redundant given that values have
no computational effects. ` t `′ denotes the join of levels `
and `′, i.e., `t `′ = H iff H ∈ {`, `′}, and `t `′ = L otherwise.

The typing rules for the quoted language are similar to
those for the host language as reported in the Appendix.
Typing judgments have the form H,∆ ` e : t, where H is
the typing context for the host language and ∆ is the typing
context for the quoted language. We present some of the
typing rules for the host language and the quoted language
in Figure 2 and report the remaining rules in the Appendix.

Most types contain a level ` that denotes whether the
“structure” of the value is confidential. In the case of base
types, this means that their values are confidential or not.
In the case of (t list)`, the level ` indicates whether the
length of the list is confidential. If ` = H, the entire list is
considered a secret, otherwise the length of the list may be
disclosed to a public observer. However, the elements of the
list may or may not be confidential depending on the level
of the elements given by the type t. For types for quoted
expressions, the security annotation is contained in the type
t. Function types contain the usual input and output types
together with a security level pc which represents a lower
bound on the security level of locations that may be written
when calling the function. In order to securely call the func-
tion in a context pc′ it must be the case that pc′ v pc. The
intuition is that, in the presence of side-effects, the func-
tion can disclose information via its result or via its side-
effects. We assume that types for operators, constants, and
databases are given by the mapping Σ. Moreover, we also
assume that each query only uses a single database.

We now comment on a few typing rules. Rule Var assigns
a type to the variable by looking it up in the environment.
Fun uses the program counter level appearing in the func-
tion type to check the function body. Apply is used to check
function application. The rule ensures that the side-effects
pc′ of the caller function are not visible in contexts for which
the program counter level is pc, namely pc v pc′. As a re-



Var
x : t ∈ Γ

pc,Γ,M ` x : t

Fun
pc,Γ, x : t,M ` e : t′

pc′,Γ,M ` fun(x)→ e : (t
pc→ t′)

DatabaseQ

Σ(db) = {f : t}
H,∆ ` database(db) : {f : t}

Antiquote

H ` e : Expr〈t〉
H,∆ ` (% e ) : t

Apply

pc,Γ,M ` e1 : t
pc′→ t′ pc,Γ,M ` e2 : t pc v pc′

pc,Γ,M ` e1 e2 : t′

For

pc,Γ,M ` e : (t list)` pc,Γ, x : t,M ` e′ : (t′ list)`
′

pc,Γ,M ` for x in e do e′ : (t′ list)`t`
′

Deref

pc,Γ,M ` e : t ref` ` v t
pc,Γ,M `!e : t

Quote

pc,Γ,M, · ` e : t

pc,Γ,M ` <@ e @> : Expr〈t〉

Sub
t v t′ pc,Γ,M ` e : t

pc,Γ,M ` e : t′

Run
pc,Γ,M ` e : Expr〈t〉
pc,Γ,M ` run e : t

Ref
pc,Γ,M ` e : t pc v t
pc,Γ,M ` ref e : t refpc

Assn

pc,Γ,M ` e1 : t ref` pc,Γ,M ` e2 : t pc t ` v t
pc,Γ,M ` e1 := e2 : unit

Figure 2: Excerpt of type system for host and quoted language

sult, it prevents a function to write to low memory locations
in a high context and thus leak information through implicit
flows. Ref checks memory allocation operations. It ensures
that a low reference is not created in a high context and
that it does not contain a high value. Deref checks derefer-
ence operations and ensures that the reference level is upper
bounded by the level of its contents to avoid information
leakage through aliases. Assn checks memory updates and
ensures that no low memory writes occur in a high context
or in a high location. The following example captures the
intuition behind the typing rules for mutable storage. Let
l, l’ be variables of type intL refH, l” of type intH refH

and h of type boolH. The program is insecure since the re-
turned value at location l reveals the initial value of variable
h through aliasing.
l = ref 0; l’ = ref 1; let l’’ =
if h then l else l’ in l’’:= 2; !l

The program is correctly rejected by the type system. By
rule Ref the first two references are typable for pc = H.
The conditional is also typable by rule If, since l and l’ are
high references. The successive assignment is typable by rule
Assn provided that 2 has type intH. The type checking fails
when considering the dereference !l, since the rule Deref
requires ` v t, which is not true for l of type intL refH.

