
Keeping Secrets in Incomplete Databases

Joachim Biskup and Torben Weibert

Information Systems and Security
Department of Computer Science
University of Dortmund, Germany

FCS’05 – June 30, 2005

Joachim Biskup and Torben Weibert Keeping Secrets in Incomplete Databases FCS’05 – June 30, 2005 1

Outline

Outline

1 Introduction

2 Constructing Safe Censors

Uniform Lying

Combined Lying and Refusal

Uniform Refusal

3 Formalization

4 Conclusion

Joachim Biskup and Torben Weibert Keeping Secrets in Incomplete Databases FCS’05 – June 30, 2005 2

Introduction Basic Ideas

Introduction

Controlled query evaluation

preserves confidentiality in information systems

checks confidentiality dynamically at runtime

considers the inference problem

provides a fundamental framework

Basic ideas

administrator defines confidentiality policy – information to hide

user issues a sequence of queries against database

censor checks each query result for possible confidentiality violations

if confidentiality is threatened, query result is distorted

lying (modified answer is returned)
refusal (no “useful” answer is returned)

Joachim Biskup and Torben Weibert Keeping Secrets in Incomplete Databases FCS’05 – June 30, 2005 3

Introduction Basic Ideas

Introduction

Controlled query evaluation

preserves confidentiality in information systems

checks confidentiality dynamically at runtime

considers the inference problem

provides a fundamental framework

Basic ideas

administrator defines confidentiality policy – information to hide

user issues a sequence of queries against database

censor checks each query result for possible confidentiality violations

if confidentiality is threatened, query result is distorted

lying (modified answer is returned)
refusal (no “useful” answer is returned)

Joachim Biskup and Torben Weibert Keeping Secrets in Incomplete Databases FCS’05 – June 30, 2005 3

Introduction Basic Ideas

Preserving Confidentiality: Preliminaries

The systems’s perspective

query (actual) query result censorship answer

answer harmful?

confidentiality policy user’s (assumed) knowledge

The user’s perspective

query answer interpretation of answer gain of information

awareness of the system

Joachim Biskup and Torben Weibert Keeping Secrets in Incomplete Databases FCS’05 – June 30, 2005 4

Introduction Basic Ideas

Preserving Confidentiality: Preliminaries

The systems’s perspective

query (actual) query result censorship answer

answer harmful?

confidentiality policy user’s (assumed) knowledge

The user’s perspective

query answer interpretation of answer gain of information

awareness of the system

Joachim Biskup and Torben Weibert Keeping Secrets in Incomplete Databases FCS’05 – June 30, 2005 4

Introduction Basic Ideas

Our Framework

Possibly incomplete logic databases

database schema DS : set of propositions

instance db: (consistent) set of sentences with propositions from DS

(Closed) query Φ: propositional sentence

either true, false or undef in db

query evaluation based on logical implication |=PL

eval(Φ)(db) := case db |=PL Φ : true |
db |=PL ¬Φ : false |
else : undef

end

Joachim Biskup and Torben Weibert Keeping Secrets in Incomplete Databases FCS’05 – June 30, 2005 5

Introduction Basic Ideas

Our Framework

Possibly incomplete logic databases

database schema DS : set of propositions

instance db: (consistent) set of sentences with propositions from DS

(Closed) query Φ: propositional sentence

either true, false or undef in db

query evaluation based on logical implication |=PL

eval(Φ)(db) := case db |=PL Φ : true |
db |=PL ¬Φ : false |
else : undef

end

Joachim Biskup and Torben Weibert Keeping Secrets in Incomplete Databases FCS’05 – June 30, 2005 5

Introduction Basic Ideas

Preserving Confidentiality

Security policy pot sec = {Ψ1, . . . ,Ψm} (set of propositional sentences)

If potential secret Ψi is true in db, user may not learn this fact
(if Ψi is false or undef, this fact may be disclosed)

Definition of confidentiality (informal)

For any instance db1, any security policy pot sec,
any potential secret Ψ ∈ pot sec,
and any query sequence Q = 〈Φ1, . . . ,Φn〉,
there is an instance db2

(i) in which Ψ is not true,
(ii) and under which the same answers are returned.

To the user, db1 and db2 are indistinguishable

Definition does not state which techniques to use.

Joachim Biskup and Torben Weibert Keeping Secrets in Incomplete Databases FCS’05 – June 30, 2005 6

Introduction Basic Ideas

Preserving Confidentiality

Security policy pot sec = {Ψ1, . . . ,Ψm} (set of propositional sentences)

If potential secret Ψi is true in db, user may not learn this fact
(if Ψi is false or undef, this fact may be disclosed)

Definition of confidentiality (informal)

For any instance db1, any security policy pot sec,
any potential secret Ψ ∈ pot sec,
and any query sequence Q = 〈Φ1, . . . ,Φn〉,
there is an instance db2

(i) in which Ψ is not true,
(ii) and under which the same answers are returned.

