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Preface

Computer security is an established field of Computer Science of both theoretical and practical signifi-
cance. In recent years, there has been increasing interest in foundations for various methods in computer
security, including the formal specification, analysis and design of cryptographic protocols and their ap-
plications, the formal definition of various aspects of security such as access control mechanisms, mobile
code security, denial-of-service attacks, trust management, and the modeling of information flow and its
application to confidentiality policies, system composition and covert channel analysis.

This workshop continues a tradition, initiated with the Workshops on Formal Methods and Secu-
rity Protocols—FMSP—in 1998 and 1999, then with the Workshop on Formal Methods and Computer
Security—FMCS— in 2000, and finally with the LICS satellite Workshop on Foundations of Computer
Security—FCS—in 2002, 2003 and 2004, of bringing together formal methods and the security com-
munity. The aim of the workshop this year is to provide a forum for continued activity in this area, to
bring computer security researchers in contact with the LICS community, and to give LICS attendees an
opportunity to talk to experts in computer security.

FCS received 30 submissions this year. The Program Committee selected 11 of them for presen-
tation as the outcome of the reviewing process. In addition, the program features two invited talks, by
Frank Pfenning and Jan Vitek.

The contributions of many people have made the workshop a success. The Program Committee has
put much effort in providing helpful reviews. Many thanks are due to Frank Pfenning and Jan Vitek,
the invited speakers, for their brave decisions to concentrate on cutting-edge research in their invited
talks. Phil Scott and Radha Jagadeesan, our connections to LICS, have been of much help for FCS to
run smoothly. Aslan Askarov deserves special thanks for his help in compiling the proceedings. Most
of all, we are thankful to the authors and the attendees who made this workshop an inspiring and fruitful
event.

Andrei Sabelfeld
FCS’05 Program Chair
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Language-Based Intrusion Detection

Jan Vitek
Department of Computer Science
Purdue University
http://www.cs.purdue.edu/people/jv

Host-based intrusion detection systems attempt to identify attacks by discovering program behaviors that deviate
from expected patterns. While the idea of performing behavior validation on-the-fly and terminating errant tasks as
soon as a violation is detected is appealing, this presents numerous practical and theoretical challenges. In this talk
we focus on automated intrusion detection techniques, i.e. techniques which do not require human intervention.
Of particular interest are techniques that rely on, or leverage, programming language semantics to find novel ways
of detecting attacks. We will review the main attack models, describe the state of the art in host-based intrusion
detection techniques and conclude with a list of challenges for the research community.
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Dynamic Updating of Information-Flow Policies

Michael Hicks* Stephen Tse' Boniface Hicks' Steve Zdancewic?
*University of Maryland ' Pennsylvania State University University of Pennsylvania

Abstract

Applications that manipulate sensitive information should ensure end-fo-end security by satisfying two
properties: sound execution and some form of noninterference. By the former, we mean the program should
always perform actions in keeping with its current policy, and by the latter we mean that these actions should
never cause high-security information to be visible to a low-security observer. Over the last decade, security-
typed languages have been developed that exhibit these properties, increasingly improving so as to model
important features of real programs. No current security-typed language, however, permits general changes
to security policies in use by running programs. This paper presents a simple information flow type system
for that allows for dynamic security policy updates while ensuring sound execution and a relaxed form of
noninterference we term noninterference between updates. We see this work as an important step toward using
language-based techniques to ensure end-to-end security for realistic applications.

1 Introduction

Increasingly, personal and business information is being made available via networked infrastructures, so the
need to protect the confidentiality of that information is becoming more urgent. A typical approach to enforcing
data confidentiality is via access control. Unfortunately, access control only governs the release of information,
not its propagation. Once a principal (e.g., a user, process, party, etc.) legally reads some data, he can freely
share it, whether purposefully or inadvertently, despite the possible wishes of its owner. Instead, we would prefer
applications to enforce end-fo-end security by governing information flow: a principal should not, through error
or malice, be permitted to transmit confidential information to an unauthorized party.

An information flow control system typically aims to enforce two properties: noninterference and sound execu-
tion. Given a principal hierarchy that defines the relative security levels of various principals, a program satisfies
noninterference when it ensures that high security data is never visible, whether directly or indirectly, to low se-
curity observers. A program satisfies sound execution if it does not generate errors at run time. A typical way to
satisfy these properties is to use a security-typed language [14] wherein the standard types on program variables
include annotations to specify which principals are allowed to read. If a program type checks under a princi-
pal hierarchy, then, it is guaranteed that the program is noninterfering and sound with respect to the hierarchy.
Security-typed languages are appealing because these properties are proven in advance of actual execution.

Typical security-typed languages assume that the principal hierarchy remains fixed during program execution.
For long-running programs, such an assumption is unrealistic, as policies often change over time, e.g., to perform
revocations [6, 2]. On the other hand, simply allowing the principal hierarchy to change at runtime could violate
both the soundness and noninterference properties of running programs.

This paper presents a new security-typed language that allows dynamic updating of information-flow policies,
particularly the delegation relations in the principal hierarchy. Section 2 defines a typical security-typed source
language A, and then Section 4 defines )\Elg as an extension of Al with rags and the ability to accommodate
updates to the principal hierarchy. We prove that ALl programs can be compiled to )\gg programs automatically,
that these programs are sound, and that they respect a flavor of noninterference we dub noninterference between



p == X | pp ¢ == p:p | L4 E = | €&m|vE | iffmm
I == - |ILp<p u = bool; | u—u
m = truey | falsey | x | Ax:um | nm | ifmmm | if (p<p)mm

Figure 1: Syntax of /\g: principals p, labels ¢, permission II, types u, terms m, and holes &.

updates. To our knowledge, ours is the first system to safely permit general updates to the principal hierarchy,
including revocations, in security-typed languages. Our discussion of the meaning of noninterference in the pres-
ence of revocation, and the definition of the term noninterference between updates, is also new. We believe our
approach is an important step to making security-typed languages expressive enough to be used in real systems.

2 A Simple Security-Typed Language, )\2

To make our discussion of policy updates more concrete, we introduce a calculus A\, a formalization of the
decentralized label model [10] (DLM) based on the simply-typed lambda calculus. We present a discussion on
policy updates, their challenges, and our solution to making them sound in the following two sections.

Figure 1 presents the syntax of A\ Security policies specify confidentiality policies, defining which principals
are allowed to read which data. Policies are specified in two parts. First, types and simple values are annotated
with labels /¢ that consist of one or more pairs (p; : p,), where p, is the policy owner specifying p, as the reader.
Principals p can be either literals X or principal sets (py, . .., p,,). A label with multiple pairs, written ({1, {2) can
be used to specify more restrictive policies: a potential reader must satisfy all of the label restrictions. The second
part of a DLM security policy is the principal hierarchy, or a permission context, II is represented as a list of
delegations between principals p; < ps.

Terms m and types u are largely standard. We write evaluation as II - m; — my, which states that m; evaluates
in a single step to become my under runtime principal hierarchy II. The principal hierarchy can be accessed
dynamically using the run-time test of principal delegation if (p; < p,) ey ez [17]:

IT+p; <p, It/ py < py
ITFif (p; <py) mpmp — my ITFif (p; < py) mymp — mp

The typing judgment has the form II;I' - m : t, where I' tracks the types of bound variables as usual, and
permission context II statically tracks knowledge of the principal hierarchy. Most rules are standard [17], as
shown in Figure 2. The judgment 1ab(u) = ¢ returns the label of the type:

lab(ug) =/
lab(u; —ug) =4

lab(booly) =/

There are two additional typing rules. The first one type-checks the run-time test of principal delegation. If the
principal delegation test succeeds, the first branch can statically assume that IT I p; < p, holds inside by adding!
p; < p, to the permission context II.

ILp; <py; I'Fm :u ILT Fmo:u ILTFm:w IIFu <u
ILTFif (py <py)mmp:u ILTFm:u

'The second branch cannot assume II - p, < p,; hence, there is no addition of constraints to the context for the second branch in
the typing rule. Adding negative constraints (p; ¥ p,) to the context is unnecessary, because subtyping can be decided with positive
constraints.



II, T Fmy : bool, IILTFm:u IITFmg:u lab(u) =/
ILTFifmimomg:u

ILT,x:ukFx:u

ILT, x:u; Fm:us

II;T" F truey : booly ITF wo o o g
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ILT Fmy:u—uo ILT Fmo:u

II; T+ falsey : booly T
) mp mp :ug

Figure 2: Typing rules of /\2: II; T m: t (under hierarchy II and context I, the term m has type t).

The second one is the subsumption rule that allows the flexibility of implicitly appealing to principal delegations
in the permission context during typing. There exist straightforward and efficient algorithms [7, 17] for context
subtyping II; < Il5 (meaning II; is more permissive than Ils), label subtyping II - ¢; C /5 (meaning ¢; is less
restrictive than /o under II), principal subtyping II - p; < p, (meaning principal p, is delegating to p, under II),
and type subtyping IT - u; < us (meaning u; is a subtype of uz under II); we leave their formal specification to
our companion technical report.

We have proved the desired properties of sound execution and noninterference for A by a sound translation to
a target language, which is to be described in Section 4. N

3 The Meaning of Policy Updates

Now we consider the means and the meaning of security policy updates in A\ (and similar languages). An
information-flow security policy can change in two ways. First, the label on a particular piece of data might be
altered, thereby making access to it more restricted or less restricted. The former case is permitted automatically
by the subsumption rule: it is always safe to treat a piece of data more restrictively. The latter case is potentially
dangerous, as the relabeling might expose sensitive information, so it is typically allowed only by an explicit
declassify operation. A second way of changing the information-flow policy is to alter the principal hierarchy,
which in turn alters the relative ordering between labels. Here again there are two kinds of changes: one can
add a (directed) edge between two principals (e.g., the delegation p; < p,), which corresponds to increasing
the privileges of an observer. This kind of policy change is like a global form of declassification. One can also
remove edges, corresponding to revocation, strengthening the security policy and decreasing the set of permissible
information flows.

In this paper, we address the second style of policy update in which the principal hierarchy can change. To
determine how and when the hierarchy should be permitted to change, we must consider the impact of policy
updates on a program’s security properties: sound execution and noninterference.

3.1 Models of updating

It is easy to see that naively allowing arbitrary policy updates could make evaluation unsound: the program could
act in a way not consistent with its current policy. As an example, consider this simple program (extending the
syntax presented earlier with 1let and integers):

let x:intp,. = (if (p; <py) Ip: 3p,:) in if (py < p3) x 2p,:



If we evaluate this program under II = p; < p,, after one step the if branch succeeds yielding

let x: intpz; = 1p1: in if (p2 < p3) X 2P35

(Bx 1)

Now say we wish to change the principal hierarchy to be II' = p, < p,. If we allow this update to occur, then the
program’s next evaluation step will be unsound. It will allow the data 1;, . to flow to variable x, whose label py: is
not equal or higher under IT". Clearly, this update should not be permitted.

Noninterference is more subtle because it is a global property: it ratifies all information flows that might occur
during a program’s entire evaluation relative to a single, fixed principal hierarchy. When the hierarchy can change,
this definition no longer makes sense. One alternative is noninterference between updates, meaning that when
a policy update occurs, the history of how some data received a certain label is forgotten, and the question of
noninterference is reconsidered for the current program at the current policy. As motivation for this definition,
imagine some data (a file, say) labeled as p; : under II” = p; < p,, p; < ps, meaning principals p, and p5 are
allowed to read it. If principal p; is fired and p, is hired, we might like to change the principal hierarchy to be
P < P9, P; < py; l.e. torevoke the assertion p; < p5 and add the assertion p; < p,. From the point of view of the
file labeled p; : and the original hierarchy I1”, the changed hierarchy both rejects flows previously allowed (p5 can
no longer read the file) and permits flows not previously admitted (p, can read the file, but could not before). Thus,
at least some portion of the file’s information flow history must be forgotten to permit this intuitively reasonable
policy change.

On the other hand, noninterference between updates can permit unintuitive, perhaps unintended flows. For
example, say the program (Ex 1) takes an additional step under II yielding

if (pg < Pg) 1pls 2p3:

Under the initial principal hierarchy II, the program would terminate with result 2;,.. However, if we were to
change the hierarchy to II"” = p; < p,y,ps < ps, then the if branch would be taken, and we would terminate
with result 1p, .. The evaluation is sound and noninterfering under II"” from the point of the change to termination.
However, from the point of view of the entire program evaluation, the observed flow would have been disallowed
under II, and thus violates noninterference when considered relative to II. Moreover, a program that satisfies non-
interference between updates says nothing about the security ramifications of updates themselves. For example,
one risk is that if an attacker can observe when a policy update occurs and what it consists of, he may be able to
deduce the values of private data in the program.

An ideal security property would both permit policy updates to selectively “forget the past” and also reason
about some flows across updates. It is an open question as to what information flow systems should enforce even
when policy updates are disallowed—noninterference, though commonly supported, is too restrictive in practice.
As a first step, for this paper, we ensure that program execution is sound and respects noninterference between
updates, recognizing and expecting that a better property is needed. We plan to investigate stronger, adequately
expressive security properties in future work.

3.2 Overview of approach

At first glance, defining principal hierarchy updates for Al that ensure soundness and noninterference between
updates may seem straightforward. In particular, we can show noninterference between updates by proving the
standard notion of noninterference: the type system is parameterized by a fixed principal hierarchy that is enforced
as usual, since it implies that as long as the policy does not change, the program is noninterfering.

Proving soundness would seem equally simple: to update the principal hierarchy II to I’ while running program
m requires that we simply type check m under IT': if type checking succeeds then we permit the update. While this

10



approach is sound (by definition), it is overly restrictive. Consider our example program again. Say the program
evaluates under IT and becomes as in Ex 1. Then say we wish to change the hierarchy to be IT’. This program will
not type check since the expression 1, . cannot be given type intp, . under IT'. But conceptually it should be legal,
because x (which we have substituted for here with 1; .) should be treated as having type int,, ., as defined in the
original program. This fact is not revealed, however, in the run-time representation of the current state. That is, an
important fact of the past (changing the type of 1, . to intp, .) has been forgotten.

We can solve this problem by moving away from the view of subtyping as subset to the view of subtyping as
coercion for evaluation. Rather than viewing data 1; . as having type intp, . under II, we say that we can coerce
1p,: to a value that has type inty,.; that is, we can coerce it to 1, .. To do this, we extend Ag with permission tags
that act as coercion functions. In particular, the expression [¢ T ¢']1, will evaluate to 1,,. With this change, our
original program becomes

let x:int,,, = if (p; <py) ([p1: E poillp,:) 3p,: in if (py < p3) ([P2: E Pailx) 2p,:

That is, the uses of subsumption are made explicit as tags. Then the program will evaluate under II to become

if (py < p3) ([P2: C P3illp,:) 2p,:

Now we can see that changing to IT" will be legal, as 1 has a label that can be properly typed in the new policy. At
the same time, we still prevent illegal updates to the policy. In the more general case that 1, . were some expression
mp, :, it would be unsound for the policy to change until m is a base value. Thus, while m is being evaluated (i.e.,
in the context of the if expression), it is guarded with the tag [p,: T ps:]. An update that violated this constraint
would not be allowed (as desired).

In addition to providing a more flexible coercion semantics, it turns out that permission tags can also lead to
a more efficient implementation. In particular, rather than having to type check the entire program body at each
proposed change in policy, we only need to look at the tags, which succinctly capture how the current policy is
being used. Section 4 presents a dynamic traversal that discovers these tags at update points without having to
consider function bodies. We conjecture that with only a little more work, we can adjust the evaluation semantics
to keep track of the current “tag context”. This would allow us to replace the traversal with a simple check.

3.3 Example

To show how these issues might arise in practice, we conclude this section with an example. Figure 3 shows a class
for accessing the records of a company database, written in a Java-like syntax. This class defines two run-time
principals mgr, which is a division manager, and div, which represents a division of company employees.”? Lines
5 through 8 define some utility functions getting query inputs from the system user, processing them, creating
summaries, and displaying information to the user. The policies on these methods establish that queries and the
resulting processed data are owned by the mgr principal and readable by all principals in the group div, but that the
results of auditing a query are only readable by mgr. These policies are explicit in the program: for example, the
label on line 5 indicates that the result of get_query is owned by the principal mgr and readable by (principals in)
the group div; similarly the audit method takes data readable by div and returns data only readable mgr (owners
are implicitly considered to be readers in our model).