Rule Quote ensures that its arguments are typed in an
empty context for quoted expressions. This expresses that
only closed quoted terms are allowed in this language. Run-
ning a quoted expression e of type Expr〈t〉 using run e
results in an expression of type t (rule Run). Expressions
for database(db) get their type from the mapping Σ. Rule
Antiquote allows to entities defined in the host language
from within a quoted expression. The argument of an an-
tiquotation must itself be a quoted expression. Rules Sub
allows raising the security level of an expression.

2.5 Soundness
The soundness result is stated as the preservation of a low-

equivalence relation under pairwise execution. If we start
out in any two low-equivalent environments then the re-
sult of running a well-typed program will be low-equivalent
with respect to the type of the program. Assuming that
the typing of the execution environment corresponds to the
capabilities of the attacker, noninterference guarantees that
all information observable by the attacker is independent of
confidential information. To make the connection between

the host policy Γ, the database policy Σ and the type sys-
tem explicit we write Γ,Σ ` e : t even though Σ was kept
implicit in the typing rules.

Theorem 1 (Soundness). If x : t,Σ ` e : t′, then NI (e, e)t,Σ,t′ .

Proof sketch. The theorem is proved by adapting the proof
technique introduced by by Pottier and Simonet [38] for an
ML-like security-typed language. This is done by defining
an extension of the language which allows reasoning about
pairs of program configurations, and then showing that the
type system for the extended language enjoys the subject
reduction property. Then noninterference follows as a result
of the subject reduction theorem. The proof can be found
in the full version of the paper [11].

The type system for the host language and the quoted
language can be extended with two additional rules which
take into account declassification through expressions from
the set D. Intuitively, the rules allow to downgrade the se-
curity level of an expression if that expression is in the set of
declassified expressions D and the level pc is upper bounded
by the level of the declassified expression. The latter is used
to enforce that no sensitive information is released implic-
itly through the declassification mechanism. For the host
language the rule is as follows:

Decl
pc,Γ,M,D ` d : t pc v t (d, t′) ∈ D

pc,Γ,M ` d : t′

Theorem 2 (Soundness under Declassification). If x : t,Σ,D `
e : t′, then DNI (e, e)D,t,Σ,t′ .

3. JSLINQ
Figure 3 shows the architecture of JSLINQ. The input is

an F# project consisting of the security policy and the ap-
plication code. The right branch of the figure shows how
a project is first compiled to a 3-tier application using the
unmodified build process for web applications based on Web-
Sharper. The code of the project is used to create a 3-tier ap-
plication consisting of JavaScript created using WebSharper,
.NET assemblies for server-side logic and SQL queries for
the database, created using LINQ. Upon successful compi-
lation, JSLINQ’s security type checker can be used on the
F# project to determine if the application complies to the
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Figure 3: JSLINQ Architecture

specified information-flow policy. How the resulting 3-tier
application and the verification result are used depends on
the use case of JSLINQ: one possibility is to discard non-
compliant application builds and to deploy compliant ap-
plications into production. The remainder of the section
discusses JSLINQ components in more detail.

WebSharper: WebSharper is a fully-featured and com-
mercially supported framework for web application develop-
ment in F#, providing powerful functional abstractions such
as sitelets for document definition, formlets for data entry
forms and flowlets for workflows [21]. Moreover, it offers
abstractions for essential web concepts such as the DOM or
JavaScript code. Importantly, these abstractions enjoy type
safety properties, allowing to leverage the F# type system
to build robust applications. One of WebSharper’s key fea-
tures is the translation of F# functions into JavaScript code
for execution in the browser. Server-side functions can be
designated as remote procedure calls (RPC), and can be
transparently called in client-side code, as in the example:
// Server-side function called by the client via AJAX.
[<Remote>]
let getText () = "JSLINQ"
// Client-side function translated to JavaScript and HTML.
[<JavaScript>]
let Main () = Text (getText ())

