
MaxPace: Speed-Constrained Location Queries
Per Hallgren

Chalmers University of Technology
Martı́n Ochoa

Singapore University of Technology and Design
Andrei Sabelfeld

Chalmers University of Technology

Abstract—With the increasing proliferation of mobile devices,
location-based services enjoy increasing popularity. At the same
time, this raises concerns regarding location privacy, as seen in
many publicized cases when user location is illegitimately tracked
both by malicious users and by invasive service providers. This
paper is focused on privacy for the location proximity problem,
with the goal of revealing the proximity of a user without disclosing
any other data about the user’s location. A key challenge is
attacks by multiple requests, when a malicious user requests
proximity to a victim from multiple locations in order to position
the user by trilateration. To mitigate these concerns we develop
MaxPace, a general policy framework to restrict proximity queries
based on the speed of the requester. MaxPace boosts the privacy
guarantees, which is demonstrated by comparative bounds on
how the knowledge about the users’ location changes over time.
MaxPace applies to both a centralized setting, where the server
can enforce the policy on the actual locations, and a decentralized
setting, dispensing with the need to reveal user locations to
the service provider. The former has already found a way into
practical location-based services. For the latter, we develop a
secure multi-party computation protocol that incorporates the
speed constraints in its design. We formally establish the protocol’s
privacy guarantees and benchmark our prototype implementation
to demonstrate the protocol’s practical feasibility.

I. INTRODUCTION

The increasing proliferation of mobile devices drives tremen-
dous developments in the area of mobile computing. Mobile In-
ternet usage already dominates over desktop both by the number
of users [14] and time spent [6]. As part of these developments,
location-based services enjoy increasing popularity, enabling
location-based features such as finding nearby points of interest
or discovering friends in proximity.

At the same time, services that involve location information
raise increasing privacy concerns. These concerns apply to
both protecting the privacy with respect to other users and
with respect to service providers. There are publicized cases
of both scenarios in practice. For the former scenario, the
smartphone app “Girls around me” allowed users to find other
users (profiled as female) who recently had checked in on
Foursquare [3]. Deemed as a serious privacy violation, the app
has since been banned from the Foursquare API and removed
from the app store. For the latter scenario, the smartphone
app Uber, connecting passengers with private drivers, has been
the subject of much privacy debate. Uber and its employees
have been allegedly involved in privacy-violating activities from
stalking journalists and VIPs to tracking one-night stands [2].

These privacy concerns call for developing privacy-aware
location based services [13], [28]. Accordingly, our goal is
striving for rigorous guarantees for the protocols that underly
practical location-based services.

The following motivates our approach. We start with uncon-
strained services that freely share user location and gradually
illustrate the protection measures that need to be in place
to protect against location privacy attacks. In the following
paragraphs, let us focus on a scenario where a malicious user
attempts to leverage a location-based service to attack location
privacy of another user by looking at four techniques that have
been applied in practice. Subsequently, we discuss the service-
attacks-user scenario in a decentralized setting.

a) From positions to distances: Directly revealing lo-
cations may violate privacy. For example, as of May 2015,
Facebook Messenger defaulted to sending user location tags
with all messages, which was exploited by a “stalking” Chrome
extension [12]. Since then, Facebook has deactivated location
sharing from the desktop web page.

b) From distances to approximate distances: To aid pri-
vacy, the next step is to reveal distances instead of locations.
For example, the dating app Tinder revealed distances to
other users. It is straightforward to bypass this protection and
calculate the location. Indeed, an illustrative attack on Tinder
has been detailed by Include Security [29], revealing exact
position of any user. At the core of this and other practical
attacks is the technique of trilateration.

B

d
1

d
2

d
3

Fig. 1: Trilateration attack

Trilateration uses multiple
requests, where each results in
learning that the user is located
on a circle that is centered in
the requester’s position. Trilat-
eration derives the user loca-
tion as the intersection point
of three circles, precisely pin-
pointing the user, as illustrated
in Figure 1.

c) From approximate dis-
tances to proximity: To miti-
gate trilateration attacks, some services have introduced ap-
proximate distance. For example, Facebook’s Nearby Friends
rounds the distance information. However, this mitigation can
be easily bypassed. Recent research systematizes these attacks
and identifies a number of location-based services where it
is possible to reveal the user location even if distances are
approximated/obfuscated [23], [15], [22].

d) From proximity to speed-constrained proximity: Next
notch up for privacy is not to reveal the distance but to reveal
proximity to the other user. This drastically reduces information
about the location: it is only one bit per request. Still, proximity

can be viewed as coarse-grained approximation, and attacks to
pinpoint user location are still possible.

Instead of trilateration as in the case of distance-based
attacks, the attacker in the proximity-based setting essentially
(i) solves the DiskCoverage problem [22] by covering the plane
with non-overlapping circles until getting a positive proximity
response, and then (ii) solves the DiskSearch problem [22] to
get the exact location by aiming to divide the constraining discs
by half with each request.

In this paper, we explore in depth the effect of constraining
the speed of the requester on the effect of the user discovery
attacks. The key idea is that it is unrealistic for honest users to
drastically change their location between subsequent requests.
Hence, we aim at a policy that impedes the attacker without
hampering practical usage of proximity protocols.

The DiskCoverage problem is in the focus of this work, as
speed-constraining techniques as applied in practice provide
little protection against an attacker on the DiskSearch problem.

e) MaxPace: speed-constrained proximity: We develop
MaxPace, a general policy framework to restrict proximity
queries based on the speed of the requester. The effect of speed
constraints is illustrated in Figure 2. Each query corresponds
to a disk. Large disk overlaps with speed-constrained queries
means that the attacker learns little information from each query
compared to the unrestricted attacker, and thus needs to issue
more requests to learn the victims location.

B1 2 3

1 2 3 4 5 6 7 8 9 B

Fig. 2: Different protocols

MaxPace applies to both a
centralized setting, where the
server can enforce the policy
on the actual locations, and a
decentralized setting, dispens-
ing with the trust to the ser-
vice provider. In the centralized
setting, we are encouraged by
the recent changes in the poli-
cies of the popular centralized
location-based services Facebook, Swarm, and Tinder [22] to
incorporate forms of speed-based constraints. Our study is
intended to provide rigorous analysis and understanding of
guarantees provided by this type of constraints.