The method access_records is parameterized by a principal emp (employee), which is the current user of
the database system. Line 15 dynamically checks that emp is a member of the division div, whose data is stored
encapsulated in this database object. This line results in a runtime check of the principal hierarchy and succeeds
only if div < emp is true at the time when the check is made. Assuming that check succeeds, employee queries
are received, processed, and displayed to the user until the user quits. In this scenario, the program also audits the

ZRun-time principals represent principals as run-time entities, and could readily be added to our system [17].
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01. class Database {

02. principal div; /* division group */

03. principal mgr; /* manager for the division */
04.

05. Query{mgr:div} get_query() {...}

06. Data{mgr:div} process_query(Query{mgr:div} q) {...}
07. Data{mgr:} audit(Data{mgr:div} d) {...}

08. void display(principal p, Data{mgr:p} {...}
09.

10. void access_records(principal emp) {

11. Query{mgr:div} query;

12. Data{mgr:emp} result;

13. Data{mgr:} summary;

14.

15. if (div < emp) { /* employee is a member of the division */
16. while (true) {

17. query = get_query();

18. if (query == Quit) break;

19. result = process_query(query);

20. summary = audit(result);

21. display(emp, result);

22.

23. if (mgr < emp) { /* employee is a manager */
24. display(emp, summary);

25. }

26. ... /* log audit information */

27. }

28. } else { abort(); %}

29. }

30. }

Figure 3: Information-flow in a database system with principal delegations.

employee queries, perhaps to generate some statistics useful for making management decisions. The results of the
audit process are readable only by managers (i.e. those principals p for which mgr < p). For convenience, if the
user of the system is a manager, the results of the audit are displayed immediately—the dynamic check on line
23 ensures that only managers receive this sensitive data. Presumably the program would also log the auditing
information for later inspection by a manager; in this case, the current user is not able to see that data.

The code makes an important assumption: though it checks div < emp only once, it assumes that this relation-
ship holds for the entire execution of the while loop. A problem arises if this relationship is revoked while the
loop executes, say if the employee is fired or just moved to a different division. In this case, an employee who no
longer belonged to a particular division would still have access to its files. Even worse, if the employee were made
a manager (i.e., introducing mgr < emp into the principal hierarchy) in a new division, he would suddenly have
privileges not allowed under either policy—he could read files belonging to his original division. These scenarios
reveal how policy changes can violate both sound execution and our intuitive notion of noninterference.

Introducing permission tags solves these problems. In particular, to store the returned value of process_query
into result, the label of the returned value must be coerced from mgr:div to mgr:emp. This will be witnessed
by a coercion [mgr:div C mgr:emp] on process_query (query), which in turn will prevent the revocation of the

12



t = bool, | t—t
= trues | false; | A[ll]x:u. e E = | e |vE | iffee | (TLE
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Figure 4: Syntax of )\Pag: types t, values v, terms e, holes .

edge div < emp from the principal hierarchy.?

I

4 A language with dynamic policy and tagging, A;,,

This section formally describes an extension to AL, called )\gg, that permits dynamic updates to the principal
hierarchy. As just described, we use permission tags of the form [¢; T /5] to prevent illegal updates of the
principal hierarchy during execution. We prove that )\?ag enjoys the security properties of sound execution and
noninterference described earlier, even as policies change at run-time. Permission tag annotations need not burden
the programmer; they can be automatically inserted by the compiler. At the end of this section, we present an
automatic translation from the source calculus presented earlier to the target calculus here, based on the standard
formulation of subtyping as coercions, and prove it sound.

The syntax of )\Elg is presented in Figure 4, and closely matches the source calculus, A\ in Section 2, except the
addition of permission tags. The typing rules are the same, with one exception: the subsumption rule for subtyping
is now eliminated, effectively replaced by the new typing rule for tags:

-4 C by ILT - e : booly,
ILT F [¢1 C £3]e : booly,

We maintain the invariant that the current principal hierarchy IT always respects the permission tag [¢/; T /o]
around the term e, as shown in the judgment II - ¢; T /5. Another invariant, which is enforced during the
translation in Section 4.2, is that only boolean values are tagged. This permits the following evaluation rules:

ITF [¢1 C f]true,, — truey, IT+ [¢y C ly]falsey, — falsey,

Functions are not directly tagged: they contain future computations in the body that, unlike booleans, cannot
be coerced to work under different security policies. Our strategy is to extend function terms with the permission
context, A[IT']x : t. e, such that the context IT" of the function body can be summarized to guard against illegal
updates. The typing rules for functions and applications are:

n<ir IT'T,x:t1 Fe:ty ILTFep:u—u IILTFes:u
IGTFA[]x:t1. et —t2 ILT Fejes:u

Given these tags, we can soundly and efficiently check if a policy update is legal during execution. We introduce
dynamic tag checking 11 - e, as shown in Figure 5, for ensuring that principal hierarchy II is valid with respect
to the running program e. Any hierarchy is valid against boolean values. Section 4.1 proves that that the dynamic
tag checking soundly approximates the static type checking with respect to the validity of policy updates.

At last, we formalize an update to the principal hierarchy of an evaluating program by defining a top-level
evaluation relation. Under hierarchy II, a program can either take a small evaluation step, or change to use the

3In a formal operational semantics, loops are implemented by expanding each iteration of the loop into to a fresh version of the original.
Each fresh version would contain this tag, preventing any update that would violate it for the duration of the loop’s execution.

13



In<Ir I+ e II+ eq II,p, <pyFer IIF ey II-/¢1 C 4y II+e
M AIT)x:t. e ITF e e ITF if (p; < py) e1 e II+ [4 C 4re

Hl—e1 H|—62 H}—eg
IIFif e] egeg

II F truey II+ falsey

Figure 5: Tag checking II - e (determines whether principal hierarchy II is legal for the running program e).

pending hierarchy IT'. The latter step is only permitted if the new hierarchy is legal with respect to the current
program, that is, if dynamic tag checking II - e succeeds:

ke —¢€ e
AL e) |1 — (II;e") (IL; ) |II' — (IT';e)

Note that dynamic tag checking is meant to approximate an implementation. That is, while our formulation
requires a traversal over the active part of the program (i.e., the part without functional terms), this traversal
could be avoided by statically gathering the set of tags S, S’ that appear in the body eq, eo, respectively, of each
if (p; < py) e1 eg expression, and then annotating the if with a fag constraint (p; < py = 5) U S’ (similar to
conditional types [1]). These tag constraints can be maintained to form a fag context at run-time, so that dynamic
tag checking merely considers the current tag context, rather than the active part of the program.

4.1 Security theorems

To show that the execution of a program written in our calculus is sound, we prove that any well-typed, closed
term runs without any error. To show that the information flow satisfies end-to-end security, we prove that any
well-typed low-security term is noninterfering by the high-security data. These type safety and the noninterference
properties are formally stated as follows.

Here |l is the top-level evaluation for the whole program, ignoring the number of policy updates, while —* is
the transitive-closure of the non-updating evaluations. Therefore, type safety is guaranteed during the evaluation
of the whole program, but noninterference is guaranteed between updates (as discussed in Section 3.1).

Theorem 1 (Security of dynamic policy updating)
1. Type safety during execution: If IT; - + e : t, then (I, e) | (I, v).

2. Noninterference between updates: If (1) II;x : booly, = e : booly,, and (2) II;- = vy : booly,, and (3)
IT; - F vg : booly,, and (4) I F U1 A by, then 1 e{vi/x} —* viff I F e{va/x} —* v.

The proof for type-safety uses the standard technique of combining the progress and the preservation of a well-
typed term. Some important lemmas for showing the soundness of tagging and tag checking are below. The first
lemma states a well-typed value can also be well-typed under the empty principal hierarchy II = -, which is critical
in the substitution lemma. The second states that the evaluation rule IT - if (p; < p,) m; my — my in Section 2
is type-preserving. The last lemma below shows that dynamic checking II - e is a sound approximation of static
type checking IL; ' e : t.
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ILT,x:uwyFm:u
H ! 2 ﬂ = AM)x:[ui]. [ILT, x:uy Fm: g
ILTF Ax:u;.m: u; —uo

[[H;Fl—m:ul H|_u1ﬁu2ﬂ

= [IIFu = ILT Fm:
ILT Fm:u [ u 2] | m: u]

[ITF booly, = booly] = A[ll]x:booly,.[¢1 C lo] x (fresh x)

= AIxq: [u1] — [uz]. A[]xz: [us]. (fresh x1, x2)

IIFus <y IITFu Suy
[{ H [MTFuy <ug] (%1 ([IITF us < ug] x2))

IIFu —uy Sug—uy

Figure 6: Translating principal delegations to permission taggings.

Lemma 2 (Soundness of dynamic tag checking)
1. IfI; T Fv:t, then ;' Fv:t.
2. Ifll,py <py;I'Fe:tandllFp; <py thenI;T'-e:t.

3. IfIl;- Fe: t, thenI1 - e. Moreover, ifI1;- e : tand II' - e, then I1';- - e : t.

The proof for noninterference uses a logical relation for modeling the observable equivalence of a well-typed
term with respect to an external observer, and shows that the substitutions preserve the equivalence [17]. Space
precludes a formal development of the proofs here. Our companion technical report contains the complete rules
of our calculus and the full proofs of both the type-safety and the noninterference properties. In addition, the
type-safety property of the target language as well as the soundness of the translation in the next subsection are
formally specified and mechanically verified* in Twelf (a logical framework).

II

4.2 Translation from A\ to A}

Figure 6 shows the translation rules from the typing derivation of a Al term m to a typing derivation of a )\gg term
e. The main work is in the translation of the subsumption rule which takes the subtyping derivation of the source
types and produces a well-typed coercion function in the target language. Breazu-Tannen et al. propose [3] such
coercion semantics for the subtyping between types in the simply-typed lambda calculus. Our translation slightly
extends the semantics for types with labels and permission tags. Our translation is sound as follows:

Theorem 3 (Soundness of permission tagging)
1. Typing: If[IL;T Fm:u] = e, thenIL; [T'] F e : [u].
2. Subtyping: If [I1 - u; < ug] = e, then ILT F e : [u1] — [u2].

We conjecture that the translation can be made coherent [3], meaning that target terms translated from different
typing and subtyping derivations of the same source term have the same evaluation behavior. In particular, the

*We do not use the higher-order abstract syntax for encoding variable bindings. We have not performed the fotality check which ensures
that all proof cases have been completed — this property is verified externally by hand.
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tag checking II F e performs the same checks whether we tag the function or the argument of an application,
hence coherent in allowing the same set of legal policy updates. To achieve such coherent translation, algorithmic
subtyping must be used, instead of declarative subtyping as presented in this paper. The conversions and theories
between these variants of subtyping are standard [12].

4.3 Discussion

As mentioned in Section 3.1, the fact that a program is noninterfering between updates says nothing of possible
information flows across updates. Indeed, in the system described in this section, if an attacker p5 can observe
when updates occur, and what they consist of, it is possible for the timing of an update to communicate a secret
value. Consider the following program:

let x = (if by . (Ax:bool truep.) (A[py < pylx:bool, [p,:C p; :Jtruep,:)) in
let y = (if (py <p;) truey. false,:) in
letz=...usex... iny

Suppose that the program begins evaluating with principal hierarchy II = p, < p; and that an update II' = ()
becomes available just after x has been computed (call this program p). In the case that b was truep, . then p
would be

let x = Ax:bool true,. in
let y = (if (py <p;) ‘true,. falsep:) in
letz=...usex... iny

Thus, the policy update succeeds and falsey,. is returned. On the other hand, if b was falsep ., then p is

let x = Alpy < pylx:bool, [p, :C p; :Jtruep,. in
let y = (if (py <p;) true,. false,) in
letz=...usex... iny

Thus, the policy update is delayed due to the annotation p, < p; on the function x until z has been evaluated,
meaning that truep_ . is returned. Hence, p; is able to observe by, even though this is allowed by neither IT or IT'.

This particular example is an artifact of our dynamic tag checking algorithm, since it treats each branch of
the initial if independently, once evaluated. A more static checking system, suggested earlier, would impose
the same constraint on updates whichever function was chosen for x, and eliminate this flow. Nonetheless, the
noninterference between updates property is too weak to illuminate this issue or its proposed fix, so we plan to
consider refinements in future work.

5 Related Work

Security-typed languages for enforcing information flow control are a rich area of research [14]. Security policies
are expressed as labels on terms and a principal hierarchy defining delegation relationships; in most systems this
hierarchy is fixed at compile-time. Jif [10] and recent formal work [17, 19] support runtime principals, which
make it possible for the hierarchy to grow at runtime, but do not allow revocations. Our calculus is the first to
address generalized, dynamic updates to the principal hierarchy.

Security-type systems are intended to provide a noninterference guarantee [13, 4, 5, 9], modulo certain small-
bandwidth information channels permitted for performance reasons (timing and termination channels) and an
explicit “escape hatch” in the form of a robust downgrading mechanism. The introduction of such downgrading
into these languages opened a new chapter in discussions about the meaning of noninterference that is still on-
going [18, 11, 8, 15]. As we have described, our dynamic policy updating is complementary to declassification.
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Declassification, as typically used, relabels a data value from one label to another; policy updates as considered in
this paper permit the relationship between the labels to change over time. Both features are necessary in practice,
and both can potentially be abused—it is possible that work on structured uses of declassification, as provided by
robustness [18, 11] or intransitive-noninterference [8] may apply to policy updates as well. We believe our dis-
cussion of dynamic policy updating here provides a new avenue for understanding the meaning of noninterference
policies for realistic programs.

This work was inspired by a similar system called Proteus that we developed for ensuring type-safety of dynamic
software updates [16]. In Proteus, users can define named types T. When given that type T= t (for some type
t), treating a value of type T as a t or vice versa requires an explicit coercion. When a program is dynamically
updated to change the definition of T to be t’, a dynamic analysis can check for these coercions in any functions
not being updated (updated functions are assumed compatible with the new definition). If such a coercion is found
then the update is only allowed if I' F t’ < t, where I is the updated type environment. This dynamic analysis
is analogous to dynamic tag checking II - e, which essentially ensures for the new II that IT - ¢; C /5 for all
tags [(1 C /5] in e. In Proteus, this dynamic analysis can be replaced with a simpler run-time given certain static
information; we conjecture a similar result for )\Ezg.

Primarily in the context of public key infrastructures (PKI), the specific case of credentials revocation has been
the subject of considerable study [6, 2]. This work has focused on the exploration of the fundamental tradeoff
between security and cost. To simplify, on-line revocation servers effectively permit only a very small window
of vulnerability for illicit use of compromised credentials, but often incur a high computation cost. Off-line
systems provide a lower computational cost, but do so at the expense of longer latencies for receiving revocation
notification. The issue of introducing policy revocation into a running program in a way that maintains sound
execution has not been explored in the literature.

6 Conclusion

We have presented a new security-typed language that allows dynamic updating of information-flow policies,
in particular the delegation relations in the principal hierarchy. Assumptions needed for sound execution can
be represented within the program as permission tags, and a run-time tag checking mechanism can be used to
prevent illegal updates to the principal hierarchy. Tags are implemented as run-time coercions that capture dynamic
labeling behavior, which can prevent spurious rejection of legal policy updates. Tags are added to programs via an
automatic translation from a standard source language. We are the first to formalize an information flow language
that is sound yet permits dynamic revocations. Our language also satisfies noninterference between updates, which
seems to us be a reasonable security property in the presence of updates. We hope that our work stimulates interest
in making security-typed languages expressive enough to be used in real systems, where policies regularly change.
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Abstract

We present an information flow monitoring mechanism for s&dial programs. The monitor executes a
program on standard data that are tagged with labels imdlictiteir security level. We formalize the monitor-
ing mechanism as a big-step operational semantics thafrates a static information flow analysis to gather
information flow properties of non-executed branches ofpitogram. Using the information flow monitoring
mechanism, it is then possible to partition the set of altexiens in two sets. The first one contains executions
whichare safeand the other one contains executions whiey be unsafeBased on this information, we show
that, by resetting the value of some output variables, ibssfble to alter the behavior of executions belonging
to the second set in order to ensure the confidentiality oEseata.

