
HMAC and “Secure Preferences”:
Revisiting Chromium-based Browsers Security

Pablo Picazo-Sanchez, Gerardo Schneider, and Andrei Sabelfeld

Chalmers University of Technology
Gothenburg, Sweden,

Abstract. Google disabled years ago the possibility to freely modify
some internal configuration parameters, so options like silently (un)install
browser extensions, changing the home page or the search engine were
banned. This capability was as simple as adding/removing some lines
from a plain text file called Secure Preferences file automatically created
by Chromium the first time it was launched. Concretely, Google intro-
duced a security mechanism based on a cryptographic algorithm named
Hash-based Message Authentication Code (HMAC) to avoid users and
applications other than the browser modifying the Secure Preferences file.
This paper demonstrates that it is possible to perform browser hijacking,
browser extension fingerprinting, and remote code execution attacks as
well as silent browser extensions (un)installation by coding a platform-
independent proof-of-concept changeware that exploits the HMAC, al-
lowing for free modification of the Secure Preferences file. Last but not
least, we analyze the security of the four most important Chromium-
based browsers: Brave, Chrome, Microsoft Edge, and Opera, concluding
that all of them suffer from the same security pitfall.

Keywords: HMAC · Changeware · Chromium · Web Security

1 Introduction

Chrome is as of today the most used web browser in the world [42]. Chrome,
as well as many other browser vendors like Opera, Brave and Vivaldi are based
on Chromium, an open-sourced web browser developed by Google. Recently,
Microsoft moved to adopt Chromium as the basis for the new Microsoft Edge
browser [27]. Given its widespread use, around 75% of the desktop users on
Internet [38], the security of Chromium is paramount.

To allow easy customization of the web browser to fit the needs of the users,
many configuration parameters may be modified. Setting the homepage to a
custom webpage a user frequently visits, changing the default search engine,
“pinning” some URLs to tabs and browser extensions management, are just a
few examples of the huge list of actions that can be performed to make the user
experience more pleasant. One of the most promising tools for enriching the
browser experience of the user is browser extensions. Extensions are installed
from the Chrome Web Store, which is a central repository managed by Google.

2 Pablo Picazo-Sanchez et al.

As recently claimed [18], approximately 10% of the browser extensions stored
between 2012 and 2015 in the Web Store were classified as malware and deleted
from the repository. Despite many attempts done to improve the security and
privacy of extensions [18, 19, 34, 36], vulnerabilities still abound [2, 3, 35], being
Potentially Unwanted Programs (PUPs) one popular and challenging example
because they are not usually marked as malware by antivirus vendors [21,40].

PUPs are installation executable files that, apart from installing the ap-
plication the user wants, they also execute other software that might not be
related to the legitimate one. Adware and changeware are two types of PUPs
that add advertisement to the webpages the user visits and changes the config-
uration properties of the browser silently, respectively. Recently, a cybersecurity
firm discussed the thin line between espionage-level malware and PUPs and de-
tected more than 111 browser extensions considered to be PUP whose goal was
to spy users [4]. In this paper, we consider PUPs and pay special attention to
how changeware works, providing a concrete example of how the installation of
uTorrent application modifies the configuration of the browser (see Section 3).

In the particular case of Chromium-based browsers, each user obtains a cou-
ple of configuration files for storing information such as bookmarks, history,
homepage and other preferences. One of these files is the Secure Preference file
which is automatically loaded when the browser is launched and it is updated
each time the browser is closed. In 2012 Google improved its browser’s secu-
rity to protect users from silently installing extensions since these were causing
more and more problems. Before that, it was possible to silently install ex-
tensions into Chrome by directly modifying the Secure Preferences file or by
using the Windows registry mechanism. Extensions that were installed by third
party-programs through external extension deployment options were disabled by
default and only extensions installed from Google Web Store are now allowed.

Concretely, from its version 25 Chromium implemented a security mecha-
nism to ensure that no external applications apart from the browser can modify
the Secure Preferences file. This mechanism is a custom Hash-based Message
Authentication Code (HMAC) algorithm [22] which produces a SHA-256 hash
given both a seed and a message. However, as the original authors claimed, the
security of HMAC relies on the seed generation, thus being secure as long as the
seed is.

Our findings reveal that the seed needed to generate the HMAC, stored in a
public file named resources.pak, is not randomly generated. Moreover, for each
Chromium-based browser, the seed is the same for all the Operating Systems
(OSs). Nevertheless, if the seed were randomly generated the problem of where
to securely store either the seed or the key used to encrypt the seed, still persists.
In previous work, it has been proposed to use WhiteBox-Cryptography [10] to
secure this seed on Chromium [6]. However, this solution is platform-dependent,
and only works under certain circumstances and on a concrete OS. As we show
in this paper the problem remains unsolved. Once a malicious party gets such a
seed, it may impersonate the browser and modify any parameter of the Secure
Preferences file.

HMAC in Chromium-based Browsers 3

To the best of our knowledge, the attack against the Secure Preferences
file has never been published with the exception of a partial description in (at
least) one Internet forum—whose moderator claimed that this attack no longer
works [17]. To confirm this, we downloaded and installed multiple versions of
Chromium in computers with Windows 10 and MacOS. We implemented the
attack described in that forum and confirmed that it did stop working from
Chromium versions up to 58.0.2999.0. In this paper, we present a proof-of-
concept PUP that modifies the Secure Preferences file of any Chromium version
from 58.0.2999.0 until the latest one at the time of writing (85.0.4172.0). Addi-
tionally, if used together with the attack presented in that forum, any Chromium
version can be easily editable (see Table 1).

Table 1. Chromium versions exploitable via HMAC.

Chromium Version Released SPF

(prior to) 25.0.1313.0 2012 Free modification
25.0.1313.0 2012 Attack [17]
58.0.2988.0 2017-01 Attack [17]
58.0.2999.0 2017-02 This paper
85.0.4172.0 (latest) 2020 This paper

This poses serious security and privacy issues. For instance, it is possible
to perform browser hijacking attacks [31, 43], fingerprinting attacks [2, 23, 34],
remote code execution [35], as well as silent browser extensions (un)installation
(something Google has in principle banned years ago [11]). In many cases, the
way of proceeding is the same: changing the browser search provider to generate
advertising revenue by using well-known search providers like Yahoo Search or
Softonic Web Search among others [1, 25]; retrieving information about that
uniquely identifies the user, and; exploiting other extensions to gain privileges
or to remotely execute source code.