WebSharper supports extensions of the client with third-
party libraries, for example a map service. Third-party li-
braries usually consist of JavaScript code that is embedded
into the page. Calls from the client-side F# code to the
embedded third-party library are handled by wrappers that
provide an F# interface to the JavaScript code. This ap-
proach requires full trust on the JavaScript code provided by
the third party. However, JSLINQ can be used to type-check
third-party libraries written in F#. This allows rewriting
crucial third-party JavaScript libraries in F# to make them
amenable to security analysis using JSLINQ.

F# Project: JSLINQ is designed to perform the verifi-
cation step after successful compilation of the project. JS-
LINQ processes MSBuild projects and it is integrated with
Microsoft Visual Studio. Code within a project is either part
of the policy or part of the program. The policy controls in-
formation flows via security type signatures which are added
to the definitions of functions and databases. The program
implements the application and is subject to the security
type check according to the policy. Since the policy is ex-
pressed within normal F# syntax, the use of JSLINQ does
not interfere with the normal build process of the application
and the use of standard tools.

Policy: The policy is specified by adding custom at-
tributes with security type signatures to declarations. Sig-
natures are represented as strings that follow the language
in Section 2.1, and use variables for security levels in order

to support polymorphism. If no security level is specified
within a signature, the corresponding level variable is un-
constrained. The following code fragment demonstrates how
signatures are added to F# declarations:
[<SecT("_^H")>]
let boolH = true

[<SecT("unit ->^L _^L")>]
let f () = 1

We divide a web-application policy into three types: a
library policy, an RPC policy and a database policy. Each
type deals with different tiers and the meaning of a security
type signature depends on the tier in which it is located.

The policy for library functions is defined in a separate
module, which is marked with a policy attribute. All li-
brary functions used by the program need to be wrapped in
the policy, otherwise their use is not allowed. Since HTML
and JavaScript abstractions of WebSharper are also library
functions, the policy for client-side functionality is speci-
fied in this part. Each wrapper function has a mandatory
security type signature that governs which security levels
are used when the wrapper is called. The following snippet
demonstrates a wrapper that uses WebSharper functions to
generate a masked input field for passwords, labelled as high:
[<Policy>]
module Policy =
[<JavaScript>][<SecT("unit -> _^H")>]
let InputPW () = Input [Attr.Type "password"]

The policy for RPCs from the client to the server consists
of attributes to the declarations of RPC functions within
the program. We define the RPC policy and the program in
the same file for sake of simplicity. However, JSLINQ allows
a complete separation of policy and program into separate
files, as we do for the other parts of the policy. Type signa-
tures on RPC functions restrict the information flow from
the client to the server (via function arguments) and from
the server to the client (via return values). The following
fragment demonstrates flows in both directions:
[<Remote>][<SecT("unit -> _^L")>]
let untrustedClient () = true

[<Remote>][<SecT("_^L ->^L unit")>]
let untrustedServer (x:bool) = ()

The database policy is defined by adding security type
signatures to an attribute-based mapping for LINQ [3]. Se-
curity type signatures are added to table and column defi-
nitions as shown in the following example:
[<Table>][<SecT("_^L")>] // Public table length
type Account =
[<Column>][<SecT("_^L")>] // Public username
abstract member Username : string
[<Column>][<SecT("_^H")>] // Confidential password
abstract member Password : string

Security Type Checker: The design of JSLINQ as a
verification step after compilation allows us to assume that
the code has correct syntax, data types and satisfied de-
pendencies, hence the implementation can only focus on the
security type check. Noteworthy, we leave the F# type sys-
tem untouched and maintain a completely separate security
type system during the verification. We perform the secu-
rity type checking in two steps, which we repeat for each
top-level declaration found in the code: first we recursively
traverse AST for the declaration to obtain set of constraints
and a security type signature by means of the FParsec li-
brary [6]. The second step substitutes level variables with
actual security levels by solving the constraint set. The re-



sulting types and possibly remaining constraints are added
to the environment before proceeding with the next declara-
tion. JSLINQ uses the AST generated by the F# compiler,
which is retrieved using the library FSharp Compiler Ser-
vices [5]. We thus do not duplicate compiler features that
are unrelated to the security type check and benefit from
F#’s desugaring. This is a clear advantage over prototypes,
e.g. SELINQ or SIF, that enhance existing type systems.

