Keeping Secrets in Incomplete Databases

Joachim Biskup and Torben Weibert

Information Systems and Security Department of Computer Science University of Dortmund, Germany

FCS'05 - June 30, 2005

Joachim Biskup and Torben Weibert Keeping Secrets in Incomplete Databases

通 ト イヨ ト イヨト

Outline

Outline

Introduction

- 2 Constructing Safe Censors
 - Uniform Lying
 - Combined Lying and Refusal
 - Uniform Refusal

3 Formalization

3

- 4 ⊒ →

▲ @ > < ∃</p>

Introduction

Controlled query evaluation

- preserves confidentiality in information systems
- checks confidentiality dynamically at runtime
- considers the *inference problem*
- provides a fundamental framework

一日、

Introduction

Controlled query evaluation

- preserves confidentiality in information systems
- checks confidentiality dynamically at runtime
- considers the *inference problem*
- provides a fundamental framework

Basic ideas

- administrator defines confidentiality policy information to hide
- user issues a sequence of queries against database
- censor checks each query result for possible confidentiality violations
- if confidentiality is threatened, query result is distorted
 - lying (modified answer is returned)
 - refusal (no "useful" answer is returned)

3

4 E b

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Introduction Basic Ideas

Preserving Confidentiality: Preliminaries

通 ト イヨ ト イヨト

Introduction Basic Ideas

Preserving Confidentiality: Preliminaries

Our Framework

Possibly incomplete logic databases

- database schema DS: set of propositions
- instance db: (consistent) set of sentences with propositions from DS

Our Framework

Possibly incomplete logic databases

- database schema DS: set of propositions
- instance *db*: (consistent) set of sentences with propositions from *DS*

(Closed) query Φ : propositional sentence

- either true, false or undef in db
- query evaluation based on logical implication \models_{PL}

$$eval(\Phi)(db) :=$$
 case $db \models_{PL} \Phi$: true
 $db \models_{PL} \neg \Phi$: false
else : undef
end

Introduction

Basic Ideas

Preserving Confidentiality

Security policy $pot_sec = \{\Psi_1, \dots, \Psi_m\}$ (set of propositional sentences)

If potential secret Ψ_i is *true* in *db*, user may *not* learn this fact (if Ψ_i is *false* or *undef*, this fact may be disclosed)

・ 戸 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Basic Ideas

Preserving Confidentiality

Security policy $pot_sec = \{\Psi_1, \ldots, \Psi_m\}$ (set of propositional sentences)

If potential secret Ψ_i is *true* in *db*, user may *not* learn this fact (if Ψ_i is *false* or *undef*, this fact may be disclosed)

<u>Definition</u> of confidentiality (informal)

• For any instance *db*₁, any security policy *pot_sec*. any potential secret $\Psi \in pot_sec$. and any query sequence $Q = \langle \Phi_1, \ldots, \Phi_n \rangle$, there is an instance db_2 (i) in which Ψ is **not** *true*, (ii) and under which the same answers are returned.

• To the user, db_1 and db_2 are indistinguishable

Basic Ideas

Preserving Confidentiality

Security policy $pot_sec = \{\Psi_1, \ldots, \Psi_m\}$ (set of propositional sentences)

If potential secret Ψ_i is *true* in *db*, user may *not* learn this fact (if Ψ_i is *false* or *undef*, this fact may be disclosed)

Definition of confidentiality (informal)

• For any instance *db*₁, any security policy *pot_sec*. any potential secret $\Psi \in pot_sec$. and any query sequence $Q = \langle \Phi_1, \ldots, \Phi_n \rangle$, there is an instance db_2 (i) in which Ψ is **not** *true*, (ii) and under which the same answers are returned.

• To the user, db_1 and db_2 are indistinguishable

Definition does not state which techniques to use.

◆□▶ ◆□▶ ◆目▶ ◆日▶ → □ ◆ ○ ◆

Answers and Inferences

Inference set V: Set of values the user regards as possible wrt. the actual query value (after having received an answer ans)

Examples:

"actual value is true" {true} {*true*, *false*} "actual value is either *true* or *false* (but not *undef*)"

Answers and Inferences

Inference set V: Set of values the user regards as possible wrt. the actual query value (after having received an answer ans)

Examples:

"actual value is true" {true}

{*true*, *false*} "actual value is either *true* or *false* (but not *undef*)"

Inference set V from answer *ans*: two different approaches

() "answer inferences": $V = \{ans\}$ (one element)

2 "meta inferences" based on user awareness of the censor: set of values $v \in \{true, false, undef\}$ that lead to the answer ans in the given situation (one, two or three elements)

・ 同 ト ・ ヨ ト ・ ヨ ト …

Security Configurations

Censor considers which inferences are harmful.