In the decentralized setting, we develop a secure multi-party
computation protocol. This offers a contribution beyond the
state of the art. The state-of-the-art protocols often lack formal
privacy guarantees [32], [26], [30], [8]. Further, when there are
formal guarantees a dominant assumption in the most recent
literature on securing location proximity [32], [26], [30], [8],
[18], [20], [25], [11] is the assumption of a single run. In
contrast, our approach does not impose such an assumption,
allowing us to reason about multi-run attacks.

Though this paper tackles malicious attackers, colluding
attackers have been out of reach for the state-of-the-art work
both in the single-run [32], [26], [30], [8], [18], [20], [25], [11]
and also in the multi-run [22] setting. This justifies restricting
the scope to non-colluding attackers in this paper. Also note
that an attacker may be prevented from using multiple devices
and/or multiple accounts by using authentication on top of the
proposed solution.

The paper offers the following contributions. Section II
presents MaxPace, the speed-constrained proximity disclosure
policy. Section III shows the bounds provided by MaxPace and
compares them to the classical unrestricted attacker. Section IV
shows how MaxPace can be enforced without a trusted third
party, granting privacy of the locations of both involved par-
ties. Our enforcement is based on a novel secure multi-party
computation protocol. We formalize the privacy guarantees of
the protocol in Section V. Section VI presents benchmarks of
our implementation of the protocol, demonstrating its practical
feasibility.

II. THE MAXPACE PROXIMITY DISCLOSURE POLICY

We introduce MaxPace, a policy for location proximity
disclosure which limits the speed of a querying principal. The
attacker is moving freely at arbitrary speed, but the victim is
at a fixed position. The case when the victim is moving is an
interesting field of study, but which poses challenges [4], left
for future work.

The intuition is to force the attacker to behave as a benign
user. In a normal setting, users assume any protocol participant
behaves according to real-world physical constraints; other
participants are e.g. walking, riding a bike, driving a car.
The constraints imposed by MaxPace give less freedom to
attackers during each query, causing them to learn less about
the victim’s location, and thus impose an additional effort to
locate the victim. The exact benefits gained through MaxPace
are discussed in detail in Section III, as compared to an
unconstrained attacker on a proximity protocol.

When a principal wishes to know the proximity of another
principal they issue a location query, as defined in Definition 1.
The queried principal is henceforth referred to as Bob and the
querying principal as Alice. That is, Alice asks Bob whether
or not they are close. Alice may be malicious, and try to locate
Bob by repeated querying.

Definition 1 (Location query). Let P be the set of possible
coordinates (x, y) representing the position of a principal in
the plane. A location query q is a tuple (p, t) ∈ P × N where
p is the position of the querying principal, and t the timestamp
of when the query was issued.

When Bob receives a query from Alice, he considers her
speed. If Alice is respecting the maximum speed h set by the
policy, she receives the correct result. However, if she is moving
too fast by quickly spoofing coordinates that are far apart she
instead receives an unusable ⊥-value as defined in Definition 2.
Though MaxPace does not prevent usage artificial locations, it
limits the effectiveness of such attacks.

Definition 2 (⊥-values). A value containing no useful infor-
mation (such as an error message, a null-value or a freshly
sampled uniformly random value) is called ⊥.

If a query respects the speed threshold, Bob computes the
proximity, indicating only whether the principals are within
a distance r. Distance between the points of two queries is
calculated as described in Definition 3.

Definition 3 (Query distance). The Euclidean distance between
two positions p1 and p2 is given by dist(p1, p2).

This paper uses a common definition of proximity [11], [22],
defining proximity between two positions p1 and p2 as:

inProx(p1, p2, r) =

{
True if dist(p1, p2) < r
False otherwise

If Alice moves at a speed allowed by Bob, she may query
for location proximity at any frequency. Once she surpasses this
speed, any future requests she initiates yield ⊥. This is further
formalized in Definition 4.

Definition 4 (MaxPace). The responses L = {l1, l2, ..., lm} to
a series of location queries Q = {q1, q2, ..., qm} from Alice to
Bob respect MaxPace if and only if:

li =

{
⊥ if ∃j<i :

dist(pj ,pj+1)
time(qj)−time(qj+1)

> h

inProx(pi, pB , r) otherwise

where qi = (pi, ti) and the position of Bob is pB .

Definition 5 (Query Time). Given a location query q = (p, t),
let time(q) = t.

The two parameters r and h can be considered public and
mutually agreed upon by Alice and Bob prior to running the
protocol, e.g. as a part of the key exchange.

If a principal is detected as using a too high speed, they
are seen as malicious and indefinitely prevented from learning
further location information. However, as an effect of imprecise
GPS positioning (e.g. by being under ground), or after having
used a means of transportation not considered by the application
(e.g. an airplane or high-speed train), the positions reported
by a benign user may indicate that the user is traveling at
higher speeds than allowed. A benign user can potentially be
seen as malicious without having tried to attack the user. For
applications in practice, some speed violations might need to be
allowed in some cases. To reduce the period of time a benign
principal is classified as malicious, a principal who previously
has acted as if malicious can be forgiven and be allowed to
query for location information again.

To forgive a principal, there are many viable strategies to
reset the protocol. The simplest is arguably to reset after a
fixed amount of time. An interesting approach could be to
reset if the blocked principal returns to the point where it first
broke the speed limit. This would capture the case when a
user takes a flight abroad, and allow them to resume querying
other principals after returning from the trip. If a user who
has reported speeds in excess of those allowed is forgiven, the
effort of a malicious attacker is lowered. In the worst case,
the attacker knows exactly when a reset occurs and may then
move at arbitrary speed between two queries. To what extent
the attacker effort is affected is discussed in Section III-D.

