Non-Interference for a
Typed Assembly Language

Ricardo Medel?!

Joint work with Adriana Compagnonil and Eduardo Bonelli?

1. Dept. of Computer Science, Stevens Institute of Technology, Hoboken, NJ.

2. LIFIA, Universidad Nacional de La Plata, Buenos Aires (Argentina)

FCS'05

" S
Motivations: Confidentiality

. Secret data should not flow to public channels

- Access control mechanisms do not control the
propagation of data

- Enforce confidentiality policies on an end-to-end
basis

FCS'05

"
Motivations: Non-interference

« Low security output should not be affected by
high security input [Goguen & Meseguer 82]

L H, L H

FCS'05

" S
Motivations: Assembly Language

Information flow analysis
(non-interference) - Ok

Compilation Type preservation

Information flow analysis
(non-interference) > ?

FCS'05

" S
Formalizing Confidentiality Policies

- Indicate which information is public, secret,
etc.. decorate computational objects with
security labels {|_,H}

- Specify information flow policy: information
may flow from low security to high security
locations

FCS'05

" S
Information Flow Policy

Information flow policy as lattice on security
labels [Bell & LaPadula 73, Denning 76]:

|, <1, = information can flow from level |, to level |,
L<H

Easy to express merging/splitting requirements.
xxzzyly+zI1z; Iyulz<Ix

FCS'05

B _
Non-interference
* (C-indistinguishability
vz wh iff 1L < = v=w
* (C-indist. input produces C-indist. output

(L, Hl) zg (L’ H2)

Examples of lllegal Flows

\

>
- — =
y = 3
\
1T x" then |
y-:=1 h§
else =
yh1=2 =

endif

FCS'05

" S
Detection of Implicit lllegal Flow

pc=L) 1T X" then
y-:=1

else
y-:=2

endif;
Zz-:=3

FCS'05

Detection of Implicit lllegal Flow

1T " then
pc=H y-:=1
else

y-:=2

endif;
Zz-:=3

FCS'05

Detection of Implicit lllegal Flow

1T " then
g— Qﬁ' Should be H!
else

y-:=2

endif;
Zz-:=3

FCS'05

Detection of Implicit lllegal Flow

1T " then
pc=H y':=1
else

FCS'05

Detection of Implicit lllegal Flow

pc=L 1T X" then

FCS'05

" S
Difficulties with
Assembly Language

High-level control flow constructs not available

Simulate the block structure in low-level programs
Code labels represent the junction points

A stack of code labels represents the nested block
structures

FCS'05

Example revisited

« Standard Translation into Assembly Language

Lorapr-s bez ri,L1; % 1f X
mov r2,1; % then y:=1
Jmp L2;
L1: mov r2,2; % else y:=2
L2: mov r3,3; % z:=3

halt

FCS'05

Example revisited (cont'd)

« Standard Translation into Assembly Language

Loraprs bez ri,L1; bez ri,L1
mov r2,1; ///// \\\\\\
Jmp L2; mov r2,1 mov r2,2
L1: mov r2,2; \\\\\ ////
L2- mov r3,3; mov r3.3

halt

FCS'05

SIF Version of Example

Lsart-

L1:

L2:

cpush L2;
bez r1,L1;
mov r2,1;
cymp L2;
mov r2,2;
cymp L2;
mov r3,3;
halt

cpush L2

i

bez r1,L1

N

mov r2,1 mov r2,2

| |

cymp L2

N

mov r3,3

FCS'05

" S
Syntax of SIF

Program P :=eof | L:P | i;P

Instructions i::= halt | ympL | bnz », L | bez r, L
arithr«r®r | arithir«r®n

loadr,«<—r[c] | storer [n] <7

cpushL |cpmp L

FCS'05

Types in SIF

Security types ci=o

Word types o:=Int | [1]

Heap location types T=0x..x0_|code
Registers Context I'={r)o,.., r,.:oc, pclcode]’}

Junction Points Stack A ::=¢ | L-A

FCS'05

" S
Types in SIF (cont'd)

Contexts ' A

Signature % : Code labels — Contexts

Lorary = {7, int?, rycint, pc: L} | €
cpush L2;
bez r1,L1;
mov r2,1

A program P is well-typed if Z(Lsgare) s P

FCS'05

Sample typing rules: cpush

[= 2(L) (pc)