3

イロト イポト イヨト イヨト

Security Configurations

Censor considers which inferences are harmful.

Security configuration $C = \{ V \mid V \text{ is a "harmful" inference set } \}$

Example: $C = \{ \{ true \}, \{ false \}, \{ true, false \} \}$:

- user may not infer that the actual value is true
- user may not infer that the actual value is false
- user may not infer that the actual value is either true or false

通 ト イ ヨ ト イ ヨ ト

Security Configurations

Censor considers which inferences are harmful.

Security configuration $C = \{ V \mid V \text{ is a } \text{``harmful'' inference set } \}$

Example: $C = \{\{true\}, \{false\}, \{true, false\}\}$:

- user may not infer that the actual value is *true*
- user may not infer that the actual value is false
- user may not infer that the actual value is either true or false

Censor's decision based on ...

- \bigcirc security configuration C
- 2 actual query value $v = eval(\Phi)(db)$

Answer generation: ans := $censor(C, v) \in \{true, false, undef, refuse\}$

Constructing Safe Censors Uniform Lying

Preliminaries for uniform lying

- Method: only lying is allowed as a distortion method
- "answer inferences" (only consider unary inference sets)

通 ト イヨ ト イヨト

Constructing Safe Censors Uniform Lying

Preliminaries for uniform lying

- Method: only lying is allowed as a distortion method
- "answer inferences" (only consider unary inference sets)

$\begin{tabular}{ c c c c c } \hline Security Configuration & eval(\Phi)(db) = \\ \hline C & true & false & undef \\ \hline \{ true \}, \{ false \}, \{ undef \} \} & true & false & undef \\ \hline \{ true \}, \{ false \} \} & true & false & undef \\ \hline \{ true \}, \{ undef \} \} & true & false & undef \\ \hline \{ false \}, \{ undef \} \} & true & false & undef \\ \hline \{ false \}, \{ undef \} \} & true & false & undef \\ \hline \end{bmatrix} & true & tru$
Ctruefalseundef{{true}, {false}, {undef}}truefalseundef{{true}, {false}}truefalseundef{{true}, {undef}}truefalseundef{{false}, {undef}}truefalseundef
<pre>{{true}, {false}, {undef}} true false undef {{true}, {false}} true false undef {{true}, {undef}} true false undef {{false}, {undef}} true false undef</pre>
{{true}, {false}} {{true}, {undef}} {{false}, {undef}} true false undef {{false}, {undef}}
{{true}, {undef}} true false undef {{false}, {undef}} true false undef
{{false}, {undef}} true false undef
{{true}} true false undef
{{false}} true false undef
{{undef}} true false undef
Ø true false undef

Constructing Safe Censors Uniform Lying

Constructing Safe Censors

Situation 1: One "harmful" inference					
Security Configuration C	eva eva	$al(\Phi)(db) = \\ false$	 undef		
$\{\{true\}\}$	true	false	undef		

3

イロト イポト イヨト イヨト

Situation 1: One "harmful" inference				
Security Configuration $eval(\Phi)(db) =$				
C	true	false	undef	
{{true}} undef false undef				
Change answer to any of the remaining two "safe" answers.				

3

イロト イポト イヨト イヨト

Situation 1: One "harmful" infe	rence			
Security Configuration	evai true	l(Φ)(db) = false	• undef	
{{ <i>true</i> }}	undef	false	undef	

Change answer to any of the remaining two "safe" answers.

Situation 2: Two "harmful" infe	rences		
$\{\{true\}, \{false\}\}$	true	false	undef

3

・ 同 ト ・ ヨ ト ・ ヨ ト

Constructing Safe Censors Uniform Lying

Constructing Safe Censors

Situation 1: One "harmful" inference					
Security Configuration $eval(\Phi)(db) =$					
С	true	false	undef		
{{ <i>true</i> }} <i>undef false undef</i>					
Change answer to any of the remaining two "safe" answers.					

Situation 2: Two "harmful" inference	es		
$\{\{true\}, \{false\}\}$	undef	undef	undef
Change answer to the remaining "safe" one.			