III. BOUNDS ON ATTACKER EFFORT

This section defines bounds for the attacker effort to locate
the victim using a proximity disclosure protocol, both for the
normal case and when applying the MaxPace policy. Disclosing
only proximity forces the attacker to search a large portion

of the plane to locate them. The bounds calculated here gives
a measure of quickly the attacker can search the plane. The
analysis considers the space as finite but of arbitrary size in
discrete Euclidean coordinates, and the victim’s position is a
uniformly distributed variable. In this setting, for a fixed time
period, the attacker’s chance of finding the victim is negligible.
Further, any holes left unexplored by the search strategy are of
negligible size relative to the remaining area. Polakis et al. [22]
present definitions for scenarios similar to the one considered
in this paper, where an attacker is trying to locate a user in a
finite section of the discrete Euclidean plane. Their terminology
is reused in the following for clarity.

As mentioned previously, this work tackles an attacker who
is trying to find which disk the user resides in, which is called
the DiskCoverage problem. More precisely, DiskCoverage is
defined in Definition 6. Note that the definition here is slightly
different from the definition used by Polakis et al., even though
the goal of the attacker is equivalent. In the original definition
the attacker wants to minimize the time to completely cover
a fixed space, while here the attacker attempts, but does not
succeed, in solving the DiskCoverage problem in a fixed time
and thus focuses on maximizing progress.

Definition 6 (DiskCoverage). The DiskCoverage problem is to
find a set S containing the possible coordinates of the victim,
such that |S| ≤ r2π.

To calculate the effort for the attacker solve the DiskCover-
age problem, the progress made with each individual query is
needed. Herein, we say that the attacker learns an amount of
knowledge from a location query, see Definition 7.

Definition 7 (Attacker knowledge per query). The neighbor-
hood of radius r of a location query q = (p, t) is a set covr(q),
s.t. ∀pi ∈ covr(q) : inProx(pi, p, r). From the response of a
single location query, the attacker learns if the victim’s position
pb ∈ covr(q). We thus call covr(q) the attacker knowledge for
query q.

The knowledge of the attacker thus corresponds to the area
(or set of points) which is within the proximity of any issued
proximity request, and for a set Q of queries, the accumulated
knowledge is the union

⋃
q∈Q covr(q). For the attackers on both

DecentMP and a plain protocol, an optimal attacker is assumed.
For the plain protocol, the precise knowledge gained by the
attacker can be calculated, while for DecentMP an upper bound
on the knowledge is presented. Let the accumulated knowledge
of an attacker that is not limited by MaxPace be called aplain
and the knowledge of an attacker limited by MaxPace be called
aMaxPace.

A. Knowledge of Unconstrained Attacker

Clearly any query by the unconstrained attacker which
overlaps with previously covered areas (such that covr(qi) ∩
covr(qj) 6= Ø) is a bad strategy, as it contains less knowl-
edge (fewer points) than non-overlapping queries. The optimal
attacker thus covers an area of r2π with each query. During
T time units, the plain attacker does T/tp queries at distinct

locations, where tp is the minimum time required to receive a
response from a location query. This yields aplain = πr2 Ttp .

B. Bounds for MaxPace

Now for an attacker constrained by MaxPace, for which
an upper bound is given. Comparing the upper bound of an
attacker on MaxPace to the attacker on the plain policy gives
the minimum advantage MaxPace has over a plain policy.

Unlike the unrestricted querying policy, the optimal attacker
on MaxPace is forced to query with overlapping coverages –
otherwise they are travelling faster than the limit h and learn
nothing at all. Note that the attacker may choose to query with
a distance of 2 · r with a large time interval to not have an
overlap but the attacker gains more knowledge when querying
as often as possible, as shown through Theorem 1.

Theorem 1 (Optimal attackers on MaxPace query as often as
possible). Given two queries qs = (ps, ts) and qe = (pe, te)
which do not violate the MaxPace policy, and where ps 6= pe. If
it is possible to define a third query qi = (pi, ti) such that for
ti and pi (ts < ti < te) ∨ (ps 6= pi 6= pe) holds, and qs, qi, qe
comply with MaxPace, then issuing the three queries qs, qi, qe
yields more information than issuing qs, qe.

Proof. By contradiction, assume that covr(qe) ∪ covr(qs) is
equal to covr(qe)∪covr(qi)∪covr(qs). This implies that either
covr(qs) = covr(qi) or covr(qe) = covr(qi), which in turn
implies pi = pe ∨ pi = ps .

From Theorem 1, the attacker sends a location query as soon
as the policy allows them after moving one distance unit, thus
waiting at most s = 1/h time units between each query. The
coverage for each query is calculated as the area of a circle
of radius r, subtracting the area of the intersection with the
previous query. How to calculate the area of circle intersections
is given in [19]. The knowledge gained by an adversary for each
query after the first one is given in Equation (1).

πr2 −
(

2r2cos−1
(

1

2r

)
− 1

2

√
4r2 − 1

)
(1)

For a more concise bound, simplifications are made to over-
approximate Equation (1). This means an under-approximation
of Equation (2) and over-approximation of Equation (3).

−2r2cos−1
(

1

2r

)
(2)

1

2

√
4r2 − 1 (3)

Note that limx→0 cos
−1(x) = π

2 (as r ≥ 1). Thus, an under-
approximation of Equation (2) is −2r2 π2 . Equation (3) can be
simplified by approximating

√
4r2 − 1 to

√
4r2. The concise

over-approximation of Equation (1) is given in Equation (4).

πr2 −
(

2r2
π

2
− 1

2
2r

)
= πr2 − 2r2

π

2
+

1

2
2r = r (4)

The attacker is able to perform a total of T/s queries.
Including the first query, which covers an area of r2π, the final
area covered during DiskCoverage is given by:

aMaxPace = r

(
T

s
− 1

)
+ r2π

TABLE I: Speeds in m/s and km/h for the used scenarios

Activity Walking Running Cycling Bus Car (highway)
m/s 2 3 5 14 33

km/h 7.2 10.8 18 50.4 118.8

TABLE II: Bounds for different speed radiuses

Speed Radius
10 25 50 100

Walking 78.2 194.3 384.4 752.7
Running 52.2 130.0 258.1 508.8
Cycling 31.4 78.2 155.7 308.8

Bus 11.2 28.0 55.9 111.5
Car 4.8 11.9 23.8 47.5

C. Comparisons

To evaluate the policy, the example activities of walking,
running, cycling, riding a bus, and driving a car are considered,
as listed in Table I. To compare aplain and aMaxPace, the
ratio aplain

aMaxPace
is considered. Given the above example speeds

and reasonable values of r, consider Table II. The table shows
up to 753 times less information disclosure, demonstrating the
effectiveness of MaxPace in practical scenarios. The value of
tp is chosen as 200 milliseconds for the plain protocol.