To the user, db1 and db2 are indistinguishable

Definition does not state which techniques to use.

Joachim Biskup and Torben Weibert Keeping Secrets in Incomplete Databases FCS’05 – June 30, 2005 6

Introduction Basic Ideas

Preserving Confidentiality

Security policy pot sec = {Ψ1, . . . ,Ψm} (set of propositional sentences)

If potential secret Ψi is true in db, user may not learn this fact
(if Ψi is false or undef, this fact may be disclosed)

Definition of confidentiality (informal)

For any instance db1, any security policy pot sec,
any potential secret Ψ ∈ pot sec,
and any query sequence Q = 〈Φ1, . . . ,Φn〉,
there is an instance db2

(i) in which Ψ is not true,
(ii) and under which the same answers are returned.

To the user, db1 and db2 are indistinguishable

Definition does not state which techniques to use.

Joachim Biskup and Torben Weibert Keeping Secrets in Incomplete Databases FCS’05 – June 30, 2005 6

Introduction Basic Ideas

Answers and Inferences

Inference set V : Set of values the user regards as possible wrt. the actual
query value (after having received an answer ans)

Examples:
{true} “actual value is true”
{true, false} “actual value is either true or false (but not undef)”

Inference set V from answer ans: two different approaches

1 “answer inferences”: V = {ans} (one element)

2 “meta inferences” based on user awareness of the censor:
set of values v ∈ {true, false, undef} that lead to the answer ans
in the given situation (one, two or three elements)

Joachim Biskup and Torben Weibert Keeping Secrets in Incomplete Databases FCS’05 – June 30, 2005 7

Introduction Basic Ideas

Answers and Inferences

Inference set V : Set of values the user regards as possible wrt. the actual
query value (after having received an answer ans)

Examples:
{true} “actual value is true”
{true, false} “actual value is either true or false (but not undef)”

Inference set V from answer ans: two different approaches

1 “answer inferences”: V = {ans} (one element)

2 “meta inferences” based on user awareness of the censor:
set of values v ∈ {true, false, undef} that lead to the answer ans
in the given situation (one, two or three elements)

Joachim Biskup and Torben Weibert Keeping Secrets in Incomplete Databases FCS’05 – June 30, 2005 7

Introduction Basic Ideas

Security Configurations

Censor considers which inferences are harmful.

Security configuration C = { V | V is a “harmful” inference set }
Example: C = {{true}, {false}, {true, false}}:

user may not infer that the actual value is true

user may not infer that the actual value is false

user may not infer that the actual value is either true or false

Censor’s decision based on ...

1 security configuration C

2 actual query value v = eval(Φ)(db)

Answer generation: ans := censor(C , v) ∈ {true, false, undef, refuse}

Joachim Biskup and Torben Weibert Keeping Secrets in Incomplete Databases FCS’05 – June 30, 2005 8

Introduction Basic Ideas

Security Configurations

Censor considers which inferences are harmful.

Security configuration C = { V | V is a “harmful” inference set }
Example: C = {{true}, {false}, {true, false}}:

user may not infer that the actual value is true

user may not infer that the actual value is false

user may not infer that the actual value is either true or false

Censor’s decision based on ...

1 security configuration C

2 actual query value v = eval(Φ)(db)

Answer generation: ans := censor(C , v) ∈ {true, false, undef, refuse}

Joachim Biskup and Torben Weibert Keeping Secrets in Incomplete Databases FCS’05 – June 30, 2005 8

Introduction Basic Ideas

Security Configurations

Censor considers which inferences are harmful.

Security configuration C = { V | V is a “harmful” inference set }
Example: C = {{true}, {false}, {true, false}}:

user may not infer that the actual value is true

user may not infer that the actual value is false

user may not infer that the actual value is either true or false

Censor’s decision based on ...