3

- 4 同 6 4 日 6 4 日 6

Constructing Safe Censors Uniform Lying

Constructing Safe Censors Uniform Lying

Situation 3: Three "harmful" inferences	
$\{ \{ true \}, \{ false \}, \{ undef \} \}$ true f	alse undef

3

Uniform Lving

Constructing Safe Censors Uniform Lying

Situation 3: Three "harmful" inferences

alse}, {undef}} true false undef

Problem: A "hopeless situation" for uniform lying

- Any answer leads to a "harmful" inference.
- No suitable lie may be safely given.

通 ト イヨ ト イヨト

Uniform Lving

Constructing Safe Censors Uniform Lying

Situation 3: Three "harmful" inferences

Problem: A "hopeless situation" for uniform lying

- Any answer leads to a "harmful" inference.
- No suitable lie may be safely given.

Two possible solutions

Avoid "hopeless situation" by a stronger definition of "harmfulness"

Allow refusal (leading to a *combined lying and refusal censor*): 2

 $\{\{true\}, \{false\}, \{undef\}\}$ refuse refuse refuse

3

Joachim Biskup and Torben Weibert

(日) (同) (三) (三)

Constructing Safe Censors Uniform Lying

Constructing Safe Censors Uniform Lying

A uniform lying censor			
Security Configuration	eva true	al(Φ)(db) = false	undef
{{true}, {false}} {{true}, {undef}}	undef false	undef false	undef false
$\{\{false\}, \{undef\}\}$	true	true	true
{{ <i>true</i> }}	undef	false	undef
$\{\{false\}\}$	true	undef	undef
$\{\{undef\}\}$	true	false	false
Ø	true	false	undef

3

イロト イポト イヨト イヨト

Constructing Safe Censors Uniform Lying

Constructing Safe Censors Uniform Lying

A uniform lying censor			
Security Configuration	eva	al(Φ)(db) =	
	true	false	undef
{{true}, {false}}	undef	undef	undef
{{true}, {undef}}	false	false	false
{{false}, {undef}}	true	true	true
{{ <i>true</i> }}	undef	false	undef
{{ <i>false</i> }}	true	undef	undef
{{undef}}	true	false	false
Ø	true	false	undef

Censor is *locally safe* for a security configuration C if

for each $v \in \{true, false, undef\}$: (a) [safe answers] {censor(C, v)} $\notin C$ (b) [only lie if necessary] if $\{v\} \notin C$ then censor(C, v) = v

Joachim Biskup and Torben Weibert

Keeping Secrets in Incomplete Databases

A combined lying and refusal censor			
С	true	false	undef
{{true}, {false}, {undef}}	refuse	refuse	refuse
$\{\{true\}, \{false\}\}$	undef	undef	undef
$\{\{true\}, \{undef\}\}$	false	false	false
$\{\{false\}, \{undef\}\}$	true	true	true
$\{\{true\}\}$	undef	false	undef
$\{\{false\}\}$	true	undef	undef
$\{\{undef\}\}$	true	false	false
Ø	true	false	undef

3

< 回 ト < 三 ト < 三 ト

A combined lying and refusal censor				
С	true	false	undef	
$\{\{true\}, \{false\}, \{undef\}\}$	refuse	refuse	refuse	
$\{\{true\}, \{false\}\}$	undef	undef	undef	
$\{\{true\}, \{undef\}\}$	false	false	false	
{{false}, {undef}}	true	true	true	
$\{\{true\}\}$	undef	false	undef	
$\{\{false\}\}$	true	undef	undef	
{{undef}}	true	false	false	
Ø	true	false	undef	

Censor is *locally safe* for a security configuration C if

(a) for each $v \in \{true, false, undef\}$: $\{censor(C, v)\} \notin C$

(b) for each $v \in \{ true, false, undef \}$: if $\{v\} \notin C$ then censor(C, v) = v

(c) if censor(C, v) = refuse for any v then censor(C, v) = refuse for all v

Uniform Refusal

Constructing Safe Censors Uniform Refusal

Preliminaries for uniform refusal

• Policy: only refusal is allowed as a distortion method

3

・ 同 ト ・ ヨ ト ・ ヨ ト …

Uniform Refusal

Constructing Safe Censors Uniform Refusal

Preliminaries for uniform refusal

Policy: only refusal is allowed as a distortion method

Situa	ation 1: One "harmful"	inference			
_	{{ <i>true</i> }}		true	false	undef

通 ト イヨ ト イヨト

Uniform Refusal

Constructing Safe Censors Uniform Refusal

Preliminaries for uniform refusal

Policy: only refusal is allowed as a distortion method

Situation 1: One "harmful" inference	2		
{{ <i>true</i> }}	refuse	false	undef

通 ト イヨ ト イヨト

Uniform Refusal

Constructing Safe Censors Uniform Refusal

Preliminaries for uniform refusal

Policy: only refusal is allowed as a distortion method

Situation 1: One "harmful" inference	ce		
{{ <i>true</i> }}	refuse	false	undef

Problem: meta inferences

- Two basic awareness assumptions
 - **1** user knows the security policy, thereby the security configuration
 - 2 user knows the algorithm of the censor
- user can infer: under the security configuration {{*true*}}, the answer *refuse* is only produced by the value *true*
- \Rightarrow user can infer: $eval(\Phi)(db) = true$

