
No Signal Left to Chance: Driving Browser Extension Analysis by
Download Patterns

Pablo Picazo-Sanchez

Chalmers University of Technology

Gothenburg, Sweden

pablop@chalmers.se

Benjamin Eriksson

Chalmers University of Technology

Gothenburg, Sweden

beneri@chalmers.se

Andrei Sabelfeld

Chalmers University of Technology

Gothenburg, Sweden

andrei@chalmers.se

ABSTRACT
Browser extensions are popular small applications that allow users

to enrich their browsing experience. Yet browser extensions pose

security concerns because they can leak user data and maliciously

act on behalf of the user. Because malicious behavior can manifest

dynamically, detecting malicious extensions remains a challenge for

the research community, browser vendors, and web application de-

velopers. This paper identifies download patterns as a useful signal

for analyzing browser extensions. We leverage machine learning for

clustering extensions based on their download patterns, confirm-

ing at a large scale that many extensions follow strikingly similar

download patterns. Our key insight is that the download pattern

signal can be used for identifying malicious extensions. To this

end, we present a novel technique to detect malicious extensions

based on the public number of downloads in the ChromeWeb Store.

This technique fruitfully combines machine learning with security

analysis, showing that the download patterns signal can be used to

both directly spot malicious extensions and as input to subsequent

analysis of suspicious extensions. We demonstrate the benefits of

our approach on a dataset from a daily crawl of theWeb Store over 6

months to track the number of downloads. We find 135 clusters and

identify 61 of them to have at least 80% malicious extensions. We

train our classifier and run it on a test set of 1,212 currently active

extensions in the Web Store successfully detecting 326 extensions

as malicious solely based on downloads. Further, we show that by

combining this signal with code similarity analysis, using the 326

as a seed, we find an additional 6,579 malicious extensions.

CCS CONCEPTS
• Security and privacy→ Browser security; Web application
security.

KEYWORDS
Web Security; Browser Extensions

ACM Reference Format:
Pablo Picazo-Sanchez, Benjamin Eriksson, and Andrei Sabelfeld. 2022. No

Signal Left to Chance: Driving Browser Extension Analysis by Download

Patterns. In Annual Computer Security Applications Conference (ACSAC ’22),
December 5–9, 2022, Austin, TX, USA. ACM, New York, NY, USA, 15 pages.

https://doi.org/10.1145/3564625.3567988

This work is licensed under a Creative Commons Attribution International

4.0 License.

ACSAC ’22, December 5–9, 2022, Austin, TX, USA
© 2022 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-9759-9/22/12.

https://doi.org/10.1145/3564625.3567988

1 INTRODUCTION
Browser extensions are popular small web applications that users

install in modern browsers to enrich the user experience on the web.

Google’s official extension repository, ChromeWeb Store, currently

has more than 180,000 extensions between browser extensions,

apps, and themes, with many extensions having millions of users.

Driven by the popularity of Chrome extensions, browser exten-

sion ecosystems have been adopted not only by Chromium-based

browsers like Opera, Brave, andMicrosoft Edge but also by browsers

like Firefox and Safari. The latter browsers draw on the same ar-

chitecture, allowing developers to export their Chrome extensions

easily. When an extension is installed, the browser typically sends

a message showing the permissions this new extension requests.

The extension is installed and integrated within the browser upon

user approval.

The benefits of using browser extensions come at the high price

of granting access to a vast amount of sensitive information. Ex-

tensions get and interact with all the content of users’ web pages.

Also, suppose the extension defines the corresponding permissions.

In that case, it can run some of the restricted APIs the browser

exposes to extensions to retrieve sensitive information such as

cookies, history and even modify the network traffic without the

user’s knowledge. This raises serious security and privacy concerns

[55, 56, 71].

ChromeWeb Store. Extensions are usually stored in private repos-
itories managed by vendors, where extensions developers upload

them to be freely distributed afterward. The most popular browser

extensions repository is the Web Store governed by Google, which

banned the possibility of manually installing browser extensions

from other sites different than the Web Store years ago [12].

The Web Store implements a Collaborative Filtering Recommen-

dation System (CFRS) [25] in such a way that extensions are ranked

or featured to make it easier for users to find high-quality content.

This ranking is performed by a heuristic that considers user rat-

ings and usage statistics, such as the number of downloads and

uninstalls over time.

Inherent to CFRS, attackers have always been trying to pro-

mote or demote apps by automatically modifying ratings and raters

[10, 45], or faking the downloads [8, 18]. Also, the proliferation of

crowdsourcing sites like Zeerk, Peopleperhour, Freelancer, Upwork,

and Facebook groups, have helped on this matter [44]. Among other

things, by boosting some apps, developers may get funding from

venture capitalists when their apps are popular among users [24].

The Web Store implements a set of fraud detection and defense

mechanisms so that attackers cannot alter the ranking that easily

[45]. Similar to Android Google Play, users can only review and

rate an extension only if they 1) are logged in to the Web Store, and;

https://doi.org/10.1145/3564625.3567988
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3564625.3567988

ACSAC ’22, December 5–9, 2022, Austin, TX, USA Picazo-Sanchez, et al.

2) install it first, being easier for Google to detect fake users trying

to exploit the CFRS. However, this is not the case with downloads.

To download and install extensions, users need a Chromium-based

browser, e.g., Chromium, Chrome, and Brave. Therefore, the num-

ber of downloads can be easily altered by automatic processes,

being difficult to differentiate between real users and automatic

downloads. In this paper, we are particularly interested in how the

downloads of the extensions can be used for grouping browser ex-

tensions based on the download patterns and identifying malicious

ones based on such patterns.

Extensions’ Downloads.Wemonitored the number of downloads

of browser extensions over 6 months and observed that the function

defining the number of downloads is monotonically increasing over

time for most extensions. However, there is a remarkable number of

extensions whose downloads: i) do not follow an organic download

pattern, i.e., they are syncedwith others, following the same pattern;

ii) experience many fluctuations thus not following a monotonic

function, and; iii) deviate from the usual growing pattern, i.e., they

grow and/or decrease various orders of magnitude within two or

three days. This leads to the insight that the number of downloads

of the extensions can be leveraged as a useful signal for analyzing

browser extensions. Hence, we pose three research questions:

RQ1: Are there extensions that follow similar download patterns?

RQ2: Is there any relationship between download patterns and

malicious code?

RQ3: Can we find malicious extensions based on their download

patterns?

To answer these questions, we crawled the Web Store daily for

171 days and analyzed the download patterns of over 160,000 ex-

tensions. We clustered the extensions concerning such patterns

and found 135 clusters. Later, we analyzed the security of the ex-

tensions that compose these clusters and identified 61 of them to

have at least 80% malicious extensions. Using a supervised learning

algorithm, we trained two classifiers and evaluated them against

1,212 currently active extensions in the Web Store. The first clas-

sifier predicts which cluster the test set extensions are in in the

training set. Afterward, a threshold is used to mark all extensions

in a cluster as either malicious or benign based on the fraction of

malicious extensions in the cluster. The second classifier directly

predicts if an extension is malicious or benign. The first classifier

successfully detects 326, and the second detects 289 extensions

as malicious solely based on downloads. The classifiers consider

both the pattern and the security labels, meaning any pattern is

not an indication of maliciousness, it must closely match malicious

patterns. Extensions that receive fake downloads, also known as

astroturfing, are only marked as malicious if they match a malicious

pattern. While the classifier can find malicious extensions alone, it

can also be beneficially combined with other methods. To this end

we combine the download pattern signal and code similarity analy-

sis to discover an additional 6,579 malicious extensions. In this case,

the code similarity approach needs malicious seed extensions and

would not find any malicious extensions without the extensions

from the download signal.

Contributions. In detail, our contributions are:

• We describe the methodology we use to retrieve and analyze

the data from the Web Store (see Section 3);

• We show our results, supporting that RQ1) Extensions fol-
low similar patterns. RQ2) These patterns can be correlated

to maliciousness RQ3) We can find new active malicious

extensions based on the download patterns. (see Section 4);

• We present a set of 29malicious extensions whose downloads

are all synced and hijack the search queries of the users,

in combination with code analysis we discover 6,579 extra

hijacker extensions that remain hidden in the Store (see

Section 5).

We introduce some basic definitions for an easy understanding

of the paper in Section 2, discuss the threats to validity in Section 6,

offer a summary of the most relevant related work in Section 7 and

conclude the paper in Section 8.

Coordinated disclosure. We reported to Google 6,579 the ma-

licious extensions detected in our empirical study as well as our

methodology. The Chrome Web Store team removed 4,858, while

1,721 are still under investigation.

Artifacts. We open-source our code and data needed to reproduce

the results presented in this paper [40].

2 PRELIMINARIES
In this section, we summarize the security and privacy threats

that extensions pose, some basic concepts of time-series, some

definitions we use in the paper and introduce the threat model.

2.1 Browser Extensions’ Security & Privacy
Browser extensions are small applications that can help developers

and users develop new web applications or surf the Internet. How-

ever, due to the amount of sensitive information the extensions have

access to when they run in the users’ browsers, the security and

privacy of such data have cast doubt on adopting the extensions.

Extensions are composed of two main parts, content scripts and

background pages. The former are scripts automatically injected

into the web pages the extension defines in the manifest file under

the content_scripts key. On the other hand, background pages

are scripts with no direct access to the web content but with access

to a set of restricted and privileged APIs the browser exposes, e.g.,

network traffic, cookies, and history. To access these APIs, the

extension has to define the permissions associated with every API

it attempts to use in the manifest file.

2.2 Time-Series Analysis
A time series is a set of data points ordered by time. There are

different metrics to compare two time series, i.e., how similar they

are, usually based on the data points’ distance of the series. Themost

common examples are the Euclidean distance, the Longest Common

Subsequence (LCS), and the Dynamic Time Warping (DTW), being

this last one the most common distance used to compare time-series

[17]. In addition, Canonical TimeWarping (CTW) is a method based

on Dynamic Time Warping (DTW) that aligns time series under

rigid registration of the feature space, not being needed that time

series share the same size nor the same dimension.

No Signal Left to Chance: Driving Browser Extension Analysis by Download Patterns ACSAC ’22, December 5–9, 2022, Austin, TX, USA

Learning in Machine Learning (ML) can be classified into two

main families: supervised and unsupervised. Supervised learning

needs labeled data to learn the mapping function from an input

to an output, whereas in unsupervised learning algorithms, there

is no labeled data; therefore, they learn patterns from the input

data. Research in supervised and unsupervised learning algorithms

applied to time series is quite active nowadays.