1 security configuration C

2 actual query value v = eval(Φ)(db)

Answer generation: ans := censor(C , v) ∈ {true, false, undef, refuse}

Joachim Biskup and Torben Weibert Keeping Secrets in Incomplete Databases FCS’05 – June 30, 2005 8

Constructing Safe Censors

Constructing Safe Censors
Uniform Lying

Preliminaries for uniform lying

Method: only lying is allowed as a distortion method

“answer inferences” (only consider unary inference sets)

Basic decision table (without distortion)

Security Configuration eval(Φ)(db) = ...
C true false undef

{{true}, {false}, {undef}} true false undef
{{true}, {false}} true false undef
{{true}, {undef}} true false undef
{{false}, {undef}} true false undef

{{true}} true false undef
{{false}} true false undef
{{undef}} true false undef

∅ true false undef

Joachim Biskup and Torben Weibert Keeping Secrets in Incomplete Databases FCS’05 – June 30, 2005 9

Constructing Safe Censors

Constructing Safe Censors
Uniform Lying

Preliminaries for uniform lying

Method: only lying is allowed as a distortion method

“answer inferences” (only consider unary inference sets)

Basic decision table (without distortion)

Security Configuration eval(Φ)(db) = ...
C true false undef

{{true}, {false}, {undef}} true false undef
{{true}, {false}} true false undef
{{true}, {undef}} true false undef
{{false}, {undef}} true false undef

{{true}} true false undef
{{false}} true false undef
{{undef}} true false undef

∅ true false undef

Joachim Biskup and Torben Weibert Keeping Secrets in Incomplete Databases FCS’05 – June 30, 2005 9

Constructing Safe Censors Uniform Lying

Constructing Safe Censors

Situation 1: One “harmful” inference

Security Configuration eval(Φ)(db) = ...
C true false undef

{{true}} true false undef

Situation 2: Two “harmful” inferences

Joachim Biskup and Torben Weibert Keeping Secrets in Incomplete Databases FCS’05 – June 30, 2005 10

Constructing Safe Censors Uniform Lying

Constructing Safe Censors

Situation 1: One “harmful” inference

Security Configuration eval(Φ)(db) = ...
C true false undef

{{true}} undef false undef

Change answer to any of the remaining two “safe” answers.

Situation 2: Two “harmful” inferences

Joachim Biskup and Torben Weibert Keeping Secrets in Incomplete Databases FCS’05 – June 30, 2005 10

Constructing Safe Censors Uniform Lying

Constructing Safe Censors

Situation 1: One “harmful” inference

Security Configuration eval(Φ)(db) = ...
C true false undef

{{true}} undef false undef

Change answer to any of the remaining two “safe” answers.

Situation 2: Two “harmful” inferences

{{true}, {false}} true false undef

Joachim Biskup and Torben Weibert Keeping Secrets in Incomplete Databases FCS’05 – June 30, 2005 10

Constructing Safe Censors Uniform Lying

Constructing Safe Censors

Situation 1: One “harmful” inference

Security Configuration eval(Φ)(db) = ...
C true false undef

{{true}} undef false undef

Change answer to any of the remaining two “safe” answers.

Situation 2: Two “harmful” inferences

{{true}, {false}} undef undef undef

Change answer to the remaining “safe” one.

Joachim Biskup and Torben Weibert Keeping Secrets in Incomplete Databases FCS’05 – June 30, 2005 10

Constructing Safe Censors Uniform Lying

Constructing Safe Censors
Uniform Lying

Situation 3: Three “harmful” inferences

{{true}, {false}, {undef}} true false undef

Problem: A “hopeless situation” for uniform lying

Any answer leads to a “harmful” inference.

No suitable lie may be safely given.

Two possible solutions

1 Avoid “hopeless situation” by a stronger definition of “harmfulness”

2 Allow refusal (leading to a combined lying and refusal censor):

{{true}, {false}, {undef}} refuse refuse refuse

Joachim Biskup and Torben Weibert Keeping Secrets in Incomplete Databases FCS’05 – June 30, 2005 11

Constructing Safe Censors Uniform Lying

Constructing Safe Censors
Uniform Lying

Situation 3: Three “harmful” inferences

{{true}, {false}, {undef}} true false undef

Problem: A “hopeless situation” for uniform lying

Any answer leads to a “harmful” inference.

No suitable lie may be safely given.

Two possible solutions

1 Avoid “hopeless situation” by a stronger definition of “harmfulness”

2 Allow refusal (leading to a combined lying and refusal censor):

{{true}, {false}, {undef}} refuse refuse refuse

Joachim Biskup and Torben Weibert Keeping Secrets in Incomplete Databases FCS’05 – June 30, 2005 11

Constructing Safe Censors Uniform Lying

Constructing Safe Censors
Uniform Lying

Situation 3: Three “harmful” inferences

{{true}, {false}, {undef}} true false undef

Problem: A “hopeless situation” for uniform lying

Any answer leads to a “harmful” inference.

No suitable lie may be safely given.