Uniform Refusal

Constructing Safe Censors Uniform Refusal

Meta inference now: "value is either *true* or *false*" (which is not harmful – otherwise, {*false*} would be as well!)

・ 同 ト ・ ヨ ト ・ ヨ ト

Uniform Refusal

Constructing Safe Censors Uniform Refusal

Sit	uation 2: Two "harmful"	inferences			
	$\{\{true\}, \{false\}\}$	tri	ue false	undef	

3

Constructing Safe Censors Uniform Refusal

Constructing Safe Censors Uniform Refusal

{{true}, {false}} refuse r	refuse undef

-

・ロト ・ 日 ・ ・ ヨ ト ・ ヨ ト ・

Uniform Refusal

Constructing Safe Censors Uniform Refusal

	Situation 2: Two "harmful"	inferences		
{{lrue}, {laise}} reluse reluse under	$\{\{true\}, \{false\}\}$	refuse	refuse	undef

Problem: (partial) meta inferences

- User can infer: "value is either *true* or *false*" \Rightarrow *V* = {*true*, *false*}
- This partial inference may be harmful (but it may be not)

< 回 ト < 三 ト < 三 ト

Uniform Refusal

Constructing Safe Censors Uniform Refusal

Solution: consider partial inferences, case differentiation

- check whether partial inference is harmful
- if so, add an additional refuse

Security Configuration	eva	$al(\Phi)(db) =$		
С	true	false	undef	
$\{\{true\}, \{false\}\}$	refuse	refuse	undef	
$\{\{true\}, \{false\}, \{true, false\}\}$	refuse	refuse	refuse	

・ 同 ト ・ ヨ ト ・ ヨ ト

A uniform refusal censor				
<i>C</i>	true	false	undef	
$\{\{true\}, \{false\}, \{undef\},\}$	refuse	refuse	refuse	
{{true}, {talse}, {true, talse}}	refuse	refuse	refuse	
{{llue}, {laise}}	refuse	refuse	rofuso	
{{true}, {under}, {true, under};	refuse	false	refuse	
{{ <i>true</i> }}	refuse	false	refuse	
{{false}, {undef}, {false, undef}}	refuse	refuse	refuse	
$\{\{false\}, \{undef\}\}$	true	refuse	refuse	
$\{\{false\}\}$	true	refuse	refuse	
$\{\{undef\}\}$	true	refuse	refuse	
Ø	true	talse	undef	

3

イロト イポト イヨト イヨト

Uniform Refusal

Constructing Safe Censors

A uniform refusal censor			
<i>C</i>	true	false	undef
$\{\{true\}, \{false\}, \{undef\},\}$	refuse	refuse	refuse
{{true}, {false}, {true, false}}	refuse	refuse	refuse
$\{\{true\}, \{false\}\}$	refuse	refuse	undef
$\{\{true\}, \{undef\}, \{true, undef\}\}$	refuse	refuse	refuse
$\{\{true\}, \{undef\}\}$	refuse	false	refuse
$\{\{true\}\}$	refuse	false	refuse
{{false}, {undef}, {false, undef}}	refuse	refuse	refuse
$\{\{false\}, \{undef\}\}$	true	refuse	refuse
$\{\{false\}\}$	true	refuse	refuse
$\{\{undef\}\}$	true	refuse	refuse
Ø	true	false	undef

Censor is *locally safe* for a security configuration C if

 $\forall ans \in \{true, false, undef, refuse\}$: meta inference from ans is not in C

Joachim Biskup and Torben Weibert

Keeping Secrets in Incomplete Databases

Formalization

So far, we have ...

- heuristically constructed censors based on "security configurations"
- declarative semantics for security configurations

Formalization

So far, we have ...

- heuristically constructed censors based on "security configurations"
- declarative semantics for security configurations

But ...

- How to determine the set of "harmful" inferences?
- How to decide whether an inference is "harmful"?
- How to account for information gained from previous queries?