Clustering is an unsupervised learning technique by which simi-

lar data are grouped with little or no knowledge in advance about

the data. Time-series clustering is a particular case where the series,

a large number of points measured chronologically, are handled

as single objects to extract patterns among them [3]. Examples of

algorithms used for time-series clustering are Self-Organizing Map

(SOM) [3], k-means [27], and k-shapes [38].

Classification is a supervised learning technique by which an

algorithm analyzes a training dataset and outputs function used for

determining the labels of new examples. Some examples of algo-

rithms for time-series classification are KNeighbors [58], Support

Vector Machines (SVM) [29], Rocket [15], and Minirocket [16].

2.3 Definitions
In the following, we explain in detail each one of the key concepts

used throughout this paper.

Downloads. The number of downloads the Web Store publicly

exposes for every extension (e) at time t.
Increment of downloads (Δd𝑒). Is the difference, in absolute value,

of two consecutive downloads of an extension e, i.e., Δ
d𝑒

=

|𝑡𝑖 − 𝑡𝑖+1 |.
Average of the increment (Δd𝑒). Is the arithmetic mean of the

increment of the downloads, i.e., Δ
d𝑒

=

∑𝑛
𝑖=1 Δd𝑒

𝑛 , where 𝑖 < 𝑛

and 𝑛 is the number of measurements per extension.

Average of the average of the increment (Δ). Is the arithmetic

mean of all the average of the increment of the downloads

of the extensions, i.e., Δ =

∑𝑒
𝑖=1 Δd𝑖

𝑛 , where 𝑖 <= 𝑛, 𝑛 is the

number of extensions and Δ𝑑𝑖 is the average of the increment

of an extension 𝑖 .

2.4 Threat Model
Extensions can pose many threats to users’ privacy and security.

Previous works have analyzed extensions that inject adware, track

and fingerprint users, takeover search engines, modify security

headers, execute remote code, persuade and steal user’s search

queries [4, 11, 20, 33, 37, 50–52, 54–56].

In this work, we focus on a subset of these attacks: the search

query stealing attack. This is prominently used by “Wallpaper” ex-

tensions user’s search queries [20]. These extensions override the

new tab functionality of the browser such that when the user opens

a new tab, this is replaced by the one the extension provides. They

usually provide a search bar with some arbitrary wallpaper back-

grounds. However, these extensions can redirect search requests

containing sensitive queries and redirect them to different URLs

(see Table 5). Generating the security ground truth for extensions

is a huge challenge and requires manual effort. We can implement

efficient and accurate methods for this analysis by focusing on one

class of attacks (see Section 3.2. Simply reusing previous analy-

sis methods would be futile as Google now knows these and can

remove the corresponding malicious extensions.

3 SCRUTINIZING THEWEB STORE
A Collaborative Filtering Recommendation System (CFRS) is a sys-

tem that keeps track of the users’ preferences to use it afterward to

offer new suggestions to other users [35]. Youtube, Amazon, and

Netflix are examples of applications that implement CFRSs [47, 66].

This is also the case with the Google Web Store, the online mar-

ketplace where browser extensions are freely distributed. The Web

Store implements a CFRS where extensions are ranked based on

parameters like user ratings, number of downloads, and uninstalls

over time.

Even though the algorithms used by the CFRS are usually un-

known, researchers found attacks against the recommendation

system, being pollution attacks the most common ones [23, 47, 66].

Such attacks consist of generating fake data, typically in the form of

new users who interact with the system by watching videos, read-

ing books, and rating or downloading items. By doing so, attackers

may promote or demote items as desired.

Some of the information the Web Store offers for each browser

extension is the category it belongs to, the name of the developer,

the company, a general description, some privacy practices, users’

reviews, the number of downloads, the rates that users give or

metadata like the version of the extension, and when it was updated.

This section presents the methodology we follow to identify

download patterns as a useful signal for analyzing browser exten-

sions. We leverage machine learning for clustering extensions based

on these patterns, confirming at a large scale that many extensions

follow strikingly similar download patterns (see Section 4).

We split our methodology into three main tasks (see Figure 1):

Data Gathering Daily monitoring of the Web Store to extract

downloads of all the browser extensions;

Security Analysis We combine static, manual, and dynamic anal-

ysis to mark malicious extensions, and;

Time-Series Analysis Firstly, group extensions according to the

downloads function they describe (based on Δ
d𝑒
) and look

for patterns (clustering phase) and label them based on the

security analysis. Secondly, we implement a learning algo-

rithm based on the downloads.

3.1 Data Gathering
Between March 2021 and Aug 2021, we crawled the Web Store daily,

monitoring the extensions’ downloads (see Appendix A) and their

version. At the time of writing, there are 10,941 extensions whose

downloads are not shown on the page. Unfortunately, we do not

know why some are hidden. From all the download patterns, we

extract all the extensions whose Δ
d𝑒

is larger than Δ. These are
the extensions whose downloads fluctuate more than the global

average in the store.

Dataset Filtering. After the extraction of all the public data

of the extensions, we filtered the dataset in terms of size (number

of extensions) and data information (number of measurements).

This allowed us to perform a more accurate security analysis in

Section 3.2 and better clustering in Section 3.3. This filtering process

ACSAC ’22, December 5–9, 2022, Austin, TX, USA Picazo-Sanchez, et al.

 Clustering Classifier

…

Static Manual Labeling

Security Analysis

…Data Gathering

Number of
Downloads

Filter
Extensions

Google Web
Store

Crawling
.crx

Extensions

DTW

Time-Series Analysis

Dynamic

Figure 1: Systematic methodology to cluster and extensions.

neither affects the results nor the methodology presented in this

paper. With more manual effort, in terms of time spent on security

analysis and clustering, and increasing the frequency of the data

gathering, we believe this method can be extended to any group of

extensions and attacks.

First, we focused on a subset of extensions called wallpapers,

i.e., browser extensions that override the starting page the user

previously had and replace it with a random background image that

changes every time the user refreshes the webpage and a search box

in the middle of the screen. We did so because researchers recently

showed that many extensions attempt to steal users’ search queries

[20]. Wallpapers can be found in the 11 categories of the Web

Store. To get all the wallpapers, we filtered out extensions that do

not define chrome_url_overrides in their manifests. Second, we

analyzed those extensions with more than 90 measurements, which,

given our crawling frequency, corresponds to at least 90 days.

3.2 Security Analysis
In accordance with our second research question Is there any rela-
tionship between download patterns and malicious code? We need

to perform a security analysis of the extensions to label them as

malicious or benign. Using these security labels we can search for

relationships between clusters and malicious code.

While extensions can performmany possible attacks, we focus on

malicious extensions that change the user’s search engine without

notice or steal their queries. This can be accomplished either by

redirecting the search or using analytics. To detect this, we develop

a fully automatic dynamic analysis method and verify it using a

combination of static and manual analysis (see Appendix D).

3.3 Time-Series Analysis
Ideally, after 171 days of daily monitoring, we should have gath-

ered 171 measurements per extension. However, extensions can be

deleted or added, thus affecting the number of downloads collected

0 25 50 75 100 125 150 175
Days in the Web Store

10
3

10
4

#E
xt

en
si

on
s

Figure 2: Number of days (x-axis) monitoring the extensions
(y-axis in log scale).

0 20 40 60 80
Days in the Web Store

0

20000

40000

60000

80000

N
um

be
r o

f D
ow

nl
oa

ds

(a) Euclidean distance

0 20 40 60 80
Days in the Web Store

0

20000

40000

60000

80000

N
um

be
r o

f D
ow

nl
oa

ds

(b)DTW distance

Figure 3: DTW vs Euclidean distance applied to extensions
downloads time-series.

per extension. We show in Figure 2 the distribution of how long

the extensions in our dataset were online in the Web Store.

Clustering. To answer our first research question (RQ1): Are
there extensions that follow similar download patterns? We apply

state-of-the-art clustering methods. The results from this clustering

will illuminate if there are any clusterable download patterns.

No Signal Left to Chance: Driving Browser Extension Analysis by Download Patterns ACSAC ’22, December 5–9, 2022, Austin, TX, USA

Given the heterogeneous distribution of the data, i.e., exten-

sions are alive in the Web Store for different periods, we could not

implement classical clustering methodologies based on euclidean

distances like DBSCAN or other statistical values such as mean

like K-means. The reason is that to compare two time-series using

the euclidean distance, both series need exactly the same amount

of data as well as being synchronized (see Figure 3a). Instead, we

adopted a well-known technique in time-series clustering named

Dynamic TimeWarping (DTW) that solves the aforementioned con-

straints by computing a discrete matching between the elements of

both series rather than using their time sequence [3] (see Figure

3b).

In this paper, we follow a so-called Human-in-the-Loop (HitL)

methodology [65] combined with DTW to cluster time-series down-

loads of browser extensions. To do so, we deploy an instance of

dtadistance library [34] combinedwith COBRAS-TS [62], an interac-

tive version of COBRA [13] that allows semi-supervised clustering

of time series. However, this process can be fully automatized with-

out including humans in the clustering algorithm.

Classification. To answer our third research question: Can we
findmalicious extensions based on their download patterns? We create

two classifiers that aim to classify extensions as malicious solely

based on download patterns. The first one classifies directly based

on download patterns, while the second cluster similar patterns

before classifying each cluster as malicious or benign. The second

predicts which cluster from the training set the extensions in the test

set are closest to. Finally, we compare a threshold 𝑡 to the fraction

of malicious extensions in the cluster. We mark the extension as

malicious if 𝑡 is greater than this fraction.

We implement and evaluate an instance of MiniRocket [16]. We

split our extensions dataset into training and test sets. To simulate

a realistic scenario of our approach, we use all extensions that had

been deleted at the end of the data-gathering phase as the training

set and the still-active ones as our test set.

We evaluate our model according to three main metrics: preci-

sion, recall, and F1-Score. Precision measures how many positive

predictions are true, i.e., TP/(TP + FP). Recall measures how many

positive classes the model can predict, i.e., TP/(TP + FN). Finally,
F1-Score is the harmonic mean of both recall and precision, i.e.,

2(recall · precision)/(recall + precision).

4 RESULTS
This section presents the results from our data gathering, security,

and time-series analysis.We use these results to answer our research

questions.

4.1 Data Gathering
After 171 days of monitoring, we collected download patterns for

159,572 extensions. Figure 4 shows the distribution of the average

of the increments of the downloads (Δ
d𝑒
) of all the extensions of the

Web Store. Interestingly, we can see that there are many outliers,

i.e., extensions whose Δ
d𝑒

is higher than 10, 1,000, or even 10,000

downloads. Wemarked with a green triangle in Figure 4 the average

of Δ of the extensions (around 97.6). Even though we could have

10
1

10
0

10
1

10
2

10
3

10
4 10

5

Average of the Increment

Ex
te

ns
io

ns ∆=97.6

Figure 4: Distribution of the average of the increment of
downloads (Δd). The Δd of 8,165 extensions is higher than
the average (Δ).