Keywords: security, noninterference, language-based securitgyrimdtion flow control, monitoring, dy-
namic analyses, semantics

1 Introduction

This paper is concerned with the monitoring (or dynamic ysig) of information flow in sequential programs
in order to ensure confidentiality. The goal of confidertyalinalysis is to ensure that secret data will not be
revealed to unauthorized parties by the execution of a prodB, 6]. A by now standard way of formalizing
safe information flow is via the notion eoninterferencentroduced by Goguen and Meseguer [9]. Following the
notation of Sabelfeld and Myers [18], noninterference.fwsome low-equivalence relatiors, and~;, on states
and observations) can be expressed as follows:

Vs1,82 € S. 51 =1 s2 = [C]s1 = [C]s2 @

This equation states that a commatids said to benoninterferingif and only if for any two states; and s,

that associate the same value to low (public) data (writtee=;, ss), the executions of the commarddin the
initial states; and s, are “low-equivalent” [C]s; ~1 [C]s2). The “low-equivalent” relation characterizes the
observational power of the attacker, by stating what he ¢gstinduish. This may vary from requiring the output
of low level of security to be equal for both executions, tquieing the two executions to have the same energy
consumption. In the work presented in this paper, the agtaskconsidered to be only able to observe the low data
of the initial state and of the final state.

As witnessed by the recent survey paper by Myers and Sathglf8] there has been a substantial amount
of research on static analysis for checking the nonintenieg property of programs, starting with the abstract
interpretation of Mizuno and Schmidt [10] and the type baspgdroach of Volpano, Smith and Irvine [21, 22].
Static analyses may reject a program becaussoofeof its executions which might be unsafe; and thus deny
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executions which are safe. The work presented in this pafEnpt at preventing executions which are unsafe,
while still allowing safe ones. This requires the definitmfnwhat is meant by “safe execution”. An execution of
a command” starting in the original state, is said to be safe (or noninterfering) if and only if:

Vsg € S. s9 =1 81 = [C]s1 =L [C]s2 (2

In order to allow such noninterfering executions, one agpinocould consist in combining a standard static
information flow analysis with other static analyses in ortdedetermine conditions on input that lead to noninter-
fering executions. The determination of such conditiore difficult problem. For example, it would be possible
to run a partial evaluation of the program followed by a staddnformation flow analysis. However there would
be infinitely many partial evaluations to run, one for eacho$dow-equivalent initial states. The approach pre-
sented in this paper extends the execution mechanism witin&an that allows detecting illicit information flows
and forbids final states which contain illicit informatiomils. This will allow validating certain executions of
programs beyond the reach of current static analyses, arittesof additional run-time overhead incurred by the
monitoring.

Monitoring information flow is more complicated th&ng. monitoring divisions by zero, since it has to take
into account not only the current state of the program bui #le execution paths that were not taken during
execution. For example, executions in an initial state whes false and is 0 of
(a) if h then x := 1 else skip;
and
(b) if h then skip else skip;
are equivalent concerning executed commands. Howevdr) i§(obviously a noninterfering program, the exe-
cution of @) with the given initial state is not noninterfering. The engion of @), with a low-equivalent initial
state wherdn is true andk is 0, does not give the same final value for the low ougput

This leads to a monitoring mechanism which integrates &statlysis of commands which were not executed.
The monitor will be defined formally as an operational sefiear(f ) computing with tagged values. At any step
of the evaluation of a program, the tags associated to amyidetify a set of inputs which may have influenced
the current value of the data up to this evaluation step. ifusitoring mechanism is combined with a predicate
(Safe) on the final state of the computation to obtain the followjmgperty for any command'

Vs1 € S. Safe([C]s1) = (Vsa € S. s9 =1 s1 = [C]s1 =1, [C]s2) 3

This states that all executions starting in a start statesevloov (public) part is identical to the low part of the
initial state of an execution satisfyirgpfe will be noninterfering (i.e. return the same values for loutput).

By comparison with static information flow analyses, we abiaformation flow knowledge for a restricted set
of input states, whereas static analyses infer a resuld ¥afi all executions. This implies a restriction of the
potential paths taken into account; which enables the agirient of a better precision than with a standard static
information flow analysis.

The paper is organized as follows. The next section preses¢snantics integrating a monitor of information
flow. It also gives a definition of the predicagafe. This semantics and the predicate definition satisfy the
equation (3), hence with this pair (semantics and predidatepossible to detect noninterfering executions. Once
an information leak has been detected, the program behauist be modified in order to prevent the leakage.
Section 3 explores the idea of program behavior alterataseth on information flow monitoring in order to
ensure the respect of the confidentiality of secret data dbserved that a simple analysis as the one developed
in Section 2, althouglsoundwith regard to noninterference between secret inputs amdicpautputs, is not
adequate to serve as a basis for behavior alteration. Westimm a possible refinement of the analysis so that the
information flow monitoring mechanism can “safely” direbetprogram’s behavior alteration. Finally, the paper
concludes by presenting some related works and possihieefdevelopments of the information flow monitoring
approach.
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2 Detecting noninterfering executions

The programming language considered in this paper is a ségllanguage with integer and boolean expressions
and including loop, conditional and assignment statemerite grammar is given in Figure . stands for any
constant valuegp for any binary operator or relation on values, addor any variable identifier (or name).

v = C
e = e0pe | id | v
== if ethen S else S end
|  while edo S done
| S;S8 | skip | id:=e

Figure 1: Grammar of the language

Variables and values are tagged with labels, intended fiicating their security level. In order to simplify
our exploration of the concepts exposed in this paper, therig lattice considered is constituted of only two
elements  and_L with the usual ordering. C T).

The special semantics on tagged data is defined as a “big estapiation semantics that defines an evaluation
relation]). It uses a value store to keep track of the value of varial8esilarly, a “tag store” is used to track the
information flow between the inputs of the program and theerurvalues in variables. Each input of the program
receives a tag which reflects its security levelfor high (secret) input and. for low (public) input). At any step
of the execution, the set of tags associated to any varigbtheb“tag store” contains the tag of any input which
has influenced the current value of the variable.

The forms of semantic judgments are described on top of €igurThe first environmental parameter is the
value store (noted in the semantics rules); the second one is the tag stored(patethe semantics rules). The
evaluation of an expression returns a value and a set of H#Hgs.set includes the tag of all input whose value
influenced the value of the expression evaluated. For thieigi@n of statements there is a third environmental
parameter (noted™“ in the semantics rules). It is a set of tags reflecting therméion flowing through the
“program counter”. It contains the tag of any input which idlienced the control flow of the program up to this
point in the evaluation. The evaluation of a statement nstarnew value store and a new tag store reflecting all
the previous information flows created and those generatélebevaluation of this statement.

2.1 SDIF: Static and Dynamic Information Flow analysis

The semantic rules are given in Figure 2 page 4. In order taceedhe number of rules and focus on the
information flow computation mechanism, the semantics opeendc. op is the function corresponding to the
symbolop. Similarly, c is the value corresponding to the constant

The rule (E5-ASSIGN) updates the value of the variabid™with the result of the evaluation of the expression
e. It also updates the tags set of the variable in the resultigg store. The new tags set is the uniofi'6fwhich
reflects the information flowing through the expression, @At which reflects the information flowing through
the control flow of the program. The rule §HF) evaluates the statement designated by the evaluatitimeo
conditione, and updates the resulting tags store with the informationdlcreated by the branch not evaluated
using a special functiom.

The function® (: Id — P(Tag)) x P(Tag) x S — (Id — P(Tag)) is used whenever aifi -statement is
evaluated. Its aim is to modify the tag store so that it refl¢loe information flow created by the fact that one
branch of the statement is not executed. In the followingm if h then x := k else skip end
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(Id — Value); (Id — P(Tag)) Fs Expr || Value : P(Tag)
(Id — Value); (Id — P(Tag)); P(Tag) Fs S | (Id — Value) : (Id — P(Tag))

opksel v:Te oy p;TPCUTe s S, I o @ p

o;p; TP s if e then Sy else Sfalse end |} o : (I)(ply Te, Sﬁv) (Es-IF)
o;p; TP g if ethen S ; while e do S done else skipend |} o : p/ )

o;p;TP¢ s whileedo Sdone || o' : pf (Es-WHILE)
opFsel v:T¢ ]

J;p;TpC |_S d = e U [id — 1)](7 . [’id — TPc Uy Te]p (ES ASS|GN)

(Es-SKIP)

o;p; TP g skip | o : p

o;p T ks Si Y o' 2 pf ol piTP bs Sy 4 oz p”

O';p;Tpc '_S Sl; 82 u o'l - p// (ES'SEQUENCE)

optse d v Ty o;p Fs ea | vy T

Es-OP

o;p s erop ey | Op(U1,'l)2) Ty U5 (Es )
o;p ks id |} o(id) : p(id) (Es-VAR)
(Es-VAL)

opksclc:0

Figure 2: Semantics rules

the fact thatx is different fromk means that théhen -branch has not been executed; and then hhiat false.
In this situation (wherén is false), the final value of is influenced by the initial value df but not ofk; even
if k is the expression appearing on the right side of the assignmide function® is built and used in order to
take into account such information flows. A definition of thadtion ® is given in Figure 3 using a combining
functionIl (Il = A fAgAz. (f =) U (¢ x)). ® adds the tags appearing in the tags set given in parametez tads
set associated to any variable appearing on the left side agsignment statement.

B(p,T, 51 57) = Bp.T0S7) (5T, "5)
O(p, T, “if ethen Sy else Sy end”) = ®(p,T,“S,”) L &(p, T, “S2”)
®(p, T, “while e do S done”) = O(p, T,%5”)
O(p, T, “id = €”) = [id— (p(id) UT)]p
D(p, T, “skip”)

|
b

Figure 3:®’s semantics

The definition given here is a simple one. However it is sudfitito detect noninterfering executions with a
reasonable level of precision. In the majority of casespfograms manipulating more public inputs than secret
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ones, the method presented in this section is more preceflbw insensitive analyses. Among those flow
insensitive analyses are the standard security type sgswdrich are wildly studied in the domain of language
based security. In the following program, whérés a public inputh a secret inputx a public output andmp

a temporary variable, a type system would give a securitgl levx at least as high than the onelofand then
reject the program.

1 if (1 <0)then { tmp := h } else { skip } end
2 if (I >0) then { x ;= tmp } else { skip } end

Using the semantics of Figure 2, all the executions of thigg@am are detected as noninterfering (i.e. the tag of
at the end of the execution is). The reason of this better precision lies in the fact thatttonitoring mechanism
gives us the best possibliew control flowinformation: low control flowdesignates the control flow produced by
branching statements whose condition has a low level ofrggcu

The evaluation of a command produces a value store and aotag $he notatiorﬂC]]E.’} , designates the output
value store produced by the evaluation of the comn@ndth input valuesr and input tag. [[C]]E,p is similarly
defined to be the output tag store. To summarize on thosaaathe following holds:

oipi0 s CUICTY, - [[C']]gp

Four sets of variables give a security specification of tleg@m. H; and L; form a partition of the program’s
variables. H; contains the variables holding a secret data in the initigé ¢i.e. secret inputs) and;, contains
public inputs. Similarly,H, and L, form a partition of the program’s variables in which pubficdbservable
variables in the final state belong g and unobservable variables in the final state belond toA tag storep is
said “well-tagged” if it respects the following properties

Ve e H;. p(x) ={T}

Definition 2.1 (Safe)
Safe([[C]]Ehp) =Vr € L,. [[C]]Ehp(x) c{l}
Using the semantics and definition ®dfe presented, the following theorem is an instance of the sahiem
equation (3).

Theorem 2.1 For any command’, value stores; ando,, and “well-tagged” tag storep, such thaSafe([[C]]Ehp)
and[C]y,, # L, if o1 =1, oz then[C[Y, , =1, [CT,

T2,p oL, a2,p

This theorem states that, for a given command, if the lowwtstpf an executior are all tagged withL, then for
all other terminating execution if the low inputs are equattose ofe, (o1 =y, 02), then the low outputs will be
equal to those of, ([C]Y, , =z, [C]J,,)-
The theorem 2.1 is similar to the equation (3) given in inticitbn. In fact, as the attacker can only observe
the low outputs, the equality of the low outpu[@@’hp =L, [[C]]XM) matches the equivalence of the final states
as defined in the equatiofi{(]s; ~z, [C]s2). And similarly, the equality of low inputssf =7, o2) corresponds
to the low equivalence of the initial states. The only visiblifference is the statemenﬂC’]]f,’M # 17 in the
theorem 2.1. However, as the attacker is unable to obseevertimination behavior of the program, this statement
is implied by the definition of low-equivalence of final stwitesed in the equation (3). Therefore, we can conclude
that if all the low outputs are tagged with then the current execution is noninterfering, and then tacker is

unable to deduce any information about the high inputs.
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To illustrate what precede, the result of the evaluatiorheffollowing programP is given in Table 1.

X = 0;
if 1 then

if h then { x == 1 } else { skip } end
else { skip } end

In this programx is a low level output| is a low level input (with tagl), andh is a high input (with tagr).

a(l) [ a(r) | [PI5,() | [P]7,(X)
True | True 1 T
True | False 0 T
False| True 0 1
False| False 0 1

Table 1: Results for the outpmt

3 Altering the program’s behavior

The semantics described in the previous section enableethetionof a subset of noninterfering executions. The
next step consists in the alteration of programs behaviorder toenforcethe confidentiality of secret data. Our
goal is to ensure that the set of all altered executions,fppaogramP, respects the noninterference property of
Goguen and Meseguer as defined by the equation (1). Thisnyagates that any execution of the program is a
noninterfering execution as defined by the equation (2).s€guently, the behavior alteration consists in:

e doing nothing for executions which are detected as norferiag,

e modifying the output values of executions which may be fetang.

The altered execution of the progrd®rstarted in the initial state is noted[P]s.

The predicat&afe partitions the set of executions of the progrBrimto two setst,,; (containing the executions
for which the predicat8afe is true) and; (containing the executions for which the predicaiée is false). From
the equation (3), we know that all the executiongjp are noninterfering. The problem lies in the executions of
&; among which some are noninterfering and some are not, andgaaveal information about the secret data.
The solution envisioned consists in using a default outfaies?. As it is possible to detect, during the execution
of the programP, if the current execution belongs &, or &, it is possible to force the output store of all the
executions belonging t6; to bes?. Then, for any prograr® and initial states; the following properties hold:

Safe([P]s1) = (Safe([[/PTS/l) A (Vsg € S.s9 =1 81 = [P]s1 = [P]s1 =L [P]s2 = [[/%) ) 4)

—Safe([P]s1) = ( —Safe([P]s1) A [P]s; = s%) (5)

If the predicateSafe gives the same answer for any two executions started in tpuwalent statesthen the
equations (4) and (5) imply that for all altered executioharty progranP the following holds:

Vs1,82 € S. so =1 s1 = (([P]s1 =L [P]s2) V [P]s1 = [P]s2 = sg) (6)

It is then obvious that the set of all altered executionsafor progranP, respects the noninterference property of
Goguen and Meseguer as defined in equation (1).
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The following example illustrates the ideas exposed ab®iegua program transformation altering the final
value of the outpux depending on its final tag.

X = 0;
if h then
if | then { x ;= 1} else { skip } end
else { skip } end
if (T in tag(x)) then { x := 2 }

g b~ WwN PP

The 4 first lines correspond to the original program in whidl a low level output| is a low level input (with tag
1), andh is a high input (with tagr). The 3" line is added to prevent information leakage. If, at the iveigig
of line 5, the tag ok containsT, thenx is reset to a default value (2 in this case, it could be what eateie is
desired). The idea behind th&8ine is thatif, at the beginning of line 5¢ may have different values for two
executions having the same low inpthen the tag ofx will be T; so the test of the#® line will succeed for both
executionsand then x will be reset to the same value (2 in this case) for both exagsit This way, the program
has been corrected in order to respect the noninterferaopeny.

The tag, as computed by the semantics given in Section 2e aritl of line 4 (i.e. just before the information
flow test) is given in Table 2 as a function of the input valu¢ ¢horizontally) anch (vertically). In this program,

a(l)
o(h) True | False
True T 1
False T T

Table 2:[P]; ,(X)

if | istrue itis possible to deduce the valuehdby looking at the value of before line 5. Ifx is 1 thenh is true,
and if x is O thenh is false. This is reflected by the tagfwhich isT in both cases. Consequently, the value
of x will be reset in both cases; those two altered executionseoptogram will then respect the noninterference
property (i.e. the value of the output x is identical whatetvee value of the high input is). Nevertheless, the
statement added for correction is troublesome in a sitnatioich was safe without it.

If | is false therx is equal to O whatever the value lofis. This means that those two executions respect the
noninterference property before line 5. However, the tag ©f L if h is true, andT if h is false. Both tags are
correct because there is no flow frdnto x and the tag reflects only afayinfluence” relation. The problem with
those tags is that, in the case wheris false, the correcting statement will change the value iband only if h
is false. So, in the case whdras false, the value of after the line 5 depends on the valuehofThis implies that
the set of all altered executions of the program does noertgpe noninterference property.