Two possible solutions

1 Avoid “hopeless situation” by a stronger definition of “harmfulness”

2 Allow refusal (leading to a combined lying and refusal censor):

{{true}, {false}, {undef}} refuse refuse refuse

Joachim Biskup and Torben Weibert Keeping Secrets in Incomplete Databases FCS’05 – June 30, 2005 11

Constructing Safe Censors Uniform Lying

Constructing Safe Censors
Uniform Lying

A uniform lying censor

Security Configuration eval(Φ)(db) = ...
C true false undef

{{true}, {false}} undef undef undef
{{true}, {undef}} false false false
{{false}, {undef}} true true true

{{true}} undef false undef
{{false}} true undef undef
{{undef}} true false false

∅ true false undef

Censor is locally safe for a security configuration C if

for each v ∈ {true, false, undef}:
(a) [safe answers] {censor(C , v)} 6∈ C

(b) [only lie if necessary] if {v} 6∈ C then censor(C , v) = v

Joachim Biskup and Torben Weibert Keeping Secrets in Incomplete Databases FCS’05 – June 30, 2005 12

Constructing Safe Censors Uniform Lying

Constructing Safe Censors
Uniform Lying

A uniform lying censor

Security Configuration eval(Φ)(db) = ...
C true false undef

{{true}, {false}} undef undef undef
{{true}, {undef}} false false false
{{false}, {undef}} true true true

{{true}} undef false undef
{{false}} true undef undef
{{undef}} true false false

∅ true false undef

Censor is locally safe for a security configuration C if

for each v ∈ {true, false, undef}:
(a) [safe answers] {censor(C , v)} 6∈ C

(b) [only lie if necessary] if {v} 6∈ C then censor(C , v) = v

Joachim Biskup and Torben Weibert Keeping Secrets in Incomplete Databases FCS’05 – June 30, 2005 12

Constructing Safe Censors Combined Lying and Refusal

Constructing Safe Censors

A combined lying and refusal censor

C true false undef

{{true}, {false}, {undef}} refuse refuse refuse
{{true}, {false}} undef undef undef
{{true}, {undef}} false false false
{{false}, {undef}} true true true

{{true}} undef false undef
{{false}} true undef undef
{{undef}} true false false

∅ true false undef

Censor is locally safe for a security configuration C if

(a) for each v ∈ {true, false, undef}: {censor(C , v)} 6∈ C

(b) for each v ∈ {true, false, undef}: if {v} 6∈ C then censor(C , v) = v

(c) if censor(C , v) = refuse for any v then censor(C , v) = refuse for all v

Joachim Biskup and Torben Weibert Keeping Secrets in Incomplete Databases FCS’05 – June 30, 2005 13

Constructing Safe Censors Combined Lying and Refusal

Constructing Safe Censors

A combined lying and refusal censor

C true false undef

{{true}, {false}, {undef}} refuse refuse refuse
{{true}, {false}} undef undef undef
{{true}, {undef}} false false false
{{false}, {undef}} true true true

{{true}} undef false undef
{{false}} true undef undef
{{undef}} true false false

∅ true false undef

Censor is locally safe for a security configuration C if

(a) for each v ∈ {true, false, undef}: {censor(C , v)} 6∈ C

(b) for each v ∈ {true, false, undef}: if {v} 6∈ C then censor(C , v) = v

(c) if censor(C , v) = refuse for any v then censor(C , v) = refuse for all v

Joachim Biskup and Torben Weibert Keeping Secrets in Incomplete Databases FCS’05 – June 30, 2005 13

Constructing Safe Censors Uniform Refusal

Constructing Safe Censors
Uniform Refusal

Preliminaries for uniform refusal

Policy: only refusal is allowed as a distortion method

Situation 1: One “harmful” inference

Problem: meta inferences

Two basic awareness assumptions
1 user knows the security policy, thereby the security configuration
2 user knows the algorithm of the censor

user can infer: under the security configuration {{true}},
the answer refuse is only produced by the value true

⇒ user can infer: eval(Φ)(db) = true

Joachim Biskup and Torben Weibert Keeping Secrets in Incomplete Databases FCS’05 – June 30, 2005 14

Constructing Safe Censors Uniform Refusal

Constructing Safe Censors
Uniform Refusal

Preliminaries for uniform refusal

Policy: only refusal is allowed as a distortion method

Situation 1: One “harmful” inference

{{true}} true false undef

Problem: meta inferences

Two basic awareness assumptions
1 user knows the security policy, thereby the security configuration
2 user knows the algorithm of the censor

user can infer: under the security configuration {{true}},
the answer refuse is only produced by the value true

⇒ user can infer: eval(Φ)(db) = true

Joachim Biskup and Torben Weibert Keeping Secrets in Incomplete Databases FCS’05 – June 30, 2005 14