D. MaxPace with Resetting

As highlighted in Section II, there are scenarios where
MaxPace is too restrictive. In these cases, it is beneficial if
the protocol can be reset. When a reset occurs, an attacker
will be able to reposition themselves independently of previous
queries. If during a time frame T the attacker performs e resets,
the bound of the attacker knowledge is r

(
T
s − e

)
+ πr2e.

Concretely, consider a person who is walking and querying
a radius of 100 meters, where the protocol is reset every
15 minutes, the time unit is seconds, and where T = 3600
(one hour). The attacker on the plain policy covers exactly
565486677.6 square meters. MaxPace without resetting restricts
coverage to at most 751315.9m2, and MaxPace with resetting
gives a coverage of at most 876579.6m2. Though resetting in
this case causes over 16% extra information leakage, even with
resetting MaxPace yields with the given parameters 645 times
less information than the plain protocol.

IV. ENFORCEMENT WITHOUT TRUSTED THIRD PARTY

As foreshadowed earlier, MaxPace can be implemented in a
straightforward way using a trusted third party who stores and
manages location information for all users who are utilizing
the service. Any already existing service can easily deploy
MaxPace as an additional privacy measure. Many applications
scenarios lack a natural third party that can be trusted, and a
decentralized trust-model has obvious benefits as compared to
giving location information to third parties. Services are usually
not deployed in a decentralized manner without trusted parties,
as for most application scenarios there are no ad-hoc solutions
readily available.

This section describes how MaxPace can be enforced using
a Secure Multi-party Computations (SMC) protocol without
a trusted third party. The concrete protocol is referred to as
DecentMP (short for Decentralized MaxPace).

A. Secure Arithmetics for SMC

There are a variety of primitives for implementing SMC,
including garbled circuits [31], partial [21] and fully homomor-
phic encryption schemes [9] among others. To instantiate the
MaxPace policy without third parties, we chose the BetterTimes
system by Hallgren et al. [10]. This construction gives privacy
guarantees against a malicious Alice Further, being based on
additively homomorphic cryptography, it supports storing inter-
mediate values from previous computations, a central feature in
the implementation of MaxPace. Additionally, there is an open
and efficient implementation of this construction that allows us
to benchmark our results and discuss the applicability of our
protocol in practice. For the scope of this paper, Alice holds
the private key for all BetterTimes computations and is the only
principal able to decrypt data. However, Bob is able to perform
arithmetic computations using the BetterTimes system.

A BetterTimes formula is composed of arithmetic instruc-
tions. BetterTimes-instructions are recursive data structures,
An instruction is either a binary operation (e.g. addition or
subtraction), for which each operand is another instruction, or
a scalar value. The formula is evaluated by Bob, and all actions
taken by Alice are implicitly determined by any messages Bob
sends. If Alice deviates from the protocol while computing a
BetterTimes formula the output is a uniformly random number,
and Alice learns only ⊥. The guarantees of the construction are
discussed further in Section V.

1) EasyTimes, more readable BetterTimes-syntax: This sec-
tion details a subset of python, called EasyTimes, which di-
rectly maps into the syntax of BetterTimes. EasyTimes allows
arithmetic formulas to be expressed in a more readable and
concise manner than the original syntax. The full translation
is detailed in the full version of the paper [1]. In short,
BetterTimes-instructions are simply represented by normal ad-
dition, subtraction and multiplication operations. The opera-
tions are overloaded, and when used a formula is constructed
in the background, which later can be evaluated. Outputs are
in the new syntax marked using calls to the output() function.

All coin tosses can be sampled from a cryptographically
secure source using the random(start, end) function. By
convention, variables storing a ciphertext uses a prefixing “c ”.
As in normal Python, exponentiation is written using double
multiplication signs; xy is written as x ∗∗ y.

2) Extension to BetterTimes for multiple outputs: As an
additional contribution of this work, an extension to Better-
Times is constructed which allows for a single formula to yield
multiple outputs. The construction is presented in detail in the
full version of the paper [1]. In short, the extension provides
means for utilizing more than one output() call.

B. Homomorphic primitives

Below, the building blocks needed to construct DecentMP
are described before proceeding to present the full protocol.

1) Homomorphic Distance: The squared Euclidean distance
(henceforth simply called distance) can be computed using
additively homomorphic encryption in a privacy-preserving
manner [32], [7], [25], [24], [11]. As shown in [10], most

approaches are only secure in the semi-honest model but can
be made secure in the malicious model using BetterTimes.

The approaches above require that Bob holds one of the
two coordinates in the clear. Listing 1 shows a short protocol
in EasyTimes syntax which computes the distance between
(x1, y1) and (x2, y2) without any plaintext knowledge. Com-
puting the distance while holding a coordinate in the plain is
similar, however where the last two parameters c x2, c y2 are
plaintexts and thus have a different type. For the scope of this
paper such a method is called ODistplain.

Listing 1: Procedure for distance computation
def ODist(c x1, c y1, c x2, c y2):

c sq1 = c x1 ∗ c x1 + c y1 ∗ c y1
c sq2 = c x2 ∗ c x2 + c y2 ∗ c y2
c cross = c x1 ∗ c x2 + c y1 ∗ c y2
return c sq1 + c sq2 − 2 ∗ c cross

2) Homomorphic Comparisons: There are several solutions
to compute comparisons homomorphically in the literature [11],
[7] by making use of bit parity. Here, a comparison method very
similar to the one by Hallgren et al. is used [11].

Hallgren et al. use the fact that (x− y) · ρ, with ρ uniformly
random, yields ⊥ if and only if x and y are not equal. Thus,
to compare x < y, it’s possible to check if ∃i ∈ {0..y − 1} :
(x − i) · ρ = 0. However, where Hallgren et al. use an array
of equality-checks and shuffle it to hide which slot is equal to
the compared value, instead the values are multiplied here, as
shown in Listing 2.