Contributions This paper analyzes how four of the most important Chromium-
based browsers [15]—Chrome (70% of market share), Microsoft Edge (5% of
market share), Opera (2.4%), and Brave1—manage the security and privacy of
the users through a configuration file named Secure Preferences file. We discover
that all of them use fixed seeds to generate the HMACs to secure the Secure
Preferences file. These HMACs are used to guarantee that the content of the
users’ privacy settings has not been altered by any other party different than
the browser (Section 2.2). We implement a changeware that impersonates the
browser and (un)install extensions, perform phishing attacks, hijack the user’s
browser, fingerprint users through the extensions the browser has, among other
things (Section 3).

1 Brave uses Chrome user-agent (desktop and Android) and Firefox user-agent (iOS).

4 Pablo Picazo-Sanchez et al.

Section 2 presents background information concerning the Secure Preferences
file and how Chromium uses it. Section 4 exposes some countermeasures to avoid
the attack as well as a brief discussion about how this vulnerability can be used
by the research community for analyzing browser extensions. Finally, Section 5
presents the related work and Section 6 concludes the paper.

2 Background

In this section, we explain the role of the Secure Preferences file and how the
HMAC is generated in Chromium-based browsers.

2.1 Chromium Preferences

To manage and enforce configurable settings, Chromium implements a mecha-
nism called preferences to modify the settings of the browser per user instead of
doing this centrally. Using preferences it is possible to configure, for instance, the
homepage, which extensions are enabled/disabled and the default search engine.

We show how Secure Preferences file works via an example. Let Alice be a
user who wants to manually modify any of the preferences stored in the Secure
Preferences file. She accesses her profile’s folder, opens the JSON file—all the
preferences are stored in plain text so anyone can access that file—and manually
alters the preferences she wants to. Once she has modified the file, she saves it and
launches her Chromium instance to check whether the changes have been applied
or not. When Chromium loads, it automatically checks the integrity of the Secure
Preferences file, warning Alice that the file has been externally modified and the
browser marks the file as corrupted. Chromium then automatically restores the
Secure Preferences file to either a default or to a previous safe state.

Alice, who is an advanced user, tries to cheat Chromium by launching the web
browser and manually modifying the Secure Preferences file when the browser is
running expecting her changes to take effect. That, however, will not work since
Chromium loads the Secure Preferences file when it is launched the first time
and overrides the whole Secure Preferences file when Alice closes the browser.

The rationale behind Chromium’s behavior is to avoid external modifications
to the Secure Preferences file for privacy reasons. In particular, what makes
the Secure Preferences file secure is that Google added a Hash-based Message
Authentication Code (HMAC) signature of every entry (settings/preference) in
the file. In addition to this, the file also has a global-HMAC called super mac to
check the integrity of all the other HMACs.

HMAC [22] is a particular case of Message Authentication Code (MAC)
which involves a hash function in combination with a shared secret key—also
known as seed in these schemes. This algorithm was created in the 90’s and is
usually used for both data verification and message authentication. As stated in
the original proposal, the security of the HMAC protocols rely on the security
of the underlying hash function, as well as both the size and quality of the seed.

HMAC in Chromium-based Browsers 5

Finally, if all the HMACs of the Secure Preferences file are correct, the
browser will set up the settings according to what is stated in that file. In the
case the validation procedure fails, the browser will use the default values for
those where the HMAC validation failed. This recovery process is the same for
all the Chromium-based browser but Brave. In this particular browser, instead
of restoring the file to a previous state, it keeps a copy in the file system of the
“corrupted” preferences file (using .old extension) and creates a new one.

2.2 HMAC in Chromium

From version 25.0.1212.0 released in 2012, Google decided to not allow other
parties different than the browser to modify the user’s settings by including an
HMAC per setting stored in the Secure Preferences file. When the user closes the
browser, it computes the HMAC whereas when the user opens it, the browser re-
computes all the HMACs and checks whether they were created by the browser.
In particular, to modify the Secure Preferences file, the browser needs to: a) ac-
quire the seed, and b) obtain the message. Once the browser has these data it
computes both the HMACs of the settings, and a final HMAC called super mac.

Acquiring the seed The seed is stored in the resource.pak file. We explain
in what follows how we get the seeds of the latest versions as of June 2020 of
the four browsers being considered.

OS #PC Same Seed

Linux 48 X
Windows 44 X
MacOS 8 X

Table 2. Seed calculation on different OS

Chrome The seed that Chrome uses
to compute the HMAC is a 64-long
character hexadecimal string that can
be found in the resource.pak file.
Concretely, the first resource that
has a length of 256 binary bits in
the resource.pak file is the seed
Chromium uses. Roughly speaking, we
obtain this resource by loading the file
and seeking for the first line (resource)
with 64 characters.

We executed the script on 100 different computers with different OSs (48
Linux, 44 Windows and 8 MacOS) and the results can be seen in Table 2.
Concluding that the seed is not randomly computed as claimed. Concretely, the
seed is: b’\xe7H\xf36\xd8^\xa5\xf9\xdc\xdf%\xd8\xf3G\xa6[L\xdffv\x00\
xf0-\xf6rJ*\xf1\x8a!-&\xb7\x88\xa2P\x86\x91\x0c\xf3\xa9\x03\x13ihq\

xf3\xdc\x05\x8270\xc9\x1d\xf8\xba\O\xd9\xc8\x84\xb5\x05\xa8’. We run
this experiment on Chrome version 85.0.4172.0.

Brave, Microsoft Edge and Opera We executed the same script as for
Chrome to extract the seed on Brave, Edge and Opera but we could not change
the user’s settings. We had then to perform a brute force attack to extract the

6 Pablo Picazo-Sanchez et al.

seed because the file was different than in Chrome. We got an alarming result con-
cerning these four vendors: the seed is the blank string, i.e., seed = b’’ in both
Windows and MacOS. The version of Microsoft Edge we used was 85.0.564.51,
for Brave we used version 1.14.81 (based on Chromium: 85.0.4183.102) whereas
for Opera we used version 71.0.3770.148.

Obtaining the Message To correctly generate the HMAC, a message should
be passed as input. This message is composed of a MachineIdStatus and a string
message. Such a variable is platform-dependent, i.e., the MachineIdStatus is a
different value in Windows, Linux and MacOS. That said, all four browsers have
similar procedures to create the message used to generate the HMAC. In what
follows we detail how the three different platforms obtain that MachineIdStatus
value.

