Dynamic Updating of
Information-flow Policies

Michael Hicks, Stephen Tse, Boniface Hicks
Steve Zdancewic

FCS 2005

Information-flow Security

« (Goal is to protect confidential information from leaking to
Inappropriate principles.
— Has been studied in computer systems context
for > 30 years [Denning, Goguen, Mesegue,...]

« Language-based security is a promising enforcement
mechanism:
- if b, then y, := 0 else y, :=1
|ldea: use extended type systems to give security labels to data,
conservatively track flows, reject programs that don't meet the

policy.

— Implementations: Jif [Myers et al.] , FlowCaml [Simonet & Pottier]

Language-based Enforcement

 Noninterference:

Behavior of the program visible to low-security observers
should not depend on high-security information.

« Sound Execution:
The program does not generate errors at run time.

* Both properties are enforced statically.

— With good reason: purely dynamic enforcement of
information flow policies is much too conservative to
be useful.

Problems with Practicality

* Noninterference isn't really the property you want:
— Programs do intentionally leak some information

— So0: need mechanisms for controlled downgrading
[Survey: SS05]

— But: noninterference is still an essential baseline.

« Static policies are not always sufficient:

— Some policy-relevant information may not be known
until run time (e.g. file permissions)

— It might be necessary to change the policy for a long
running system (e.g. to revoke privileges)

Example Program

void access_records (principal{} emp) {

Query{mgr:div} query; // query is visible to division
Data{mgr:emp} result; // result is visible to employee
Data{mgr:} audit; // audit info is for managers only
if (div < emp) { // employee is member of division

while (true) {
query = get query();
result = process query (query);
audit = audit(result);
display (emp, result);
i1f (mgr < emp) { // employee is a manager
display (emp, summary),; }

}
else { abort(); }

This Paper: Work In Progress

« We consider the problem of dynamically updating
information-flow policies.

 Interesting design space (that we're still exploring):
— In what ways can the policy be changed?
— When is it safe to update a policy?

— What does it mean for noninterference to hold when the policy
can be changed dynamically?

— What can we prove about the system as a whole?

o Start simple:
— noninterference (no downgrading)

— some dynamically determined policy information
(necessary for the policy changes to be useful)

Policy Hierarchies

 Policy hierarchy: IT = (p,<q., ..., P,<0,)

* Ordering on policies determines which labels are
more restrictive:

(P<q, g<r); F 1, :int,
* |In general, the type system is parameterized by
the hierarchy:

II;:T Fe:t
« Operational semantics allows for updates:

II | e - II' | e

Dynamic Policy Tests

« Determine policy information at run time:
[TZ04,ZM04]

IT,(p<q); T | e, :t I[MI;T Fe,:t

I[1;T Fif (p<qg) then e, else e,:t

Dynamic Policy Updates

 Could relabel a value: 1p — 1q

— relabeling can violate soundness and noninterference
— related to declassification

* More interesting: change the relationship
between labels by altering policy hierarchy.

* Example: (P<q,q<r) — (p<q, g<s)

— New hierarchy disallows old flow (p <r)
but it permits the new flow (p <s)

What Can Go Wrong?

IT | let x : int, = if (p<q) then 1, else 2,
in ..
» After one step:
[T] let x : int, = 1,

in ..

Now, suppose we update to IT' = (q<r):
[I']| let x : int, =1
in ..

P

This program no longer typechecks.

10

Our Simple Solution: Coercions

* The "tagged" term [p<g]le coerces e from type
’[p to tq. [B-TCGS'91]

* Operationally: [p<q]v, — v,

 Inserting coercions allows the previous example
to typecheck even after the policy update:

]_.et x : int, = if (p<q) then [p<q]l, else 2,
in ..

11

When Are Updates Allowed?

« Could imagine dynamically "re-typechecking” the
continuation of an update under the new policy.
— Tags allow that process to be optimized

— Tags are less conservative because they keep information
around at run time that would otherwise be erased

 Intuition: The tags record the "active" assumptions about
the policy hierarchy.
[p<dg]e
— Computation in e can safely assume that [p<q] holds.
« Therefore, can't change the policy unless it satisfies all
constraints of "exposed" tags.

12

Examples

« Can update from II to IT' when the program is:
if (p<qgq) then [p<gle; else e,

Cannot update from II to IT' when the program is
[P<ale,

« Can update from P to P' when the program is:

24

13

Noninterference Between Updates

« What security property can we get from this type system?
H /\/\/—%
. VNN

« Easy to show that between updates, standard
noninterference holds... follows from the soundness of

updates.

« But this result doesn't say anything about what happens
across updates.

14

Flows Across Updates

* Purely dynamic tag checks are insufficient:

let x = if b, then (7\.x.0q)
else (A(p<q)x.[p<q]l))
in
let y : int_ = if (p<qg) then 1,
else 0, in

 If the policy is updated after first lest is evaluated, this
program may copy b, toy, violating noninterference.

 Information flow depends on attacker's knowledge of the
hierarchy and policy updates.

 More static constraints can rule out such flows.

15

Conclusions

 Allowing information-flow enforcement to deal
with dynamic policies is important for practical
applications.

« This paper presents a first stab at handling
dynamic updates to noninterference policies.

* |n the paper:
— Details of the type system and tag checking scheme
— Proof of soundness for the tagged language

— Translation from untagged source to tagged language
— Noninterference between updates

16

Future Directions

« What can we say about information-flow policies across
updates?
— Related to downgrading and declassification

— Flows in the program should be explainable in terms of policies in
force before and after the updates

« Scaling up these simple ideas of dynamic tags to work
with more language features
— State and other effects
— Dynamic labels
— Concurrency

* Implementing dynamic updates to get experience with
real software

17