4. CASE STUDIES
We have used JSLINQ to implement several case studies

as F# projects. In this section we first describe the general
design of the policy language and then remark on the policy
requirements for the case studies that we have implemented.

4.1 Library Policy
The largest part of the library policy are the signatures

for the DOM and JavaScript abstractions. The documents
shown in the browser are constructed using these abstrac-
tions at runtime. For simplification, we consider the HTML
elements as trusted sinks. The rationale behind this is that
the user has full access to the data once it has arrived in
the browser, independently of that data being displayed or
not. However, this assumption does not hold for the full
WebSharper API, as it would allow to write and read the
elements in the DOM tree in various ways. Therefore, the
policy only permits basic operations on the DOM. An impor-
tant exception from our trusted sink assumption are HTML
elements which load external resources, such as images and
IFrames. These elements can be used to leak data either
directly within the source attribute or indirectly via exter-
nally observable HTTP requests. Therefore, we annotate
the creation of the source attribute with low security level,
both for the URL argument and the side-effects.

4.2 Scenario Discussion
We now comment on different aspects of the policy and

provide examples for vulnerabilities captured by JSLINQ.
Password Meter We have included the password me-

ter to demonstrate a policy with full client isolation, where
the password is not allowed to leave the browser. The pol-
icy declares password fields as sensitive sources. Leaks to
third parties and to the application server are prevented by
assigning low levels to the source attribute and to the argu-
ments and side-effects of RPC functions, respectively. The
scenario assumes that the server is untrusted, as it should
not receive the password. A problem with this view is that
the JavaScript code executed by the client is usually deliv-
ered by an untrusted server. This means that the integrity of
the client-side code after the security type check is not guar-
anteed. Such changes are not subject to the security policy
and can thus be abused to leak confidential data. Therefore
we have to put trust in the integrity of the code delivered by
the application server, which we summarize as partial trust.
Alternatively, remote attestation methods such as code or
certificate signatures can ensure code integrity. The follow-
ing snippets show a secure password check and two leaks via
the source attribute that are handled correctly by JSLINQ.
The scenario consists of 53 F# and 6215 generated JS LOCs.
let content = // Allowed: Secret only in browser.

if (containsLetters password)
then Text "Passed" else Text "Failed"

let content’ = // Blocked: Leak via source attribute.

Image [Src ("http://example.com/img.png?" + password)]
// Blocked: Leak via side-effects.
let content’’ = Src (if secret == "jSL!Nq42"
then "http://example.com/true.jpg"
else "http://example.com/false.jpg")

Location-Based Service This scenario demonstrates de-
classification of a client-side secret, in this case the user’s
position. Third parties and the application server can only
receive declassified (obfuscated) coordinates. We define de-
classification as a function that adds a random offset to the
position. The function is applied to the confidential lati-
tude and longitude values. The real coordinates are isolated
in the browser in the same way as for the password me-
ter. We provide two variants of the location-based service
to showcase two different attacker models. The first exam-
ple embeds a map via an IFrame, where the position is an
argument to the source attribute of the IFrame. The follow-
ing snippet shows how the use of declassified coordinates is
permitted, while real coordinates are blocked:
let iframeSrc = Src // Allowed: Obfuscated coordinate.
"https://maps.example.com/?q=" +
(string (randomize Lat)) + "," + (string (randomize Lon))

let iframeSrc’ = Src // Blocked: Exact coordinate.
"https://maps.example.com/?q=" +
(string Lat) + "," + (string Lon)

The second example includes a third-party library called
via F#. We use the Google Maps extension for WebSharper
and wrap the initialization and panning of the map within
the policy, both having low side-effects and low values. Since
the extension wraps the original JavaScript code, we have
to fully trust the F#-to-JavaScript extension and JavaScript
code implementing the WebSharper APIs. The scenario con-
sists of 76 F# and 6279 generated JS LOCs.