Listing 2: Procedure for computing “less than”
def lessThan(c x, y):

c l = 1

for i in range(0, y − 1):
c l = c l ∗ (c x − i)

return c l ∗ random(1, k)

3) Homomorphic Proximity Check: To enforce the MaxPace
policy, it is necessary to compute whether two points are
near each other. In short, the formula consists of chaining
ODistplain and lessThan, as shown in Listing 3.

Listing 3: Procedure to check the proximity of two points
def proximity(c x1, c y1, x2, y2, r):

dist = ODist plain(c x1, c y1, x2, y2)

return lessThan(dist, r ∗∗ 2)

4) Homomorphic Speed: The following shows, to the best of
the authors’ knowledge, the first case where speed computations
are used together with additively homomorphic encryption.
More precisely, Bob calculates whether or not the speed of
Alice is under an allowed threshold, as shown in Listing 4.

Listing 4: Procedure to check for too fast movement
def speed(c x1, c y1, c x2, c y2, h, t):

dist = ODist(c x1, c y1, c x2, c y2)

return lessThan(dist, (h ∗ t) ∗∗ 2)

The speed when moving d distance over a time t is computed
as d/t. In MaxPace, the goal is to check when the speed exceeds

a threshold h. Thus, the sought computation is d
t ≤ h, which

can be re-written (for non-negative integers) as d ≤ h · t.

C. DecentMP

The protocol is shown in Listing 5. The procedure is executed
by Bob, while operations carried out by Alice are implicitly
determined through the BetterTimes system.

Listing 5: Request handling using DecentMP
def mpRequest(ev,c xA,c yA,xB,yB,h,r,cache):
formula = SecureFormula(ev, h,r, c xA, c yA,

xB, yB, cache[’a’], cache[’t’],

cache[’x’], cache[’y’])

with formula as sf:
c xA,c yA,xB,yB,h,r,ct,c ca,c cx,c cy

= sf.inputs

t = now()

pr = proximity(c xA, c yA, xB, yB, r)

if ’x’ in cache:
v = speed(c xA,c yA,c cx,c cy,h,t−ct)
alpha = random(1, k) ∗ (v + c ca)
sf.output(pr + alpha)

sf.output(alpha)

else:
sf.output(pr)

out = formula.evaluate()

c result = out[0]

cache[’a’] = out[1] if ’x’ in cache else 0
cache[’t’] = t

cache[’x’] = c xA

cache[’y’] = c yA

return c result

For the first run, the protocol simply returns the proximity
result and caches the query’s position and time. Bob also
initializes a special cache value a which is used to accumulate
all speed threshold checks. For following requests, the speed
threshold v is combined with the accumulated speed threshold.
By adding the proximity result to the accumulated speed thresh-
old, Bob constructs c result. Note that all values depending
on Alice’s inputs are encrypted and not readable by Bob.

V. PRIVACY GUARANTEES OF DECENTMP

This section shows that DecentMP provides very strong
privacy guarantees. The central privacy notion of this work is
according to Definition 8, following the standard SMC security
definitions of [16] against malicious adversaries.

Definition 8 (Privacy definition). A protocol π is said to
privately implement a functionality g against malicious adver-
saries if for every adversary A against the protocol π, there
exist a simulator S such that:

{IDEALg,S(−→x ,−→y)} c≡ {REALπ,A(−→x ,−→y)}

where
c≡ denotes computational indistinguishability of distri-

butions.

For space reasons, we recall the IDEAL and REAL construc-
tions and the computational indistinguishability definitions in
the full version of the paper [1]. The intuition behind this
definition is that the implementation of g by π should be as
secure as an ideal implementation of g using a third party. The
desired functionality for DecentMP is specified by Definition 9.

Definition 9 (Constrained speed querying functionality). The
functionality of a speed-constraining functionality g is a func-
tion from queries to responses: g : Q→ L.

g(q1, . . . , qm)[i] =

{
⊥ if ∃j<i :

dist(pj ,pj+1)
time(qj)−time(qj+1)

> h

inProx(pi, pb, r) otherwise

where qi = (pi, ti) and pb is the position of Bob.

Bearing the functionality Definition 9 in mind, recall the
protocol resulting from the formula shown in Listing 5. Com-
bining the two, the privacy-guarantees sought for DecentMP
are captured by Theorem 2.

Theorem 2 (Privacy guarantees of DecentMP). The protocol π
resulting from evaluating the program Listing 5 implements the
functionality of Definition 9 privately according to Definition 8.

A. Proofs

Now, to prove that DecentMP is secure according to Def-
inition 8, we need to show: a) the protocol implements the
desired functionality, that is, when used by honest parties, it
implements the functionality g of Definition 9; and b) if miss-
used by a malicious Alice, we can simulate Alice’s view based
exclusively on her inputs and the outputs of the g.

a) Proof of correct functionality: First, the functionality
must be privacy-preserving in the presence of only benign
parties. This is captured by Theorem 3, for which the following
proof shows that DecentMP is indeed privacy-preserving in the
absence of malicious adversaries.

Theorem 3. DecentMP implements the functionality g as
defined in Definition 9

Proof. By construction, if alpha (henceforth α) evaluates to
the encryption of 0, then the result of the proximity request
is correctly computed and disclosed to Alice, building on the
correctness of the proximity computation protocol. cache[’a’]
initially encrypts 0, and remains constant if and only if every
invocation of speed returns the encryption of 0, which is the
case when the speed limitation is respected. The first time that
the speed limitation is violated, α is not an encryption of 0,
and thus c result encrypts ⊥. cache[’a’] accumulates the
sum of the previous evaluations of α. Since α evaluates to
the encryption of either ⊥ or 0, after the first speed violation
cache[’a’] is an encryption of ⊥.

b) Proof of secure joint computation: Now for the more
interesting case, when adversaries deviate from the protocol to
try to infer additional data about the victim. This is captured by
Theorem 2, for which the proof is presented in the following.
The intuition behind the proof of Theorem 2 is as follows.

DecentMP defines α as an arithmetic formula. From the secu-
rity guarantees of [10], it follows that a malicious Alice that
tampers with the protocol at any point up to the evaluation of α,
will cause α to encrypt ⊥. This in turn will cause the proximity
result sent to Alice to be random, and cause cache[’a’] to be
updated just as in the case where Alice does not respect the
MaxPace speed policy, making subsequent location responses
yield an encryption of ⊥.