I,pc:/|L-A |—2P

[,pc:/|A | cpush L; P

pc=Medium

e

cpush L
pc=High

N

cjmp L cjmp L

N

L: pc=Low

FCS'05

1T Z'=0 then
1T X'=0 then

else

Sample typing rules: cymp

S(L)=T"] A I oe € e Ctxt(P) | P

T'|L-A}cjmp L;P

Ctxt(L;P)=2(L) Ctxt(eof)={} | ¢

FCS'05

" S
Machine Configurations

Machine configuration: M= (H, R)

M is type safe at # in a well-typed program

P=p,;...p,;...;p, With heap type ¥ if M satisfies the
typing assumptions 7, for the instruction p,

A well-typed program P will be non-interferent if
executed in a type-safe machine configuration

FCS'05

Verification Schema

Z(Lsrarr) b P M type safe at Lo anr
: Y Y
Compiler Assembler Eval
N N
Unsafe Unsafe
Code Memory

- No typed heap required at type-checking

FCS'05

Non-Interference

C-indistinguishability of machine configurations:
M1, AL F) =py Myl A, %,

Non-Interference Theorem:
M 1 ‘.Etart’ Astart’ g zP,Z; M2‘.1_;tart’ Astart’ g

e e

M LAY, mpe MO, AL Y,

V

with M, ,M, type safe at Lcipny, and M, , M, in final state.

FCS'05

"
Future Work

- Include an execution stack in SIF.

- Reuse of registers.

- Complilation function from a imperative
language, and proof of type preservation.

. Complexity of typechecking.

FCS'05

Related work

- High Level Languages
Smith, Volpano & Irvine [SVI96, SV98]
Myers [ML97, My99]
Heintze & Riecke [HR98, ABHR99]
Sabelfeld & Sands [SS99, SS00]
Pottier & Conchon [PCO00]
Banerjee & Naumann [BNO95]

- Low Level Languages

Myers & Zdancewic [ZM01,ZM02]
Barthe et al [BBR04]
Crary et al [CKP095]

FCS'05

Thank you!

FCS'05

" S
Non-Interference (formal)

Non-Interference Theorem:

Given a well-typed program P=p,;...p,;...;p, and
machines VM ,, M, type safe at / in P with ¥and

M]:[} ’A], T zP’C MZ..F], A]’ T

If M, —>* M", and M, —* M',, with p_ (resp. p,,) the
current instruction in M, (resp. M’,), and with
both A77,, M", in final state, then

M’]'.I_xv/’ Av’ SUv zP,QM,Z"Fw’ Aw’ SUw

FCS'05

Other channels

m Timing (including Non-Termination)
m Resource Exhaustion

m Power consumption

FCS'05

Other proposed solution

- A list of program points where is safe to
lower the pc replaces the signature 2

Depends on the trustworthiness of the list

Our type rules verify the well-formedness of X

FCS'05

Other proposed solution (cont'd)

Suppose that pe=medium at position 1.

L: bez ri,L1; List = {(5,low))
mov r2,1;
Jmp L2;

L1: mov r2,2;

L2: mov r3,3;
halt

OO WNLPE

The pc is lowered beyond the original level. Medium-
security information flows to a low-security register (r3).

FCS'05

Other proposed solution (cont'd)

L : cpush L2;
bez r1,L1;
mov r2,1;
cymp L2;

L1: mov r2,2;
cymp L2;

L2: mov r3,3;
halt

medium < 2(L2) (pc) I', pc:medium | L2 - A |'z P
T, pc:medium | A s cpush L2; P

FCS'05

	Non-Interference for a Typed Assembly Language
	Motivations: Confidentiality
	Motivations: Non-interference
	Motivations: Assembly Language
	Formalizing Confidentiality Policies
	Information Flow Policy
	Non-interference
	Examples of Illegal Flows
	Detection of Implicit Illegal Flow
	Detection of Implicit Illegal Flow
	Detection of Implicit Illegal Flow
	Detection of Implicit Illegal Flow
	Detection of Implicit Illegal Flow
	Difficulties with Assembly Language
	Example revisited
	Example revisited (cont’d)
	SIF Version of Example
	Syntax of SIF
	Types in SIF
	Types in SIF (cont’d)
	Sample typing rules: cpush
	Sample typing rules: cjmp
	Machine Configurations
	Verification Schema
	Non-Interference
	Future Work
	Related work
	Non-Interference (formal)
	Other channels
	Other proposed solution
	Other proposed solution (cont’d)
	Other proposed solution (cont’d)