Formalization

So far, we have ...

- heuristically constructed censors based on "security configurations"
- declarative semantics for security configurations

But ...

- How to determine the set of "harmful" inferences?
- How to decide whether an inference is "harmful"?
- How to account for information gained from previous queries?

Solution: Epistemic logic

- representation of inferences as modal sentences
- store inferences in a user log
- note: epistemic logic only used as an auxiliary means

イロト イヨト イヨト イヨト

The User Log

Convert pair of query Φ and value v to epistemic sentence

- $\Delta(\Phi, true) = K\Phi$
- $\Delta(\Phi, false) = K \neg \Phi$
- $\Delta(\Phi, undef) = \neg K \Phi \land \neg K \neg \Phi$

< 回 ト < 三 ト < 三 ト

The User Log

Convert pair of query Φ and value v to epistemic sentence

- $\Delta(\Phi, true) = K\Phi$
- $\Delta(\Phi, false) = K \neg \Phi$
- $\Delta(\Phi, undef) = \neg K \Phi \land \neg K \neg \Phi$

Convert pair of query Φ and inference set V to epistemic sentence

•
$$\Delta^*(\Phi, V) = \bigvee_{v \in V} \Delta(\Phi, v)$$

・ 戸 ト ・ ヨ ト ・ ヨ ト ・ ヨ

The User Log

Convert pair of query Φ and value v to epistemic sentence

- $\Delta(\Phi, true) = K\Phi$
- $\Delta(\Phi, false) = K \neg \Phi$
- $\Delta(\Phi, \textit{undef}) = \neg K \Phi \land \neg K \neg \Phi$

Convert pair of query Φ and inference set V to epistemic sentence

•
$$\Delta^*(\Phi, V) = \bigvee_{v \in V} \Delta(\Phi, v)$$

User log log_i: Representation of user's assumptions at time i

• *log*₀: a priori assumptions

log_i: generated by adding inference set V_i from ans_i:
 log_i = log_{i-1} ∪ {Δ*(Φ_i, V_i)} with V_i = inference(censor, C_i, ans_i)

The User Log (II) Calculating the inference from an answer

Uniform lying and combined lying/refusal method: answer inferences

Take answer as inference, discard refusals:

 $inference^{ans}(censor, C, ans) := if ans = refuse then \emptyset else \{ans\}$

The User Log (II) Calculating the inference from an answer

Uniform lying and combined lying/refusal method: answer inferences

Take answer as inference, discard refusals:

 $inference^{ans}(censor, C, ans) := if ans = refuse then \emptyset else \{ans\}$

Uniform refusal method: meta inferences

Calculate set of values that produce this answer under the given security configuration:

 $\begin{array}{l} \textit{inference}^{\textit{meta}}(\textit{censor}, \textit{C}, \textit{ans}) &:= \\ \{ \textit{ v } \mid \textit{ v} \in \{\textit{true}, \textit{false}, \textit{undef}\} \textit{ and } \textit{censor}(\textit{C}, \textit{v}) = \textit{ans} \end{array} \}$

Security Violations

Uniform refusal and combined lying/refusal method

user log is "violating" if it implies any of the potential secrets
violates^{single}(pot_sec, log) := (∃Ψ ∈ pot_sec)[log ⊨_{S5} Ψ]

Security Violations

Uniform refusal and combined lying/refusal method

- user log is "violating" if it implies any of the potential secrets
- violates^{single}(pot_sec, log) := $(\exists \Psi \in pot_sec)[log \models_{S5} \Psi]$

Uniform lying method

- ... if it implies the disjunction of all potential secrets
- $violates^{disj}(pot_sec, log) := log \models_{S5} \bigvee_{\Psi \in pot_sec} \Psi$
- stronger condition, but avoids $C^{\text{"hopeless"}} = \{\{\text{true}\}, \{\text{false}\}, \{\text{undef}\}\}$

Security Violations

Uniform refusal and combined lying/refusal method

- user log is "violating" if it implies any of the potential secrets
- violates^{single}(pot_sec, log) := $(\exists \Psi \in pot_sec)[log \models_{S5} \Psi]$

Uniform lying method

- ... if it implies the disjunction of all potential secrets
- $violates^{disj}(pot_sec, log) := log \models_{S5} \bigvee_{\Psi \in pot_sec} \Psi$
- stronger condition, but avoids $C^{\text{``hopeless''}} = \{\{\text{true}\}, \{\text{false}\}, \{\text{undef}\}\}$