Since we leverage on primitives of BetterTimes to build
DecentMP, we recall the privacy guarantees we obtain from
using this construction. The privacy guarantees of [10] against
malicious adversaries can be summarized as follows. In this
setting, the possessor of the private key (Alice) is considered
potentially malicious, whereas the party performing homomor-
phic operations on encrypted data (Bob) is considered to be
honest. Indeed, as it is usual the case with protocols based
on partially homomorphic cryptography, in this setting Alice
gets the result of the joint computation, which by construction
Bob cannot learn. Bob could still sabotage the outcome of the
computation, but no such adversary is considered in this setting,
since our focus is on privacy guarantees. Now, if Alice would
tamper with the protocol to try to learn more about the private
inputs of Bob than allowed by the arithmetic formula (the
functionality), BetterTimes guarantees that she instead receives
a fresh uniformly random value.

The main theorem of BetterTimes is proved by showing that
all partial computations outsourced to Alice are independent
and uniformly random, and the final value of the formula is
⊥ if Alice does not comply with the protocol, and the correct
output of the formula otherwise. This is captured by Lemma 1.
The proof of Lemma 1 is presented in the full version of the
paper [1].

Lemma 1 (Fundamental lemma of BetterTimes). For a fixed
but arbitrary arithmetic formula g(−→x ,−→y) represented by a
recursive instruction ι ∈ Ins against the protocol π resulting
from evaluate(ι), all intermediate messages to Alice are in-
dependent and uniformly random, and the last message result
of the protocol is an encryption of the output of g(−→x ,−→y) if
Alice is honest, and an encryption of a uniformly random value
otherwise.

However, Lemma 1 only shows that the final result is
secured. Now, to show that also for intermediate values added
to the output are secure, Lemma 1 can be extended to Lemma 2.
The proof of Lemma 2 is found in the full version of the
paper [1].

Lemma 2 (Extension of Fundamental lemma of BetterTimes).
For a fixed but arbitrary arithmetic formula g(−→x ,−→y) repre-
sented by a recursive instruction ι constructed using Easy-
Times against the protocol π resulting from evaluate(ι), all
intermediate messages to Alice are independent and uniformly
random, and the final result and intermediate output values of
the protocol are an encryption of ⊥ for a dishonest Alice.

Proof of Theorem 2. First, note that from the extension to the
BetterTimes system as detailed in the full version of the
paper [1] and from Lemma 2, Corollary 1 follows immediately.

Corollary 1. For the arithmetic formula represented by the
recursive instruction ι resulting from Listing 5, all intermediate
values sent to Alice are encryptions of ⊥. The intermediate
output value from the evaluation of α and the final result are
encryptions of ⊥ if Alice deviates from the protocol.

After performing m location queries Alice has observed the
intermediate values in each query qi and the respective location
response li by Bob. From Corollary 1, and by construction
of the cache[’a’], it follows that if Alice cheats for the first
time when jointly computing li with Bob, then li = ⊥ and
∀j>i lj = ⊥. Further, from Corollary 1, it follows directly
that all intermediate values in a joint computation, denoted by
−→v i, are equal to ⊥. Without loss of generality, let’s assume
that a class of malicious adversaries Ax are dishonest when
jointly computing the location response lx. The output of any
such malicious Ax against DecentMP can be simulated by a
simulator Sx that outputs:

Sx(q1, . . . , qm, l1, · · · lm) =

Ax(q1, . . . , qm, l
′
1, · · · l′m,−→v 1, · · · −→v m)

The outputs l′i corresponding to the view of A in a real
execution are easy to simulate, as they can be computed using
only the inputs through:

l′i =

{
⊥ if i ≥ x
li otherwise

And the intermediate messages can be simulated as −→v j =
⊥, · · · ,⊥ as per Lemma 2.

VI. IMPLEMENTATION AND BENCHMARKS

This section describes the implementation of DecentMP and
presents benchmarks from initial experiments. The prototype
was done in Python using the library provided by [10]. The
results show that it is feasible to use MaxPace in a decentralized
setting for practical scenarios. Five typical scenarios were used,
to give data on different speed thresholds (h). Four different
values of the proximity threshold are measured (r).

The data shows that the protocol scales reasonably well in
both h and r. Arguably, most configurations may be applicable
to real applications already in its current state. Several con-
figurations using the prototypical implementation finish within
500 milliseconds, and many applications can load data in the
background and do not require instant feedback and would thus
be able to use the more expensive settings.

A. System Overview

The protocol is implemented straight forward from the
description in Section IV, with only one optimization effort.
Instead of multiplying all values in the lessThan function while
computing the proximity, the original idea of [11] to encode the
values as an array is used. This reduces the number of round-
trips and is securely realized by caching subtrees in the formula
(which is needed since the distance is reused).

The additively homomorphic cryptographic scheme used was
the DGK scheme [5]. For the DGK scheme, the plaintext space

0
2
4
6
8

10
12
14

0 20 40 60 80 100 120

tim
e

(s
)

km/h

R=10
R=25
R=50

R=100

Fig. 3: Different speeds and proximity thresholds

is chosen separately from the key size. For decryption to be
efficient a table of the size of the plaintext space is saved. A
larger plaintext space means that more RAM is needed and also
has some costs in terms of performance. The implementation
keeps this table in memory, which gives a practical limitation
due to RAM consumption (for 2048 bit keys, 22 bits of plaintext
space requires 8192 MB RAM).

The plaintext space size is relevant in the context of location
based services. As an over-approximation, consider a square
with sides equal to the earth’s circumference 4 · 107 meters.
A coordinate is then log2(4 · 107) ≈ 25 bits. Thus, 25 bits of
plaintext space is needed to measure the earth with 1 meter
resolution. 22 bits gives a precision of 5 meters for the earth.

The time between requests where not considered as attackers
can be assumed to query often. A benign user may query rarely,
but performance issues with large time spans for benign users
can be resolved with a resetting strategy.

The benchmarks were performed on a single machine with
16MB RAM and an Intel i7-4790 CPU at 3.60GHz. Both the
client and the server application were hosted locally, and were
noted to be performing work of the same order of magnitude.