S-1-1-11-111111111-11111111-111111111-1111

Literal
Prefix

Identifier
Authority

Sub-Authority ID

Three Sub-Authorities for Uniqueness

Relative
ID

Fig. 1. Security IDentifier (SID)

Windows Users are provided with a unique identifier named SID. This identifier
is usually used to control the access to resources like files, registry keys and
network shares, among others. An example of the SID can be seen in Figure 1
and it might be easily retrieved by executing either the wmic or the whoami

commands on Windows. After retrieving the SID, the last characters (Relative
ID in Figure 1) are deleted for the final usage.

MacOS Instead of using the SID, MacOS uses the hardware Universally Unique
IDentifier (UUID) which is a 128-bits number obtained by using the command
system_profiler SPHardwareDataType. It outputs an hexadecimal number split
in five groups by a “-”, e.g., 1098AB78-6BF1-517E-905A-F018AABC4B26. In
particular, in the device_id_mac.cc we can find how Chromium retrieves that
UUID which is used afterwards as part of the message.

Linux Both Windows and MacOS have their own files under chromium/src/

services/preferences/tracked/ directory but there is no references about

HMAC in Chromium-based Browsers 7

Linux. We corroborate that by checking the device_is_unittest.cc file where
we found an if-then-else statement to differentiate how the SID should be com-
puted depending whether the OS is either Windows or Mac OS but there are no
rules for Linux. Consequently, when the browser is running on Linux, the else
statement is executed where there is a MachineIdStatus::NOT_IMPLEMENTED;.
As a consequence, the MachineIdStatus variable has an empty string.

By manually analyzing the message in Chromium, we realized that it is
composed of key of the Secure Preferences file value it wants to modify to-
gether with either the SID (or the UUID) of the current user (or computer).
More concretely, Chromium implements a function named GetMessage in the
pref_hash_calculator.cc file, whose purpose is to concatenate three parame-
ters given as inputs: Device ID, path and value.

Device ID corresponds to the MachineIdStatus, i.e., UUID on MacOS or the
SID of the user without the relative ID information on Windows or the empty
string on Linux. In other words, Device ID is the identifier of the machine where
Chromium is installed. Since every machine has its own unique SID no two
HMACs will be the same when computed on different machines. However, on
MacOS, since that the UUID is linked to the machine instead of being associated
to the user, different profiles in the same machine will have the same UUID value.

Path is where the Secure Preferences file is in the computer. It has a con-
crete format that uses dots (“.”) as delimiters. For example, the preference that
handles if the home button is visible or not is show home button, being the path
browser.show home button and it contains a Boolean value.

The final HMAC is a string where all empty arrays and objects are removed
and the character “!” is replaced by its Unicode representation (“\u003C”). In
the example, the value of the home button would be "show home button":true.

HMAC

Seed

Message

resources.apk

SecurePreferences.json

SID

Fig. 2. HMAC protocol in Chromium based browsers

HMAC Reproduction The function GetDigestString, located in pref_

hash_calculator.cc file, is the one that generates an HMAC given a message

8 Pablo Picazo-Sanchez et al.

and a key as inputs. The key and the message are as described above. We can
impersonate the browser and generate HMACs to change any of the values of
the Secure Preferences file as if we were the browser. An illustrative summary of
the HMAC protocol in Chromium-based browsers can be seen in Figure 2. Once
the HMACs are computed (one per modified value in the Secure Preferences
file) they are then combined to create a new message that is used as input of
the hash algorithm to calculate the final HMAC called super mac. The Secure
Preferences file is then updated with the result of these calculations together
with the modified preference values.

Chromium has a validation mechanism to check the integrity of the HMACs
which is also calculated in the Validate function of the pref_hash_calculator.
cc file. Such a function takes three parameters as input: a path of the JSON
file, a value of the JSON file and a digest string which is the current HMAC
of that value. Inside that function, another function called VerifyDigestString
(which is also located in the same file, i.e., pref_hash_calculator.cc) takes
as inputs a key (a string), a message (generated from the function GetMessage
on pref_hash_calculator.cc), and a digest string (the HMAC). After being
verified by the function Verify located on hmac.cc, a SHA256 string is returned.

3 Security Analysis

In what follows, we introduce the attacker model and provide some examples
that exploit the HMAC detailed in the previous section to modify the Secure
Preferences file. We present a proof-of-concept whose source code we released for
future research on the field2. Finally, we analyze the main differences between the
installed-by-default extensions in Brave, Chrome and Edge and Opera browsers,
and demonstrate how an external server can execute some parts of the code of
the installed-by-default extensions creating a big security threat.

3.1 Attacker Model

Our attacker model is composed of any software application that specifically
alters the Secure Preferences file of Chromium. This attacker model is known in
the literature as Potentially Unwanted Programs (PUPs) which are executable
files that apart from the desired program installation also install other software
that might not be related to the legitimate one, typically adware [21,40]. What
makes PUPs different from malware is that users are tricked to approve the
installation of this third party application. Typically, during the installation
process the PUPs shows a message that the user has to (un)check before the
process continues.

More specifically, there is a subset of PUPs called changeware whose aim is to
modify the settings of the browser [6], usually for malicious purposes as confused
deputy. Let us give an illustrative example. Years ago, Oracle used to include

2 https://github.com/Pica4x6/SecurePreferencesFile

https://github.com/Pica4x6/SecurePreferencesFile

HMAC in Chromium-based Browsers 9

Fig. 3. uTorrent Installation Process.

in the Java installation file one selected-by-default checkbox by which a Yahoo
toolbar was automatically installed unless the user did not manually uncheck
it during the installation process [39]. Similar cases were seen with WinYahoo
which was installed as part of the Adobe Photoshop Album Starter Edition
software [26]. In all the aforementioned cases, the attackers are the binaries that
modify the Secure Preferences file. In both cases, unwanted browser extensions
are installed in the user’s browser. Note that browser extensions can usually have
access to any website (sensitive or not) that the user visits.

Even though the issue made apparent in the examples above was identified
and marked as PUPs some time after its detection, there still are many up-to-
date examples of applications where browser extensions are piggyback programs.
One such example is uTorrent Web binary installation. Concretely, during the
installation process, the user has to accept or decline the installation of McAfee
WebAdvisor software (see Figure 3). If the user accepts, that “extra” software is
installed together with a browser extension which is automatically installed in
Chrome (see Figure 4). However, when the user manually uninstalls the McAfee
WebAdvisor application, the extension might also be uninstalled from Chrome.
This clearly indicates that there still are applications that can install browser
extensions without requiring the user to use Google WebStore as it is claimed.

