A Constraint-Based Algorithm for Contract-Signing Protocols

Detlef Kähler

Kiel University

Joint work with Ralf Küsters

Overview

• Introduction / Motivation

Formal model / Problem

Constraint solving / Algorithm

Conclusion

Contract signing

Example: Alice wants to buy a house from Bob

- 1) Parties agree upon contractual text
- 2) Both parties sign a copy
- 3) Parties exchange signed copies simultaneously

Alice

Bob

Contract
Alice buys house
from Bob for
100000 \$

Contract signing over a network

How to do the exchange of signed copies?

Naïve approach

A contract-signing protocol is balanced for Alice if at no stage of the protocol execution Bob has both

- a strategy to obtain a valid contract, and
- a strategy to prevent Alice from getting a valid contract.

ASW-protocol

ASW-protocol: Optimistic two party contract-signing protocol

ASW-protocol

Abort subprotocol

Alice
$$me_1 = "Willing to sign contract"$$

ASW-protocol

7/1/2005

Communication model (extended Dolev-Yao)

- The network is the intruder
- Secure channels

Finite-session model of a model proposed by Scedrov et al. [2001]

Formal model

Participants are rule trees

Alice (ASW-protocol) as rule tree Π_A

A protocol P consists of

a family of participants + initial intruder knowledge

Protocol States

Given a protocol $P = (\{\prod_i\}_i, K)$.

State of protocol $P: (\{\prod_{i=1}^{\prime}\}_{i}, \sigma, K^{\prime}, S)$

d(K): set of messages constructable by the intruder

Transition tree

Given a protocol $P = (\{\prod_i\}_i, K)$. What is the execution of protocol P?

The set of runs can be thought of as a tree rooted at $(\{\prod_i\}_i, \emptyset, K, \emptyset)$

Intruder Strategies (1)

Balance talks about intruder strategies. What is an intruder strategy at some point p of protocol execution?

Intruder Strategies (2)

Balance talks about intruder strategies. What is an intruder strategy at some point p of protocol execution?

- Intruder may choose not to take some intruder transitions
- \bullet ε -transitions and secure channel transitions are not under control of the intruder

Strategy properties

How can we formulate game-theoretic security requirements?

A contract-signing protocol is unbalanced for Alice if there exists a point in the protocol execution where Bob has both

- a strategy to obtain a valid contract, and
- a strategy to prevent Alice from getting a valid contract.

Problem:

Given a protocol P and a strategy property C Is there a state $p \in \mathcal{T}_P$ that satisfies C? Problem is decidable K., Küsters [2005]

Constraint solving

A constraint is of the form

where m is a term and T is a finite set of terms

A constraint system is a sequence of constraints

$$m_1: T_1 \\ m_2: T_2 \\ \vdots \\ m_k: T_k$$

A solution of a constraint system ${\bf C}$ is a substitution σ of the variables in ${\bf C}$ by messages such that

$$\sigma(m_1) \in d(\sigma(T_1))$$

$$\sigma(m_2) \in d(\sigma(T_2))$$

$$\vdots$$

$$\sigma(m_k) \in d(\sigma(T_k))$$

Constraint solver (1)

Constraint solver (2)

Algorithm

Given: Protocol P and a strategy property C Is there a state $p \in \mathcal{T}_P$ that satisfies C?

Algorithm

Given: Protocol P and a strategy property C Is there a state $p \in \mathcal{T}_P$ that satisfies C?

Guess symbolic attack BobHasValidContract Construct sound and complete $m_1:T_1$ and solve Constraint $m_2:T_2$ solver constraint $m_{17}:T_{17}$ system \mathcal{T}_{P} \mathcal{T}_{P} Check solutions AliceHasValidContract

Related work

- Contract-signing protocols
 Asokan, Shoup, and Waidner [1998]
 Garay, Jacobsson, and MacKenzie [1999]
- Finite state analysis of contract-signing protocols Mitchell, Shmatikov [2001]
 Kremer, Raskin [2002]

• • •

Infinite state analysis
 Chadha, Kanovich, and Scedrov [2001]

• • •

Constraint solving
 Millen, Shmatikov [2001]

Conclusions

• Studied game-theoretic properties of infinite transition graphs induced by cryptographic protocols.

• Showed that balance and related game-theoretic properties are decidable using constraint solving algorithm.

• Future work: implementation, complexity analysis