Movie Rental This scenario demonstrates the use of se-
curity policies on databases. The database consists of a list
of items (e.g. movies) subject to events (e.g. movie rentals)
happening at a certain location and time. The location of
an event is confidential, while all other information is pub-
lic. The database policy assigns to the latitude and longi-
tude high-security levels. Leaks to the client are prevented
by labelling the return values of RPC functions as public.
The following LINQ query joins rentals with movies and re-
turns a list of movie titles. Movie titles are input to an RPC
function which is only allowed to return public values. As
a result the first yield statement is allowed to return the
movie titles. If instead we use the second yield statement,
JSLINQ rejects the program.
let events = query {

for e in db.Event do
for i in db.Item do
if e.ItemId = i.Id then

(* Allowed *) yield i.Name
(* Blocked *) yield (string e.Lat) }

Moreover, we allow the user to retrieve a ranking of pop-
ular movies within an area. The implementation contains a
pre-defined set of areas which are addressed using indexes.
The user can only specify the index for an area of interest.
The application server filters the list of movie rentals based
on the coordinate values. JSLINQ will infer a high-security
level for the length of the resulting list, as it depends on the
coordinate values. Our policy allows that geographic infor-
mation about rentals is disclosed on the granularity of fixed-
size areas, therefore we can directly declassify the length of
the list. The scenario consists of 87 F# and 6231 generated
JS LOCs.



Figure 4: Simplified IFC policy for Battleship
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Friend Finder App In this scenario we consider a com-
pletely untrusted application server. The client obtains the
code from a trusted source. We use the Apache Cordova
framework [2] to package the client-side functionality as an
app that can be distributed via a trusted channel. Cordova
also provides access to the address book of the device. The
app can access the address book only via a function defined
in the policy, which assigns a high-security level to the con-
tact details. The policy allows declassification by means of a
hash function on strings. Leakage of plain contact details to
the untrusted server is prevented by assigning a low security
level to the arguments and side-effects of RPC functions.
The following snippet illustrates a secure and an insecure
RPC call:
// Allowed: Look-up of hashed phone number
let rpcResult = remoteLookup (Hash phoneNumber)
// Blocked: Look-up of plain phone number
let rpcResult’ = remoteLookup phoneNumber

The scenario has 62 F# and 9966 generated JS LOCs.
Battleship We implement a simplified version of the clas-

sical Battleship game [29, 39]. The client uses the browser to
play against the server and the goal of each player is to hide
the exact position of their ships on a grid. Both sides trust
each other to correctly follow the rules of the game, so we
are only concerned about confidentiality. A desirable IFC
policy for this game is to mark the values indicating indi-
vidual ship positions as confidential and all parameters and
return values of RPC functions as public, so that confidential
information is not allowed to pass the barrier between the
browser and the server. This allows us to re-use the same se-
curity policy on both sides, as shown in Figure 4. The game
rules require declassification, since the response to a shot
requires disclosure of one bit of information (“hit” or “miss”)
to the other player per round. On each side we have to per-
form declassification twice: firstly for the hit/miss response
to a shot, as it directly depends on the presence of a ship at
that location, and secondly for indicating to the opponent if
a player is defeated, which requires to test all occupied cells.
The latter can be done locally, but for implementation rea-
sons players report their own defeat to the opponent. The
following example shows this for the client-side:
let serverShotResult = {

shot = response.shot;
hit = DeclassifyBool !serverTarget.occupied;
defeated = DeclassifyBool clientDefeated }

The scenario has 255 F# and 6348 generated JS LOCs.