Constructing Safe Censors Uniform Refusal

Constructing Safe Censors
Uniform Refusal

Preliminaries for uniform refusal

Policy: only refusal is allowed as a distortion method

Situation 1: One “harmful” inference

{{true}} refuse false undef

Problem: meta inferences

Two basic awareness assumptions
1 user knows the security policy, thereby the security configuration
2 user knows the algorithm of the censor

user can infer: under the security configuration {{true}},
the answer refuse is only produced by the value true

⇒ user can infer: eval(Φ)(db) = true

Joachim Biskup and Torben Weibert Keeping Secrets in Incomplete Databases FCS’05 – June 30, 2005 14

Constructing Safe Censors Uniform Refusal

Constructing Safe Censors
Uniform Refusal

Preliminaries for uniform refusal

Policy: only refusal is allowed as a distortion method

Situation 1: One “harmful” inference

{{true}} refuse false undef

Problem: meta inferences

Two basic awareness assumptions
1 user knows the security policy, thereby the security configuration
2 user knows the algorithm of the censor

user can infer: under the security configuration {{true}},
the answer refuse is only produced by the value true

⇒ user can infer: eval(Φ)(db) = true

Joachim Biskup and Torben Weibert Keeping Secrets in Incomplete Databases FCS’05 – June 30, 2005 14

Constructing Safe Censors Uniform Refusal

Constructing Safe Censors
Uniform Refusal

Solution: additional refuse-conditions

Security Configuration eval(Φ)(db) = ...
C true false undef

{{true}} refuse refuse undef

Meta inference now: “value is either true or false”
(which is not harmful – otherwise, {false} would be as well!)

Joachim Biskup and Torben Weibert Keeping Secrets in Incomplete Databases FCS’05 – June 30, 2005 15

Constructing Safe Censors Uniform Refusal

Constructing Safe Censors
Uniform Refusal

Situation 2: Two “harmful” inferences

{{true}, {false}} true false undef

Problem: (partial) meta inferences

User can infer: “value is either true or false” ⇒ V = {true, false}
This partial inference may be harmful (but it may be not)

Joachim Biskup and Torben Weibert Keeping Secrets in Incomplete Databases FCS’05 – June 30, 2005 16

Constructing Safe Censors Uniform Refusal

Constructing Safe Censors
Uniform Refusal

Situation 2: Two “harmful” inferences

{{true}, {false}} refuse refuse undef

Problem: (partial) meta inferences

User can infer: “value is either true or false” ⇒ V = {true, false}
This partial inference may be harmful (but it may be not)

Joachim Biskup and Torben Weibert Keeping Secrets in Incomplete Databases FCS’05 – June 30, 2005 16

Constructing Safe Censors Uniform Refusal

Constructing Safe Censors
Uniform Refusal

Situation 2: Two “harmful” inferences

{{true}, {false}} refuse refuse undef

Problem: (partial) meta inferences

User can infer: “value is either true or false” ⇒ V = {true, false}
This partial inference may be harmful (but it may be not)

Joachim Biskup and Torben Weibert Keeping Secrets in Incomplete Databases FCS’05 – June 30, 2005 16

Constructing Safe Censors Uniform Refusal

Constructing Safe Censors
Uniform Refusal

Solution: consider partial inferences, case differentiation

check whether partial inference is harmful

if so, add an additional refuse

Security Configuration eval(Φ)(db) = ...
C true false undef

{{true}, {false}} refuse refuse undef
{{true}, {false}, {true, false}} refuse refuse refuse

Joachim Biskup and Torben Weibert Keeping Secrets in Incomplete Databases FCS’05 – June 30, 2005 17

Constructing Safe Censors Uniform Refusal

Constructing Safe Censors

A uniform refusal censor

C true false undef

{{true}, {false}, {undef}, ...} refuse refuse refuse
{{true}, {false}, {true, false}} refuse refuse refuse

{{true}, {false}} refuse refuse undef
{{true}, {undef}, {true, undef}} refuse refuse refuse

{{true}, {undef}} refuse false refuse
{{true}} refuse false refuse

{{false}, {undef}, {false, undef}} refuse refuse refuse
{{false}, {undef}} true refuse refuse

{{false}} true refuse refuse
{{undef}} true refuse refuse

∅ true false undef

Censor is locally safe for a security configuration C if

∀ans ∈ {true, false, undef, refuse}: meta inference from ans is not in C

Joachim Biskup and Torben Weibert Keeping Secrets in Incomplete Databases FCS’05 – June 30, 2005 18

Constructing Safe Censors Uniform Refusal

Constructing Safe Censors

A uniform refusal censor

C true false undef

{{true}, {false}, {undef}, ...} refuse refuse refuse
{{true}, {false}, {true, false}} refuse refuse refuse