3.1 Afully dynamic tag semantics

As shown in what precedes, in order for the equation (6) td$)at is required that the predicatefe returns
the same answer for two executions started in low-equivates. If and only if that is the case, it is possible
to secure programs based on the information flow computedrdigally. In our case, it means that the semantics
must compute the same output tag stores for any two exesut@ving the same low inputs. It is not the case for
the semantics studied in Section 2.

Another semantics, whose rules can be found in Figure 4 papas8been developed. This semantics goes
through all possible paths in order to compute adequate Y&ben it encounters a branching statement it evaluates
completely the branch that the condition designates (@mpuites the new value store and tag store), and computes
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opkFrel v:T¢
o p; TPCUT® Fr Strue b Otrue * Ptrue
U;p;TpCUTe |_.7: Sfalse ‘U O false * Pfalse
o5 p; TPe l_]-— if e then Strue else Sfalse end U Oy - {|ptruea Pfalse ‘}17;6

optrel v:T¢
o;p; TP UTe £ S; whileedo Sdone || o : pf (EF-WHILE)
o3 p; TP k5 whileedo Sdone I} {o,of) : {o/ pl}T"

optrrel v:T°
o p; TP broid = e || [id—v]o : [id— TPCUT]p

(E#-IF)

(Ex-ASSIGN)

(E£-SKIP)

o017 Fr skip | o @ p

o;p TP by Sy b o' 2 pf  oliphTP br Sy 4 0"

o p; TP Fr S1; S5 | o - p// (EF-SEQUENCE)

opbFre v : 1T oip Fre | vo: Th (E,-0P)

o;p Froerop ey | op(vg,vg) @ ThUTy
oyp Froid | o(id) : p(id) (EF-VAR)
(Ex-VAL)

opbr o ®:0

xUy ifTeTe
{!w,yl}fe =q if T¢T°andv = true
Y if T&T€¢andv = false

Figure 4: Rules of the full-paths semantics

the new tag store returned by the evaluation of the otherchraifhe tag store the semantics returns in such a
situation is the join of the two tag stores (one for each biantising this semantics, the following theorem has
been proved to hold.

T
o1.0)

Theorem 3.1 For any command’, value storeg; andos, and “well-tagged” tag store, such thaBafe([C]
and[[C]]V #L, if 01 =1; 02 then[[C]]V =L, [[C]]V and[[C]]Ehp =L, [[C]]T

02,0 oL,p T 2,0 02,p"

This is sufficient to be able to safely alter the behavior afgpams in order to ensure the respect of the nonin-
terference property. Nevertheless, the semantics usddhby linefficient. For any execution of a program, the
semantics evaluates all paths which are accessible by aoyton started in a low-equivalent initial state. More-
over, as soon as the semantics encounteviike-statement branching on a condition influenced by a high leve
input (but not if the condition depends only on public inputke semantics loops forever. This is quite disturbing
and the reason for the current development of another seaaant
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4 Related Works

The vast majority of information flow analyses are static amlve type systems [18]. In the recent years,
this approach has reached a good level of maturity. Pottidr@onchon described in [16] a systematic way
of producing a type system usable for checkmaninterference Profiting from this maturity, some “real size”
languages including a security oriented type system haee developed. Among them are JFlow [11], JIF [14],
and FlowCaml [19, 17]. There also exists an interpreter fowEaml. This interpreter dynamically type data,
commands and functions which are successively evaluatestierttheless, it types commands the same way the
static analysis does. And then, the interpreter merges/fies tof both branches of @istatement without taking
into account, when possible, the fact that one branch isste&d@nd the other one is not.

One of the drawbacks of type systems concerns the level sbgippation involved. In order to improve the
precision of those static analyses, dynamic security teste been included into some languages and taken into
account in the static analyses. The JFlow language [11wi#¢h is an evolution of Java, uses ttiecentralized
label modebf Myers and Liskov [13]. In this model, variables receivaldl which describes allowed information
flows among the principals of the program. Some dynamic tésgte principals hierarchy and variables labels are
possible, as well as some labels modifications [26]. Zhedg\yers [27] include dynamic security labels which
can be read and tested at run-time. Nevertheless, labeloammputed at run-time. Using dynamic security
tests similar to the Java stack inspection, Banerjee andnidan developed in [2] a type system guarantying
noninterference for well-typed programs and taking intocamt the information about the calling context of
method given by the dynamic tests.

Going further tharntestingdynamically labels, there has been research on dynamizadhputinglabels. At the
level of languages, Abadi, Lampson, and Lévy expose in [dyrsamic analysis based on the labeledalculus
of Lévy. This analysis computes the dependencies betweedifferent parts of a-term and its final result in
order to save this result for a faster evaluation of any giaquivalent\-term. Also based on a labeledcalculus,
Gandhe, Venkatesh, and Sanyal [8] address the informat@nrélated issue ofieed It has to be noticed that
even some “real world” languages dispose of similar meamasi The language Perl includes a special mode
called “Perl Taint Mode” [23]. In this mode, thdirect information flows originating with user inputs are tracked.
It is done in order to prevent the execution of “bad” commaridene of those works take into accoundirect
flows created by the non-execution of one of the branches of ans¢aite At the level of operating systems,
Weissman [24] described at the end of the 60’s a securityralomtechanism which dynamically computes the
security level of newly created files depending on the siclevel of files previously opened by the current job.
Following a similar approach, Woodward presentdldating labelsmethod in [25]. This method deals with the
problem of over-classification of data in computer systemglémenting the MAC security model. The main
difference between those two works and ours lies in the dgaityiof label application. In those models [24, 25],
at any time, there is only one label for all the data maniaaData’s “security levels” cannot evolve separately
from each other. More recently, Suh, Lee, Zhang, and Devpdesented in [20] an architectural mechanism,
calleddynamic information flow trackinglts aim is to prevent an attacker to gain control of a systgngibing
spuriousinputs to a program which may be buggy but is not maliciousimivork looks at the problem of security
under the aspect of integrity and does not take care of irdtiam flowing indirectly throw branching statements
containing different assignments. At the level of committvemselves, Fenton [7] describes a small machine,
in which storage locations havefized data mark. Those data marks are used to ensure a securei@xedith
regard to noninterference between private inputs and meatp outputs. However, the fixed characteristic of
the data marks forbids modularity and reuse of code. As Resttows himself, his mechanism does not ensure
confidentiality withvariable data marks. At the same level, Brown and Knight [4] describmazhine which
dynamically computes security level of data in memory waadd try to ensure that there are no undesirable
flows. This work does not take care of non-executed commaAdst has been shown in this paper, this is a
feature which can be used to gain information about seanet®ine cases. For example, Table 1 shows that it
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is possible to deduce the valuetofvhenl is true and[[P]]Xp(x) is 0; even if no assignment toor x has been
executed. With a program similar to the one used as examgiage 6, their machine does not prevent the flow
from h to x whenl is true anch is false.

5 Conclusion

In this paper, we refine the notion of noninterference, comog all possible executions of a program, to a
notion of noninterfering execution. All possible initightes of a program are partitioned in equivalence classes.
The equivalence relation is based on the value of the pulpigts of the program. Two initial states are equivalent
if and only if they have the same values for public inputs. Aeaaeition, started in the initial state is said to be
noninterfering if any execution, started in an initial sthelonging to the same equivalence class thaeturns
the same values for the public outputs of the program.

Refining the notion of noninterference to the level of execubffers two main advantages. The first one is that
it is now possible teafelyrun noninterfering executions of a program which is not nwrfering. The second
benefit is a better precision in the analysis of some prograrsatic information flow analysis has to take into
consideration all the potential paths of all the executioiithie program. Using the method presented in this paper
to ensure the respect of confidentiality, only the potemi#hs of executions low-equivalent to the current one are
taken into consideration. This feature results in a bettecipion towards possible execution paths. For example,
in the following programh is a secret input, a public inputtmp a temporary variable which is not an output,
andx is the only public output.

1 if ( (cos )2 < 0.1 ) then { tmp := h } else { skip } end
2 if((tanl) < 3 ) then { x ;= tmp } else { skip } end

It is likely that a static analysis would conclude that thegyam is not noninterfering because of a bad flow from
h to x. However, the prograris noninterfering. As fcosz)? + (sinz)? = 1” and “tanz = £LL”, there is no

| such that(cosl)? < 0.1 and(tanl) < 3. It follows that there is no execution of the program whichleates
both assignments. Consequently, there is never a flow fréox. The mechanism proposed in this paper would
allow all executions of this program. The reason is thatafor low-equivalent class of executions, there is exactly
onepossible path. And so, only the current execution path isrtalkto consideration when determining if a given

execution is noninterfering or not.

Concerning the capacity of the attacker, this work consi@der attacker which is only able to get information
from the low outputs of the program at the end of the compantatiAnother limitation concerns termination of
programs. The mechanism developed here does not prevermition leakage from the study of the termination
behavior of programs (neither does it take care of timingecoghannels either). The system proposed in this
paper could prevent those flaws using a technique similangamne found in [5]. In short, the authors of this
paper track the security level of variables appearing idenvoiop conditions and other statements influencing the
termination. This is efficient but restrictive since it fa® any loop conditioned by a secret. That is the reason
why those types of covert channels are not taken into coradida at first.

We propose a special semantics and a predicate on the fitelo$tan execution which, together, are able to
detect noninterfering executions. This semantics mixesayc mechanism and static analysis techniques. When
the semantics encounters a branching statement, the bdasidnated by the value of the condition is evaluated
and the other branch is analyzed. The aim of the analysis eégttact the information flow created by the fact
that the given branch is not executed. The result of the arsa@ynd the evaluation of the other branch are merged
together to build the resulting information flows corresgiog to the evaluation of the branching statement.

The next step of this work consists in altering programs ieinan order to ensure an appropriate behavior
of programs towards confidentiality. However, the first setica presented does not necessarily return the same
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result about noninterference for two executions whoséalrstates belong to the same equivalence class. This
prevents the use of this semantics for the programs behaltieration in order to ensure confidentiality. In
Section 3 we describe succinctly a first attempt at improvireysemantics. The resulting semantics is proved
sufficient to ensure the respect of confidentiality by aktl execution of any program. However, this semantics
does not terminates for programs containing a while-stateérmonditioned by a “secret” data.

Future work will involve the development of a semantics hgva precision enabling the insertion of dynamic
tests, but having better termination properties. This seicgwill use an analysis of non-executed branches based
on the model of flow logic [15] in a way similar to [5] since thisodel seems to have a good precision. In
particular, it does not require that a variable keeps theesseguurity level in all the statements. The precision of
this model will be improved by taking into account the knasge (i.e. the value store) gathered by the semantics
up to the starting point of the analysis.

Acknowledgment. Discussions with David Schmidt and Anindya Banerjee dutiregdevelopment of this work
have been helpful; as well as their comments on this paper.
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Abstract

Given a progranP and a security policyp, this paper introduce an approach that can automaticalgyure
another”’ such that”’ = ® andP andP’ are "equivalent” (with respect to a precise de finition ofigglence).
In reality, the progran®’ is the programP to which some tests are added in some critical places sohfat t
security policy will be respected. Finally, some staticlgsia are performed o®’, using typing system, in
order to eliminate tests that can be statically verified.

Key Words: Security policy, Monitoring, Typing System.

1 Introduction

With the dazzling proliferation of Internet and distribdtsystems such as the world wide web, combined with the
convergence of voice, data and image, the mobile code hasaseienportant increasing use. Basically, a mobile
code is a program (ActiveX controls, Java applets, scriptwithin the browser, etc.) that is downloaded and
executed in our machine (computer, PDA, mobile phone,;eenerally, without our explicit request. Since the
sources of mobile codes could be malicious, they are gdyenatrusted and the responsibility of verifying their
safety belong to the consumers. The machines of consumestsmaintain a strict control over mobile codes so
that they will never violate their requested security polic

Despite the great progress in the computer security resdamid, fully secure computer systems are still a
distant dream. In one hand, this is due to the subtlenessarabmplexity of the problem. And, in the other hand,
it is due to the missing of efficient and powerful formal methdo deal with this kind of problems. As a result,
many computer system in the world suffer for security flaws.

Basically the literature records two classes of technighas deal with the verification of computer system:
static analysis [1, 2, 3] that consists on checking progragfigre their executions and dynamic analysis [9, 10, 11]
that consists on checking the programs during their exsasiti

Generally, these techniques complement each other siroe dne some properties that could not be verified
dynamically and vice-versa. For instance, liveness ptgsfsome thing good will happen) could not be ensured
dynamically. Other properties that depend on some valueskionly at run time could not be verified statically.
Readers are invited to see [4] for more details about prigzethat could be verified statically and the ones

*This research is supported by NSERC (the Natural Sciencg<€agineering Research Council of Canada) and FQRNT (Fonds
Québécois de la Recherche sur la Nature et les Techns)ogie
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that could be verified dynamically. Since dynamic analysisy slow considerably the execution of programs and
requests supplementary memory, it is generally recomntktadeery statically all properties that could be verified
both statically and dynamically.

In this paper, we propose a formal approach that allows usitor@e security policies in an efficient way.
More precisely, given a prograi and a security policyp, we want to produce another progra?hsuch that the
following conditions hold:

e P’ = @; meaning that the progra®’ respects the required security policy.

e P andP’ are two "equivalent” programs; meaning that all the seqasmt actions that can be performed by
P’ could be performed by and all the sequences of actions that could be performeithout violating
the security policy could be also performed By

e All parts of ® that could be statically verified haven't to be taken intosidaration byP’.

e The parts ofb that could not be verified statically have to be taken intosatgration by’ in an efficient
way. In other words, we will producg’ from P by inserting "in the right place” only the necessary tests.

The rest of this paper is structured as follows : Section 2ndsfihe logic used to specify security policies.
Section 3 presents the syntax and the semantics of our gratgesbra. Section 4 show how we can easily ensure
that a program can never violate its security policy. Seciiaefines a typing system that statically optimizes the
tests requested by security policies. Section 6 illussrate technique by some examples. Section 7 deals with the
equivalence of a program and its optimized version. Finailsection 8 some concluding remarks on this work
and future research are ultimately sketched as a conclusion

2 Logic

In this section, we define a logic for the specification of s#gproperties that we can enforce dynamically.
Security properties can be divided in two classes: safetyeties and liveness properties. The first class expresses
the fact that "bad things should never happen during theutia@tof a program”, and the second class expresses
the fact that "good things must happen”. In a dynamic contiwdre is no way to enforce liveness properties
[5]- So, in this study we focus only on the class of safety prips. Such properties can be expressed by regular
expressions (e.g. Security Automata [5]) or by logic (e-BL [6]). The logic used in this paper will be denoted by
L, and itis inspired from Kleene algebras [7] and regular esgioms. Basically, it allows us to specify properties
which can be checked on a trace-based model, and propeastasd to infinite behavior (e.g. a server shouldn’t
send the pass-word of users). The choice of this logic isvaiil by its syntax that is close to the one chosen for
processes and this similarity is helpful to simplify thetistand dynamic analysis steps.

2.1 syntax

The syntax of the logid.,, is given by the BNF grammar shown by Tab. 1.

In this syntax,p is a proposition related to atomic actions. It could be araffan atomic action) under a
condition such asend(z) : © > 0, read(z) : x < 0, etc., or a boolean expression suck- 5, z > 3, etc. Also,
a proposition could be effect without condition, in this €age write f : ¢t. The formula¢;.¢, means that the
program must respegt; and thenp,. And, the formulap] ¢, means that the program must respgctepeatedly
and as soon ag; is violated this program must respest (It is the continuous version of the Kleene operéator

[7]).
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Table 1: Syntax of,,.

¢ = plorda| g1V da| =9 | Pl
pu=b|f:b
[ u=read(xy, ..., xn,) |write(xy,. .., Tn,) | send(z1, ..., 2ng) | ...

Note that usual shortcuts such that —, <, ¢t and f f, F'(®) (eventually®) andG(®) (always®) can be
used with there usual meaning shown hereafter:

tt = - dVO ff = -t
PIANDy = _\(_\(131 \ _\(192) b, =Py = PV Py
F(®) = -G(—9) G(®) = of
PPy = P - Py APy — Dy

2.2 Semantics

Since a formula will be considered as a part of a process,ttleesemantics of the logic will be given within the
operational semantics of processes. In other word, in dadanderstand when a proceBsrespects a formula
®, the reader needs to understand how the procBs®) evolves. Intuitively, a process respects a formula (the
process( P, ®) can evolve) if the first action of the process respects thedigposition of the formula and the
residual part of the process respects the residual paredbtimula.