10
0

10
2

10
4

Average of the Increment

accessibility
blogging

communication
fun

news
photos

productivity
search tools

shopping
sports

web development
C

at
eg

or
y

Figure 5: Distribution of the average of the increment of
downloads group by the 11 categories of the Web Store.

analyzed all the extensions of theWeb Store, we restricted ourselves

to the 8,165 outliers extensions whose average of Δ
d𝑒
≥ 97.6.

In Figure 5 we split the dataset into the categories the extensions

belong to.We also extracted the last public downloads theWeb Store

offered per extension and include in Figure 10 (Appendix B) the

download distribution of extensions split into categories. Although

there are some extensions with millions of downloads, in general,

we can observe that most of the browser extensions have been

downloaded less than a hundred times, with even fewer downloads

in some categories, including “blogging”.

In summary (see Figure 6), we collected 159k download patterns

from the Web Store. From these, 35k are wallpaper extensions,

where 22k are still active, and 13k are deleted. From them, we first

filtered extensions with interesting download patterns, (i.e., Δ
d𝑒
≥

97.6), getting 1,629 and 2,673 still-active and deleted wallpapers

respectively. Finally, because of our crawling frequency (once a day),

to increase the useful information of the downloads and thus reduce

the false positives, we analyze the downloads of the extensions that

remained in the Web Store longer than 90 days, resulting in a total

of 1,212 and 2,059 alive and deleted extensions. We use these 3,271

wallpaper extensions for security analysis and clustering.

4.2 Security Analysis
This section presents the results of our automatic security analysis,

where we find 1,292 malicious extensions. These labels are used in

Section 4.3 to answer our second research question: Is there any
relationship between download patterns and malicious code?

ACSAC ’22, December 5–9, 2022, Austin, TX, USA Picazo-Sanchez, et al.

Alive

22,833

Deleted

1,629

Source Code
1,212

No Source Code
0

Source Code
1,646

No Source Code
413

1,212

<latexit sha1_base64="zKzU0nQ/zvIm+tJPPVnOFTA4Ol4=">AAACKHicbVC7SgNBFJ31bXytWtoMBsUq7FqonQEtLBXMA7PLMju5iYOzD2buSsKyH+IH2Nj4ITYiiqT1R3SSWGj0wMDhnHO5c0+YSqHRcQbW1PTM7Nz8wmJpaXlldc1e36jrJFMcajyRiWqGTIMUMdRQoIRmqoBFoYRGeHMy9Bu3oLRI4kvsp+BHrBuLjuAMjRTYx15i7OF07p2CRBbkHkIP83YRQFFQrwv0R2QiXBSBXXYqzgj0L3G/Sbk6l95dPfY+zwP7xWsnPIsgRi6Z1i3XSdHPmULBJRQlL9OQMn7DutAyNGYRaD8fHVrQHaO0aSdR5sVIR+rPiZxFWvej0CQjhtd60huK/3mtDDtHfi7iNEOI+XhRJ5MUEzpsjbaFAo6ybwjjSpi/Un7NFONoui2ZEtzJk/+S+n7FPai4F265ukvGWCBbZJvsEZcckio5I+ekRji5J0/klbxZD9az9W4NxtEp63tmk/yC9fEF0xmsiw==</latexit>

�de � �

Web Store
159,572

Non-Wallpapers
123,590 Testing Dataset

13,149 2,673 2,059

Training Dataset

Dataset
Filtering

Wallpapers
35,982

<latexit sha1_base64="JBxuQJ4d6Pw02Kv6Xhx7nvJPO8c=">AAACMHicbVDLSsNAFJ34rPFVdelmsK24KkkX6rKgoMsKVoWmhMn0pg5OHszciCXkk9z4KbpRUMStX+G0ZqHVAwOHc87lzj1BKoVGx3mxZmbn5hcWK0v28srq2np1Y/NCJ5ni0OWJTNRVwDRIEUMXBUq4ShWwKJBwGdwcjf3LW1BaJPE5jlLoR2wYi1BwhkbyqycNLzH+eDz3jkEi83MP4Q7zQeFDUVBvCPRHZCpcFLZd9yTU/WrNaToT0L/ELUmNlOj41UdvkPAsghi5ZFr3XCfFfs4UCi6hsL1MQ8r4DRtCz9CYRaD7+eTggjaMMqBhosyLkU7UnxM5i7QeRYFJRgyv9bQ3Fv/zehmGh/1cxGmGEPPvRWEmKSZ03B4dCAUc5cgQxpUwf6X8minG0XRsmxLc6ZP/kotW091vumetWnu3rKNCtskO2SMuOSBtcko6pEs4uSdP5JW8WQ/Ws/VufXxHZ6xyZov8gvX5BTCTqrs=</latexit>90 days

Time-Series Analysis Security Analysis

Figure 6: Filtering Process. Extensions on every step.

Table 1: Popular domains used by query stealing extensions.

Domain #Extensions

cse.google.com 146

mc.yandex.ru 134

gundil.com 116

cors-anywhere.herokuapp.com 100

www.google-analytics.com 92

completion.amazon.com 60

s.bingparachute.com 42

addiyos.com 16

the-theme-factory.com 14

chromethemesonline.net 11

We dynamically executed and analyzed 2,858 extensions, which

is the number of extensions we had the source code for (see Figure 6).

For the remaining 413 extensions, we marked them as benign since

we can not prove they are malicious.

Scanning extensions. Wefirst analyzed extensions that immedi-

ately stole queries instead of waiting before stealing them. Here we

found 441 malicious extensions stealing search queries. These use

a combined total of 182 different domains for their query stealing.

However, one extension can use multiple domains, e.g., one exten-

sion
1
uses search.myway.com for searching while simultaneously

using Google Analytics to log the query.

We present the ten most used domains in Table 1. Note that these

domains are not necessarily malicious but are used by malicious

extensions. For example, cse.google.com is not malicious but is

commonly used by spyware [14].

Scanning websites. To detect delayed attacks, we also analyzed
the websites used by extensions marked as benign. We found three

1
bcdhacjdengeibbbhmdjodiecaiciehc

Table 2: Domains scanned in Phase 2.

Domain Malicious? #Extensions

www.tabhd.com Yes 667

www.ultitab.com Yes 184

themes.wallpaperaddons.com No 1

0 25 50 75
Days in the WebStore

0

10000

N
um

be
r o

f D
ow

nl
oa

ds Extensions = 155

(a) TabHD extensions

0 25 50 75
Days in the WebStore

0.25

0.50

0.75

1.00

N
um

be
r o

f D
ow

nl
oa

ds 1e6 Extensions = 19

(b)MyWay extensions

Figure 7: Download patterns for two malicious clusters.

domains used by 852 extensions (see Table 2). We analyzed each for

an hour and detected both www.tabhd.com and www.ultitab.com

switch from benignly using Google to maliciously using gundil.com.

themes.wallpaperaddons.com was consistently using Google and

was therefore marked as benign. Combining the two scans, we

found 1,292 malicious extensions. Finally, we verify these labels by

manually checking a sample of 100 extensions labeled as benign.

Three out of these were incorrectly marked as benign. We discuss

the general limitations more in Section 6, and more details about

the verification can be found in Appendix E.

4.3 Time-Series Analysis
Clustering. This section presents the results of our clustering

and how it relates to our first research question (RQ1): Are there
extensions that follow similar download patterns? After clustering

search.myway.com
cse.google.com
www.tabhd.com
www.ultitab.com
gundil.com
themes.wallpaperaddons.com

No Signal Left to Chance: Driving Browser Extension Analysis by Download Patterns ACSAC ’22, December 5–9, 2022, Austin, TX, USA

0 50 100 150
Days in the WebStore

20000

40000

60000

N
um

be
r o

f D
ow

nl
oa

ds Extensions = 16

(a) FreeAddon extensions

0 50 100 150
Days in the WebStore

0

25000

50000

75000

N
um

be
r o

f D
ow

nl
oa

ds Extensions = 12

(b) FreeAddon extensions

Figure 8: Download patterns for two benign clusters.

Table 3: Distribution of malicious clusters versus the exten-
sions they are composed of.

Maliciousness

#Total

0% 0%-50% 50%-80% 80%-100% 100%

#Clusters 52 15 7 6 55 135

#Extensions 902 1130 299 401 539 3,271

the extensions based on their download patterns, as explained in

Section 3.3, we find a total of 135 clusters composed of 3,271 exten-

sions, with an average of 24 extensions per cluster and 39 clusters

with more than 10 extensions (see Table 3). We show four exam-

ples of these clusters in Figures 7 and 8 whereas we include more

examples in Appendix F.

Note that the cluster in Figure 7bmight seem inactive, but around

day 30, a slight drop corresponds to hundreds of thousands of

downloads. Another example is the cluster in Figure 8b, where the

extensions are inactive for almost 100 days before all gaining many

downloads simultaneously. These clear patterns confirm that there

exist extensions that follow similar download patterns.

Malicious Clusters. To answer (RQ2): Is there any relationship
between download patterns and malicious code? We further analyzed

the 135 clusters and found that similar clusters have similar at-

tack patterns. For example, in one cluster with 155 extensions, 124

used tabhd.com to steal queries (see Figure 7a). We did not have

the source code of 30 out of the remaining 31 extensions in that

cluster and therefore marked those as safe (we give more details

in Section 6). Using an unofficial repository [21] we could confirm

that those 30 extensions also used tabhd.com. While, in another

cluster, 13 out of 19 extensions used search.myway.com instead (see

Figure 7b). In this case, we miss the code of 5 extensions. Similar

to malicious clusters, Figure 8a shows two clusters of 16 and 12

extensions are all benign, all from FreeAddon.

Based on these results, we can confirm that there is a relationship

between download patterns and malicious code in extensions. Fur-

thermore, in addition to a correlation between download patterns

and maliciousness, we also find some cases where the download

pattern correlates directly with the specific details of the attack, for

example, the use of tabhd.com as a website.

Classifier. This section presents the results relating to our final

research question (RQ3): Can we find malicious extensions based
on their download patterns? First, we present the result of using

0.00 0.25 0.50 0.75 1.00
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

Figure 9: ROC curve of our classifier. The red circle marks
the best F1-Score (0.89), correctly classifying 326 out of 382
malicious extensions.

the classifier to predict which cluster an extension matches then

we present the fully automatic solution where security labels, i.e.,

malicious or benign, are directly predicted.

We train our classifier on download patterns for 2,059 extensions

and use 1,212 as test. Our classifier will first match each extension

in the test set with a cluster from the training set then, based on a

threshold 𝑡 , determine if the extension is malicious.