4.3 Case Study Results
Table 1 summarizes our case studies. The different combi-

nations of client, third party and server trust illustrate the
attacker models handled by JSLINQ. The initial effort of
defining the API policy annotations comes with the benefit

Table 1: Overview of implemented scenarios
Trust # of Annotations

Scenario Client 3rd Party Server API RPC DB
Password Meter Yes No Partial 10 0 0
POI IFrame Yes No Yes 10 1 5
POI Embedded Yes Yes Yes 11 1 5
Movie Rental No No Yes 9 1 8
Friend Finder Yes No No 9 1 0
Battleship Yes No Yes 12 4 0

of minor burden on application programmer side. The pol-
icy for JSLINQ requires only very few annotations within
the application code. As reported above, the LOCs for F#
and JavaScript refer to the application (excluding comments
and blank lines) and wrappers in the policy. The differ-
ence between the number of lines in F# code and resulting
JavaScript shows WebSharper and its libraries at work. This
allows the programmer to focus on the application logic and
its security-critical parts (subject to security type check in
JSLINQ) while standard boilerplate code is automatically
generated by the framework. Real-world applications con-
tain considerably more code to offer a better user experience.
We omit the verification time, as execution time mostly con-
sists of the compilation required to retrieve the AST. As the
security type check is based on a simple constraint solver,
we expect it to scale well to larger programs.

5. RELATED WORK
Securing web applications with IFC has been the subject

of a large array of research studies. Here we contrast our
approach with closely related works on IFC for web security.

Information Flow Security. Much research on for-
mal models for end-to-end security guarantees has followed
Goguen and Meseguer’s seminal work on noninterference [20].
Heintze and Riecke [24] introduce the SLam calculus to en-
force noninterference for a functional language with higher-
order features and present a soundness proof for a functional
fragment of that language. Pottier and Simonet [30] intro-
duce a security type system for a core of ML with references
and higher-order features and implement type checking for
the FlowCaml tool [38]. Our framework extends the sound-
ness proof technique from [30] with support for higher-order
types, quotations and antiquotations, and declassification.
A plethora of static, dynamic and hybrid analysis have been
proposed to enforce noninterference-like policies [34]. Our
work uses static analysis by means a security type system.

Web Application Security. Common security mech-
anisms proposed for web applications, including IFC, only
secure components in isolation. Database systems such as
MySQL provide access controls at the level of tables and
columns, which are decoupled from the applications. Simi-
larly, web browsers [23, 13] and application servers [34, 22]
leverage dynamic and static techniques to enforce policies
in isolation. None of these approaches can express security
policies that regulate information flows across component
boundaries as we do in this paper. Many existing web ap-
plication frameworks augment the capabilities of a specific
language with homogeneous meta-programming to ease the
construction of Internet applications. WebSharper, Rails,
GWT and many others are used in industry to develop com-
plex web and mobile applications. For instance, GWT is
used by many products at Google, including Flights, Hotel
Finder, Offers and Wallet. While there is some framework



Table 2: Comparison of web application frameworks
Tool Client Server DB 3rd Party Dec Sound Core Enforcement Language P#C

SIF/SWIFT 7 7 7 TS Java, HTML 7

WebSSARI 7 7 7 TS PHP, SQL
IFDB 7 7 7 Dynamic PHP, SQL 7

SELINKS 7 TS Links 7

UR/WEB 7 7 ATP UR
SELINQ 7 7 7 TS F# 7

JSFLOW 7 7 7 Dynamic JavaScript 7

JSLINQ TS F#

support as prepared statements and custom sanitizers, the
burden of securing code is largely placed on the developer.
JSLINQ provides a smooth integration of security require-
ments in the development process, which allows F# pro-
grammers to check whether their code, or the code devel-
oped by external contractors, complies with desired security
policies.