2.3 Examples

e & = send(z) : x > 3: A process respects this formula if it starts by sending aevgreater thaf.

o & = (—read(x))*((—send(y))*ff): A process respects this formula if it does not perform a samthe
network after reading some data.

3 Program Specification

Hereafter, we give the syntax and the semantics of the |layggtieat we use to specify programs. Basically, it is a
modified version of the the "Basic Process AlgebrB’HA) [12]. This new algebra will be denoted in the rest of
this paper byBPA®.

3.1 Syntax

As shown by Table 2, the syntax GfPA® is similar to the one oBPA except that we introduce new form

of process which igP, ®). Basically, a process is a combination of some operatoosniatactions and other
processes according to some rules. The consteantslo represent respectively a successful termination and anor-
mal termination. Atomic actions will be designed by letter$, etc.. The operator ".” represents the sequential
composition. A proces®;.P, has to runP; until it terminates, and then behaves®s Also, the operator "+”
represents the alternative composition. A procBss- P, has a choice to execute the procé%sor the process

P,. To represent iteration and infinite processes we use thenklstar operator denoted by ™*”. A proceBsP,
behaves a$ if P; is not able to evolve otherwise it behavesiasP; P,. Finally, the proces$P, ¢), where P

is a process an@ is a formula inL,, can be seen as the procé3sontrolled by®. Note that for this paper
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we suppose that the different APIs functions are actions sisc : read(x), write(x), readFile(y), etc. and
assigning a value of an expression to some variabte,c. We suppose also that all variables of processes ranges
over a sett

Table 2: Syntax oBPA?.

P = O|5|CL|P1P2|P1—|—P2|P1*P2‘(P,gf))

3.2 Semantics

Hereafter, we define the semantics of our language in an tiggeshway. As shown by Table 5 the definition of
the transition relation~ of BPA? is based on different kind of relations such jas= and|= that are defined
hereafter.

Normal Form (;) As we have stated before, a proc¢ss®) can evolve only if the first action aP respects
the first proposition ofp and the residual part d? respects the residual part ®f Therefore, we need somehow
to know what are the first possible actionsidfind the first proposition cb.

3.2.1 Definition[Normal form]
A formula ¢ (resp. a procesgB) is called in normal form iff it has the following form :

¢L = \/ Di- i (resp.Pl = Z a;. P, + Z bj)
1<i<n 1<i<n 1<52m

wherep; is a proposition ang; is a formula

Simplification relation (=) In order to simplify the operational semantics®P A%, we introduce the relation
= defined by Table 8. Most of the axioms ... As) of the Table 8 are presented in [12]. The axidgexpresses
the fact that a proces$P, ¢1), ¢2) can evolve only ifP satisfies botlp; andgs.

Table 3: Axiomes ofBPA?.

P+P = PB+P (4) P+0 = P (A2)
P+§ = P (As) 0P = o (As)
0P = P (As) | (P,¢1),d2) = (P A2) (Ag)

Environment (§) The semantics of a procegB, ¢) is defined according an environment (T', A), where:

e ['is a store (a memory) that links all variables of the evalligieocess to values. It should be seen as a
mapping that attributes a value to a variable (le:, ¥ — Z). If a is an atomic action in the proces
thenal’ denotes the same action where variables are substitutdeioywalues .
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e A is also a formula environment (a mapping). To each variable given formula we attribute the set of
values that could be attributed to this variable (2., X — p(Z2)).

If for x € X we haveA(x) = Z, thenA will be denoted byT .
If for z € X we haveA(z) = (), thenA will be denoted byL.
If there existsr € X’ such thatA(z) = (), then we say thah ~ L.

A formula environmentA! is generally reduced to its significant part which are théatdes that are
not attached tce.

If A et A? are two formulas environment, thex! U A? = J, . {z — Al(z) U A?(2)}.
If A et A? are two formulas environment, thex! N A? = J, {2z — Al(z) N A%(z)}.

8

Evaluation functions  To simplify the presentation of the operational semantfcB B A?, we suppose that the
semantics of boolean expressions and elementary progeaicss are given by the following tow functions :

e [-]§ : B— (I — {tt,ff}) : this function gives semantics of a boolean condition urgteenvironment'.
It takes a boolean condition and returns a function thatstalkeenvironment and returns a boolean value.

e [-]% : A— (I = I) : this function takes an action and returns a function theésanvironment and
returns a new environment.

Satisfaction Relation €) Since a procesgP, ®) can evolve only if the first action aP respects the first propo-
sition of ®, then we need to define when an atomic action satisfies a ptiopa®r a formula in general). For that
reason, we introduce the satisfaction relationThe relation= takes an actiom, a storel’, and a formulap and
returns an environment formula showing under which restrictions” respects the formula. The definition of
"E" is given by Table 4.

Here are some examples:

e send(z), [z — 3] E send(y), [y — {3}].
e send(3),I' E —read(x), T.
o send(3),I' F =send(z), L.

Transition Relation The operational semantics BfP A? (see Table 5) is defined by the relatiensC Cx AxC,
whereC is the set of configurationsd = P x Y, whereP is the set of processes affds the set of environments)
andA is the set of actions.

4 Formal monitor

The main aim of this work is to ensure that a progr&will not violate a given security policy at run time. To
achieve this goal, we have just to execute the procBs®). In fact, the semantics of our language was defined in
such a way that the progra(®, ®) can evolve only when the security policy is respected otfgenthe program
is interrupted. Note also that our language allows us tdyeatiach a formula to any slice of a given program.
In fact, if, for instance P, . P; is a process the(P;, ®).P is also a process where the sliee has to respects the
formula®. Different formulas can also be attached to different slice

Since some parts of the formula could generally be verifiaticstlly, therefore it will be interesting to "elimi-
nate” from a formula all what can be verified statically. Fustance ifP = send(2).read(y).send(y) and® is
send(x).—read(5).send(y), then(P, ®) can be simplified to the processnd(2).(read(y), ~read(5)).send(y).
The optimisation issue is addressed by the following sactio
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Table 4: The satisfaction relatidn

o5 = tt
a,I'Fb T

Jo | al' = fo A [bo]k = tt

ﬂng
a,I'Fb, L

a,I'F f:b,Uppjeotr — {v}}

Jo | al' = fo A [bo]k = tt

a,'E-f:0, L
a,T'E ¢, AY a,TE ¢g, A
a, T E ¢V oo, AVUA?
a,TE ¢, AY a,TE ¢g, A
a,T' E o1 Ao, AN A2
a,l'Ep A
a.TEp.d, A

a7F E (¢1¢2>l:A
aar F ¢1-¢27A

a,I'E (¢1¢2)), A

(Vo |al' # fo)V (Jo | al’ =
)

a,l'FE

(Vo |al' # fo)V (3o | al’ =

fo Aboli = ff)
i

a, ' F—f

a7F F _'¢1 A_'¢2>A
a,I'F =(¢1V ¢2), A

CL,F F _'¢1 \ _'¢27A
a,I'F =(¢1 A p2), A

a,l'E ¢, A
a,F)=—|—|¢,Z

a,I' E (=(¢1.¢2)) . A
a,'F =(¢1.¢2), A

a, I'F (_‘((ﬁ{(}h))ia A

* )

fo A[bolg = ff)
f¢

a,I'F ¢1¢2, A a,I'F =(¢1¢2), A

5 Security Enforcement Simplification by Typing

In this section, we define a typing system that aims to stitiogtimize a program by removing all useless tests
(tests that can be statically evaluated). A jugement ofythig system has the following form:

HEP:7,A
where

e His an environment used to handle recursive programs sdikiatyping will always terminate. The initial
value of this environment is generally the empty set.

e P is the initial program that we want to optimize.
e 7 is the type ofP which is it's optimized version.
e Ais aformula environment used to propagate values of inatadtvariables in formulas.

Note that, for the sake of simplicity, the typing system Hasdnly a subset aBP A? that has the same ex-
pressivity of the the completB P A?. The difference is related only to recursive processes ecutsive formulas.
With the subset of processes handle by the typing systemomgider only recursive processes that have the form
P*é and recursive formulas that have the fodmf f, whereP and® do not contain the operatet It has been
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Table 5: Operational semantics BiP A?.

_ a / _
(R:) P=P P.{— B¢ P=qQ

B P ¢ -5 Q¢
a O a CL,F'ZQZ),A/ ,
B T, ) = 0, ([al", &) R o Ta) o, ana) & "art
(Ro)—@LEOA  npan~ (R Lot — Bl g

(a,0), (T, A) =2 5,(T, 1)

P a Pl /! P a P/ /
(R+) 175 = )5, /0475(5 (R) 175 - /76 -
P1+P27§_>P7§ Pl-PQag P'P2>€

P ¢ = P¢ afa:PLe P P ¢S P
(R*) % a 7 * / (R*) * a Y
P1P27‘£—>P'(P1P2)7§ P1P27§—>P7§

shown, in [7, 8], that the forn#*§, whereP is « free, is as expressive &% P», meaning that every program can
be transformed to an equivalent one that contains at modbopewhich is not followed by any instruction.
The Typing rules are given by Table 6 where the function Tyjge®) is defined as following:

[ (,0),L I alé,(C, L)
TypeOf(a, ¢) = {(a,c),g If al-¢,(C¢) andé # L &

wherel- is defined by Table 7. Note thaf(c) and -C(o) are two boolean conditions extracted foras
following:

C(e) = tt H -C'(e) = ff
CHz—t}Uo) = (z=t)NC(0) “C{r—t}Uo) = (z!l=1t)V-C(o)

Note that the program returned by the typing system can bsiderable simplified using the rewriting rules of
table 8.

6 Example
Before presenting the example, it will be interesting to emakink between our language and the usual notation

used within imperative languages. This link is summarizgdrable 9. Note also thdtsend(z), 7send(3)) is
equivalent representation Mdend(x), z! = 3) sinceT'ypeO(send(x), ~send(3)) = (send(x),x! = 3).

6.1 Exemple 1

e Program written in usual imperative language notation:
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Table 6: Typing System.

[ [
(SO)HI—O:O,T (S%)HI—(O,QS):O,T
] [l
o) s T (So0) 7 F (5,97 5.1
[l [l
(Sect) FrFa a7 (Sacto) T F (@, 9) - TypeOTa, 9)
HEP:T,A HE (P¢), : 1, A
ey S RN o) mrpayral 7o
H"PllTl,Al Hl_PQ:TQ,AQ 1 2 H"PllTl,Al Hl_PQ:T2,A2 1 2~
(5.) HE PPy 1m0, AL N A? ATnatE L (81) HEPL.Py:d, L ANAT~L
H"PliTl,Al Hl_PQZTQ,Az O
(S+)H'_P1+P2:7—1+7—2,A1UA2 (SH)HU{PHT}FP:T,FZ
HI[(P,O)] F (P.P[6,¢.9"ff): 7, A HE (P68 ff) T A . /
o) = P (P8, 677 ) : 7oA o) Prs e froy nal (BT EN
~—_—— ——— —/——
p P
whi | e(true)
do
read(x);
if(x = Pwd )
read(y);
send(y);
el se
send(x);
endDo

e Equivalent program ilB PA®:

(r(2)-((r(y)-s(y),x = Pwd) + (s(z), x # Pwd)))*0

g

P

wherer denotes theead, s denotes theend andp denotes therint action.

e Formulag : (read(x).—send(3))* f f meaning that a read action can never be followeddayi(3)

e The result of the typing (the proof is omitted due to the latkgace) of( P, @) is:
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Table 7: The satisfaction relatidn.

Jdo | 0 = mgu(a, f)

alk f:b,(C(mgu(a, fo)), U

[x—t]emgu(ao, f)

Jdo | 0 = mgu(a, f)
alF =f b, (~C(mgu(a, o)), T)

Vo :ao0 # fo
alF—f:be, T

CLH— gf)l,(Cl,Al) all— ¢2,(CQ,A2)
al- (;51 V (;52, (Cl Vv CQ,Al @] Az)

aH— ¢1,(01,A1) all— ¢27(017A1)
a,l- o1 A\ ¢a, (Cl AN CQ,Al N AQ)

{z = {t}})

alFb,(e,T)

Vo :ao # fo

alk f:b,(e, 1)

al- =gy N =gy, T

al- ﬂ(qﬁl V ﬂgf)g),r

alkF =gV —¢o, T

alk _‘<¢1 A (bg),F

alFp, T alF ¢, T
alFp.o, I’ alF —=¢,I
al-(¢1.¢2),,T al- (=(¢1-62)), T

alF é1.¢2,T alF —(¢1.¢2),T
al- (¢1¢2), T al- (=(¢i¢2)),, T

alk ¢1pe, T’ alF =(p1p2), T

Table 8: Rewriting Rules
(a,tt) — a (a,ff) — 0
P+P — P P+0 — P
P+ — P oP — 6
0.P —- P PO — P
(a1, ¢1) + (a1,¢2) — (a1,61V ¢ PP*s — P%
a.Pr+aP — a (P1 + PQ) a1.P+as. P — (a1 + ag) P

(r(@)-((r(y)-(s(y),y # 3), x = Pwd) + (s(z),x # Pwd Az # 3)))"0

e Optimized program written in usual imperative languageatioh :

whil e(true)

do

read(x);
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Table 9: Imperative Language ¥&PA*

Imperative Language Processes

P Py PP
while cdo P (P,c)*d

if cthen PelseQ | (P,¢)+ (Q,—c)

if(x = Pwd )
read(y);
if(y !'=3)
send(y);
el se
if( x !'=23)
send(x);

endDo

6.2 Exemple 2
e \We consider the same program as the one of the first examplejthithe following formula.

e Formulad : (tt.—send(3)* f f (tt means every action). Note that the simplicity of the formsldue to the
lack of space and we want to show how we deal with loops.

e The result of the typing (the proof is omitted due to the latkpgace) of( P, @) is:
(r(@)-((r(y)-s(y),» = Pwd)+(s(x),x # PwdAz # 3)).r(x).((r(y)-(s(y),y # 3),x = Pwd)+(s(x),z # PwdAz # 3)))"5

Intuitively, we have a process of the forf*d, ¢* f f), then we can apply only the ru(é....). This will add
the proces$P*4, ¢* f f) to the static environmerit that will ensure the termination of the typing procedure.
In fact, after two iterations, as shown in the code below, @tern to the initial process.

e Optimized program written in usual imperative languageation:

whi |l e(true)
do
read(x);
if(x = Pwd )
read(y);
send(y);
el se
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if( x!'=23)
send(x);
read(x);
if(x = Pwd )
read(y);
if(y !'=3)
send(y);
el se
if( x!'=23)
send(x);

endDo

7 Equivalence Theorem

The aim of this section is to prove that the optimized vergigpe) of any process is equivalent to its original
version. The equivalence relation that we looking for, deddy~, is the bisimulation. However, we prove our
result for a more general relation, denoted~y, (bisimulation modulo a well formed environment), whichegv
the requested result whétiis an empty set. First let's define a well formed environment.

7.0.1 Definition]Well Formed Environment]

EnvironmentH is said to be well formed iff for al{ P, ) € H, these two condition are satisfied :

1. Pis of the form(P;d,¢* f f);

2. Tisequal to O.

Now let's definewH.

7.0.2 Definition[~4,]
Let H a well formed environment. We define;; as the biggest relation satisfying the following condition

P ~H Q if ;
1. (P,Q) e H,or
2. (i) f P¢— P ¢ then@, & = Q' & andP’ ~yy @', and
(i) If Q,& - Q',¢ thenP,¢ - P',¢ andQ’ ~py P’

Note that whert{ is an empty set-4, is the bissimulation.

7.0.3 Theorem.
VP € BPA® VH, awell formed environment, we have: H+ P :7,A = P ~H T

The proof of the previous theorem is omitted due to spaceictsh.
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8 Conclusion and Future works

In this paper, we have defined a new process algebra thatime@atapecial form of prece$®, ¢). The semantic
of the proposed algebra ensure that the progfaroan evolve only if it does not violate the security policy
¢. Furthermore, we have defined a typing system that allows aptimize a program by efficiently removing
the tests required by the security and that can be verifiditatg. Finally, we have proved the correctness of
optimization performed by the typing system tanks to theofémn 7.0.3.