Figure 9 depicts the ROC curve of our classifier. In it, we see

how the threshold 𝑡 affects the recall and precision of our classifier,

achieving the best F1-Score of 0.89 at 𝑡 = 0.26, with a precision

and recall of 0.88 and 0.90. At this threshold, the classifier finds 326

out of the 364 malicious extensions in the test set demonstrating

that we successfully find malicious extensions solely based on their

download patterns.

Directly predicting labels results in an F-score of 0.89 with a

precision of 0.92 and a recall of 0.80. This is slightly worse than

predicting clusters with the optimal threshold. We believe this

is because the semi-automatic clustering is better than the fully

automatic solution, which translates into better security label clas-

sification. Solely predicting labels also fails to capitalize on the fact

that there are cases where download patterns correlate with code

or attack similarities.

5 USE CASE: SEARCH HIJACKING
WALLPAPERS

In this section, we perform an in-depth analysis of a group of active

malicious extensions we found using our classifier. We further

analyze the code and structure of these extensions. Initially, the

extensions seem harmless as they do not ask for any permission

nor have they any known harmful files. In Listing 2, we include the

manifest file of these 29 extensions, having all of them the same

manifest but with different icon (<iconFileName>), background
page ("js/<name>.js") and version (<version>).

However, when we automatically installed them all, we real-

ized that all of them overwrite the "newtab" property, automat-

ically loading the output.html web page whose content is <head
><script src="js/main.js"></script><head>, i.e., this files
just loads themain.js file. Interestingly, such a JavaScript file just has

tabhd.com
tabhd.com
search.myway.com
tabhd.com

ACSAC ’22, December 5–9, 2022, Austin, TX, USA Picazo-Sanchez, et al.

Table 4: Servers where the 29 extensions redirect users to.

URL #Extensions

https://www.ultitab.com 19

https://www.tabhd.com 10

one line: document.location='<url>/<name>'; where <url> is
the server URL and <name> is usually the name of the extension.

When accessing any of these URLs (https://www.tabhd.com or

https://www.ultitab.com), the servers automatically generate a ran-

dom name and redirect users to https://<url>/<name> where <name
> is the name of a random wallpaper extension. The content of all

the URLs is the same, i.e., there is a search bar in the center and

some links to the privacy policy, settings, or user agreement.

The key part is the search bar that automatically redirects the

user’s search queries to Google during the first 30 minutes. Af-

ter that, the web server provides almost the same content, but

the queries the users introduce in the search bar are redirected to

https://gundil.com/index.html?q=<query> instead. Such a website

looks identical to Google, but the first 4 entries are always advertise-

ments. We also certify that this website tracks users by retrieving

information such as the IP address, browser type, browser version,

the pages that users visit, the time and date, and the time spent on

those pages, unique device identifiers, and other diagnostic data.

5.1 Wallpapers Discovering
To discover more malicious extensions utilizing the same attack, we

statically analyzed all the wallpapers (i.e., 35,982) stored in the Web

Store looking for extensions that, similar to the analyzed ones: 1)

implement chrome.browserAction.onClicked.addListener
() and chrome.runtime.onInstalled.addListener() event
listeners and the chrome.tabs.create() function in them; 2)

add the newtab property of the chrome_url_overrides, and; 3)
include any URL in their scripts.

We classified extensions into 38 groups according to the URL they

include and visited each one of the websites as stated in Section 3.2.

The look & feel of all the 38 sites were similar: apart from having

some icons for social networks and some other shortcuts, all of

them provide a search input similar to Google and Bing pages.

Themost used URL by the extensions is https://mytab.me/<alias>,

where <alias> is a string that can be found in the app.js file. As

an example, the app.js of the “Burst Gyro Anime Anime New

Tags Hot HD Themes”
2
extension is window.app={domain: '

https://mytab.me', name: 'anime1−6'}; and the redirection

is carried out in the index.js ((() => {location.href = `${app
.domain}/${app.name}/`;})();), script that is loaded by the

HTML file that overwrites the "newtab" property of the browser.

Hence, redirecting the user to an external server whenever she

opens a new tab. In Listings 3 and 4 we present the background and

content script that 2,554 and 3,637 extensions using https://mytab.me

have in common respectively. The background script of the remain-

ing 1,083 extensions is the same but without the last chrome.
runtime.setUninstallURL() statement.

2
kidpaijejhfcmlceagcmkmcpbfmclhfi

Table 5: Top 10 of the most used URL by extensions to hijack
search from users.

URL #Extensions

https://mytab.me 3,637

https://www.tabhd.com 857

https://www.ultitab.com 216

https://chromethemesonline.net 153

https://www.searchcapitol.com/ 137

https://pimp-up-your-browser.com 127

https://the-theme-factory.com 124

https://epic-chrome-themes.com 121

https://chrome-themes.online 89

https://tab-e-licious.com 86

We realized that some web pages initially use a legitimate search

engine like Google or Bing. However, after some time (between 1

to 30 minutes) they redirect the search queries to other search en-

gines like https://gundil.com/index.html?q=<query> and https://str-

search.com/results.php?q=<query>. Also, similar to the extensions

we detected by analyzing the downloads, they extract personal

metadata to fingerprint users as well as adding custom ads.

In addition to that, a few of them perform a double redirection,

i.e., they first redirect the query to an external server and redirect the

user later to a legitimate search engine, being almost unnoticeable

to the user. Let us give two examples, one using Google Chrome

and another one using Bing.

Cute HDWallpaper New Tab
3
is an extension that replaces the "

newtab" by opening a new website (https://qtab.io/cute81/). When

users introduce a search query in the input bar, the server first redi-

rects the user to another server (inifinitynewtab) that hijacks the

user’s search query and other information before finally redirect-

ing to Google Chrome. Similarly, Breaking News Tab
4
extension

replaces the "newtab" web page with another one provided by the

extension itself. The difference is that this time the search queries

go to another server (https://www.searchcapitol.com). That server

redirects the user to Bing instead once the query is received.

In Table 5, we included the Top-10 of most used URLs by exten-

sions to hijack the search queries after performing the discovering

strategies previously explained. Finally, we automatically installed

all the extensions we found and checked whether they indeed

opened the web pages we found when the user opened a new tab.

In summary, we analyzed the downloads pattern of browser

extensions and detected 1,292 malicious ones that hijack users’

searches. We combined this method with Dedup.js to detect similar

extensions that were not analyzed because their increment of down-

loads did not pass the filter (what we call “sleeping” extensions),
and we found 5,288 extra malicious extensions, totaling 6,579.

6 DISCUSSION & LIMITATIONS
Web Store Downloads Granularity. In September 2021, Google

changed the way theWeb Store shows the information affecting the

3
ieclinianmfccihifhicbaofnkhndamd

4
jgginkfhlcakpkjfkkbbcnjpeoladhih

No Signal Left to Chance: Driving Browser Extension Analysis by Download Patterns ACSAC ’22, December 5–9, 2022, Austin, TX, USA

granularity of the number of downloads of the extensions. Numbers

are no longer as precise, e.g., the same number of downloads of the

extension used in Listing 1 is now represented as “5,000+ users”.

Although the analysis presented in this paper is based on the precise

number of downloads that Google used to offer, we believe that if

our methodology was deployed by vendors, then precise numbers

of the downloads would be used. Since they do not need to crawl

the store, they could increase the sampling rate to potentially detect

malicious extensions faster.

Adaptive attackers. Adaptive attackers can try to match benign

patterns. Similar to previous work in this field [37], in our case,

attackers would need the downloads of all the extensions to learn

these patterns. This is currently hard as Google removed exact

download details. Although there are promising advances in adver-

sarial ML attacks in malware detection [41], this is a research topic

itself and not the core of this paper. Adaptive attacks become more

difficult if there as an asymmetry between the granularity of the

defender’s and attacker’s data. This is arguably the case here where

only Google has exact download statistics.

Reasoning about patterns. Unfortunately, knowing the reason

why the download patterns of extensions are similar is not trivial.

Google explicitly states that it implements a heuristic algorithm

using parameters like ratings, usage statistics like the number of

downloads and uninstalls over time, and fuzzier factors like design

[25] to facilitate users to find high-quality content. As mentioned

in the introduction, crowdsourcing sites like Zeerk, and Facebook

groups are dedicated to increasing the popularity of applications

in repositories like the Web Store. Hence, the modification of the

number of downloads directly affects such an algorithm, thereby

achieving more potential victims (users) who install them. There-

fore these patterns become useful signals when malicious devel-

opers are artificially increasing the downloads on their extensions.

However, this is hard, if not impossible, to prove for us given that

we do not have access to such information (only Google might

know that).

Dynamic analysis. While it is unlikely to get false positives using

dynamic analysis, we do find cases of false negatives. We identify

three main limitations in our analysis that result in false negatives.

These are 1) installation wizards; 2) HTML elements blocking the

search bar, and; 3) state destruction.

Some extensions use installation wizards where the user can

fill in preferences and import data before being able to use the

extensions. Our dynamic analysis does not attempt to solve these

wizards in general. Therefore it can fail to reach the search bar and

test it for query stealing. Using our manual and static verification

analysis, we identified a group of 27 extensions that used tabturbo.

com for stealing queries. However, due to a multi-step installation

wizard, we were not able to reach the search bar.

Another general limitation is the invisibility or obstruction of

the search bar. For example, pricehelpers.com requires the user to

click a drop-down menu before being able to search. However, our

dynamic approach does not find the drop-down menu needed for

the search. The opposite problem is when extensions use modal

windows to obstruct the search bar until the user closes the modal

window. Our approach could handle this in many cases since many

of the modal windows did not cover the entire search bar. In the

case of total obstruction, our method would fail. An example of

search bar obstruction is Naruto New Tab Page Top Wallpapers

Themes
5
. Interestingly, we input DeDup.js with the files of this

extension, and it detected other 3,637 malicious extensions using

mytab.me as an external web server to steal users’ queries.

Finally, we use a best-effort approach to find the search bar on the

new tab page. If multiple text inputs have different functionalities,

our approach will only test the first one. We did find one such case

where an extension had one search bar for Gmail where it did not

steal the query and a second search bar for Google where it did

steal the query. In that particular case, we only checked the first

search bar. To improve this, the extension, or the new tab page,

should be analyzed once per input element.

As with any “potentially unwanted programs”, the potentially
part could result in false positives. If users truly want a search

engine other than the major ones or if they want their queries

to be sent to multiple servers in addition to their regular search

engine. To allow for flexibility, we make it easy to change our code

or relabel the data later, to add or remove servers considered safe.

Missing Code. There were 413 extensions for which we could not

collect the source code before Google removed them from the Web

Store. In these cases, we followed the presumption of innocence

and considered the extensions benign. If we could have analyzed

their code, our false positive rate would likely have decreased.