{{true}, {false}} refuse refuse undef
{{true}, {undef}, {true, undef}} refuse refuse refuse

{{true}, {undef}} refuse false refuse
{{true}} refuse false refuse

{{false}, {undef}, {false, undef}} refuse refuse refuse
{{false}, {undef}} true refuse refuse

{{false}} true refuse refuse
{{undef}} true refuse refuse

∅ true false undef

Censor is locally safe for a security configuration C if

∀ans ∈ {true, false, undef, refuse}: meta inference from ans is not in C

Joachim Biskup and Torben Weibert Keeping Secrets in Incomplete Databases FCS’05 – June 30, 2005 18

Formalization

Formalization

So far, we have ...

heuristically constructed censors based on “security configurations”

declarative semantics for security configurations

But ...

How to determine the set of “harmful” inferences?

How to decide whether an inference is “harmful”?

How to account for information gained from previous queries?

Solution: Epistemic logic

representation of inferences as modal sentences

store inferences in a user log

note: epistemic logic only used as an auxiliary means

Joachim Biskup and Torben Weibert Keeping Secrets in Incomplete Databases FCS’05 – June 30, 2005 19

Formalization

Formalization

So far, we have ...

heuristically constructed censors based on “security configurations”

declarative semantics for security configurations

But ...

How to determine the set of “harmful” inferences?

How to decide whether an inference is “harmful”?

How to account for information gained from previous queries?

Solution: Epistemic logic

representation of inferences as modal sentences

store inferences in a user log

note: epistemic logic only used as an auxiliary means

Joachim Biskup and Torben Weibert Keeping Secrets in Incomplete Databases FCS’05 – June 30, 2005 19

Formalization

Formalization

So far, we have ...

heuristically constructed censors based on “security configurations”

declarative semantics for security configurations

But ...

How to determine the set of “harmful” inferences?

How to decide whether an inference is “harmful”?

How to account for information gained from previous queries?

Solution: Epistemic logic

representation of inferences as modal sentences

store inferences in a user log

note: epistemic logic only used as an auxiliary means

Joachim Biskup and Torben Weibert Keeping Secrets in Incomplete Databases FCS’05 – June 30, 2005 19

Formalization

The User Log

Convert pair of query Φ and value v to epistemic sentence

∆(Φ, true) = KΦ

∆(Φ, false) = K¬Φ

∆(Φ, undef)= ¬KΦ ∧ ¬K¬Φ

Convert pair of query Φ and inference set V to epistemic sentence

∆∗(Φ,V) =
∨

v∈V ∆(Φ, v)

User log logi : Representation of user’s assumptions at time i

log0: a priori assumptions

logi : generated by adding inference set Vi from ansi :
logi = logi−1 ∪ {∆∗(Φi ,Vi)} with Vi = inference(censor ,Ci , ansi)

Joachim Biskup and Torben Weibert Keeping Secrets in Incomplete Databases FCS’05 – June 30, 2005 20

Formalization

The User Log

Convert pair of query Φ and value v to epistemic sentence

∆(Φ, true) = KΦ

∆(Φ, false) = K¬Φ

∆(Φ, undef)= ¬KΦ ∧ ¬K¬Φ

Convert pair of query Φ and inference set V to epistemic sentence

∆∗(Φ,V) =
∨

v∈V ∆(Φ, v)

User log logi : Representation of user’s assumptions at time i

log0: a priori assumptions

logi : generated by adding inference set Vi from ansi :
logi = logi−1 ∪ {∆∗(Φi ,Vi)} with Vi = inference(censor ,Ci , ansi)

Joachim Biskup and Torben Weibert Keeping Secrets in Incomplete Databases FCS’05 – June 30, 2005 20

Formalization

The User Log

Convert pair of query Φ and value v to epistemic sentence

∆(Φ, true) = KΦ

∆(Φ, false) = K¬Φ

∆(Φ, undef)= ¬KΦ ∧ ¬K¬Φ

Convert pair of query Φ and inference set V to epistemic sentence

∆∗(Φ,V) =
∨

v∈V ∆(Φ, v)

User log logi : Representation of user’s assumptions at time i

log0: a priori assumptions

logi : generated by adding inference set Vi from ansi :
logi = logi−1 ∪ {∆∗(Φi ,Vi)} with Vi = inference(censor ,Ci , ansi)

Joachim Biskup and Torben Weibert Keeping Secrets in Incomplete Databases FCS’05 – June 30, 2005 20

Formalization

The User Log (II)
Calculating the inference from an answer

Uniform lying and combined lying/refusal method: answer inferences

Take answer as inference, discard refusals:

inferenceans(censor ,C , ans) := if ans = refuse then ∅ else {ans}

Uniform refusal method: meta inferences

Calculate set of values that produce this answer
under the given security configuration:

inferencemeta(censor ,C , ans) :=
{ v | v ∈ {true, false, undef} and censor(C , v) = ans }