A few existing works aim at bridging IFC for multi-tier
web applications. Chong et al. implement SIF [17] and
SWIFT [16] as extensions of the JIF compiler [29] to en-
force information flow policies for web applications written
in Java. Web applications are checked against these policies
by a combination of static and runtime enforcements. The
ability to enforce fine-grained policies in the decentralized la-
bel model [28] is an attractive feature. At the same time, SIF
and SWIFT interweave security annotations with program
code and do not provide support for databases. JSLINQ
addresses soundness formally and provides integration for
third-party libraries. Huang et al. [25] propose WebSSARI,
a tool that combines static analysis with runtime checks to
detect vulnerabilities in PHP applications that interact with
SQL databases. WebSSARI is very effective at discovering
security vulnerabilities, although no support for client-side
applications is provided and soundness is only addressed in-
formally. Schultz and Liskov [37] propose IFDB, a database
management system with decentralized IFC. IFDB is im-
plemented by modifying PostgreSQL as well as the applica-
tion environments in PHP and Python. Their Query by La-
bel model provides abstractions for dealing with expressive
information flow policies in relational databases, including
decentralization and declassification. IFDB supports poli-
cies for server and database tiers and does not provide lan-
guage integration for database queries. Corcoran et al. [18]
present SELINKS which builds on the Links programming
language. Links is a strongly-typed functional language
for multi-tier web applications and it supports higher-order
queries. SELINKS implements an expressive type system
which allows to define a variety of policies, including dy-
namic IFC, provenance, and general access control. JSLINQ
only requires the programmer write code in a mainstream
language such as F# and express policies in a less sophis-
ticated, but standard type system. Chlipala introduces Ur-
Flow [15], which implements a static information flow anal-
ysis as part of the Ur/Web domain-specific language for de-
velopment of web applications. UrFlow allows to express
policies as SQL queries leveraging the users’ runtime knowl-
edge. The enforcement is done by symbolic execution over a
model of the web application. UrFlow shares similar aspects
with SELINKS and scalability depends on capabilities of the
underlying theorem prover. While JSLINQ separates secu-
rity checking from type checking, it can be extended with

techniques from [43] to cope with dynamic security poli-
cies. Hedin et al. [23] present JSFlow, a security-enhanced
JavaScript interpreter for fine-grained tracking of informa-
tion flow. The interpreter enables deployment as a browser
extension providing dynamic IFC on the client-side includ-
ing third-party scripts. JSFlow only applies to applications
written in JavaScript.

Secure Compilation JSLINQ relies on the WebSharper
compiler to translate F# code to JavaScript code deployed
in the web browser, leaving out a formal investigation of the
translation correctness. Fournet et al. [19] show full abstrac-
tion for a compiler which translates an ML-like language
with higher-order functions and references to JavaScript.
Their language is similar to F#, hence the same ideas can
be used to show full abstraction for the JSLINQ compiler.
Baltopoulos and Gordon [12] study secure compilation by
augmenting the Links compiler with encryption and authen-
tication for data stored on the client-side.

Tools Table 2 provides a comparison of existing web ap-
plication frameworks with support for IFC. We classify each
tool depending on whether they allow for IFC on the client,
server, databases (DB) or third-party libraries. We also
compare against support for declassification policies (Dec),
soundness of a core calculus, type of enforcement mechanism
(a type system (TS), a dynamic monitor or an automated
theorem prover (ATP)), programming languages used and
separation between code and policy (P#C). The compari-
son shows that JSLINQ enjoys many desirable properties.

6. CONCLUSION
We have presented a framework for end-to-end security,

by leveraging IFC for a functional language with mutable
store and language-integrated queries. The framework puts
homogeneous meta-programming to work by developing a
security type system that tracks information flows through
the client, server, and underlying database. We have im-
plemented JSLINQ and shown through different case stud-
ies that it is practical. JSLINQ can be used by organiza-
tions to build high-assurance applications. It can automat-
ically verify the information flows within code written by
internal developers or external contractors against the se-
curity policy. This helps to improve code quality and to
demonstrate compliance with information security regula-
tions, for instance when sensitive information like trade se-
crets or personal data is being processed. As future work,
we plan to add to JSLINQ support for dynamic policies and
finer-grained third-party libraries from F# and ensure their
secure compilation to JavaScript.
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APPENDIX
` v `′

