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Motivations: Confidentiality

. Secret data should not flow to public channels

- Access control mechanisms do not control the
propagation of data

- Enforce confidentiality policies on an end-to-end
basis
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Motivations: Non-interference

« Low security output should not be affected by
high security input [Goguen & Meseguer 82]

L H, L  H
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Motivations: Assembly Language

Information flow analysis
(non-interference) - Ok

Compilation Type preservation

Information flow analysis
(non-interference) > ?
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Formalizing Confidentiality Policies

- Indicate which information is public, secret,
etc.. decorate computational objects with
security labels {|_,H}

- Specify information flow policy: information
may flow from low security to high security
locations
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Information Flow Policy

Information flow policy as lattice on security
labels [Bell & LaPadula 73, Denning 76]:

|, <1, = information can flow from level |, to level |,
L<H

Easy to express merging/splitting requirements.
xxzzyly+zI1z; Iyulz<Ix
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Non-interference
* (C-indistinguishability
vz wh iff 1L < = v=w
* (C-indist. input produces C-indist. output

(L, Hl) zg (L’ H2)




Examples of lllegal Flows

\

>
- — =
y = 3
\
1T x" then |
y-:=1 h§
else =
yh1=2 =

endif
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Detection of Implicit lllegal Flow

pc=L) 1T X" then
y-:=1

else
y-:=2

endif;
Zz-:=3
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Detection of Implicit lllegal Flow

1T " then
pc=H y-:=1
else

y-:=2

endif;
Zz-:=3
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Detection of Implicit lllegal Flow

1T " then
g— Qﬁ' Should be H!
else

y-:=2

endif;
Zz-:=3
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Detection of Implicit lllegal Flow

1T " then
pc=H y':=1
else
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Detection of Implicit lllegal Flow

pc=L 1T X" then
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Difficulties with
Assembly Language

High-level control flow constructs not available

Simulate the block structure in low-level programs
Code labels represent the junction points

A stack of code labels represents the nested block
structures
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Example revisited

« Standard Translation into Assembly Language

Lorapr-s bez ri,L1; % 1f X
mov r2,1; % then y:=1
Jmp L2;
L1: mov r2,2; % else y:=2
L2: mov r3,3; % z:=3

halt
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Example revisited (cont'd)

« Standard Translation into Assembly Language

Loraprs bez ri,L1; bez ri,L1
mov r2,1; ///// \\\\\\
Jmp L2; mov r2,1 mov r2,2
L1: mov r2,2; \\\\\ ////
L2- mov r3,3; mov r3.3

halt
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SIF Version of Example

Lsart-

L1:

L2:

cpush L2;
bez r1,L1;
mov r2,1;
cymp L2;
mov r2,2;
cymp L2;
mov r3,3;
halt

cpush L2

i

bez r1,L1

N

mov r2,1 mov r2,2

| |

cymp L2

N

mov r3,3

FCS'05



" S
Syntax of SIF

Program P :=eof | L:P | i;P

Instructions i::= halt | ympL | bnz », L | bez r, L
arithr«r®r | arithir«r®n

loadr,«<—r[c] | storer [n] <7

cpushL |cpmp L

FCS'05



Types in SIF

Security types ci=o

Word types o:=Int | [1]

Heap location types T=0x..x0_|code
Registers Context I'={r)o,.., r,.:oc, pclcode]’}

Junction Points Stack A ::=¢ | L-A
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Types in SIF (cont'd)

Contexts ' A

Signature % : Code labels — Contexts

Lorary = {7, int?, rycint, pc: L} | €
cpush L2;
bez r1,L1;
mov r2,1

A program P is well-typed if Z(Lsgare) s P

FCS'05



Sample typing rules: cpush

[ = 2(L) (pc)

I,pc:/|L-A |—2P

[,pc:/|A | cpush L; P

pc=Medium

e

cpush L
pc=High

N

cjmp L cjmp L

N

L: pc=Low
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else



Sample typing rules: cymp

S(L)=T"] A I oe € e Ctxt(P) | P

T'|L-A}cjmp L;P

Ctxt(L;P)=2(L) Ctxt(eof)={} | ¢
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Machine Configurations

Machine configuration: M= (H, R)

M is type safe at # in a well-typed program

P=p,;...p,;...;p, With heap type ¥ if M satisfies the
typing assumptions 7, for the instruction p,

A well-typed program P will be non-interferent if
executed in a type-safe machine configuration
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Verification Schema

Z(Lsrarr) b P M type safe at Lo anr
: Y Y
Compiler Assembler Eval
N N
Unsafe Unsafe
Code Memory

- No typed heap required at type-checking
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Non-Interference

C-indistinguishability of machine configurations:
M1, AL F) =py Myl A, %,

Non-Interference Theorem:
M 1 ‘.Etart’ Astart’ g zP,Z; M2‘.1_;tart’ Astart’ g

e e

M LAY, mpe MO, AL Y,

V

with M, ,M, type safe at Lcipny, and M, , M, in final state.
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Future Work

- Include an execution stack in SIF.

- Reuse of registers.

- Complilation function from a imperative
language, and proof of type preservation.

. Complexity of typechecking.
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Related work

- High Level Languages
Smith, Volpano & Irvine [SVI96, SV98]
Myers [ML97, My99]
Heintze & Riecke [HR98, ABHR99]
Sabelfeld & Sands [SS99, SS00]
Pottier & Conchon [PCO00]
Banerjee & Naumann [BNO95]

- Low Level Languages

Myers & Zdancewic [ZM01,ZM02]
Barthe et al [BBR04]
Crary et al [CKP095]
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Thank you!
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Non-Interference (formal)

Non-Interference Theorem:

Given a well-typed program P=p,;...p,;...;p, and
machines VM ,, M, type safe at / in P with ¥and

M]:[} ’A], T zP’C MZ..F], A]’ T

If M, —>* M", and M, —* M',, with p_ (resp. p,,) the
current instruction in M, (resp. M’,), and with
both A77,, M", in final state, then

M’]'.I_xv/’ Av’ SUv zP,QM,Z"Fw’ Aw’ SUw
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Other channels

m Timing (including Non-Termination)
m Resource Exhaustion

m Power consumption
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Other proposed solution

- A list of program points where is safe to
lower the pc replaces the signature 2

Depends on the trustworthiness of the list

Our type rules verify the well-formedness of X
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Other proposed solution (cont'd)

Suppose that pe=medium at position 1.

L: bez ri,L1; List = {(5,low))
mov r2,1;
Jmp L2;

L1: mov r2,2;

L2: mov r3,3;
halt

OO WNLPE

The pc is lowered beyond the original level. Medium-
security information flows to a low-security register (r3).
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Other proposed solution (cont'd)

L : cpush L2;
bez r1,L1;
mov r2,1;
cymp L2;

L1: mov r2,2;
cymp L2;

L2: mov r3,3;
halt

medium < 2(L2) (pc) I', pc:medium | L2 - A |'z P
T, pc:medium | A s cpush L2; P
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