As a future work, we want to extend our logig; to give to the end-user more flexibility to handle the case
where the program reach a point at which it violates the sgcpolicy. In this paper, we decided to interrupt
a program as soon as its security property is violated. Hewigvis not necessarily the suitable decision for all
application and it is better to give the chose to the end-tiegrspecify the series of actions that he/she want to
execute when the security property is violated (It's simitathe principle of exceptions in Java for example). To
this end, we can extendl,, by simply adding the forni¢, P). Intuitively, using this new formula, the program
(P, (¢, P») behaves a®; until the formulag is violated and then behaves lik.
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Abstract

Confidentiality and integrity are often treated as dual prtips in formal models of information-flow con-
trol, access control and many other areas in computer $geddowever, in contrast to confidentiality policies,
integrity policies are less formally studied in the infotima-flow control literature. One important reason is
that traditional noninterference-based information-femmtrol approaches give very weak integrity guarantees
for untrusted code. Integrity and confidentiality policae also different with respect to implicit information
channels.

This paper studies integrity downgrading policies in imfiation-flow control and compares them with their
confidentiality counterparts. We examine the drawbackstefjrity policies based on noninterference formal-
izations and study the integrity policies in the framewofkiowngrading policies and program equivalences.
We give semantic interpretations for traditional secuetsels for integrity, namelytainted anduntainted, and
explain the interesting relations between confidentiaity integrity in this framework.

Keywords: language-based security, information flow, integrity, dgvading, security policy.

1 Introduction

Language-based information-flow security [11] provideg-&tend guarantees on the dependency and the propa-
gation of information in the system, which is usually forimatl asnoninterferencg2, 5] properties. Such security
guarantees are ideal for protectiognfidentiality where secret information is not permitted to propagateuts p

lic places. On the other hand, information-flow control césode used to providmtegrity guarantees, where
important data in the system is not allowed to be affected riyusted sources of information. Confidentiality
and integrity can be viewed as duals [1] in many areas of ceen@ecurity. In information flow, confidentiality
policies prevent secret data from being leaked out to theradwy, while integrity policies restrict the use of data
coming from the adversary.

There are very practical applications of information-floalipies forintegrity. For example, an unsafe script
on the web server could use strings from untrusted inputomopose a SQL query string and then have the
database management system execute the query, whichiglbgeadtow the attacker to execute commands in the
database. The Perl programming language provides busltpport for dynamic information-flow checking. Data
from user inputs and the network is marked as tainted, wiyiiéesn calls require untainted data. Tainted data
can be converted to untainted data through pattern matchinigh effectively forces the programmer to examine
untrusted data and avoid malicious attacks. Code analysis such as cqual [12] perform static information-
flow checking to detect the use of dangerous data. Such taekslteen used to find bugs in large-scale software
systems.
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Despite the practical interests, integrity policies aremfless formally studied in the literature of language-
based information-flow security. Many formal studies areued on confidentiality and merely mention that
confidentiality and integrity are duals. In fact, confidality and integrity are not symmetric in traditional ap-
proaches based on noninterference. The noninterferenpenty is too emphasized for confidentiality and it is
not appropriate for integrity. For example, noninterfereidoes not give useful integrity guarantees for untrusted
code, and it is often too strong for practical use becausddasrout all implicit information flows, most of which
are not harmful. Noninterference also does not handle dmdigg. Section 2 identifies these challenges on
integrity policies in information-flow.

To fix the aforementioned weaknesses of noninterferenseebantegrity policies, we need alternative formal-
izations for information flow. Out recent research [4] usewdgrading policies and program equivalences to
formalize the goals of language-based information-flonusgc The original motivation is to achieve an end-
to-end security guarantee like noninterference wih@wngrading(or declassification) is available in the system.
While this framework was originally focused on confidentjalit also provides a basis for very expressive in-
tegrity downgrading policies. Moreover, it is possible thigve a better formal security goal for integrity that
avoids the drawbacks of noninterference-based definiti®astion 3 extends the framework of downgrading poli-
cies with integrity policies. We discuss how to formalize gecurity goal for integrity present a highly symmetric
view over confidentiality and integrity in this framework.

2 Challenges of Integrity

2.1 Policy expressiveness

The formal definition of noninterference gives an intuitaed absolute meaning of confidentiality, but its rela-
tionship with integrity is less straightforward. In generategrity has many meanings in computer security. For
example, Pfleeger’s security textbook [8] describes integolicies that require that: data is modified only by
authorized principals, data is modified in permitted waysads consistent, valid, meaningful and correct, etc.
The actual meaning of integrity depends on the specific ganbdoninterference only provides a particular kind
of integrity guarantee, that is, trusted data is not affibtte the propagation of untrusted data. Apparently, there
are many information integrity policies that noninterfaze cannot express. Most useful integrity policies involve
accurate description of the actual computation. Integrdlcies should not only specify who modified the data,
but also specify how the data is manipulated.

2.2 Untrusted code

For untrusted code, noninterference gives a strong andigaty useful guarantee for data confidentiality. This
makes information-flow control a killer application for ebf executing untrusted programs while giving them
accesses to secret information.

However, traditional noninterference gives almost nogritg guarantee for untrusted code. The reason is that,
when the code is not trusted, the adversary can manipulaséett data in arbitrary ways in the program. For
example, suppose the following functibmo is written by an adversary. It takes two input argumentsfopers
some computation and returnsiat ai nt ed value.

untainted int foo( untainted int a, tainted int b) { return a-a+0xff00; }

Althoughf oo satisfies the noninterference policy, i.e. there is no mfion flow from thet ai nt ed input
b to theunt ai nt ed result, the result is not at all trustworthy because the isdwvg can return any arbitrary
value in this function. Therefore, the data coming from ustied programs (or software modules) must always be
treated as tainted. Integrity policies based on nonintenige definitions can only used in trusted environments,
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where the programmers are cooperative and goal is to praeeittental security exploits in trusted code. For the
same reason, the two-dimensiodakentralized label mod§f] for confidentiality falls back to a one-dimensional
model for integrity [3], which makes the integrity labels chuess expressive in languages with information-flow
type systems, such as FlowCaml [13, 9, 10] and Jif [6].

2.3 Downgrading

Pure noninterference is too ideal for practical applicgaetioMost of the time, we do need to use information from
untrusted sources in trusted places, as long as the taiataccdn are verified to be safe. In the example of taint-
checking mode in Perl, tainted data can be converted tontathiusing pattern-matching. Clearly, there can be
information propagation from untainted data to tainted] aoninterference policies are not directly applicable.
This is the dual case for confidentiality, where secret dita meeds to be declassified. This paper extends the
framework ofdowngrading policied4] and presents a symmetrical version of integrity dowdgrg policies,
sometimes callegndorsement

2.4 Implicit information flow

Most confidentiality policies do not tolerate implicit infoation leakage. There are many implicit information
channels such as control flow, timing channels and varidles-aifects that must be considered when untrusted
code is available. For example, the following code has atigihpnformation leak fromsecr et to x via control
flow. If the code is not trusted andis a publicly visible, the adversary can easily know the ldisof secr et by
observing the value of. Noninterference policies rules out such implicit flows.

if (secret%?=1) then x:=1 el se x:=0;

A straightforward solution is to usgowngradingon the branching conditions where implicit flows are allowed
However, such implicit information propagation is almostays acceptable for data integrity policies, where the
programmers are trusted and the goal is to prevent accldgggruction of trustworthy data. For example, the
taint-checking mode in Perl does not check implicit infotima flows at all. Since the value of any trustworthy
data can be directly modified by the programmer without Wietpinformation-flow policies as we have shown in
thef oo function above, there are few reasons to prevent implitirmation flows, which are much more difficult
to exploit to cause damage. Therefore, the security poticyfotecting integrity does not have to be as strict as
pure noninterference policies. Implicit information flowasild be allowed by default, without the awkwardness
of using explicit downgrading mechanisms.

3 Downgrading Policies for Integrity

To avoid the drawbacks of noninterference-based integdtigies, we study them in an alternative formal frame-
work. Our recent research [4] uses downgrading policiegpaogram equivalences to formalize the security goals
of language-based information-flow security. This framdwwas originally focused on confidentiality, and this
paper extends the integrity aspect of it. Similar to confiiddity labels, we define a partial ordering on integrity
labels, formalizes the downgrading relation for integrétgd give interpretations to traditional security levelsts
asuntaintedandtainted To highlight the symmetry between confidentiality and gnity, the definitions for two
kinds of policies are given in parallel for the rest of the @ap

Briefly, this framework usedowngrading policiedo express security levels of data and define the ordering
among these security levels, which generalizes the singgleriy latticespublic C secret for confidentiality and
untainted C tainted for integrity. A security level is simply a non-empty set aivehgrading policies, where
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each policy describes the computation related to downggadiVe reason about the programs in an end-to-end
fashion. Each program takes input data and produces oufipait @onfidentiality policies are specified for each

program input; integrity policies are specified for the perg output. The security goal is then formalized using

such security policies.

3.1 Downgrading policies and security labels

type Tu= int|T—o7

constant c:= 0,1,2,..

operator o= +,— %= ..

downgrading policy m ::= Az:7.m|mm|z|c| & |[if mmm
confidentiality label ¢l ::= {mq,...,my} | secret, | public.
integrity label il :=  {mq,...,my} | tainted; | untainted,

Figure 1. Downgrading Policies and Security Labels

The syntax of downgrading policies and security labels @ashin Figure 1. Each downgrading policy is a
term in the simply-typed\-calculus, extended with operators and constants. Theyplalnguage is intended to
be a fragment of the full language for which equivalence iddi#ble, so that the primitive operators will match
those in the full language. Each downgrading policy represssome computation associated with downgrading
as following:

¢ Confidentiality policies: each policy is a function that sifies how the data can be released to the public
in the future. When this function is applied to the annotadath, the result is considered as public. For
example, if a secret variableis annotated with the confidentiality policyr. z%2, it means the last bit of
x can be released to public.

e Integrity policies: each policy is a term that specifies htw tlata has been computed in the past. For
example, the integrity policy2” means the data must be equal22@nd works like a singleton type. The
policy can be a function, too. For example, the poliey. %10 for an integer means that the integer must
have been computed by 10, wherex is potentially untrusted and we do not know whais. Another
useful policy isAz. \y. match(zx, y), wherematch is a predefined pattern matching function and the policy
means the data is the result of pattern matching. The wepkésy is the identity functionAx. x, which
simply gives no information about the how the data has beerpated in the past.

Policies are typed in the simply-typedcalculus using the judgmeiit - m : 7. We use standar@-n equiv-
alencesl’ + m; = my : 7 for policy terms. Policy terms can be composed as functiaiisguthe following
definitions.

Definition 3.1.1 (Policy composition) If I' - my : 4 — 73 andT" - ms : 5 — 71, the composition of.; andme
is defined asny or mo 2 Az :T9.mq (Mg x)

Definition 3.1.2 (Multi composition) If ' - my:7— 7" andl' - my: 7 — ... — 7 — 7, the multi-composition
: ' A
of m; andms is defined asny Gr ma = a1 7. ... A\xg 7M1 (Mo 1 ... k)

Given the definition of downgrading policies, we can defineeusity label as a non-empty set of downgrading
policies. We slightly abuse the notation to ugéo range over confidentiality labels afido range over integrity
labels. Labels are well-formed with respect to the type ¢é dsannotates.
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Definition 3.1.3 (Label wellformedness)
Felar| < Ymed,3n,Fm:(t—mn)

Filar| < VYm€il,Ir,...,Imp,Fmi(n—... =7 —7)

The meanings of two kinds of labels are symmetric:

o Confidentiality labels: each policy in the label can be usedetclassify the data in the future. For example,
if the valuep is annotated with the confidentiality labgl\p. \x.p=x), (Ap.p%2)}, it means thap can be
declassified by comparing it with some other value, or byagting its last bit.

e Integrity labels: each policy describes a possible contjmutahat generated the value as the result in the
past. For example, if the valyeis annotated with the integrity lab@(Az. match(z, ¢1)), c2 }, it means the
value is either the result of pattern-matching againsepatt, or a predefined constant.

3.2 Label Ordering

Each label is syntactically represented as a set of dowirgramblicies, but the semantics of the label includes far
more policies than explicitly specified. We define the intetation of security labels as the following.

Definition 3.2.1 (Label interpretation)
S (cl) 2 {n|nec, Fn'=morn:mn}
S,(il) 2 (0’ [neil, Fni(r—...—om—1),
Fn'=Qz:r. .. Azgrlonmy..omy) (1] — ... =7/ —71) }

To understand the above definitions, suppose the secusiy ltas the policy::

e For confidentiality: any functiom: composed with is also a valid downgrading policy implied by The
intuition is that if (n x) is public, then(m (n x)) is also public, no matter what is.

e Forintegrity: if we can compose with some other terms and get a larger terimin whichn represent the
final step of computation, thetl is also implied in this label, because any data computed loan also be
treated as if it is computed by using some input data.

For example, suppose we have an integrity Iaheé {Az.match(z, ¢1)}, then the following policies are
also inS(ily): (Aa. Ab.match(a + b, c1)), (match(cg, c1)), etc. Intuitively speaking, if we only know that
the data is the result of pattern-matching against the npatie then there are possibilities that the value
matched withe; could bea + b, ¢, Or any other values.

Based on the semantics of labels, we can easily define thergdm security labels, using the set inclusion
relation on label interpretations. We use the notafiori- /5 to sayls is a higher security level thah. The
definitions for confidentiality and integrity labels are qaetely symmetric.

Definition 3.2.2 (Label ordering)

= S;(ch) 2 S-(cla), = S(ily) C S(ily).

e Confidentiality: high security levels correspond to seteeels, low security levels corresponds to public
levels. The intuition is that, each policy in the label cepends to a path where secret data can be released
to public places. The fewer paths there are, the more seoeiata is.

49



e Integrity: high security levels correspond to tainted otrusted levels and low security levels corresponds
to trusted levels, because we would like to allow informatitow from low levels to high levels but not
in the other direction. The intuition is that, each policyresponds to a possible computation that have
generated the data. The more possibilities there are, $drlgstworthy the data is.

We claim that the ordering of security labels generalizeswo-point latticepublic C secret anduntainted C
tainted. In fact, all these traditional security levels can be ipteted in the framework of downgrading policies:

Definition 3.2.3 (Interpretation of special labels)
secret, 2 {Az:7.0} public, 2 {A\z:7.x} tainted, 2 {A\z:7.x} untainted, 2 {m| Fm:7}

e Confidentiality: we can prove that all the confidentialitpdds of a given type form a lattice, whesecret -
is the top angublic_ is the bottom.

e Integrity: we can prove thatinted. is the highest label of all the integrity labels. Howevegrthis no
single lowest label in the integrity ordering. Insteadréhare many different lowest labels. For example,
supposer = int, then{cy}, {c1} and so on are all lowest labels. For a set of labels, their(Jeast upper
bound) always exists, but they may not have a lower bound.

The interpretation ofintainted, is the set of policies representing computations that dausetpotentially
untrusted inputs. We choose this interpretation for twsoea. First, it reflects the meaning of “untainted”,
i.e. the corresponding computation did not use tainted. da¢aond, its semantics is backward compatible
with untainted in the traditional two-point security lattice, because wh&o untainted data meets together
during computation (i.e. when computing + ¢2), the result can also be labeled @astainted, which is
the way things work in the two-point lattice. Thus, the ondgron integrity labels can be understood as a
refined version of the two-point lattiaentainted C tainted.

Apparently,untainted, does not provide a very strong security guarantee: datathighabel can have any
value. This coincides with the facts we mentioned in Seclidn if the code is not trusted, themntainted
data can be anything. However, we now have security levatgfovide more precise security guarantees:
data with labe (Ax.match(z, ¢1))} are guaranteed to match the patterndata with label ¢, c2} is either

c1 Or cg, etc. Interestingly, the labg( \x.match(z, ¢1))} is not lower tharuntainted, but it provides a much
more precise security guarantee thamainted does.

Overall, we can see that the label orderings for confidetytiahd integrity are highly symmetric. The security
levelspublic andtainted are both represented using the identity function and théy keder to data under control
of the attacker. The security levalscret anduntainted are also symmetric in some sensecret are represented
using constant functions, whilentainted is represented using a set of terms that can be staticallyated to
normal forms.