Missing Attacks. In this paper, we focus on the attack of steal-

ing queries. This means we might mark an extension as safe even

though it performs other malicious actions, like injecting advertise-

ments on pages. As we already find malicious clusters that share

code-specific parts, such as the URLs used, we believe our analysis

is strong enough to find malicious clusters. By including more at-

tacks in the security analysis, we might have found more clusters

for other attacks that are now marked as safe instead.

Code Similarity. While code similarity is useful in many cases,

it also has limitations. Indeed, there are cases where our pattern

analysis is more effective. One reason is that benign and malicious

extensions can have very similar code. For example, the safe exten-

sion jabbaohcijedbmkbdjldjicnohlcdkdp and the malicious dbkbnd-
dmcjkjkclnlpagncoebgfaoile both have a main.js file where only 4

out of the 391 lines differ. The main difference here is the URL used

by the extension. We can also use techniques based on hash files

like DeDup.js [39]. Here, main.js does not match, but other scripts,

CSS, and images are still the same in both. There have been multiple

earlier cases where malicious authors copy benign code and change

a small part to make them malicious
6
. By focusing on download

patterns, we can distinguish these as two different clusters.

Another reason is that malicious extensions can have a small

footprint by relying on external websites, i.e., they do not need

dangerous permissions or powerful API calls to steal queries (e.g.,

[2, 28, 37]). In fact, the previously mentioned malicious extension

(dbkbnddmcjkjkclnlpagncoebgfaoile) does not define a single per-

mission. This makes them hard to detect by traditional methods.

5
bemmphgeeoaljepcaficneogmlndijbi

6
https://freeaddon.com/warning-adware-virus-distributors-are-making-fake-

extensions-based-on-freeaddon-sportifytab/

tabturbo.com
tabturbo.com
pricehelpers.com
https://freeaddon.com/warning-adware-virus-distributors-are-making-fake-extensions-based-on-freeaddon-sportifytab/
https://freeaddon.com/warning-adware-virus-distributors-are-making-fake-extensions-based-on-freeaddon-sportifytab/

ACSAC ’22, December 5–9, 2022, Austin, TX, USA Picazo-Sanchez, et al.

7 RELATEDWORK
We can differentiate between white-box [68, 69] and black-box at-

tacks [22, 53, 64] against CFRSs. In white-box attacks, attackers have

some knowledge about the recommendation algorithms or how the

data (users/items) are related. This knowledge can be gathered by,

for instance, interacting with the system, similar to what users can

do. On the contrary, in black-box attacks, attackers know nothing

about the recommendation system or the implemented algorithms.

Examples of real attacks on CFRSs, and more concretely on Android

Google Play have been proven to be successful [10, 44–46] altering

the rating and the number of raters.

Recently, Dou et al. [18] deployed a honeypot in App Market—

an alternative non-official Android store—to track the number of

downloads of the apps, categorizing the download fraud problem in

mobile App markets. In comparison to our proposal, we proved that

the download fraud problem in browser extensions can be directly

associated with security attacks and showed how the download

pattern can be used to detect malicious extensions.

Browser Extensions. In recent years, browser extensions have

attracted the research community’s interest. In 2015, Google engi-

neers [28] claimed they catch 70% of the malicious ones within 5

days, whereas some extensions can remain months or even years

without being detected [5].

A few examples of how private researchers in the industry help

in detecting malicious extensions are: maladvertising and cryp-

tocurrency [1, 19]; spyware [48]; phishing [42]; proxy scripts [31];

remote code execution [5], and; ransomware [9, 43, 60].

In academia, among other attacks, researchers demonstrated that

extensions suffer from maladvertising [4, 59, 63, 67]; fingerprinting

[32, 33, 50, 51, 54–57, 61]; JavaScript injection attacks [7, 20, 52],

and showed how over-privileged the extensions are [2, 28]. When

detecting malicious extensions, researchers usually rely on static

[6, 26, 70] and dynamic analysis [11, 30, 36, 57, 71] whereas only a

few authors included machine learning techniques [2, 28, 37].

ML in Browser Extensions. Jagpal et al. [28] were one of the first
who use machine learning to detect malicious extensions. In con-

crete, they used Logistic Regression (LR) to train a model after

extracting API, permissions, DOM operations, and behavioral sig-

nal of over 90k extensions monitored during 3 years, obtaining an

overall recall of 96.5% and precision of 81% for one year.

Aggarwal et al. [2] detect malicious extensions by extracting

their API sequence and using these sequences to train a Recurrent

Neural Network (RNN), achieving high precision (90.02%) and recall

(93.31%) in detecting spying extensions.

Regarding clustering, recently, Pantelaios et al. [37] used DB-

SCAN to cluster extensions to detect malicious ones based on their

reviews, ratings, and descriptions. Despite being a common tech-

nique for detecting anomalies in the time series, i.e., peaks that

should not be there, it is not feasible to cluster them.

Contrarily to previous work, we present a novel methodology to

automatically detect malicious extensions based on the number of

downloads without analyzing the extensions’ source code. Similar

to previous work, our classifier achieves 0.88 and 0.90 values for

precision and recall, respectively.

Comparison. Compared with Eriksson et al. [20], none matches

ours in the over 4,000 extensions they found. This is expected as

their method focuses on detecting extensions stealing queries by

intercepting search engine traffic instead of extensions presenting

their own search forms.

Compared with the dataset from Pantelaios et al. [37], they found

143 extensions. Of these, one appeared in our test set, and we both

agreed that it was malicious. Since our focus is on downloads, we

are not limited by the need for 50 comments. In a sample of 15

extensions we mark as malicious, none have over 50 comments. We

believe both methods can detect different sets of extensions based

on different meta-data. Since Google removed many extensions, it

is hard to recreate the datasets.

Finally, we compared it with DeDup.js, a code similarity method

[39]. Here we included JS, HTML, and CSS files. Used the malicious

extensions in our training set and checked the code similarity with

each extension in the test set. Since DeDup.js only calculates the

number of files in common, we need to pick a threshold for the

number of files needed to be considered “similar”. To be as fair

as possible, we tried all thresholds between 1 and 50 files, and 1

resulted in the best F-score. The F-score is 0.47 (compared to our

0.89). In more detail, DeDup.js achieves: 349 (TP) 15 (FN) 781 (FP)

67 (TN), whereas our method achieves: 326 (TP) 38 (FN) 44 (FP)

804 (TN). As this shows, DeDup.js finds more malicious extensions

than we do but at the cost of many false positives.

8 CONCLUSIONS
This paper has spotlighted the patterns of browser extension down-

loads and suggested an approach of leveraging these patterns as a

signal to drive the analysis of extensions. Using a semi-supervised

clustering algorithm, we derive 135 clusters from the 2,858 exten-

sions to discover that the download patterns are often strikingly

similar, answering our first research question positively: Are there
extensions that follow similar download patterns?

We combined static, manual, and dynamic analysis to mark all

the 2,858 extensions as malicious or benign concerning the attacks

in our threat model. Using these security labels with our clusters,

we showed that 61 of the 135 contain more than 80% malicious

extensions. This affirms our second research question: Is there any
relationship between download patterns and malicious code?

We showed that by creating a classifier trained on download

patterns of already deleted extensions, we can find the malicious

extensions that are still active in the Web Store, affirming our last

research question: Can we find malicious extensions based on their
download patterns?

Finally, driven by the download pattern signal, we leveraged a

code-similarity analysis to find a total of 6,579 malicious extensions,

uncovering “sleeping” extensions whose download patterns contain

too little information.

Funding. This work was partially supported by the Wallenberg AI,

Autonomous Systems and Software Program (WASP) funded by the

Knut and Alice Wallenberg Foundation, the Swedish Foundation

for Strategic Research (SSF), the Swedish Research Council (VR),

and Meta.

No Signal Left to Chance: Driving Browser Extension Analysis by Download Patterns ACSAC ’22, December 5–9, 2022, Austin, TX, USA

REFERENCES
[1] AdGuard 2021. Over 20,000,000 of Chrome Users are Victims of Fake Ad Block-

ers. https://adguard.com/en/blog/over-20-000-000-of-chrome-users-are-victims-

of-fake-ad-blockers.html.

[2] A. Aggarwal, B. Viswanath, L. Zhang, S. Kumar, A. Shah, and P. Kumaraguru.

2018. I Spy with My Little Eye: Analysis and Detection of Spying Browser

Extensions. In Euro S&P.
[3] S. Aghabozorgi, A. S. Shirkhorshidi, and T. Y. Wah. 2015. Time-series clustering

– A decade review. Information Systems 53 (2015), 16–38.
[4] S. Arshad, A. Kharraz, and W. Robertson. 2016. Identifying Extension-Based Ad

Injection via Fine-Grained Web Content Provenance. In RAID.
[5] Avast 2021. Backdoored Browser Extensions Hid Malicious Traffic in Analytics

Requests. https://decoded.avast.io/janvojtesek/backdoored-browser-extensions-

hid-malicious-traffic-in-analytics-requests/.

[6] S. Bandhakavi, N. Tiku, W. Pittman, S. T. King, P. Madhusudan, and M. Winslett.

2011. Vetting Browser Extensions for Security Vulnerabilities with VEX. Commun.
ACM 54, 9 (2011).

[7] A. Barua, M. Zulkernine, and K. Weldemariam. 2013. Protecting Web Browser

Extensions from JavaScript Injection Attacks. In ICECCS.
[8] Bots 2022. iOS Developers Use “Well-Known” Download Bots To Manipulate

App Store Rankings. https://www.cultofmac.com/146438/ios-developers-use-

well-known-download-bots-to-manipulate-app-store-rankings-report/.

[9] Catch-All 2021. "Catch-All" Chrome Extension Silently Steals Your Data.

https://blog.barkly.com/catch-all-malicious-google-chrome-extension.

[10] H. Chen, D. He, S. Zhu, and J. Yang. 2017. Toward Detecting Collusive Ranking

Manipulation Attackers in Mobile App Markets. In Asia CCS. 58–70.
[11] Q. Chen and A. Kapravelos. 2018. Mystique: Uncovering Information Leakage

from Browser Extensions. In CCS.
[12] Chromium 2021. No more silent extension installs. http://blog.chromium.org.

[13] T. Van Craenendonck, S. Dumančić, and H. Blockeel. 2017. COBRA: A Fast

and Simple Method for Active Clustering with Pairwise Constraints. In IJCAI.
2871–2877.

[14] cseGoogleSpyware 2021. Cse.google.com - Jan 2021 update. https://www.2-

spyware.com/remove-cse-google-com.html.