Joachim Biskup and Torben Weibert Keeping Secrets in Incomplete Databases FCS’05 – June 30, 2005 21

Formalization

The User Log (II)
Calculating the inference from an answer

Uniform lying and combined lying/refusal method: answer inferences

Take answer as inference, discard refusals:

inferenceans(censor ,C , ans) := if ans = refuse then ∅ else {ans}

Uniform refusal method: meta inferences

Calculate set of values that produce this answer
under the given security configuration:

inferencemeta(censor ,C , ans) :=
{ v | v ∈ {true, false, undef} and censor(C , v) = ans }

Joachim Biskup and Torben Weibert Keeping Secrets in Incomplete Databases FCS’05 – June 30, 2005 21

Formalization

Security Violations

Uniform refusal and combined lying/refusal method

user log is “violating” if it implies any of the potential secrets

violatessingle(pot sec, log) := (∃Ψ ∈ pot sec)[log |=S5 Ψ]

Uniform lying method

... if it implies the disjunction of all potential secrets

violatesdisj(pot sec, log) := log |=S5
∨

Ψ∈pot sec Ψ

stronger condition, but avoids C “hopeless” = {{true}, {false}, {undef}}

Calculating the security configuration

Ci := sec conf(pot sec, log ,Φ) =
{ V | V ∈ I and violates(pot sec, log ∪ {∆∗(Φ,V)}) }

I: range of the inference-function used by the respective method

Joachim Biskup and Torben Weibert Keeping Secrets in Incomplete Databases FCS’05 – June 30, 2005 22

Formalization

Security Violations

Uniform refusal and combined lying/refusal method

user log is “violating” if it implies any of the potential secrets

violatessingle(pot sec, log) := (∃Ψ ∈ pot sec)[log |=S5 Ψ]

Uniform lying method

... if it implies the disjunction of all potential secrets

violatesdisj(pot sec, log) := log |=S5
∨

Ψ∈pot sec Ψ

stronger condition, but avoids C “hopeless” = {{true}, {false}, {undef}}

Calculating the security configuration

Ci := sec conf(pot sec, log ,Φ) =
{ V | V ∈ I and violates(pot sec, log ∪ {∆∗(Φ,V)}) }

I: range of the inference-function used by the respective method

Joachim Biskup and Torben Weibert Keeping Secrets in Incomplete Databases FCS’05 – June 30, 2005 22

Formalization

Security Violations

Uniform refusal and combined lying/refusal method

user log is “violating” if it implies any of the potential secrets

violatessingle(pot sec, log) := (∃Ψ ∈ pot sec)[log |=S5 Ψ]

Uniform lying method

... if it implies the disjunction of all potential secrets

violatesdisj(pot sec, log) := log |=S5
∨

Ψ∈pot sec Ψ

stronger condition, but avoids C “hopeless” = {{true}, {false}, {undef}}

Calculating the security configuration

Ci := sec conf(pot sec, log ,Φ) =
{ V | V ∈ I and violates(pot sec, log ∪ {∆∗(Φ,V)}) }

I: range of the inference-function used by the respective method

Joachim Biskup and Torben Weibert Keeping Secrets in Incomplete Databases FCS’05 – June 30, 2005 22

Formalization

Formalization and Security

Formalization of a method for controlled query evaluation

control eval(〈Φ1, ..,Φn〉, log0, db, pot sec) := 〈(ans1, log1), .., (ansn, logn)〉

In each step i :

1 Ci := sec conf(pot sec , logi−1,Φi)

2 ansi := censor(Ci , eval(Φi)(db))

3 logi := logi−1 ∪ {∆∗(Φi , inference(censor ,Ci , ansi))}

Theorem: control eval preserves confidentiality if . . .

1 ¬violates(pot sec, log0)

2 censor function is locally safe for each security configuration C

Proof idea: logn 6|=S5 Ψ ⇒ ex. M, s : (M, s) |= logn, (M, s) 6|= Ψ
db2 := {φ | φ is propositional sentence and (M, s) |= Kφ}

Joachim Biskup and Torben Weibert Keeping Secrets in Incomplete Databases FCS’05 – June 30, 2005 23

Formalization

Formalization and Security

Formalization of a method for controlled query evaluation

control eval(〈Φ1, ..,Φn〉, log0, db, pot sec) := 〈(ans1, log1), .., (ansn, logn)〉

In each step i :

1 Ci := sec conf(pot sec , logi−1,Φi)

2 ansi := censor(Ci , eval(Φi)(db))

3 logi := logi−1 ∪ {∆∗(Φi , inference(censor ,Ci , ansi))}

Theorem: control eval preserves confidentiality if . . .