The only asymmetry is that there are multiple lowest intgdabels, while there is only one highest confiden-
tiality label. In fact, each lowest integrity labét} has its counterpagz. c} in the confidentiality lattice. It is
just that all confidentiality label§A\xz.m} such that: is free inm are structurally equivalent because their label
interpretation are the same as the interpretation of a aoh$inction. Intuitively speaking, different constant
policies provide different integrity guarantees, but ahstant policies have the same effect for confidentiality.
This fact, together with the thoughts in Section 2.1, shompartant difference between confidentiality and in-
tegrity in information flow. Confidentiality policies are steuctive and do not care about the actual computation of
secret data. If the secret data is destroyed and becomesggarbdoes not violate any confidentiality policies and
the system is still secure. In contrast, integrity polices highly related to the correctness and precision actual
computation performed on the data.
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3.3 Label Downgrading

The security label of data changes as the data is involvedrmescomputation. We use the conceptlaifel
downgradingto describe the transition of security labels. To formatlzie concept, suppose the datahas type
71, and it is annotated by labet$; andil,. We use the concept of attionto model the computation ary: an
actionm on z; is a function applied ta:;. For example, suppose the computationagns hash(x;), then the
action is simply thehash function. If the computation ig; + y, then the action i$\x. = + y). Now, given the
actionm, suppose the resultn x;) has typers, we can formally define the label, andil; on the result:

Definition 3.3.1 (Label Downgrading)

(Cll <17'1> NS (ClQ<lT2) < Fcly a1, Fco<m, VYmgy € cly,d3my € STI(Cll), FmeGrm=mq:7

(’ill <17'1) N (il2<lT2) < Fili<7, Filg<am, Ymg € ilg,ﬂml S Sﬁ(ill), Fmeo=mGrmy: 7

The judgment(cl; < 7) % (ely @) can be read as “the confidentiality lab#] at typer; is transformed to
a labelcl; at typers under the actiomn”. The definition is completely symmetric for confidentiglibbels and
integrity labels. Let us understand these rules by lookingpane examples. For simplicity and readability, we
omit the typing information in the following examples.

e Confidentiality labels: suppose we have the following lakehd actions that are related using the label
downgrading definition.

cly 2 {\x. \y.hash(z)%4 =y} my 2 Az.hash(z)  (cly <int) %3 (cly <int)
clo 2 {Az. \y.2%4 = y} ma 2 . x%4 (cly aint) “3 (clg <int)
cls 2 {Ar. Ay.x =y} ms 2 Mo dy.x =y (cz<int) ¥3 (public, < int)

Supposer; = hash(z1), =3 = 29%4 and x4 = (x3 = p). If z1 has labelcl;, thenz, has labelcls,
x3 has labekls, x4 has labebpublic;,,. Intuitively speaking, the downgrading policies in a cosfitality
label describe paths in which data can be downgraded in teefuwhich may involve several steps of
computation. In the downgrading relation, the actianmatches the prefix of such a patty, and the

remaining pathms is preserved in the resulting label.
e Integrity labels: suppose we have the following labelsioastand downgrading relations:
1lq = tainted;n: m = Az.match(z,cq) (ily <int) e (ily <int)
ily 2 \z.match(z, c1)} ma 2 ez + ¢ (ily <int) %2 (ily <int)
ils 2 {A\x.match(z,c1) + c2}
Supposer, = match(z1,c1) andzs = T9 + co. If 1 has labetainted;,:, thenzs has labells andzs has
labelils. Intuitively speaking, the downgrading policies in an grity label approximate the computation

in the past, from which the data could have been computechdmowngrading relation, the action is
appended to the history of computation, and the resulin; is in the resulting label.

3.4 Security Goals

The main question is: how to tell that a program is safe wispeet to some security policies? We formalize
the security goal in a language based on the simply-typeddancalculus, which is basically an extension of
our policy language. We define the security goals as endidgpeoperties on the input-output relationship of the
program.
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Rather than using operational semantics, we use staticgrogquivalences in the definition: if the program is
safe, it must be equivalent to some special forms. The elgmva relation= is the standarg — n equivalence,
extended with some trivial rules for conditional expressicuch ag; = if 1 e; e5. The full definition of the
equivalence relation is similar to those in our earlier W@k

Definition 3.4.1 (Relaxed Noninterference)Suppose the program uses secret input variables, . . ., where
each input variabler; has a confidentiality label(o;) specified by the end user. For a program outpuatt type
T

e ¢ satisfies the confidentiality policy, if e = f (m1 0q,) . .. (my, 04,,), WhereVi.o; ¢ FV(f) andVjm; €
Y(0a,)-

if €1 ('m1 €11 €12 )
if 62(m2 €91 €929 )
e ¢ satisfies the integrity policyl, ife = | .... wherevj.m; € il.
if en(my en1 en2 -..)
(mo €01 €02 )

The confidentiality condition requires that the program lsamewritten to a special form where secret variables
are leaked to public places by using only the permitted fanst(downgrading policies). Confidentiality policies
are specified on thmput of the program. The integrity condition requires that thegpam can be rewritten to a
special form where the result is computed using one of thetioms (downgrading policies) in the integrity label.
Integrity policies are specified on tloeitputof the program.

To understand the integrity guarantee better, considédiotlusving two possibilities:

1. There is only one policyr in il. In this case, all the branches have the sameo we have the following

equivalence:
if €1 (m €11 €12 ) if 61(611) if €1 (612)
if €9 (m €91 €922 ) if 62(621) if 62(622)
if en(m en1 ens ...) if en(ent) if en(en2)
(m €01 €02 ) (601) (602)

This provides a very straightforward security guarantebe @ttacker can only affect the result dgwn-
grading i.e. let untrusted data go through the downgrading potcy

2. There are multiple policies . The body of each branch is still protected by a downgradaigyin i/, but
the attacker also has the ability to choose the exact branbh taken, thus affecting the result via implicit
control flow. Such implicit flows cannot be easily justified igwngrading because the conditiors...e,
are arbitrary programs not related to the downgrading pol@ur definition simply permits such implicit
flows because we defined the integrity label as a setoskiblecomputations. No matter which branch
is taken, the final step of computation is always capturechbyiritegrity label. This definition meets our
requirement in Section 2.4. In contrast to the integritydition, the confidentiality condition of Definition
3.4.1 does not tolerate any implicit information flow.

Definition 3.3.1 shows the symmetry between confidentialitg integrity conditions in a simple way: it de-
scribes how secret data are leaked to public places (fordmntfality) and how untrusted program generates
trusted result (for integrity). However, it only specifyljpies on one side of the program and assumes that the
program output ipublic and that the program inputs ar&nted. Definition 3.3.1 can be further generalized to
achieve more fine-grained end-to-end security conditions.
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Definition 3.4.2 (Relaxed Noninterference (refined))Suppose the program uses input variaktesos, . . ., where
each input variabler; has a confidentiality label.(c;) and integrity label>;(o;) specified by the end user. For
a program output at typer:

e ¢ satisfies the confidentiality poliey, if Vn € cl, (ne) = f (my 04,) ... (my 04,), WhereVi.o; ¢ FV(f)
andVj.m; € ¥¢(0q,)-

e ¢ satisfies the integrity policyl, if Vn, € ¥;(01), ... Vn, € ¥i(oy), for all f,, that make the following
substitutions well-typed,
if 61(77’&1 €11 €12 )
if eg(mg €21 €922 )
[(n1 fir frz ) /o] o [(nk fir fuz o) /ow] e =
if en(my ent en2 -..)

(mo €01 €02 )
whereVi.o; ¢ F'V (fyy) andVjm; € il.

In Definition 3.4.2, security policies are uniformly speeifion both ends the program;, ¥; specify policies
on the program inputs and, il specify policies on the program output. The confidentiaditydition allows the
program output to have security levels other tipablic. Compared to the integrity condition in Definition 3.4.1
where the program is simply untrusted, Definition 3.4.2vedlais to give trusted data to an untrusted program
yet still having guarantees on the program output. The fittegondition looks more verbose because we have
to use a lot of variables and term substitutions. Howeverctinfidentiality condition and integrity condition are
inherently symmetric except that the integrity conditidioveis implicit flows (via theif expressions).

3.5 Extensions

Similar to the idea ofglobal downgrading policies in our previous framework [4], we cattead the policy
language with secret variables. Although this significactianges the confidentiality lattice (for example, the
policy public is no longer the bottom of the lattice), the ordering of imiiggabels is largely unchanged. In fact,
doing so will only make the integrity policies more expressiThe integrity label§o; } and{c; } are very much
alike — they are both singleton types; they are all lowestlgin the integrity ordering.

4 Conclusion

This paper studies the challenges on integrity policieaingliage-based information-flow security and provides
a symmetrical view of confidentiality and integrity in theafnework ofdowngrading policies Although it is

a common belief that confidentiality and integrity are du#liere are many aspects where integrity policies are
fundamentally different from confidentiality policies.tégrity policies should precisely describe the computettio
on data in addition to the sources of data. The traditionaimerference-based approach provides no integrity
guarantees for untrusted code, and is often too strong wéling with implicit information flow.

This paper extended the framework dfwngrading policiedy presenting an more expressive model of in-
tegrity policies, where each label describe a set of paséilvictions that could have computed the data in the past.
The presentations of confidentiality policies and intggpiblicies are mostly symmetrical. Traditional security
levels for information-flow integrity such asinted anduntainted can be elegantly interpreted in this framework.

The asymmetry between confidentiality and integrity is smawthe ordering of security labels and also in
the formalization of security goals. The interpretatiord dine ordering of integrity labels show the reason that
untainted provides a weak security guarantee and suggests the userefprexise integrity labels instead of
untainted. The definition of the security goal for integrity permitddmmation leak through control flow yet
provides formal, intuitive and practically useful secyigiuarantees.
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Abstract

Controlled query evaluation preserves confidentiality in information systems at runtime. A security policy
specifies the facts a certain user is not allowed to know. At each query, a censor checks whether the answer
would enable the user to learn any classified information. In that case, the answer is distorted, either by lying or
by refusal. We introduce a framework in which controlled query evaluation can be analyzed wrt. possibly in-
complete logic databases. For each distortion method — lying and refusal — a class of confidentiality-preserving
mechanisms is presented. Furthermore, we specify a third approach that combines lying and refusal and com-
pensates the disadvantages of the respective uniform methods.

Keywords: Information systems; Incomplete databases; Controlled query evaluation; Inference control.

1 Introduction

One basic requirement of a secure information system is preservation of confidentiality: Each piece of information
may only be accessed by people who are authorized to do so. This is often enforced by the means of static access
rights assigned to the structures of the information system. Although widely used, this approach entails a number
of problems, one of which is the inference problem: The user might combine data he has access to in order to infer
information he is not allowed to know. The inference problem has been studied in various contexts, for example
statistical (see [10, 11, 13] for an introduction and e. g. [18, 19] for more recent work), multi-level and relational
databases (see e. g. [9, 10, 15, 16, 20]). See [12] for a comprehensive review of the various approaches.

Controlled query evaluation is a dynamic approach to ensuring confidentiality, based on a fundamental logical
framework. A security policy specifies the facts a certain user is not allow to learn. Then, at each query, it
is checked whether the answer to that query would allow the user to infer any sensitive information. If this is
the case, the answer is distorted by either lying or refusal. Though computationally expensive, this approach
guarantees that no information will flow through otherwise unidentified inference channels. Controlled query
evaluation was first proposed by Sicherman et al. [17] (presenting refusal as a distortion method) and Bonatti et
al. [8] (introducing lying). Biskup [2] presents a unified framework for complete information systems in which
both lying and refusal can be studied. Further work by Biskup and Bonatti relies on this framework and studies
various aspects, including a comparison of lying and refusal [4] and a combined lying and refusal approach [5, 6].
A complete survey of the methods for complete databases can be found in [3].

Most information systems encountered in the real world are incomplete, in the respect that they cannot provide
an answer to each query, as they have only limited knowledge. The goal of this paper is to adapt part of the existing
work on controlled query evaluation to (possibly) incomplete logic databases. In our framework, a database
instance db is a consistent set of propositional sentences. A query ®, which is a propositional sentence, is either

* A draft of the complete paper containing detailed formalizations and proofs is available from the authors on request.
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true, false or undef in db depending on whether ®, its negation ~® or neither of these are logically implied by db.
The security policy is specified by a set of potential secrets, each of which is a propositional sentence. Before a
query result is passed to the user, a censor checks whether this information would — now or later — enable the user
to infer any of the potential secrets. In that case, the answer is distorted. When lying, a value different from the
actual query value is provided as the answer, for example false instead of true. When refusing, the special answer
refuse is returned. We present three different classes of censors: One that exclusively uses lying as a distortion
method, one that uses only refusal, and a combined one that exploits both lying and refusal.

We say that a method of controlled query evaluation preserves confidentiality iff for each database instance,
security policy, potential secret and query sequence, there is always a (possibly different) database instance in
which that potential secret is not frue, and under which the same answers would have been returned. Thus, the
user cannot rule out that this potential secret is not true.

An important property of controlled query evaluation is that it keeps track of the information disclosed by earlier
queries in order to avoid harmful inferences. This is done by the means of the user log. Prior to the first query, the
user log contains the assumed initial knowledge of the user. Then, after each query, the information provided to
the user is stored in the user log. Within the user log, we use epistemic logic in order to formalize the information
already disclosed. For the uniform lying method and for the combined lying and refusal method, it is sufficient
to store what answers the system provided to the queries. For the uniform refusal method, meta inferences evolve
as a major problem: Having knowledge about the algorithm of the censor, the user can infer which query values
might have led to a refusal in a certain situation. That way, he can draw inferences about the query value despite
the fact that the answer has been refused. The refusal method overcomes this problem by storing all possible meta
inferences from the answers in the user log.

The remainder of this paper is organized as follows: In Section 2, we give an overview about the basic ideas
behind controlled query evaluation and demonstrate the functioning of a censor. In Section 3, we outline the
formalization of our framework. The three enforcement methods — uniform lying, uniform refusal, and combined
lying and refusal — and their properties are sketched in Section 4. Finally, we conclude in Section 5.

2 Controlled Query Evaluation

In this section, we present the basic concept of controlled query evaluation. First, we define the notion of incom-
plete logic databases, and give a definition of the security policy. Then, on a rather informal level, we demonstrate
the functioning of a censor. The formalization of these ideas is then given in Section 3.

Ordinary Query Evaluation We consider (possibly) incomplete logic databases based on propositional logic.
A database schema DS is a finite set of propositions. A database instance db over the schema D.S is a consistent
set of sentences, using only propositions from D.S. The user issues a finite sequence of queries Q = (®1, ..., P,),
each of which is a propositional sentence. The query ®; is either true, false or undef in db, depending on whether
®,, its negation —®;, or neither ®; nor ~P; are logically implied by db (as db is consistent, exactly one possibility
holds). This is formalized as the following function (F=py, denotes logical implication in propositional logic):

eval(®)(db) := if db =py, P then true
else if db =pr, —P then false
else undef

The Security Policy The security policy defines the facts to be hidden from the user. It consists of a set
pot_sec = {V¥y,...,V,,} of propositional sentences, so-called potential secrets. The semantics is as follows:
If a potential secret W is true in the given database instance db, the user is not allowed to infer this information.
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Security Configuration eval(P)(db) = ...
C

true false undef
{{true}, {false}, {undef}} GG refuse refuse
{{true}, {false}} undef undef
{{true}, {undef}} false IR
{alse}, (undef) e
{{true}} undef
{{false}} undef

{{undef}}
0

Table 1: A combined lying and refusal censor

On the other hand, if W is false or undef, this information may be disclosed. This is a suitable formalization for
real-life situations where the circumstance that a certain fact is true must be kept secret, but not the converse. For
example, imagine a person applying for an employment. If that person suffered from a terminal disease, this must
be kept secret (as it might be an obstacle for being chosen for the job). On the other hand, if the applicant is
healthy, this information may be disclosed. For complete information systems, another type of security policies
with different semantics, called secrecies, has been studied as well (see e. g. [3]), but in this paper, we concentrate
on potential secrets. Additionally, we assume that the user knows the set of potential secrets, but of course not
their respective values in the given database instance.

Our formal definition of confidentiality is given in Section 3. In a nutshell, it can be summarized as follows:
Whatever the actual database instance db; and the security policy pot_sec are, and whatever sequence of queries
(@ the user issues, there must be a database instance dbs, in which a given potential secret W is not frue, and under
which the same answers would have been returned. Then, the user cannot decide from the answers whether db; or
dbs is the actual database instance, and thus whether W is true or not.

Note that this is a rather declarative definition, and it does not include any hint about which techniques to be
used to operationally meet these requirements. The approach described below keeps a log of the information
already disclosed to the user, and each piece of information in that log is formalized as a sentence in epistemic
logic. Nevertheless, modal logic is only exploited as an auxiliary means here, but not to describe the situation in
general.