Calculating the security configuration

 $C_i := sec_conf(pot_sec, log, \Phi) = \\ \{ V \mid V \in \mathcal{I} \text{ and } violates(pot_sec, log \cup \{\Delta^*(\Phi, V)\}) \} \\ \mathcal{I}: \text{ range of the } inference-function used by the respective method}$

3

Formalization and Security

Formalization of a method for controlled query evaluation

 $\textit{control_eval}(\langle \Phi_1,..,\Phi_n\rangle,\textit{log}_0,\textit{db},\textit{pot_sec}) := \langle (\textit{ans}_1,\textit{log}_1),..,(\textit{ans}_n,\textit{log}_n) \rangle$

くぼう くほう くほう

Formalization and Security

Formalization of a method for controlled query evaluation

 $\textit{control_eval}(\langle \Phi_1,..,\Phi_n\rangle,\textit{log}_0,\textit{db},\textit{pot_sec}) := \langle (\textit{ans}_1,\textit{log}_1),..,(\textit{ans}_n,\textit{log}_n)\rangle$

In each step *i*:

2
$$ans_i := censor(C_i, eval(\Phi_i)(db))$$

$$\textbf{ og}_i := log_{i-1} \cup \{\Delta^*(\Phi_i, inference(censor, C_i, ans_i))\}$$

< ロ > < 同 > < 回 > < 回 > < 回 > <

Formalization and Security

Formalization of a method for controlled query evaluation

 $\textit{control_eval}(\langle \Phi_1,..,\Phi_n\rangle,\textit{log}_0,\textit{db},\textit{pot_sec}) := \langle (\textit{ans}_1,\textit{log}_1),..,(\textit{ans}_n,\textit{log}_n)\rangle$

In each step *i*:

2
$$ans_i := censor(C_i, eval(\Phi_i)(db))$$

$$\textbf{ 0 } log_i := log_{i-1} \cup \{\Delta^*(\Phi_i, \textit{inference}(\textit{censor}, C_i, \textit{ans}_i))\}$$

Theorem: *control_eval* preserves confidentiality if

2 censor function is *locally safe* for each security configuration C

イロト 不得 とくまとう ほう

Formalization and Security

Formalization of a method for controlled query evaluation

 $\textit{control_eval}(\langle \Phi_1,..,\Phi_n\rangle,\textit{log}_0,\textit{db},\textit{pot_sec}) := \langle (\textit{ans}_1,\textit{log}_1),..,(\textit{ans}_n,\textit{log}_n)\rangle$

In each step *i*:

2
$$ans_i := censor(C_i, eval(\Phi_i)(db))$$

$$\textbf{ 0 } log_i := log_{i-1} \cup \{\Delta^*(\Phi_i, \textit{inference}(\textit{censor}, C_i, \textit{ans}_i))\}$$

Theorem: *control_eval* preserves confidentiality if

2 censor function is *locally safe* for each security configuration C

Proof idea:
$$log_n \not\models_{S5} \Psi \Rightarrow ex. M, s: (M, s) \models log_n, (M, s) \not\models \Psi$$

 $db_2 := \{\phi \mid \phi \text{ is propositional sentence and } (M, s) \models K\phi\}$

Joachim Biskup and Torben Weibert

Keeping Secrets in Incomplete Databases

Methods - Comparison

Uniform lying

- always lie, never refuse
- pro: no need to consider meta inferences
- con: protects disjunction of secrets

伺下 イヨト イヨト

Methods - Comparison

Uniform lying

- always lie, never refuse
- pro: no need to consider meta inferences
- con: protects disjunction of secrets

Uniform refusal

- always refuse, never lie
- pro: protects each single secret
- con: needs to consider meta inferences

通 ト イヨ ト イヨト

Methods - Comparison

Uniform lying

- always lie, never refuse
- pro: no need to consider meta inferences
- con: protects disjunction of secrets

Uniform refusal

- always refuse, never lie
- pro: protects each single secret
- con: needs to consider meta inferences

Combined lying and refusal

- lie as long as possible, refuse in case of "hopeless situation"
- pro: protects each single secret
- pro: no need to consider meta inferences

Future Work

Consider . . .

- higher logics (FOL, ...)
- different types of security policies
- open queries (paper in preparation)
- special cases (unknown security policies, ...)

Find applications

- trust negotiation
- ...?

Implementation

- existing prototype for special case of complete information systems
- find suitable engine for modal logic

Joachim Biskup and Torben Weibert

Keeping Secrets in Incomplete Databases

3

(a)