3.2 Changeware Proof-of-Concept

The challenging part of PUPs is that they are not usually marked by antivirus
vendors as malicious software [21,40]. Windows claimed to stop PUPs and they
even added such an option as part of the recently released Microsoft Edge [12].
We created a changeware and confirmed that it is not classified as malware by
the Microsoft detection mechanism [12, 29]. Additionally, we run a set of popu-

10 Pablo Picazo-Sanchez et al.

lar online antivirus tests like Virustotal3, MetaDefender4 and VirScan5 and our
changeware passed all the security checks. As a conclusion, we can effectivelly
alter the Secure Preferences file with no restrictions at all. All files to repro-
duce the attacks above are publicly available in https://github.com/Pica4x6/

SecurePreferencesFile.

3.3 Practical Attacks

We analyze now the main attacks a changeware can exploit. In particular, we
classify the attacks into browser hijacking and browser extensions. Most of these
attacks are interconnected since the goal of the attacks is to get the private
information of the user. Some years ago Kotzias et al. [21] analyzed almost 4
million hosts and conclude that half of them have some kind of PUPs installed.
More recently, Urban et al. [40] analyzed the communication carried out by 16k
PUPs and 5.5k Firefox extensions and got that almost 40% and 45% include
personal information of the user respectively.

Browser Hijacking The goal of this attack is to increase the advertising revenue
by forcing the user to access concrete webpages. To redirect users to such sites,
changeware may modify up to five main values of the Secure Preferences file,
namely: i) homepage; ii) pinned tabs; iii) import bookmarks from file; iv) search
engine, and; v) sessions keys. Antivirus vendors usually identify this attack

by parsing the Secure Preferences file and analyzing the URLs defined in it.
If they belong to a blacklist the antivirus constantly keeps updated, then an
unwanted change might be detected and the antivirus analyzes the disk looking
for malicious software. However, this method can be bypassed by modifying the
import_bookmarks_from_file. This is a special option in the manifest which
states the path where Chrome silently and automatically imports bookmarks
from the HTML stated in the path of such key.

Phishing The goal of this type of attack is to steal user’s private information.
This is done by loading a fake webpage that looks similar to the legitimate one.
If not aware of the URL, the user will interact with the site as usual. To trick
users, browser extensions can implement some strategies to redirect them to fake
pages and perform phishing attacks [41], analyze the most visited web pages and
generate bookmarks, change the pinned tabs they already have or even generate
new ones.

Browser Extensions: Execution Order, Paths and Fingerprinting Recently, Picazo-
Sanchez et al. demonstrated that the order in which browser extensions are exe-
cuted may alter the content of the DOM and the behavior of the browser in gen-
eral [30]. The attack was implemented corroborating that the changeware could

3 https://www.virustotal.com
4 https://metadefender.opswat.com
5 https://www.virscan.org

https://github.com/Pica4x6/SecurePreferencesFile
https://github.com/Pica4x6/SecurePreferencesFile
https://www.virustotal.com
https://metadefender.opswat.com
https://www.virscan.org

HMAC in Chromium-based Browsers 11

modify the installation time of extensions altering the execution order. Moreover,
it can also modify any of the paths the extensions define in the manifest, being
possible to include new paths in the user’s file system loading different extension
files. Different techniques have been proposed so far to fingerprint browser exten-
sions, i.e., using Web Accessible Resources (WARs) [34], using behavioral-based
enumeration [36, 37] or because inter or extra communication messages [20, 35].
Any of these methods can be easily exploited by the changeware. This could be
done for instance by defining and including new resources as WARs, including
JavaScripts into the extensions files that automatically inserts content into the
DOM, deleting the externally connectable key of the extensions so that other
webpages can send messages to the background pages of the extensions (we show
an example of this attack in Section 3.4 by analyzing the installed-by-default ex-
tensions) or a combination of them.

Browser Extensions: Permissions Chromium offers a set of APIs that extensions
can use, being some of them accessible by defining the corresponding permission
in the manifest of the extensions. Once installed, the manifest is parsed and
stored as part of the Secure Preferences file under the extension id key, there-
fore the original manifest is no longer checked. This poses serious security issues
since any changeware might alter the permissions the user agreed upon and either
provide it with more or fewer permissions than initially. Let us give a concrete
example, the browser extension whose id is mgpdmkkhjffhfkbpeigghejkn-
giaaike and more than 400,000 downloads, includes in the background.js file
return chrome.webRequest.onCompleted but it does not include the webRequest

permission needed to execute such statement. The changeware can easily add
such permission into the Secure Preferences file giving access to that API to the
extensions and thus, executing that line without any errors.

Fig. 4. McAfee Browser Extension.

Browser Extensions: Silent Installa-
tion Even though Google banned
silent browser installations in 2012,
we managed to successfully install,
delete, activate and deactivate browser
extensions. See Figure 4 for a real ex-
ample used today by software that
includes a browser extension in the
browser without using the official
WebStore. In this particular case, the
extension can be seen and manually
removed by the user, but this might
not always be the case. In the worst-case scenario, the changeware could have
the source of the extension to be installed inside the binary file.

Note that is then possible to install new browser extensions without the user
being notified similarly to how installed-by-default extensions work (see Tables 3
to 6). Concretely, enabling and disabling extensions is determined by the state

key of the extension in the Secure Preferences file being straightforward to modify

12 Pablo Picazo-Sanchez et al.

them. Also, remark that to uninstall an extension, the changeware can simply
delete the whole entry of the preferences file and computing the super_mac of
the Secure Preferences file.

3.4 Installed-by-Default Extensions

In the following, we analyze the extensions that are installed by default with the
browser, for all four browser under consideration.

Brave This browser has ten installed-by-default apps where none of them are
extensions and they cannot be removed by the user (see Table 3). Brave, renames
some of the default extensions despite being exactly the same as the one pro-
vided by Chromium, e.g., Chromium PDF viewer. However, what makes Brave
different from the other browsers is that it allows the user to disable (not to
uninstall) some installed-by-default apps, e.g., WebTorrent, Google Hangsout
and Crypto Wallet.

Chrome We confirmed that the number of default extensions is sixteen (between
browser extensions and apps) in the three OSs. In addition to that, only a subset
of them might be uninstalled by the user in the usual way, i.e., going either
to chrome://extensions or chrome://apps and manually removing them. We
show a detailed list of the installed-by-default extensions in Table 5.