[15] A. Dempster, F. Petitjean, and G. I. Webb. 2020. ROCKET: exceptionally fast and

accurate time series classification using random convolutional kernels. Data
Mining and Knowledge Discovery 34, 5 (2020), 1454–1495.

[16] A. Dempster, D. F. Schmidt, and G. I.Webb. 2021. MiniRocket: A Very Fast (Almost)

Deterministic Transform for Time Series Classification. In KDD. 248–257.
[17] H. Ding, G. Trajcevski, P. Scheuermann, X. Wang, and E. Keogh. 2008. Querying

and Mining of Time Series Data: Experimental Comparison of Representations

and Distance Measures. In VLDB, Vol. 1. 1542–1552.
[18] Y. Dou, W. Li, Z. Liu, Z. Dong, J. Luo, and S. Y. Philip. 2019. Uncovering download

fraud activities in mobile app markets. In ASONAM. 671–678.

[19] Droidclub 2022. Malicious Chrome Extensions Found in Chrome Web Store,

Form Droidclub Botnet. https://blog.trendmicro.com/trendlabs-security-

intelligence/malicious-chrome-extensions-found-chrome-web-store-form-

droidclub-botnet/.

[20] B. Eriksson, P. Picazo-Sanchez, and A. Sabelfeld. 2022. Hardening the Security

Analysis of Browser Extensions. In SAC.
[21] extpose 2022. ExtPose - Track your browser extension app store performance

and get competitive advantage. https://extpose.com/.

[22] W. Fan, T. Derr, X. Zhao, Y. Ma, H. Liu, J. Wang, J. Tang, and Q. Li. 2021. Attacking

Black-box Recommendations via Copying Cross-domain User Profiles. In ICDE.
1583–1594.

[23] M. Fang, G. Yang, N. Z. Gong, and J. Liu. 2018. Poisoning Attacks to Graph-Based

Recommender Systems. In ACSAC. 381–392. https://doi.org/10.1145/3274694.

3274706

[24] S. Farooqi, A. Feal, T. Lauinger, D. McCoy, Z. Shafiq, and N. Vallina-Rodriguez.

2020. Understanding Incentivized Mobile App Installs on Google Play Store. In

IMC. 696–709.
[25] Google 2022. How are items ranked in the store? https://developer.chrome.com/

docs/webstore/faq/#faq-gen-24.

[26] A. Guha, M. Fredrikson, B. Livshits, and N. Swamy. 2011. Verified Security for

Browser Extensions. In S&P.
[27] Xiaohui H., Yunming Y., Liyan X., Raymond L., Nan J., and Shaokai W. 2016. Time

series k-means: A new k-means type smooth subspace clustering for time series

data. Information Sciences 367-368 (2016), 1–13.
[28] N. Jagpal, E. Dingle, J.P. Gravel, P. Mavrommatis, N. Provos, M.A. Rajab, and

K. Thomas. 2015. Trends and Lessons from Three Years Fighting Malicious

Extensions. In USENIX.
[29] A. Kampouraki, G. Manis, and C. Nikou. 2009. Heartbeat Time Series Classifica-

tion With Support Vector Machines. IEEE Transactions on Information Technology
in Biomedicine 13, 4 (2009), 512–518.

[30] A. Kapravelos, C. Grier, N. Chachra, C. Kruegel, G. Vigna, and V. Paxson. 2014.

Hulk: Eliciting Malicious Behavior in Browser Extensions. In USENIX.

[31] Kreb On Security 2021. Is your Browser Extension a Botnet Back-

door. https://krebsonsecurity.com/2021/03/is-your-browser-extension-a-botnet-

backdoor/.

[32] P. Laperdrix, N. Bielova, B.t Baudry, and G. Avoine. 2020. Browser Fingerprinting:

A Survey. ACM Trans. Web 14, 2, Article 8 (April 2020).
[33] P. Laperdrix, O. Starov, Q. Chen, A. Kapravelos, and N. Nikiforakis. 2021. Fin-

gerprinting in Style: Detecting Browser Extensions via Injected Style Sheets. In

USENIX.
[34] W. Meert, K. Hendrickx, and T. Van Craenendonck. 2020. wannesm/dtaidistance

v2.0.0. https://doi.org/10.5281/zenodo.3981067

[35] M. O’Mahony, N. Hurley, N. Kushmerick, and G. Silvestre. 2004. Collaborative

Recommendation: A Robustness Analysis. ACM Trans. Internet Technol. 4, 4 (Nov.
2004), 344–377.

[36] K. Onarlioglu, M. Battal, W. Robertson, and E. Kirda. 2013. Securing Legacy

Firefox Extensions with SENTINEL. In DIMVA.
[37] N. Pantelaios, N. Nikiforakis, and A. Kapravelos. 2020. You’ve Changed: Detecting

Malicious Browser Extensions through Their Update Deltas. In CCS. 477–491.
[38] J. Paparrizos and L. Gravano. 2015. K-Shape: Efficient and Accurate Clustering

of Time Series. In SIGMOD. 1855–1870.
[39] P. Picazo-Sanchez, M. Algehed, and A. Sabelfeld. 2022. DeDup.js: Discovering

Malicious and Vulnerable Extensions by Detecting Duplication. In ICISSP.
[40] Pablo Picazo-Sanchez, Benjamin Eriksson, and Andrei Sabelfeld. 2022. No Signal

Left to Chance: Driving Browser Extension Analysis by Download Patterns. https:

//doi.org/10.5281/zenodo.7056322

[41] Fabio Pierazzi, Feargus Pendlebury, Jacopo Cortellazzi, and Lorenzo Cavallaro.

2020. Intriguing Properties of Adversarial ML Attacks in the Problem Space. In

S&P. 1332–1349. https://doi.org/10.1109/SP40000.2020.00073

[42] Proof Point 2022. TA413 Leverages New FriarFox Browser Exten-

sion to Target the Gmail Accounts of Global Tibetan Organizations.

https://www.proofpoint.com/us/blog/threat-insight/ta413-leverages-new-

friarfox-brow ser-extension-target-gmail-accounts-global.

[43] Rabbit 2021. How dangerous is Bad Rabbit Ransomware and how to avoid it.

https://safebytes.com/dangerous-bad-rabbit-ransomware-avoid/.

[44] M. Rahman, N. Hernandez, B. Carbunar, and D. H. Chau. 2018. Search Rank

Fraud De-Anonymization in Online Systems. In HT. 174–182.
[45] M. Rahman, N. Hernandez, R. Recabarren, S. I. Ahmed, and B. Carbunar. 2019. The

Art and Craft of Fraudulent App Promotion in Google Play. In CCS. 2437–2454.
[46] M. Rahman, M. Rahman, B. Carbunar, and D. H. Chau. 2016. Fairplay: Fraud and

malware detection in google play. In SDM. 99–107.

[47] S. Rani, M. Kaur, M. Kumar, V. Ravi, U. Ghosh, and J. R. Mohanty. 2021. Detection

of shilling attack in recommender system for YouTube video statistics using

machine learning techniques. Soft Computing (2021), 1–13.

[48] Reuters 2021. Exclusive: Massive spying on users of Google’s Chrome shows new

security weakness. https://www.reuters.com/article/us-alphabet-google-chrome-

exclusive/exclusive-massive-spying-on-users-of-googles-chrome-shows-new-

security-weakness-idUSKBN23P0JO.

[49] I. Sanchez-Rola, M. Dell’Amico, D. Balzarotti, P. Vervier, and L. Bilge. 2021. Jour-

ney to the center of the cookie ecosystem: Unraveling actors’ roles and relation-

ships. In S&P.
[50] I. Sánchez-Rola, I. Santos, and D. Balzarotti. 2017. Extension Breakdown: Security

Analysis of Browsers Extension Resources Control Policies. In USENIX.
[51] A. Sjösten, S. Van Acker, P. Picazo-Sanchez, and A. Sabelfeld. 2019. LATEX

GLOVES: Protecting Browser Extensions from Probing and Revelation Attacks.

In NDSS.
[52] D. F. Somé. 2019. EmPoWeb: Empowering Web Applications with Browser

Extensions. In S&P.
[53] J. Song, Z. Li, Z. Hu, Y. Wu, Z. Li, J. Li, and J. Gao. 2020. PoisonRec: An Adaptive

Data Poisoning Framework for Attacking Black-box Recommender Systems. In

ICDE. 157–168.
[54] K. Soroush, I. Panagiotis, S. Konstantinos, and P. Jason. 2020. Carnus: Exploring

the Privacy Threats of Browser Extension Fingerprinting. In NDSS.
[55] O. Starov, P. Laperdrix, A. Kapravelos, and N. Nikiforakis. 2019. Unnecessarily

Identifiable: Quantifying the Fingerprintability of Browser Extensions Due to

Bloat. In WWW.

[56] O. Starov and N. Nikiforakis. 2017. Extended Tracking Powers: Measuring the

Privacy Diffusion Enabled by Browser Extensions. In WWW.

[57] O. Starov and N. Nikiforakis. 2017. XHOUND: Quantifying the Fingerprintability

of Browser Extensions. In S&P.
[58] R. Tavenard, J. Faouzi, G. Vandewiele, F. Divo, G. Androz, C. Holtz, M. Payne,

R. Yurchak, M. RuÃŸwurm, K. Kolar, and E. Woods. 2020. Tslearn, A Machine

Learning Toolkit for Time Series Data. Journal of Machine Learning Research 21,

118 (2020), 1–6.

[59] K. Thomas, E. Bursztein, C. Grier, G. Ho, N. Jagpal, A. Kapravelos, D. Mccoy, A.

