
Dynamic Updating of
Information-flow Policies

Michael Hicks, Stephen Tse, Boniface Hicks
Steve Zdancewic

FCS 2005

2

Information-flow Security
• Goal is to protect confidential information from leaking to

inappropriate principles.
– Has been studied in computer systems context

for > 30 years [Denning, Goguen, Mesegue,…]

• Language-based security is a promising enforcement
mechanism:
– if bH then yL := 0 else yL := 1

Idea: use extended type systems to give security labels to data,
conservatively track flows, reject programs that don't meet the
policy.

– Implementations: Jif [Myers et al.] , FlowCaml [Simonet & Pottier]

3

Language-based Enforcement
• Noninterference:

Behavior of the program visible to low-security observers
should not depend on high-security information.

• Sound Execution:
The program does not generate errors at run time.

• Both properties are enforced statically.
– With good reason: purely dynamic enforcement of

information flow policies is much too conservative to
be useful.

4

Problems with Practicality
• Noninterference isn't really the property you want:

– Programs do intentionally leak some information
– So: need mechanisms for controlled downgrading

 [Survey: SS05]
– But: noninterference is still an essential baseline.

• Static policies are not always sufficient:
– Some policy-relevant information may not be known

until run time (e.g. file permissions)
– It might be necessary to change the policy for a long

running system (e.g. to revoke privileges)

5

Example Program
void access_records(principal{} emp) {
 Query{mgr:div} query; // query is visible to division
 Data{mgr:emp} result; // result is visible to employee
 Data{mgr:} audit; // audit info is for managers only

 if (div < emp) { // employee is member of division
 while (true) {
 query = get_query();
 result = process_query(query);
 audit = audit(result);
 display(emp, result);
 if (mgr < emp) { // employee is a manager
 display(emp, summary); }
 }
 else { abort(); }
}

6

This Paper: Work In Progress
• We consider the problem of dynamically updating

information-flow policies.

• Interesting design space (that we're still exploring):
– In what ways can the policy be changed?
– When is it safe to update a policy?
– What does it mean for noninterference to hold when the policy

can be changed dynamically?
– What can we prove about the system as a whole?

• Start simple:
– noninterference (no downgrading)
– some dynamically determined policy information

(necessary for the policy changes to be useful)

7

Policy Hierarchies
• Policy hierarchy: Π = (p1<q1, … , pn<qn)
• Ordering on policies determines which labels are

more restrictive:
 (p<q, q<r); 1p : intr
• In general, the type system is parameterized by

the hierarchy:

• Operational semantics allows for updates:
Π ; Γ e : t

Π' | e →Π | e

8

Dynamic Policy Tests
• Determine policy information at run time:

[TZ04,ZM04]

Π ; Γ if (p<q) then e1 else e2 : t

Π,(p<q); Γ e1 : t Π ; Γ e2 : t

9

Dynamic Policy Updates
• Could relabel a value: 1p → 1q

– relabeling can violate soundness and noninterference
– related to declassification

• More interesting: change the relationship
between labels by altering policy hierarchy.

• Example: (p<q, q<r) → (p<q, q<s)
– New hierarchy disallows old flow (p < r)

but it permits the new flow (p < s)

10

What Can Go Wrong?
• Starting with Π = (p<q):

 Π | let x : intq = if (p<q) then 1p else 2q
 in …

• After one step:
 Π | let x : intq = 1p

 in …

• Now, suppose we update to Π' = (q<r):
 Π' | let x : intq = 1p

 in …

• This program no longer typechecks.

11

Our Simple Solution: Coercions
• The "tagged" term [p<q]e coerces e from type

tp to tq. [B-TCGS'91]

• Operationally: [p<q]vp → vq

• Inserting coercions allows the previous example
to typecheck even after the policy update:

let x : intq = if (p<q) then [p<q]1p else 2q
in …

12

When Are Updates Allowed?
• Could imagine dynamically "re-typechecking" the

continuation of an update under the new policy.
– Tags allow that process to be optimized
– Tags are less conservative because they keep information

around at run time that would otherwise be erased

• Intuition: The tags record the "active" assumptions about
the policy hierarchy.
 [p<q]e
– Computation in e can safely assume that [p<q] holds.

• Therefore, can't change the policy unless it satisfies all
constraints of "exposed" tags.

13

Examples
• Let Π = (p<q) and Π' = (q<r)

• Can update from Π to Π' when the program is:
 if (p<q) then [p<q]e1 else e2
• Cannot update from Π to Π' when the program is

 [p<q]e1
• Can update from P to P' when the program is:

 2q

14

Noninterference Between Updates
• What security property can we get from this type system?

• Easy to show that between updates, standard
noninterference holds… follows from the soundness of
updates.

• But this result doesn't say anything about what happens
across updates.

Π'

Π

15

Flows Across Updates
• Purely dynamic tag checks are insufficient:

let x = if bq then (λx.0q)
 else (λ(p<q)x.[p<q]1p)
in
let y : intr = if (p<q) then 1r
 else 0r in
… // use x …

• If the policy is updated after first lest is evaluated, this
program may copy bq to y , violating noninterference.

• Information flow depends on attacker's knowledge of the
hierarchy and policy updates.

• More static constraints can rule out such flows.

16

Conclusions
• Allowing information-flow enforcement to deal

with dynamic policies is important for practical
applications.

• This paper presents a first stab at handling
dynamic updates to noninterference policies.

• In the paper:
– Details of the type system and tag checking scheme
– Proof of soundness for the tagged language
– Translation from untagged source to tagged language
– Noninterference between updates

17

Future Directions
• What can we say about information-flow policies across

updates?
– Related to downgrading and declassification
– Flows in the program should be explainable in terms of policies in

force before and after the updates

• Scaling up these simple ideas of dynamic tags to work
with more language features
– State and other effects
– Dynamic labels
– Concurrency

• Implementing dynamic updates to get experience with
real software