B. Performance
Benchmarks were carried out with a key of sizes 2048 bits,

and plaintext space 22 bits. Figure 3 visualizes how the time
of a single protocol execution time is affected by different
configurations of h and r. Though configurations modelling
higher speed and a larger radius cause longer protocol execution
times, in both of the parameters r and h, the time to complete
the protocol grows less than quadratic.

Benchmarks where also performed for a much smaller plain-
text space of 10 bits. The results show similar performance,
with a difference of at most 200 milliseconds for any scenarios,
compared to 22 bits of plaintext space. Given a machine
with more RAM, a higher precision can be utilized without
noticeably affecting user experience.

C. Communication Cost
The protocol may incur a significant communication cost.

The number of round trips is dictated by the speed threshold,
and the size of the messages depends on the key size. Further,
the size of the result array is affected by the proximity thresh-
old. Table III shows how different values of r and h affect com-
munication. These numbers exclude the additional overhead of
the structure of the messages, which is not significant.

TABLE III: Communication cost in kilobytes (messages)

Activity Proximity Threshold (meters) Messages10 15 50 100
Walking 166 610 2050 7392 11
Running 196 640 2080 7422 17
Cycling 286 730 2170 7512 35
Bus 1076 1520 2960 8302 193
Car 4706 5150 6590 11932 919

Communication cost ranges from 166 kilobytes to 12
megabytes. 12 MB is rather a lot of data for geometric com-
putations, but seeing as most devices can handle high-quality
video streaming, all results are within practical applicability.

VII. RELATED WORK

Location privacy is a well recognized issue, as seen from a
diverse range of surveys: [13], [28], [17]. Protecting location
disclosure during continuous queries through speed limitation
has been applied in practice [22], but to the best of the authors’
knowledge this is the first formalization of such approaches and
the first which quantifies attacker effort in these cases. There
are several active research areas which touch upon different
components of this work. The following positions this work in
relation to the more relevant neighbouring approaches.

Within location privacy, different works protect differ-
ent parts of a user’s data. Many approaches provide k-
anonymity [27], [17], where the location of the user is indistin-
guishable among a set of users, where the primary objective is
to protect the identity from the attacker. This work protects the
location, and does not consider privacy of the identity. Works
of this type, though similar, are orthogonal to MaxPace.

Considering moving principals is a key feature of this work.
To the best of the authors’ knowledge, there is no literature
on how to maintain privacy if both the attacker and the victim
are moving. Within location proximity specifically, there is a
fair amount of work [32], [25], [8], [18], [26], [20]. However,
the majority of current research focuses on static principals. A
practical application requires security over continuous queries.

One countermeasure for when the attacker is moving is
mentioned by Narayanan et al. as an effect of their construc-
tion [20]. By mapping each principal to a grid cell, called a
cloaking region, and calculating distances between the cloaking
regions, nothing more than the region can be leaked. That is,
it’s impossible to solve the DiskSearch problem.

Bob

Alice

Bob
r

Fig. 4: Precision issues

There are several drawbacks
with cloaking regions. Foremost,
a significant chance of both false
positives and negatives, as illus-
trated in Figure 4. Further, as high-
lighted by Cuellar et al. [4], if an
attacker samples the victims loca-
tion as the victim changes region,
they know that the victim is close
to the region’s border. In general,
simply making use of cloaking regions have no effect on the
DiskCoverage problem, as is the focus of MaxPace.

Polakis et al. [22] investigate different disclosure strategies
employed in the wild, such as disclosing distances or rounded

distances. For several popular social networks, they perform
measurements of how quickly different attack strategies can
solve both the DiskCoverage and DiskSearch problems. Polakis
et al. advocate using a cloaking region to improve privacy. As
mentioned earlier, this helps to some extent when the victim
is static for the DiskSearch problem, but has no effect on the
DiskCoverage problem.

Lastly, one prime feature of MaxPace is that it is possible
to deploy without a trusted third party. As highlighted above,
trust may be used to enforce any policy with low computational
effort, but such approaches have trouble when the aim is formal
privacy guarantees [17].

VIII. CONCLUSIONS

We have developed MaxPace, a framework for speed-
constrained location queries. We have demonstrated the advan-
tages over unrestricted location queries by comparing bounds
on an attacker’s knowledge. The framework is susceptible to
both centralized and decentralized deployment. The former has
already found a way into practical location-based services.
For the latter, we have devised a speed-constrained secure
multi-party computation protocol for location proximity and
formally established its privacy guarantees. We have reported
on experiments with a prototype implementation which shows
that the protocol can be used in practice.

Our knowledge bounds focus on the disk coverage problem
as the main contributor to an attacker’s knowledge. A study of
the disk search problem is subject to future work. In addition,
we are interested in further developing the resetting strategies
outlined in Section II. This will allow MaxPace to deal with the
imprecision of GPS and high-speed transportation. Finally, we
plan to investigate scenarios where, in addition to Alice, Bob
may also move in-between requests. While Bob’s movement
makes trilateration more difficult, more work is needed to
quantify how Bob’s movements affect the privacy guarantees.

Acknowledgments This work was funded by the European
Community under the ProSecuToR project and the Swedish
research agencies SSF and VR.

REFERENCES

[1] MaxPace: Speed-Constrained Location Queries. Full Version. http://www.
cse.chalmers.se/research/group/security/maxpace, July 2016.

[2] C. Bessette. Does Uber Even Deserve Our Trust? http://www.forbes.com/
sites/chanellebessette/2014/11/25/does-uber-even-deserve-our-trust/,
Nov. 2014.

[3] D. Coldewey. ”Girls Around Me” Creeper App Just
Might Get People To Pay Attention To Privacy Settings.
http://techcrunch.com/2012/03/30/girls-around-me-creeper-app-just-
might-get-people-to-pay-attention-to-privacy-settings/, Mar. 2012.

[4] J. Cuéllar, M. Ochoa, and R. Rios. Indistinguishable regions in geographic
privacy. In SAC 2012, Riva, Trento, Italy, March 26-30, 2012, pages
1463–1469, 2012.