Regarding the platform, our initial hypothesis was that Linux was the most
privacy compliant of the evaluated OSs. After running the first part of the ex-
periments we confirmed that indeed Chrome does not install any single browser
extension by default in Linux (contrarily to what happens in other OSs), and
the file is totally empty except for the super_mac key. We realized that Linux
does not modify such a file but Preferences file, so we had to adapt our tests
to use that Preferences file instead.

Microsoft Edge Unlike Chrome, Microsoft Edge has ten installed-by-default
applications and only one extension (see Table 4). Most, if not all, browser ex-
tensions developed for one particular Chromium-based browser can be easily
exported to other Chromium-based browsers. There are cases where vendors
can modify some parameters like the name of the extensions, e.g., mhjfb-
mdgcfjbbpaeojofohoefgiehjai is named here Microsoft Edge PDF Viewer
and Chrome PDF Viewer on Chrome. We tested Edge on Windows and MacOS
without noticing differences when the Secure Preferences file is generated for the
first time. It is also interesting to mention that there is no way for the user to
get rid of any default extensions on Edge.

Opera This browser is the one that has more information by default in the
Secure Preferences file when it is installed for the first time. Concretely, there
are more than 300 extensions hardcoded whose purpose is to ban them to be
installed by the user— a disallowed list. Other than that, there are 21 extensions
installed by default and none of them can actually be uninstalled nor disabled
by the user. Table 6 shows a list of the installed-by-default extensions in Opera.

HMAC in Chromium-based Browsers 13

3.5 Google Hangsout Use Case

There is an unexplored set of extensions that are typically overlooked by the
research community: installed-by-default extensions. We manually analyzed all
of them and realized that Google Docs Offline, Chrome Media Router, Cryp-
toTokenExtension and Google Hangouts, implement external message listeners
and have the externally connectable key defined in their manifest files. Given
that only the Google Docs Offline extension can be deleted by the user, if a
changeware modifies such key in the Secure Preferences file any website can
send messages to these extensions as if they were legitimate websites.

Concretely, Google Hangsout is one of these installed-by-default extensions
present in all the Chromium-based browsers. It cannot be uninstalled by the
user with the only exception of Brave which can be disabled. In the following, we
analyze it to demonstrate the information that an attacker can get by exploiting
the Secure Preferences file.

A recent study performed by Somé demonstrates how browser extensions
allow web applications to bypass the Same Origin Policy and have access to
sensitive information of the user [35]. Concretely, extensions that listen for ex-
ternal messages should be defined in advance in the manifest similar to what
the externally connectable does. If, for instance, such a key is not defined in
the manifest file and extensions implement any of the external message listeners
(i.e., onMessageExternal and onConnectExternal), they will listen and execute the
code defined in any of these functions. Moreover, if any dangerous function like
eval() is defined in these listeners, the consequences might be catastrophic since
the attacker can take control of the extension and run arbitrary code on it.

var ed i to rExtens i on Id=”nkeimhogjdpnpccoofpliimaahmaaome” ;
var por t a = chrome . runtime . connect (ed i to rExtens ionId ,{name : ”

processCpu ” }) ;
var port b = chrome . runtime . connect (ed i to rExtens ionId ,{name : ”

chooseDesktopMedia ” }) ;
port b . postMessage ({

method : ’ chooseDesktopMedia ’ ,
// sour c e s : [’ s c r e en ’ , ’ window ’ , ’ tab ’ , ’ audio ’]
s ou r c e s : [”window”]

}) ;

por t a . onMessage . addLis tener (
func t i on (msg) { conso l e . l og (msg) }) ;

port b . onMessage . addLis tener (
func t i on (msg) { conso l e . l og (msg) }) ;

Fig. 5. Script that the attacker injects to extract information from the user.

14 Pablo Picazo-Sanchez et al.

Google Hangsout defines the pattern https://*.google.com/* as trusted
webpages, making thus possible for any (sub)domain of google.com send mes-
sages to the extension. We created a dummy server (http://www.attacker.com)
and added it to the externally connectable list by using the attack described
in Section 3. We manually analyzed such extension and realized that the at-
tacker can obtain information like {"browserCpuUsage":2.2,"gpuCpuUsage":3.0,"
tabCpuUsage":0.0,"tabJsMemoryAllocated":3133440,"tabJsMemoryUsed":1743032,

"tabNetworkUsage":0} by using a port named “processCpu” (line 3 of Figure 5).
Apart from that, by setting the right parameters (lines 4 and 5 of Figure 5)

the attacker may execute the chrome.desktopCapture.chooseDesktopMedia(array
of DesktopCaptureSourceType sources, tabs.Tab targetTab, function

callback) function where the array of sources can be either “screen”, “window”,
“tab”, or “audio” according to the official documentation provided by Google.
The attacker can then get a screenshot of: 1) the current screen of the user’s
computer; 2) any software the user is running; 3) the tab of the browser, and;
4) the audio of user.

Finally, with our changeware we can remove the entire externally connectable
entry of the Hangsout extension from the Secure Preferences file. In fact,

any browser extension can execute those functions and retrieve such informa-
tion. In addition, by including a list of allowed sites in the matches list of the
externally connectable key, any website can also execute and get these data.

4 Discussion

Here we discuss countermeasures and proposals to prevent the Secure Preferences
file attack as well as the potential benefits that our attacks have for future
analysis of the extensions.

Coordinated Disclosure. We contacted the four vendors: Brave, Google, Mi-
crosoft and Opera to report our findings. Brave is in progress of fixing the prob-
lem.Google acknowledged that “defeating the HMAC is a signal that the software
is in violation of the Unwanted Software Policy”. Both Microsoft and Opera de-
ferred to the Chromium project.

Preventing the SPF Attack. In our approach, we first generate a nonce—
a random values of 64-character long string—from a uniform distribution, and
use it to replace the seed already stored in the resources.pak file. When we
launched Chromium for the first time after that change, it showed an alert pop-
up saying that something went wrong and the configurations were to be restored.
After that, we did not notice any difference when working with Chromium while
surfing the web, installing/uninstalling browser extensions, adding plugins, mod-
ifying the homepage, adding bookmarks or adding/deleting pinned tabs.