Nappa, V. Paxson, P. Pearce, N. Provos, and M. A. Rajab. 2015. Ad Injection at

Scale: Assessing Deceptive Advertisement Modifications. In S&P.

https://adguard.com/en/blog/over-20-000-000-of-chrome-users-are-victims-of-fake-ad-blockers.html
https://adguard.com/en/blog/over-20-000-000-of-chrome-users-are-victims-of-fake-ad-blockers.html
https://decoded.avast.io/janvojtesek/backdoored-browser-extensions-hid-malicious-traffic-in-analytics-requests/
https://decoded.avast.io/janvojtesek/backdoored-browser-extensions-hid-malicious-traffic-in-analytics-requests/
https://www.cultofmac.com/146438/ios-developers-use-well-known-download-bots-to-manipulate-app-store-rankings-report/
https://www.cultofmac.com/146438/ios-developers-use-well-known-download-bots-to-manipulate-app-store-rankings-report/
https://blog.barkly.com/catch-all-malicious-google-chrome-extension
http://blog.chromium.org/2012/12/no-more-silent-extension-installs.html
https://blog.trendmicro.com/trendlabs-security-intelligence/malicious-chrome-extensions-found-chrome-web-store-form-droidclub-botnet/
https://blog.trendmicro.com/trendlabs-security-intelligence/malicious-chrome-extensions-found-chrome-web-store-form-droidclub-botnet/
https://blog.trendmicro.com/trendlabs-security-intelligence/malicious-chrome-extensions-found-chrome-web-store-form-droidclub-botnet/
https://doi.org/10.1145/3274694.3274706
https://doi.org/10.1145/3274694.3274706
https://developer.chrome.com/docs/webstore/faq/#faq-gen-24
https://developer.chrome.com/docs/webstore/faq/#faq-gen-24
https://krebsonsecurity.com/2021/03/is-your-browser-extension-a-botnet-backdoor/
https://krebsonsecurity.com/2021/03/is-your-browser-extension-a-botnet-backdoor/
https://doi.org/10.5281/zenodo.3981067
https://doi.org/10.5281/zenodo.7056322
https://doi.org/10.5281/zenodo.7056322
https://doi.org/10.1109/SP40000.2020.00073
https://www.proofpoint.com/us/blog/threat-insight/ta413-leverages-new-friarfox-browser-extension-target-gmail-accounts-global
https://www.proofpoint.com/us/blog/threat-insight/ta413-leverages-new-friarfox-browser-extension-target-gmail-accounts-global
https://safebytes.com/dangerous-bad-rabbit-ransomware-avoid/
https://www.reuters.com/article/us-alphabet-google-chrome-exclusive/exclusive-massive-spying-on-users-of-googles-chrome-shows-new-security-weakness-idUSKBN23P0JO
https://www.reuters.com/article/us-alphabet-google-chrome-exclusive/exclusive-massive-spying-on-users-of-googles-chrome-shows-new-security-weakness-idUSKBN23P0JO
https://www.reuters.com/article/us-alphabet-google-chrome-exclusive/exclusive-massive-spying-on-users-of-googles-chrome-shows-new-security-weakness-idUSKBN23P0JO

ACSAC ’22, December 5–9, 2022, Austin, TX, USA Picazo-Sanchez, et al.

[60] Threatpost 2021. Malicious Chrome Extension Steals Data Posted to Any Web-

site. https://threatpost.com/malicious-chrome-extension-steals-data-posted-to-

any-website/128680/.

[61] E. Trickel, O. Starov, A. Kapravelos, N. Nikiforakis, and A. Doupé. 2019. Every-

one is Different: Client-side Diversification for Defending Against Extension

Fingerprinting. In USENIX.
[62] T. Van Craenendonck, W. Meert, S. Dumančić, and H. Blockeel. 2018. COBRAS-

TS: A New Approach to Semi-supervised Clustering of Time Series. In Discovery
Science. Springer International Publishing, 179–193.

[63] G. Varshney, S. Bagade, and S. Sinha. 2018. Malicious browser extensions: A

growing threat: A case study on Google Chrome: Ongoing work in progress. In

ICOIN.
[64] C. Wu, D. Lian, Y. Ge, Z. Zhu, E. Chen, and S. Yuan. 2021. Fight Fire with Fire:

Towards Robust Recommender Systems via Adversarial Poisoning Training. In

SIGIR. 1074–1083. https://doi.org/10.1145/3404835.3462914

[65] X. Wu, L. Xiao, Y. Sun, J. Zhang, T. Ma, and L. He. 2021. A Survey of Human-in-

the-loop for Machine Learning. arXiv:2108.00941 [cs.LG]

[66] X. Xing, W. Meng, D. Doozan, A. C. Snoeren, N. Feamster, and W. Lee. 2013. Take

This Personally: Pollution Attacks on Personalized Services. In USENIX. 671–686.
[67] X. Xing,W.Meng, B. Lee, U.Weinsberg, A. Sheth, R. Perdisci, andW. Lee. 2015. Un-

derstanding Malvertising Through Ad-Injecting Browser Extensions. In WWW.

[68] G. Yang, N. Z. Gong, and Y. Cai. 2017. Fake Co-visitation Injection Attacks to

Recommender Systems.. In NDSS.
[69] Y. Zhang, J. Xiao, S. Hao, H. Wang, S. Zhu, and S. Jajodia. 2020. Understand-

ing the Manipulation on Recommender Systems through Web Injection. IEEE
Transactions on Information Forensics and Security 15 (2020), 3807–3818.

[70] B. Zhao and P. Liu. 2013. Behavior Decomposition: Aspect-Level Browser Exten-

sion Clustering and Its Security Implications. In RAID.
[71] R. Zhao, C. Yue, and Q. Yi. 2015. Automatic Detection of Information Leakage

Vulnerabilities in Browser Extensions. In WWW.

A WEB STORE DOWNLOADS
Even though Google hides the downloads for some extensions, we

found out that such a number is still in the source code of each

browser extension but commented under the <PageMap> HTML

label, and more concretely it comes as a text field under the <
Attribute> label whose attribute name is “user_count” (see List-

ing 1).

<!--<PageMap >

<DataObject type="document">

...

<Attribute name="user_count">

6281

</Attribute >

...

</DataObject >

</PageMap >-->

Listing 1: Number of downloads hidden in the Web Store’s
HTML source.

B DATASET DISTRIBUTION
In Figure 10, we extracted the last public download the Web Store

offered per extension and represented the distribution of the down-

loads according to the category they belong to in the Web Store.

10
1

10
3 10

5
10

7

Downloads

accessibility
blogging

communication
fun

news
photos

productivity
search tools

shopping
sports

web development

C
at

eg
or

y

Figure 10: Distribution of the downloads of the categories
the Web Store is composed of.

C SOURCE CODE
In Listing 2, we include the manifest file of 29 malicious exten-

sions, having all of them the same manifest but with different icon

(<iconFileName>), background page ("js/<name>.js") and ver-

sion (<version>).

{

"background": {

"persistent": true,

"scripts": [

"js/<name>.js"

]

},

"browser_action": {},

"chrome_url_overrides": {

"newtab": "output.html"

},

"default_locale": "en",

"description": "__MSG_description__",

"icons": {

"128": "<iconFileName >"

},

"manifest_version": 2,

"name": "__MSG_name__",

"offline_enabled": false,

"update_url": "https://clients2.google.

com/service/update2/crx",

"version": "<version>"

}

Listing 2: Manifest file of 1,315 extensions.

In Listings 3 and 4 we present the background and content script

that 2,554 and 3,637 extensions using https://mytab.me have in

common respectively. The background script of the remaining 1,083

extensions is the same but without the last chrome.runtime.
setUninstallURL() statement.

(() => {

chrome.browserAction.onClicked.addListener

(function() {

chrome.tabs.create({

https://threatpost.com/malicious-chrome-extension-steals-data-posted-to-any-website/128680/
https://threatpost.com/malicious-chrome-extension-steals-data-posted-to-any-website/128680/
https://doi.org/10.1145/3404835.3462914
https://arxiv.org/abs/2108.00941

No Signal Left to Chance: Driving Browser Extension Analysis by Download Patterns ACSAC ’22, December 5–9, 2022, Austin, TX, USA

url: `${app.domain}/${app.name}/`
});

});

chrome.runtime.onInstalled.addListener(

function(details) {

if (details.reason == "install") {

chrome.tabs.create({});

}}

);

chrome.runtime.setUninstallURL(' https://

mytab.me/?from=uninstall ')

})();

Listing 3: Background script of 2,554 sleeping malicious
extensions.

(() => {

location.href = `${app.domain}/${app.name
}/`;

})();

Listing 4: Content script of 3,637 sleeping malicious
extensions.

D GROUND TRUTH GENERATION
D.1 Dynamic Analysis
To detect if an extension steals search queries, we use dynamic

analysis to interact with the extension. The goal of this interaction

is to trigger a search if the extension has a search function.

Challenge. The challenge is that this search function can be

implemented in many different ways. For example, simple HTML

forms with a predefined action URL for the search engine could be

used. In this case, a simple static analysis would likely be enough.

However, the search bar could instead be a dynamically gener-

ated text-field with JavaScript events connected to complex and

obfuscated frameworks, making static analysis more difficult. Addi-

tionally, extension can use iframes or redirect users to other new

tab pages where the search stealing takes place.

The query stealing can also be implemented in different ways.

Normally, server-side redirects are used to send users and their

queries to other servers before arriving at the intended search en-

gine. For example, when searching, the query is sent to newtab.com?

query=secret which then redirects it to google.com?query=secret.

Another method frequently used is JavaScript analytic scripts that

use XHR to send the queries to an analytic platform before sending

the user to the intended search engine. Analyzing analytic frame-

works statically is also challenging, which is why we believe the

dynamic analysis is better suited.

Orthogonal to the complexity of statically scanning code, ex-

tensions can also implement delays before they start misbehaving.

If these delays are implemented in the extension’s source code it

could be detected statically. However, if instead extensions rely

on external websites for the new tab features, these servers could

implement the time delay, making it impossible to detect statically.

To tackle these challenges we divide our dynamic analysis into

two phases. The first one scans the extensions while keeping track

of any search queries being stolen. Also, it records if the extensions

rely on external websites for the functionality. If the first phase

does not detect the extension as malicious and it is using a website,

then, in the second phase, we scan the website for a prolonged

period. Using a long enough time span we increase the chances to

catch the switch from benign to malicious behavior.

Phase 1 - Scanning extensions. To detect search query stealing,
we use Puppeteer

7
to control a Chrome instance running with a

potentially malicious extension installed. We build our solution

on the dynamic analysis infrastructure developed by Eriksson et

al. [20]. However, our approach to interact with the extensions are

markedly different. Compared to previous approaches that tried

to interact with extensions using honey pages or visiting different

websites, our approach is more akin to web crawling and web

vulnerability scanning. Honey pages are good at detecting how

extensions interact with web pages; however, we want to interact

with a web page generated by the extension, i.e., the new tab page.

By using Puppeteer we can mimic how a user would interact

with the extension by clicking on search fields and typing queries

with their keyboards. This is an important difference from using

JavaScript to change the values of search fields as that might not

trigger events and analytic scripts.

In Algorithm 1, we give an overview of the algorithm we use to

interact with the extension. As some extensions load their new tab

functionality in an iframe we need to ensure that we check those

first using the same method. We perform two core interactions:

1) First clicking on each text input of either type text or search.
Then we type a predefined query, i.e., “Secret00133700Query”. This

will trigger any event listeners waiting for a user to type their query;

2) We once again click on each element but this time simulating

pressing enter on the keyboard. This submits the search query.

After the interaction method we check all the network traffic

to detect any requests containing our query. Similar to previous

work [49], we also check for transformations on the query, e.g.,

lowercase, uppercase, BASE64 etc. If we detect the query in a request

to or from a server that is not one of the four major search engines

(Google, Yahoo, Bing, and DuckDuckGo), we mark it as malicious.