` v t`
′

` v unit

` v pc ` v t
` v t′ pc→ t

` v t1 ` v t2
` v t ∗ t

` v ti
` v {f : t}

` v t
` v Expr〈t〉

Figure 5: Security annotation constraints

Unit

pc,Γ,M ` () : unit

Const
Σ(c) = t

pc,Γ,M ` c : t`

Loc
l : t ∈M

pc,Γ,M ` l : t

Nil

pc,Γ,M ` [] : (t list)`

Project
pc,Γ,M ` e : {f : t}
pc,Γ,M ` e.fi : ti

Lift
pc,Γ,M ` e : t

pc,Γ,M ` lift e : Expr〈t〉

Snd
pc,Γ,M ` e : t1 ∗ t2
pc,Γ,M ` snd e : t2

If

pc,Γ,M ` e : bool` pc t `,Γ,M ` ei : t ` v t i ∈ {1, 2}
pc,Γ,M ` if e then e1 else e2 : t

Rec

pc,Γ, x : t, f : t
pc→ t′,M ` e : t′

pc′,Γ,M ` rec f(x)→ e : t
pc→ t′

Pair
pc,Γ,M ` e1 : t1 pc,Γ,M ` e2 : t2

pc,Γ,M ` (e1, e2) : t1 ∗ t2

Record
pc,Γ,M ` e : t

pc,Γ,M ` {f = e} : {f : t}

Op

Σ(op) = t→ t pc,Γ,M ` e : t`

pc,Γ,M ` op(e) : t
⊔

`i

Exists

pc,Γ,M ` e : (t list)`

pc,Γ,M ` exists e : bool`

Yield
pc,Γ,M ` e : t

pc,Γ,M ` yield e : (t list)`

Union

pc,Γ,M ` e : (t list)` pc,Γ,M ` e′ : (t list)`
′

pc,Γ,M ` e′ @ e : (t list)`t`
′

If1

pc,Γ,M ` e : bool` pc,Γ,M ` e′ : (t list)`
′

pc,Γ,M ` if e then e′ : (t list)`t`
′

Fst
pc,Γ,M ` e : t1 ∗ t2
pc,Γ,M ` fst e : t1

Figure 6: Type system for host language

ConstQ

Σ(c) = t

H,∆ ` c : t`

FunQ

H,∆, x : t ` e : t′

H,∆ ` fun(x)→ e : t→ t′

VarQ

x : t ∈ ∆

H,∆ ` x : t

ApplyQ

H,∆ ` e1 : t→ t′ H,∆ ` e2 : t

H,∆ ` e1 e2 : t′

OpQ

Σ(op) = t→ t H,∆ `M : t`

H,∆ ` op(M) : t
⊔

`i

PairQ

H,∆ ` e1 : t1 H,∆ ` e2 : t2

H,∆ ` (e1, e2) : t1 ∗ t2

FstQ

H,∆ ` e : t1 ∗ t2
H,∆ ` fst e : t1

SndQ

H,∆ ` e : t1 ∗ t2
H,∆ ` snd e : t2

RecordQ

H,∆ `M : t

H,∆ ` {f = M} : {f : t}

ProjectQ

H,∆ ` L : {f : t}
H,∆ ` L.fi : ti

YieldQ

H,∆ `M : t

H,∆ ` yield M : (t list)`

NilQ

H,∆ ` [] : (t list)`

ExistsQ

H,∆ `M : (t list)`

H,∆ ` exists M : bool`

IfQ

H,∆ ` L : bool` H,∆ `M : (t list)`
′

H,∆ ` if L then M : (t list)`t`
′

UnionQ

H,∆ `M : (t list)` H,∆ ` N : (t list)`
′

H,∆ ` N @ M : (t list)`t`
′

ForQ

H,∆ `M : (t list)` H,∆, x : t ` N : (t′ list)`
′

H,∆ ` for x in M do N : (t′ list)`t`
′

SubQ

t v t′ H,∆ `M : t

H,∆ `M : t′

Figure 7: Typing rules for quoted language
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