However, even if we generate random seeds to mitigate the attack, the prob-
lem remains if the nonce is still stored in the file system. We thus implement a
script to generate the random seed each time Chromium is about to open. The

HMAC in Chromium-based Browsers 15

problem with this solution is that Chromium became impractical since it was al-
ways trying to restore the file from external changes (remember that the Secure
Preferences file is analyzed and loaded each time Chromium is launched). If the
seed is changed, the HMAC protection mechanism implemented by the Secure
Preferences file should also be updated, generating thus new values for all the
macs as well as for the super_mac. The conclusion is that the seed generation
is not secure as long as it is stored somewhere in the file system of the user:
performing a reverse engineering process is enough to reveal where the seed is
stored, being therefore easy to get it.

Briefly, either the seed generation, the Secure Preferences file or the seed
storage have to be protected from unauthorized parties. To achieve that we
propose a solution based on Trusted Platform Module (TPM), in which case the
seed should automatically be generated and stored in a secure memory so only
the browser can access it (as Windows 10 currently does [28]). A limitation of
the usage of TPMs, despite being widely extended, is that not all computers
have one.

Alternative solutions to TPM, e.g., Intel SGX, ARM Trusted Zone or MAC
secure enclave, could be considered. In such cases, the browser can either par-
tially or totally run the seed generation procedure in the enclave and securely
store the generated seed. Moreover, the browser could also store the Secure
Preferences file in the enclave so no other parties different than the browser can
access it.

Potential Benefits. Creating a controlled environment to execute browser
extensions and analyze them is difficult. Honey pages have been widely used in
the literature to fire the execution of browser extensions [9,19,36]. Our released
source code can easily be used to modify extensions in such a way that the
main functionality is not modified. Therefore, applying techniques like fuzzing,
improving static analysis strategies or making dynamic analysis less demanding
are some of the examples where our changeware can be helpful.

5 Related Work

Many researchers have analyzed browser extensions from the security and privacy
point of view (e.g., [5, 8, 13, 16, 19, 24, 32, 35, 36, 44]) but very little research has
been conducted about how browser preferences and the Secure Preferences file
can be used by malicious software to attack user’s privacy or security.

The first attack against the Secure Preferences file, on Chrome for Windows,
was described in one Internet forum in 2015, where it was shown how this file
could be silently modified [17]. We confirmed this and developed a new attack
based on that one that combined can be used to modify the Secure Prefer-
ences file of any version of any Chromium-based browser. Indeed, we turned a
less known narrowly-targeted attack (that only worked for Chrome and only on
Windows) into a powerful platform-independent attack that exploits the most
important Chromium-based browsers. Furthermore, we presented a systematic

16 Pablo Picazo-Sanchez et al.

study of this class of attack and investigated its hefty consequences for browser
hijacking and browser extensions.

In the same year, Banescu et al. [6] assumed the existence of a type of malware
called changeware with no root privileges. This malware is typically installed by
Internet toolbars, banners or the execution of executable files like installers whose
goal is to change user’s configuration files. In this paper, Banescu et al. proposed
a solution based on White-Box Cryptography. As this type of cryptographic
tool is insecure [7, 33], they include software diversity [14] to mitigate attacks
against this cryptographic scheme [6]. Since the attackers are not aware of the
used obfuscation transformation, they need to explore all the possible generated
binaries to run cryptanalysis. Despite being a promising technique, the proposed
solution is only deployable in Windows since they do not modify the kernel of
the operating system. A modification of the kernel would be mandatory in Linux
and Mac. In comparison to our paper, we focused on how to perform the attack
against the Secure Preferences file and the consequences for the user.

In most, if not all, the referenced papers try to find security solutions for
browser extensions without being concerned about the entry point of these pref-
erences in the browser. Active extensions, web accessible resources, permissions
they have, silent (un)installations or the path of installation where all the files
and extra files are located in the OS are a few examples of topics covered in
the literature. We went one step forward and described an attack to the Secure
Preferences file where all the preferences of the user are stored. We can actually
modify any of these settings and thus bypassing most of the proposed solutions
in the literature, originating new security and privacy issues.

6 Conclusions

We have revisited the security and privacy of Chromium’s mechanism to access
the Secure Preferences file. Google introduced a security mechanism based on
a cryptographic algorithm named HMAC to avoid users and applications other
than the browser modifying the Secure Preferences file. We found that the seed
used for the HMAC is fixed, making Chromium vulnerable to PUP. Our analysis
was carried out on Brave, Chrome, Edge and Opera.

We have also demonstrated that it is possible to perform browser hijack-
ing, browser extension fingerprinting and remote code execution attacks as well
as silent browser extensions (un)installation. We did so by coding a platform-
independent proof-of-concept changeware that exploits the HMAC, freely mod-
ifying the Secure Preferences file. Our changeware, in combination with the one
proposed in [17], can be used to modify such a preferences file of any Chromium
version later than v.25 (including the latest one, v.85.0).

Acknowledgments This work was partially supported by the Swedish Founda-
tion for Strategic Research (SSF) and the Swedish Research Council (Veten-
skapsr̊adet) under grant Nr. 2015-04154 (PolUser: Rich User-Controlled Privacy
Policies).

HMAC in Chromium-based Browsers 17

References

1. 2-spyware: Softonic. https://www.2-spyware.com/remove-softonic.html (2019)

2. Aggarwal, A., Viswanath, B., Zhang, L., Kumar, S., Shah, A., Kumaraguru, P.:
I spy with my little eye: Analysis and detection of spying browser extensions. In:
EuroS&P. pp. 47–61 (April 2018)

3. Arshad, S., Kharraz, A., Robertson, W.: Identifying extension-based ad injection
via fine-grained web content provenance. In: RAID. vol. 9854, pp. 415–436 (2016)

4. Awakesecurity: Discovery of a massive, criminal surveillance campaign.
https://awakesecurity.com/blog/the-internets-new-arms-dealers-malicious-
domain-registrars/ (2020)

5. Bandhakavi, S., Tiku, N., Pittman, W., King, S.T., Madhusudan, P., Winslett, M.:
Vetting browser extensions for security vulnerabilities with VEX. Commun. ACM
54(9), 91–99 (Sep 2011)

6. Banescu, S., Pretschner, A., Battré, D., Cazzulani, S., Shield, R., Thompson,
G.: Software-Based Protection against Changeware. In: CODASPY. pp. 231–242
(2015)

7. Bos, J.W., Hubain, C., Michiels, W., Teuwen, P.: Differential computation analysis:
Hiding your white-box designs is not enough. In: CHES. pp. 215–236 (2016)

8. Carlini, N., Felt, A.P., Wagner, D.: An evaluation of the google chrome extension
security architecture. In: USENIX. pp. 97–111 (2012)