[5] I. Damgård, M. Geisler, and M. Krøigaard. Efficient and secure compar-
ison for on-line auctions. In ACISP 2007, Townsville, Australia, July 2-4,
2007, Proceedings, pages 416–430, 2007.

[6] K. Dreyer. Mobile Internet Usage Skyrockets in Past 4 Years
to Overtake Desktop as Most Used Digital Platform. http:
//www.comscore.com/Insights/Blog/Mobile-Internet-Usage-Skyrockets-
in-Past-4-Years-to-Overtake-Desktop-as-Most-Used-Digital-Platform,
Apr. 2015.

[7] Z. Erkin, M. Franz, J. Guajardo, S. Katzenbeisser, I. Lagendijk, and
T. Toft. Privacy-preserving face recognition. In PETS 2009, Seattle,
WA, USA, August 5-7, 2009. Proceedings, pages 235–253, 2009.

[8] D. Freni, C. R. Vicente, S. Mascetti, C. Bettini, and C. S. Jensen.
Preserving location and absence privacy in geo-social networks. In CIKM
2010, Toronto, Ontario, Canada, October 26-30, 2010, pages 309–318,
2010.

[9] C. Gentry. Fully homomorphic encryption using ideal lattices. In STOC,
pages 169–178, 2009.

[10] P. A. Hallgren, M. Ochoa, and A. Sabelfeld. Bettertimes - privacy-assured
outsourced multiplications for additively homomorphic encryption on
finite fields. In ProvSec 2015, Kanazawa, Japan, November 24-26, 2015,
Proceedings, pages 291–309, 2015.

[11] P. A. Hallgren, M. Ochoa, and A. Sabelfeld. Innercircle: A parallelizable
decentralized privacy-preserving location proximity protocol. In PST
2015, Izmir, Turkey, July 21-23, 2015, pages 1–6, 2015.

[12] A. Khanna. Stalking Your Friends with Facebook Messen-
ger. https://medium.com/faith-and-future/stalking-your-friends-with-
facebook-messenger-9da8820bd27d, May 2015.

[13] J. Krumm. A survey of computational location privacy. Personal and
Ubiquitous Computing, 13(6):391–399, 2009.

[14] A. Lella. Number of Mobile-Only Internet Users Now Exceeds Desktop-
Only in the U.S. https://www.comscore.com/Insights/Blog/Number-of-
Mobile-Only-Internet-Users-Now-Exceeds-Desktop-Only-in-the-U.S,
Apr. 2015.

[15] M. Li, H. Zhu, Z. Gao, S. Chen, L. Yu, S. Hu, and K. Ren. All your
location are belong to us: breaking mobile social networks for automated
user location tracking. In MobiHoc’14, Philadelphia, PA, USA, August
11-14, 2014, pages 43–52. ACM, 2014.

[16] Y. Lindell and B. Pinkas. Secure multiparty computation for privacy-
preserving data mining. IACR Cryptology ePrint Archive, 2008:197, 2008.

[17] E. Magkos. Cryptographic approaches for privacy preservation in
location-based services: A survey. IJITSA, 4(2):48–69, 2011.

[18] S. Mascetti, D. Freni, C. Bettini, X. S. Wang, and S. Jajodia. Privacy
in geo-social networks: proximity notification with untrusted service
providers and curious buddies. VLDB J., 20(4):541–566, 2011.

[19] W. Mathworld. Circle-circle intersection, 2008.
[20] A. Narayanan, N. Thiagarajan, M. Lakhani, M. Hamburg, and D. Boneh.

Location privacy via private proximity testing. In NDSS 2011, San Diego,
California, USA, 6th February - 9th February 2011, 2011.

[21] P. Paillier. Public-key cryptosystems based on composite degree residuos-
ity classes. In Advances in Cryptology EUROCRYPT 99, volume 1592,
pages 223–238. Springer, 1999.

[22] I. Polakis, G. Argyros, T. Petsios, S. Sivakorn, and A. D. Keromytis.
Where’s wally?: Precise user discovery attacks in location proximity
services. In CCS, Denver, CO, USA, October 12-6, 2015, pages 817–
828, 2015.

[23] G. Qin, C. Patsakis, and M. Bouroche. Playing hide and seek with mobile
dating applications. In ICT Systems Security and Privacy Protection -
IFIP SEC 2014, Marrakech, Morocco, June 2-4, 2014, pages 185–196.
Springer, 2014.

[24] A. Sadeghi, T. Schneider, and I. Wehrenberg. Efficient privacy-preserving
face recognition. In Information, Security and Cryptology - ICISC
2009, 12th International Conference, Seoul, Korea, December 2-4, 2009,
Revised Selected Papers, pages 229–244, 2009.

[25] J. Sedenka and P. Gasti. Privacy-preserving distance computation and
proximity testing on earth, done right. In ASIA CCS ’14, Kyoto, Japan -
June 03 - 06, 2014, pages 99–110, 2014.

[26] L. Siksnys, J. R. Thomsen, S. Saltenis, M. L. Yiu, and O. Andersen. A
location privacy aware friend locator. In SSTD 2009, Aalborg, Denmark,
July 8-10, 2009, Proceedings, pages 405–410, 2009.

[27] N. Talukder and S. I. Ahamed. Preventing multi-query attack in location-
based services. In WISEC 2010, Hoboken, New Jersey, USA, March 22-24,
2010, pages 25–36, 2010.

[28] M. Terrovitis. Privacy preservation in the dissemination of location data.
SIGKDD Explorations, 13(1):6–18, 2011.

[29] M. Veytsman. How i was able to track the location of any tinder
user. http://blog.includesecurity.com/2014/02/how-i-was-able-to-track-
location-of-any.html, Feb. 2014.

[30] L. Šikšnys, J. R. Thomsen, S. Saltenis, and M. L. Yiu. Private and
flexible proximity detection in mobile social networks. In Mobile Data
Management, pages 75–84, 2010.

[31] A. C.-C. Yao. Protocols for secure computations. In FOCS, volume 82,
pages 160–164, 1982.

[32] G. Zhong, I. Goldberg, and U. Hengartner. Louis, lester and pierre: Three
protocols for location privacy. In PET 2007 Ottawa, Canada, June 20-22,
2007, Revised Selected Papers, pages 62–76, 2007.