It takes approximately 30 seconds to analyze one extension but for

stronger or multiple computers it can easily be parallelized across

both more threads.

Phase 2 - Scanning websites. As some extensions rely on web-

sites for their new tab functionality, we also scan these websites

in an attempt to detect delayed malicious behavior. For example, a

new tab website can start with using Google as the search engine

but after some time start redirecting the search queries.

To find websites worth scanning we analyze the results from

Phase 1. We extract all pairs of source and target URLs where the
target contains our search query. For example, when analyzing an

extension we found tabhd.com as the source and google.com/?q=

QUERY as the target. In this case, we scanned tabhd.com to test if

it switches from google.com to something else.

7
https://github.com/puppeteer/puppeteer

newtab.com?query=secret
newtab.com?query=secret
google.com?query=secret
tabhd.com
google.com/?q=QUERY
google.com/?q=QUERY
tabhd.com
google.com
https://github.com/puppeteer/puppeteer

ACSAC ’22, December 5–9, 2022, Austin, TX, USA Picazo-Sanchez, et al.

Algorithm 1 Dynamically scan extensions for query stealing

1: procedure scan(𝑒𝑥𝑡𝑒𝑛𝑠𝑖𝑜𝑛, 𝑞𝑢𝑒𝑟𝑦)
2: 𝑝𝑎𝑔𝑒 ← 𝑙𝑜𝑎𝑑𝑁𝑒𝑤𝑡𝑎𝑏 (𝑒𝑥𝑡𝑒𝑛𝑠𝑖𝑜𝑛)
3: for 𝑓 ∈ 𝑔𝑒𝑡𝐼 𝑓 𝑟𝑎𝑚𝑒𝑠 (𝑝𝑎𝑔𝑒) do
4: for 𝑖 ∈ 𝑔𝑒𝑡𝐼𝑛𝑝𝑢𝑡𝑠 (𝑓) do
5: Click on 𝑖

6: Type 𝑞𝑢𝑒𝑟𝑦

7: end for
8: for 𝑖 ∈ 𝑔𝑒𝑡𝐼𝑛𝑝𝑢𝑡𝑠 (𝑓) do
9: Click on 𝑖

10: Press Enter
11: end for
12: end for
13: for 𝑖 ∈ 𝑔𝑒𝑡𝐼𝑛𝑝𝑢𝑡𝑠 (𝑝𝑎𝑔𝑒) do
14: Click on 𝑖

15: Type 𝑞𝑢𝑒𝑟𝑦

16: end for
17: for 𝑖 ∈ 𝑔𝑒𝑡𝐼𝑛𝑝𝑢𝑡𝑠 (𝑝𝑎𝑔𝑒) do
18: Click on 𝑖

19: Press Enter
20: end for
21: end procedure

For each website we find in Phase 1 we pick an extension relying

on this website and scan it repeatedly using the setup in Phase 1.
We reload the new tab page every 30 seconds for an hour to detect

any changes where search queries are sent. If we find that a website

starts redirecting queries after some time, we mark the website as

malicious and all extensions which use the website.

D.2 Verification Method
While it is unlikely that the dynamic analysis results in false pos-

itives we still manually test some of the extensions to detect any

false negatives. Note that false negatives found in this verification

step do not affect the final results we present, i.e., the security labels

we use in later stages for clustering and classification are based on

the output from the dynamic analysis. The reason for false positives

being unlikely is that our dynamic analysis only marks an exten-

sion as malicious if it detects a request from an unknown server

with our query. To better understand the general limitations of our

dynamic analysis and approximate the false negatives we perform

a manual analysis of extensions marked as benign and use static

analysis to find similar ones.

Manual. From the set of extensions marked as benign by the

dynamic analysis, we pick a subset to inspect manually. To do so,

we open it in Google Chrome and follow any installation guide the

extension needs.We also accept any pop-ups, either modal windows

or window pop-ups that might show up during this process. From

there we locate the search bar if one exists. Using the network tab in

developers tools we note all requests being sent both when typing

in the search bar and when submitting the query. If any unknown

server receives our query we mark the extension as malicious.

Static. To increase our coverage, we include static analysis to

automatically find similar extensions to the ones we find in the

manual analysis. We achieve this by manually creating simple sig-

natures for each new malicious extension we find. For example,

Listing 5 shows a code snippet that could be a signature for a group

of extensions:

var url_analytics = ' https://s.example.com '

Listing 5: Example of code used as a signature to find more
similar extensions.

Using these signatureswe search all manifests, HTML, and JavaScript

files for the signature. If we find a match wemark these as malicious.

E VERIFICATION RESULTS
During our verification, we picked a sample of 100 benign ex-

tensions to manually review. As discussed in Section 6 we are

mainly interested in finding false negatives, therefore we only con-

sider benign extensions for manual review. Most of these were

correctly marked as benign, being developed by either FreeAddon
or Choosetab. We found three extensions wrongly marked as benign.

To better understand our limitations we look outside the sample

for similar extensions to the ones we missed. Here we find a total of

32 extensions out the 2,858 extensions. The biggest miss was due to

a group of 27 extensions using s.tabturbo.com to steal the queries.

There was another group of three extensions we failed to cor-

rectly mark as malicious due to a limitation of Puppeteer, and

possibly a bug in the extension. Upon loading the extension, it tries

to redirect the user to extension://index.html, on Ubuntu this causes

Chrome to prompt the user to execute an external program. This

prompt can not be closed by Puppeteer and at the same time makes

it impossible to interact with the web page.

Finally, there were two unique extensions with different prob-

lems. The first one had two search input forms, but only one ma-

licious, and we only tested the benign one. The second one had a

hidden search input which our dynamic approach failed to click on.

We discuss these cases more in Section 6.

s.tabturbo.com
extension://index.html

No Signal Left to Chance: Driving Browser Extension Analysis by Download Patterns ACSAC ’22, December 5–9, 2022, Austin, TX, USA

F CLUSTERS
In Figure 11 and Figure 12 we present more of the benign and malicious clusters we find.

0 50 100 150
Days in the WebStore

10000

20000

30000

40000

50000

60000

N
um

be
r o

f D
ow

nl
oa

ds

Extensions = 53

0 50 100 150
Days in the WebStore

10000

20000

30000

40000

50000

60000

N
um

be
r o

f D
ow

nl
oa

ds

Extensions = 16

0 50 100 150
Days in the WebStore

0

20000

40000

60000

80000

N
um

be
r o

f D
ow

nl
oa

ds

Extensions = 12

0 50 100 150
Days in the WebStore

10000

20000

30000

40000

50000

60000

N
um

be
r o

f D
ow

nl
oa

ds

Extensions = 10

0 50 100 150
Days in the WebStore

0.0

0.2

0.4

0.6

0.8

1.0

N
um

be
r o

f D
ow

nl
oa

ds

1e6 Extensions = 8

0 50 100 150
Days in the WebStore

0

20000

40000

60000

80000

N
um

be
r o

f D
ow

nl
oa

ds

Extensions = 4

0 10 20 30 40 50 60
Days in the WebStore

0

2000

4000

6000

8000

10000

12000

N
um

be
r o

f D
ow

nl
oa

ds

Extensions = 3

0 50 100 150
Days in the WebStore

0.0

0.2

0.4

0.6

0.8

1.0

N
um

be
r o

f D
ow

nl
oa

ds

1e6 Extensions = 5

0 50 100 150
Days in the WebStore

0

5000

10000

15000

20000

25000

N
um

be
r o

f D
ow

nl
oa

ds

Extensions = 2

0 50 100 150
Days in the WebStore

20000

40000

60000

80000

N
um

be
r o

f D
ow

nl
oa

ds

Extensions = 2

0 50 100 150
Days in the WebStore

0

20000

40000

60000

80000
N

um
be

r o
f D

ow
nl

oa
ds

Extensions = 2

0 50 100 150
Days in the WebStore

0

20000

40000

60000

80000

N
um

be
r o

f D
ow

nl
oa

ds

Extensions = 2

Figure 11: Benign Clusters.

0 20 40 60 80
Days in the WebStore

0

5000

10000

15000

N
um

be
r o

f D
ow

nl
oa

ds

Extensions = 155

0 50 100 150
Days in the WebStore

0

10000

20000

30000

40000

50000

N
um

be
r o

f D
ow

nl
oa

ds

Extensions = 83

0 50 100 150
Days in the WebStore

0

5000

10000

15000

N
um

be
r o

f D
ow

nl
oa

ds

Extensions = 65

0 25 50 75 100 125
Days in the WebStore

0

5000

10000

15000

N
um

be
r o

f D
ow

nl
oa

ds

Extensions = 55

0 20 40 60 80 100
Days in the WebStore

0

2500

5000

7500

10000

12500

15000

N
um

be
r o

f D
ow

nl
oa

ds

Extensions = 42

0 20 40 60 80
Days in the WebStore

0

5000

10000

15000

N
um

be
r o

f D
ow

nl
oa

ds

Extensions = 37

0 50 100 150
Days in the WebStore

0

10000

20000

30000

40000

N
um

be
r o

f D
ow

nl
oa

ds

Extensions = 24

0 20 40 60 80
Days in the WebStore

0.2

0.4

0.6

0.8

1.0

N
um

be
r o

f D
ow

nl
oa

ds

1e6 Extensions = 19

0 50 100 150
Days in the WebStore

0

10000

20000

30000

40000

N
um

be
r o

f D
ow

nl
oa

ds

Extensions = 12

0 20 40 60
Days in the WebStore

0

5000

10000

15000

N
um

be
r o

f D
ow

nl
oa

ds

Extensions = 11

0 20 40 60 80 100 120
Days in the WebStore

0

20000

40000

60000

80000

N
um

be
r o

f D
ow

nl
oa

ds

Extensions = 10

0 50 100 150
Days in the WebStore

0

10000

20000

30000

40000

N
um

be
r o

f D
ow

nl
oa

ds

Extensions = 10

Figure 12: Malicious Clusters.

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Browser Extensions' Security & Privacy
	2.2 Time-Series Analysis
	2.3 Definitions
	2.4 Threat Model

	3 Scrutinizing the Web Store
	3.1 Data Gathering
	3.2 Security Analysis
	3.3 Time-Series Analysis

	4 Results
	4.1 Data Gathering
	4.2 Security Analysis
	4.3 Time-Series Analysis

	5 Use Case: Search Hijacking Wallpapers
	5.1 Wallpapers Discovering

	6 Discussion & Limitations
	7 Related Work
	8 Conclusions
	References
	A Web Store Downloads
	B Dataset Distribution
	C Source Code
	D Ground truth Generation
	D.1 Dynamic Analysis
	D.2 Verification Method

	E Verification Results
	F Clusters