9. Chen, Q., Kapravelos, A.: Mystique: Uncovering information leakage from browser
extensions. In: CCS. p. 1687–1700 (2018)

10. Chow, S., Eisen, P., Johnson, H., Van Oorschot, P.C.: White-box cryptography and
an AES implementation. In: Selected Areas in Cryptography. pp. 250–270 (2003)

11. Chromium: No more silent extension installs. http://blog.chromium.org (2019)

12. Cimpanu, C.: Windows 10 to get pua/pup protection feature. https://www.zdnet.
com/article/windows-10-to-get-puapup-protection-feature/ (2020)

13. Dhawan, M., Ganapathy, V.: Analyzing information flow in javascript-based
browser extensions. In: ACSAC. pp. 382–391 (2009)

14. Forrest, S., Somayaji, A., Ackley, D.H.: Building diverse computer systems. In:
Workshop on Hot Topics in Operating Systems. pp. 67–72 (May 1997)

15. gs.statcounter: Browser market share. https://gs.statcounter.com/

browser-market-share (2020)

16. Guha, A., Fredrikson, M., Livshits, B., Swamy, N.: Verified security for browser
extensions. In: S&P. pp. 115–130 (2011)

17. HMAC: Chromium Secure Preferences. https://kaimi.io/2015/04/

google-chrome-and-secure-preferences/ (2019)

18. Jagpal, N., Dingle, E., Gravel, J.P., Mavrommatis, P., Provos, N., Rajab, M.A.,
Thomas, K.: Trends and lessons from three years fighting malicious extensions. In:
USENIX. pp. 579–593 (2015)

19. Kapravelos, A., Grier, C., Chachra, N., Kruegel, C., Vigna, G., Paxson, V.: Hulk:
Eliciting malicious behavior in browser extensions. In: USENIX. pp. 641–654 (2014)

20. Karami, S., Ilia, P., Solomos, K., Polakis, J.: Carnus: Exploring the privacy threats
of browser extension fingerprinting. In: NDSS (2020)

21. Kotzias, P., Matic, S., Rivera, R., Caballero, J.: Certified pup: Abuse in authenti-
code code signing. In: CCS. pp. 465–478 (2015)

22. Krawczyk, H., Bellare, M., Canetti, R.: HMAC: Keyed-hashing for message au-
thentication. Internet Engineering Task Force (IETF) (1997)

https://www.2-spyware.com/remove-softonic.html
https://awakesecurity.com/blog/the-internets-new-arms-dealers-malicious-domain-registrars/
https://awakesecurity.com/blog/the-internets-new-arms-dealers-malicious-domain-registrars/
http://blog.chromium.org/2012/12/no-more-silent-extension-installs.html
https://www.zdnet.com/article/windows-10-to-get-puapup-protection-feature/
https://www.zdnet.com/article/windows-10-to-get-puapup-protection-feature/
https://gs.statcounter.com/browser-market-share
https://gs.statcounter.com/browser-market-share
https://kaimi.io/2015/04/google-chrome-and-secure-preferences/
https://kaimi.io/2015/04/google-chrome-and-secure-preferences/

18 Pablo Picazo-Sanchez et al.

23. Laperdrix, P., Bielova, N., Baudry, B., Avoine, G.: Browser fingerprinting: A sur-
vey. CoRR abs/1905.01051 (2019), http://arxiv.org/abs/1905.01051

24. Lerner, B.S., Elberty, L., Poole, N., Krishnamurthi, S.: Verifying web browser ex-
tensions’ compliance with private-browsing mode. In: ESORICS. pp. 57–74 (2013)

25. Malwarebytes: Billion-dollar search engine industry attracts vultures, shady ad-
vertisers, and cybercriminals. https://blog.malwarebytes.com (2020)

26. Malwarebytes: WinYahoo. https://blog.malwarebytes.com (2020)
27. Microsoft: Microsoft edge: Making the web better through more open source col-

laboration. https://bit.ly/2QeZFwm (2019)
28. Microsoft: How windows 10 uses the trusted platform module. (2020)
29. Microsoft: Windows defender and secure preferences file.

https://answers.microsoft.com (2020)
30. Picazo-Sanchez, P., Tapiador, J., Schneider, G.: After you, please: Browser ex-

tensions order attacks and countermeasures. International Journal of Information
Security pp. 1–16 (2019)

31. Rogowski, R., Morton, M., Li, F., Monrose, F., Snow, K.Z., Polychronakis, M.:
Revisiting browser security in the modern era: New data-only attacks and defenses.
In: EuroS&P. pp. 366–381 (April 2017)

32. Sánchez-Rola, I., Santos, I., Balzarotti, D.: Extension breakdown: Security analysis
of browsers extension resources control policies. In: USENIX. pp. 679–694 (2017)

33. Sanfelix, E., Mune, C., de Haas, J.: Unboxing the white-box. In: Black Hat EU
2015 (2015)

34. Sjösten, A., Van Acker, S., Picazo-Sanchez, P., Sabelfeld, A.: LATEX GLOVES:
Protecting browser extensions from probing and revelation attacks. In: NDSS
(2018)

35. Somé, D.F.: Empoweb: Empowering web applications with browser extensions. In:
S&P. pp. 227–245 (May 2019)

36. Starov, O., Nikiforakis, N.: Xhound: Quantifying the fingerprintability of browser
extensions. In: S&P. pp. 941–956 (2017)

37. Starov, O., Laperdrix, P., Kapravelos, A., Nikiforakis, N.: Unnecessarily identi-
fiable: Quantifying the fingerprintability of browser extensions due to bloat. In:
WWW. p. 3244–3250 (2019)

38. Statcounter: Desktop Browser Market Share Worldwide.
https://gs.statcounter.com (2019)

39. UK, P.: Update java, get yahoo as your default search engine.
https://uk.pcmag.com (2019)

40. Urban, T., Tatang, D., Holz, T., Pohlmann, N.: Towards understanding privacy
implications of adware and potentially unwanted programs. In: ESORICS. pp.
449–469 (2018)

41. Varshney, G., Misra, M., Atrey, P.K.: Detecting spying and fraud browser exten-
sions: Short paper. In: MPS. p. 45–52 (2017)

42. w3schools: Browser Statistics. https://www.w3schools.com/browsers/ (2019)
43. Xing, X., Meng, W., Lee, B., Weinsberg, U., Sheth, A., Perdisci, R., Lee, W.:

Understanding malvertising through ad-injecting browser extensions. In: WWW.
pp. 1286–1295 (2015)