1 ¬violates(pot sec, log0)

2 censor function is locally safe for each security configuration C

Proof idea: logn 6|=S5 Ψ ⇒ ex. M, s : (M, s) |= logn, (M, s) 6|= Ψ
db2 := {φ | φ is propositional sentence and (M, s) |= Kφ}

Joachim Biskup and Torben Weibert Keeping Secrets in Incomplete Databases FCS’05 – June 30, 2005 23

Formalization

Formalization and Security

Formalization of a method for controlled query evaluation

control eval(〈Φ1, ..,Φn〉, log0, db, pot sec) := 〈(ans1, log1), .., (ansn, logn)〉

In each step i :

1 Ci := sec conf(pot sec , logi−1,Φi)

2 ansi := censor(Ci , eval(Φi)(db))

3 logi := logi−1 ∪ {∆∗(Φi , inference(censor ,Ci , ansi))}

Theorem: control eval preserves confidentiality if . . .

1 ¬violates(pot sec, log0)

2 censor function is locally safe for each security configuration C

Proof idea: logn 6|=S5 Ψ ⇒ ex. M, s : (M, s) |= logn, (M, s) 6|= Ψ
db2 := {φ | φ is propositional sentence and (M, s) |= Kφ}

Joachim Biskup and Torben Weibert Keeping Secrets in Incomplete Databases FCS’05 – June 30, 2005 23

Formalization

Formalization and Security

Formalization of a method for controlled query evaluation

control eval(〈Φ1, ..,Φn〉, log0, db, pot sec) := 〈(ans1, log1), .., (ansn, logn)〉

In each step i :

1 Ci := sec conf(pot sec , logi−1,Φi)

2 ansi := censor(Ci , eval(Φi)(db))

3 logi := logi−1 ∪ {∆∗(Φi , inference(censor ,Ci , ansi))}

Theorem: control eval preserves confidentiality if . . .

1 ¬violates(pot sec, log0)

2 censor function is locally safe for each security configuration C

Proof idea: logn 6|=S5 Ψ ⇒ ex. M, s : (M, s) |= logn, (M, s) 6|= Ψ
db2 := {φ | φ is propositional sentence and (M, s) |= Kφ}

Joachim Biskup and Torben Weibert Keeping Secrets in Incomplete Databases FCS’05 – June 30, 2005 23

Conclusion

Methods – Comparison

Uniform lying

always lie, never refuse

pro: no need to consider meta inferences

con: protects disjunction of secrets

Uniform refusal

always refuse, never lie

pro: protects each single secret

con: needs to consider meta inferences

Combined lying and refusal

lie as long as possible, refuse in case of “hopeless situation”

pro: protects each single secret

pro: no need to consider meta inferences

Joachim Biskup and Torben Weibert Keeping Secrets in Incomplete Databases FCS’05 – June 30, 2005 24

Conclusion

Methods – Comparison

Uniform lying

always lie, never refuse

pro: no need to consider meta inferences

con: protects disjunction of secrets

Uniform refusal

always refuse, never lie

pro: protects each single secret

con: needs to consider meta inferences

Combined lying and refusal

lie as long as possible, refuse in case of “hopeless situation”

pro: protects each single secret

pro: no need to consider meta inferences

Joachim Biskup and Torben Weibert Keeping Secrets in Incomplete Databases FCS’05 – June 30, 2005 24

Conclusion

Methods – Comparison

Uniform lying

always lie, never refuse

pro: no need to consider meta inferences

con: protects disjunction of secrets

Uniform refusal

always refuse, never lie

pro: protects each single secret

con: needs to consider meta inferences

Combined lying and refusal

lie as long as possible, refuse in case of “hopeless situation”

pro: protects each single secret

pro: no need to consider meta inferences

Joachim Biskup and Torben Weibert Keeping Secrets in Incomplete Databases FCS’05 – June 30, 2005 24

Conclusion

Future Work

Consider . . .

higher logics (FOL, . . .)

different types of security policies

open queries (paper in preparation)

special cases (unknown security policies, . . .)

Find applications

trust negotiation

. . . ?

Implementation

existing prototype for special case of complete information systems

find suitable engine for modal logic

Joachim Biskup and Torben Weibert Keeping Secrets in Incomplete Databases FCS’05 – June 30, 2005 25

	Outline
	Introduction
	Basic Ideas

	Constructing Safe Censors
	Uniform Lying
	Combined Lying and Refusal
	Uniform Refusal

	Formalization
	Conclusion