44. Zhao, R., Yue, C., Yi, Q.: Automatic detection of information leakage vulnerabili-
ties in browser extensions. In: WWW. pp. 1384–1394 (2015)

A Installed-by-default extensions

http://arxiv.org/abs/1905.01051
https://blog.malwarebytes.com/pups/2020/01/billion-dollar-search-engine-industry-shady-advertisers/
https://blog.malwarebytes.com/threat-analysis/2015/05/winyahoo-pup-modifies-chrome-secure-preferences/
https://bit.ly/2QeZFwm
https://docs.microsoft.com/en-us/windows/security/information-protection/tpm/how-windows-uses-the-tpm
https://answers.microsoft.com/en-us/protect/forum/all/windows-defender-keep-asking-to-send-chrome/ea6ea2ed-5535-4b36-944a-35f24b408826
https://gs.statcounter.com/browser-market-share/desktop/worldwide
https://uk.pcmag.com/search-2/45880/update-java-get-yahoo-as-your-default-search-engine
https://www.w3schools.com/browsers/

HMAC in Chromium-based Browsers 19

Table 3. Brave installed-by-default extensions.

ExensionID Name Uninstallable

ahfgeienlihckogmohjhadlkjgocpleb Web Store 7

jidkidbbcafjabdphckchenhfomhnfma Brave Rewards 7

kmendfapggjehodndflmmgagdbamhnfd CryptoTokenExtension 7

lgjmpdmojkpocjcopdikifhejkkjglho Brave Webtorrent can be disabled
mfehgcgbbipciphmccgaenjidiccnmng Cloud Print 7

mhjfbmdgcfjbbpaeojofohoefgiehjai Chromium PDF Viewer 7

mnojpmjdmbbfmejpflffifhffcmidifd Brave 7

nkeimhogjdpnpccoofpliimaahmaaome Google Hangouts can be disabled
odbfpeeihdkbihmopkbjmoonfanlbfcl Crypto Wallets can be disabled
oemmndcbldboiebfnladdacbdfmadadm PDF Viewer 7

Table 4. Microsoft Edge installed-by-default extensions.

ExensionID Name Uninstallable

dgiklkfkllikcanfonkcabmbdfmgleag Edge Clipboard 7

fikbjbembnmfhppjfnmfkahdhfohhjmg Media Internals Services Extension 7

fogppepbgmgkpdkinbojbibkhoffpief Edge Collections 7

iglcjdemknebjbklcgkfaebgojjphkec Microsoft Store 7

ihmafllikibpmigkcoadcmckbfhibefp Edge Feedback 7

jdiccldimpdaibmpdkjnbmckianbfold Microsoft Voices 7

kmendfapggjehodndflmmgagdbamhnfd CryptoToken 7

mhjfbmdgcfjbbpaeojofohoefgiehjai Microsoft Edge PDF Viewer 7

ncbjelpjchkpbikbpkcchkhkblodoama WebRTC Internals Extension 7

nkeimhogjdpnpccoofpliimaahmaaome Google Hangouts 7

pkedcjkdefgpdelpbcmbmeomcjbeemfm Chrome Media Router 7

20 Pablo Picazo-Sanchez et al.

Table 5. Chrome installed-by-default extensions.

ExensionID Name Uninstallable

aapocclcgogkmnckokdopfmhonfmgoek Slides 3

ahfgeienlihckogmohjhadlkjgocpleb Web Store 7

aohghmighlieiainnegkcijnfilokake Docs 3

apdfllckaahabafndbhieahigkjlhalf Google Drive 3

blpcfgokakmgnkcojhhkbfbldkacnbeo Youtube 3

felcaaldnbdncclmgdcncolpebgiejap Sheets 3

gfdkimpbcpahaombhbimeihdjnejgicl Feedback 7

ghbmnnjooekpmoecnnnilnnbdlolhkhi Google Docs Offline 3

kmendfapggjehodndflmmgagdbamhnfd CryptoTokenExtension 7

mfehgcgbbipciphmccgaenjidiccnmng Cloud Print 7

mhjfbmdgcfjbbpaeojofohoefgiehjai Chrome PDF Viewer 7

neajdppkdcdipfabeoofebfddakdcjhd Google Network Speech 7

nkeimhogjdpnpccoofpliimaahmaaome Google Hangouts 7

nmmhkkegccagdldgiimedpiccmgmieda Google Wallet 7

pjkljhegncpnkpknbcohdijeoejaedia Gmail 3

pkedcjkdefgpdelpbcmbmeomcjbeemfm Chrome Media Router 7

Table 6. Opera installed-by-default extensions.

ExensionID Name Uninstallable

apkgpnbdglipaagpckkbdbigfmmomobn Onboarding popup 7

bcibcaaakpeekhbnddgnajbmjdcemfkf Opera Addons Portal can be disabled
bennllbledkboeijomefbhpidmhfkoih News feeds popup 7

cgloclgndbkhmjcaddholfcgghcgmmig Opera Welcome Page 7

eeiccfifdclpgnnaagpkjfpkaabgcbne SD suggestions list 7

efpeldimhbhjejgcdcbhmjllaafhjmge VKontakte Notifications 7

enmlgamfkfdemjmlfjeeipglcfpomikn News feed handler 7

gfobfmjpcnapngbghpcbodncehngmdln Opera Crypto Wallet 7

hhckidpbkbmoeejbddojbdgidalionif Video handler 7

ibgcfekaaejggoajjnmknjcoieffdnod Google Drive/Docs clipboard and notifications support 7

ionkhgehfolinkdpgdbinmgbfaonpcnk Amazon promotion 7

jaocpokicpmlhbchlodlkiochdkmophj Aliexpress observer 7

kmendfapggjehodndflmmgagdbamhnfd CryptoTokenExtension 7

knohfebhibeknbfioecpdmdkjkjdnjnl Bookmarks 7

mfglbjdihkhhnimlecioccjbjiepicip Opera Sync Auth Flow 7

mhjfbmdgcfjbbpaeojofohoefgiehjai Chromium PDF Viewer 7

midfadfpkkakgcmbgpngfnfekghligek Rate Opera 7

nkeimhogjdpnpccoofpliimaahmaaome Google Hangouts 7

obhaigpnhcioanniiaepcgkdilopflbb Background worker 7

odndjkngipngdmdlfodecoelobjbidna Opera In-App Notification Portal 7

onigllbobbpllnfcjanphobocbkcdghh Discord Notifications 7

	HMAC and ``Secure Preferences": Revisiting Chromium-based Browsers Security