The Censor The most important component of our framework is the censor function that decides whether an
answer needs to be distorted in order to preserve confidentiality, and, if so, in which manner. The censor function
takes two parameters: 1. The actual value of the query eval(®)(db), and 2. the so-called security configuration C,
describing the threats to the security policy in the given situation. The result of the censor function is the answer
to be returned to the user, either true, false or undef (which might differ from the actual query value, in case lying
is used as a distortion technique), or even the special answer refuse, indicating that the answer is refused.

A censor function can easily be written as a decision table, with each line representing a security configuration
and each column representing a query value. Table 1 gives an example of a censor using both lying and refusal as
a distortion method. The black cells denote the situations in which a distorted answer is given. The policy of this
censor is to use lying as a distortion method whenever necessary and possible, and use refusal if lying would fail.

We formalize each piece of information disclosed to the user as an inference set, i.e., as a set of values the user
regards as possible wrt. the actual query value. Unary inference sets describe complete information about a query
value. For example, {true} denotes that the user learns that the query value is true. The uniform refusal censor
will also have to consider binary inference sets, describing incomplete information about the query value.

A security configuration is given as a set C' = {V3,..., Vj} of inference sets, all of which would lead to a
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disclosure of sensitive information. For example, the security configuration C' = {{true}, {false}}, as in the
second line of the censor table, denotes that neither the answer false nor the answer true may be given, as both
would lead to a violation of the security policy. In Section 3, we show how the security configuration is determined
based on the user log, which contains information about all facts disclosed to the user so far.

Having understood the concept of security configurations, one can easily see how the censor works. For exam-
ple, when neither frue nor false may be given as an answer (second line of Table 1), the censor responds to this
situation by returning the remaining safe answer undef, even if the actual query value is true or false. For the three
security configurations {{rrue}}, {{false}} and {{undef}}, the censor has two safe answers to choose from. The
security configuration {{true}, {false}, {undef}} in the first line of the censor table represents the special situation
in which none of the values true, false and undef may be given as an answer, as all of them would lead to a security
violation. In that case, the censor refuses to answer, as a last resort. Finally, the security configuration () in the last
line means that neither answer is dangerous, allowing the censor to pass the unmodified query value to the user.

A special problem arises when we disallow refusal as a distortion method. As you have seen, the security
configuration {{true}, {false}, {undef}} represents the situation where all of the values true, false and undef may
not be given as an answer, as all of them would allow the user to infer sensitive information. While the combined
lying and refusal censor overcomes this situation by refusing to answer, the uniform lying mechanism has to make
certain arrangements so that this “hopeless situation” will not occur. This is done by modifying the notion of a
violation of the security policy, protecting the disjunction of all potential secrets instead of each single one, as
described in Section 3.

Refusal and Meta Inferences A first approach to refusal in incomplete databases is given in [7]. In the present
work, we adapt the ideas from that paper to our new framework and give a formal definition of the meta inferences
that evolve as the major problem when refusal is used.

Meta inferences occur when the user combines the answers received by the system with his knowledge about
how the system works. The latter is made up of two parts: 1. We follow the principle of open design and assume
that the user knows the algorithm of the censor and its auxiliary components. 2. The security configuration is
computed only by information the user has access to (the user log, the query, and, as we assume, the security
policy). Thus, whenever the user receives an answer from the system, he can determine what line of the censor
table this answer originates from, and compare the received answer to the answers found in that line.

For example, consider the following excerpt from a censor table:

C | true false undef
(lirue), (abse) ) ndef

Imagine the user issues a query ®, which has the value eval(®)(db) = true and the associated security config-
uration C' = {{rrue}, {false}}, meaning that both answering frue and false would lead to a security violation.
Thus, the censor answers refuse. The user can now determine the security configuration and finds that refuse is
only returned as an answer if the query value is either true or false, but not undef. So the user has gained partial
information about the query value, which we express by a binary inference set, in particular {true, false}. Even
this partial information might be harmful (as a matter of fact, if both the answers frue and false would lead to the
disclosure of the same potential secret, the partial information “the value is either true or false” is sufficient to
infer that secret).

In order to overcome this problem, the uniform refusal method takes two actions: 1. Also binary inference sets
are considered when determining the security configurations, i.e., the inferences harmful to the security policy
(which, admittedly, leads to computational overhead, as a greater number of implications need to be computed).
2. In case a harmful meta inference can be drawn from an answer, an additional refuse is introduced in that line of
the censor table, avoiding the respective meta inference (which on the other hands leads to a lack of availability,
as more answers need to be refused). For example, the above mentioned situation can be solved as follows:
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C | true false undef

{{true}, {false}} refuse refuse undef
{{true}, {false}, {true,false}} RAIILNE refuse refuse

The first line represents the situation where both the inferences {true} and {false} would lead to a security viola-
tion, but the partial inference {true, false} would not. In that case, it is sufficient to refuse the answer only if the
query value is true or false. The second line represents the situation where also the partial information is harmful.
Introducing an additional refuse in the third column (for the value undef’), the user cannot draw that harmful meta
inference anymore (as any value would have led to the answer refuse).

The uniform lying method does not need to consider meta inferences because the mechanism of lying, as used
by our censors, avoids them in the first place by choosing only harmless answers as a lie. Consider the following
example:

C | true false undef
{{true}} false undef

Under this security configuration, true is a harmful answer, so it is replaced by the harmless answer false. The
resulting meta inference from the answer false is then {true, false}. This partial inference is harmless, because
even the more precise inference {false} is. (If it is harmless to know that the value is false, it is also harmless to
know that the value is either true or false). By choosing only harmless answers as a lie, the censor guarantees that
the meta inference includes at least one harmless component, making the whole meta inference harmless as well.

The combined lying and refusal method, which is derived from the uniform lying method, is not affected by
meta inferences as well; on the one hand, it inherits the abovementioned properties of the uniform lying method,
and on the other hand, under the additionally introduced security configuration {{frue}, {false}, {undef}}, the
answer is refused regardless of the query value, eliminating harmful meta inferences as well.

Storing the actual answers (as performed by the uniform lying and the combined lying and refusal method)
instead of the meta inferences (as used by the uniform refusal method) is advantageous for two additional reasons:
First, it leads to an increase in computational efficiency, as a lower number of inferences has to be checked for a
violation of the security policy. Second, the censor is able to keep the set of answers consistent, even if there are
lies among them.

3 Formalization

Having introduced the basic ideas of controlled query evaluation, we now outline a formal definition of its various
components.

The User Log Controlled query evaluation keeps track of the facts already disclosed to the user in order to
determine which inferences would allow the user to infer any of the potential secrets. This information is stored
in the user log. Prior to the first query, we have the assumed initial user knowledge logg. Then, after each query
®,, the inference from the ith answer ans; is added to the user log. In order to formalize the inferences, we
use epistemic logic (S5), established by introducing the modal operator K which is to be read as “it holds in the
database that ...”. A query ® and the inference set () # V' C {true, false, undef} from the respective answer ans
can then be converted into a sentence of epistemic logic by the function A*(®,V) =/, o, A(®,v) with

A(D, true) = K&, A(®D,false) = K—~®, A(P,undef) = -KP N-K—-d.

We assume that each enforcement method defines a function inference(censor, C,ans) that computes the in-
ference from an answer ans (which was given by the censor censor under the security configuration C). As
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mentioned in Section 2, we use two different approaches: The uniform lying method and the combined lying and
refusal method take the answer as the inference set (while refusals are discarded), formalized by the function

inference®™®(censor,C,ans) := if ans = refuse then () else {ans}.

On the other hand, the uniform refusal method considers the meta inferences a highly-sophisticated user can draw
from an answer. The meta inference corresponds to the set of values that lead to the answer ans under the given
security configuration C, in formulae:

meta(

inference censor,C,ans) = { v |v € {true, false, undef} and censor(C,v) = ans }.

The range of these functions, i.e., the set of inferences that can occur under a certain enforcement method, is
given by 29" = {{true}, {false}, {undef}, ()} and T™'% = BT ({true, false, undef}) respectively (where L3 is the
power set operator and T indicates that the empty set is excluded).

Security Violations In order to prevent a violation of the security policy, we need to define what it means
that such a violation is existent. Again, we assume that each enforcement method provides a function
violates(pot_sec, log), deciding whether the user log enables the user to learn any of the potential secrets. It is
guaranteed as a precondition that the initial user log logg does not violate the security policy. Later, this is kept as
an invariant.

We use two different versions of this function. The uniform refusal method and the combined method define
that there is a violation if one of the potential secrets from pot_sec is logically implied (wrt. epistemic logic) by
the user log:

violates*™9' (pot_sec, log) = (3V € pot_sec)[log =g5 .

On the other hand, the uniform lying method needs to avoid the hopeless situation in which neither answer may be
given. This is achieved by the stricter violates-function

disj (pot_sec,log) = log =gs \/ v,
Wepot_sec

violates

For example, consider the security policy por_sec = {s1, 2, s3} and the user log log = {Ka — s1, K—a —
9, Ka A ~K—-a — s3}. According to violates*™9', this log does not violate the security policy (as the user
does now know which of the potential secrets holds). On the other hand, this user log does violate the security
policy according to violates®7 (as the user knows that at least one of the potential secrets holds). Moreover, when
the user issues the query ® = a and refusal is not allowed as a distortion method, we have the aforementioned
“hopeless situation” in which either answer would disclose a potential secret.

The uniform lying method avoids this situation by keeping the stricter condition violates*/ as an invariant for
all user logs generated throughout the query sequence. On the other hand, the refusal and the combined method
adhere to the weaker condition violates®™9', for the sake of availability.

Security Configurations As outlined in Section 2, the security configuration of a query is the set of inferences
that would lead to a user log violating the security policy. This can be formalized as the function

sec_conf(pot_sec,log, ®) = { V | V € T and violates(pot_sec,log U {A*(®,V)})}

where pot_sec is the security policy, log the current user log, ® the query and Z the range of the version of the
function inference used by this method. Note that the user is assumed to know all of these parameters, so he
can himself calculate the security configuration, enabling him to draw meta inferences. The range of sec_conf is
limited by Z and certain constraints. For example, an inference {v1, v2} can only be dangerous if both {v;} and
{va} are. The censors will only have to handle those relevant security configurations.
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The Censor The censor is the most important component of controlled query evaluation. It considers the security
configuration (i. e., the current threats to the security policy) and the actual query value and decides what answer
to give, either the original query value or a modified answer. This can be formalized as the function

censor : PP ({true, false, undef})) x {true,false, undef} — {true, false, undef, refuse}.

For each enforcement method, we will restrict the censor function to certain behavior according that method
(lying, refusal or combined) and then state a couple of requirements such a censor must meet in order to preserve
confidentiality.

Formalization and Security Based on the components described above, we can define a method of controlled
query evaluation as a function

control_eval(Q, logy, db, pot_sec) := ((ans1,logi), ..., (ansy,logy,))

where Q = (®1,...,D,) is a query sequence, logy the initial user log, db a database instance, and pot_sec a set
of potential secrets. In each step ¢, the answer ans; and the subsequent user log log; are generated as follows:

1. Determine the security configuration: C; = sec_conf(pot_sec,log;—1, ®;)
2. Let the censor generate the answer: ans; = censor(C;, eval(®;)(db))
3. Add the corresponding inference to the user log: log; = log;—1 U {A*(®;, inference(censor, C;,ans;))}

Each method goes along with a function precondition that defines the admissible arguments for that method. For
the methods described in this work, it is demanded that the initial user log does not violate the security policy:

precondition(db, logy, pot_sec) := not violates(pot_sec,logo)

Our notion of confidentiality can then be defined as follows: Let control_eval be a controlled query evaluation
with precondition as associated precondition for admissible arguments. control_eval is defined to preserve
confidentiality iff

for all finite query sequences (), for all security policies pot_sec, for all potential secrets ¥ € pot_sec,
for all initial user logs logo, for all instances db; so that (dby, logo, pot_sec) satisfies precondition,
there exists dbs so that (dbe, logy, pot_sec) satisfies precondition, and the following conditions hold:

(a) [dby and db, produce the same answers]
control_eval(Q, logy, dby, pot_sec) = control_eval(Q, logy, dba, pot_sec)

(b) [V is not true in dbs]
eval(V)(dbe) € {false, undef}

4 Enforcement Methods

In the following, we give a brief overview of the enforcement methods for controlled query evaluation suitable
for incomplete databases. Each method is identified by its basic policy (lying, refusal or both), and the inference-
function and the violates-function it uses. Furthermore, we state some requirements the censor function must
meet for each security configuration C' occuring under that method in order to preserve confidentiality. There
are theorems stating that a censor meeting these requirements preserves confidentiality as defined in Section 3.
Examples of the three types of censors can be found in Tables 1, 2 and 3.
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Lying

Censor policy only lie, never refuse
Inferences inference®™® (inference corresponds to answer)
Security violations violates®7 (disjunction of all potential secrets)
Censor requirements  for each v € {rrue, false, undef}:
(a) [safe answers] {censor(C,v)} ¢ C
(b) [only lie if necessary] if {v} & C' then censor(C,v) = v

Refusal
Censor policy only refuse, never lie
Inferences inference™*® (meta inferences)

Security violations violates®™9' (single potential secrets)

Censor requirements meta inference may not lead to a violation:

for each ans € {true, false, undef, refuse}: inference™*"*(

censor,C,ans) & C

Combined lying and refusal

Censor policy lie as long as possible, otherwise refuse
Inferences inference®™® (inference corresponds to answer)
Security violations violates®™9' (single potential secrets)
Censor requirements  (a) [safe answers] for each v € {true, false, undef}: {censor(C,v)} & C
(b) [only lie if necessary]
for each v € {true, false, undef}: if {v} ¢ C then censor(C,v) = v
(c) [no meta inferences from refusals]
if censor(C,v) = refuse for any v € {true, false, undef},
then censor(C,v) = refuse for all v € {true, false, undef}

Security Configuration eval(®)(db) = ...
C true false undef
{{true}, {false}} undef undef
{{true}, {undef}} false false
{{false}, {undef}} true true
{{true}} undef
{{false}} undef

{{ungef}} false

Table 2: A lying censor

The proof idea is similar to all three types of censors: The censors guarantee that the final user log log,, does
not logically imply any potential secret ¥ & pot_sec. Thus, there must be an S5-structure M and a state s so that
(M, s) |= logy, and (M, s) = W. Defining dbs as the set of all propositional sentences ¢ so that (M, s) = K¢,
we have eval(¥)(dbs) = false. It can be shown by induction that db, also returns the same answers as db;.

It turns out that the combined lying and refusal method has advantages over the two uniform methods, for three
reasons: 1. Unlike the uniform lying method, it protects each single potential secret but not the disjunction of
all secrets, leading to a gain of availability. 2. Unlike the uniform refusal method, it does not consider partial
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Security Configuration eval(P)(db) = ...
C true false undef

{{true}, {false}, {undef}, ...} refuse refuse refuse
{{true}, {false}, {true, false}} refuse refuse

{{true}, {false}} refuse refuse
{{true}, {undef}, {true, undef} } refuse refuse
{{true}, {undef}} refuse refuse

{{true}} refuse

{{false}, {undef}, {false, undef}} refuse refuse
{false}, {undef}} refuse refuse

{false}} refuse
{ {unqc)lef} } refuse

Table 3: A refusal censor. The first line is an abbreviation for all security configurations which are a superset of
{{true}, {false}, {undef}}, all of which are treated in the same way by this censor.

information (i. e., binary inference sets), needing less computational power. 3. Unlike the uniform refusal method,
it is not vulnerable to harmful meta inferences from refusals, and thereby needs no additional refuse-conditions,
leading to a gain of availability.

5 Conclusion and Further Work

In the present paper, we have studied controlled query evaluation as a means to dynamically preserve confidential-
ity in databases that might be incomplete. We have presented three basic enforcement methods: Uniform lying,
uniform refusal and combined lying and refusal. The insight that the combined method has advantages over the
two uniform methods corresponds to the results for complete databases [6].

In [7], a refusal censor is presented that uses a mechanism similar to inference®*® in order to store inferences.
While this is a saving of computational overhead, it leads to a lack of availability: That censor only checks unary
inference sets for a violation, but not the binary ones. If two unary inference sets, for example, {true} and {false},
are identified as harmful, it is, as a precaution, assumed that also their union {true, false} is. So an additional
refuse-condition for eval(®)(db) = undef is introduced in order to avoid that harmful meta inference. In this
respect, the censor from Table 3 is more cooperative, as it explicitly checks whether {true, false} is harmful, and
only introduces the additional refuse if that is the case. Obviously, we have a trade-off between availability and
complexity: A refusal censor that checks fewer inferences for a possible violation avoids computational overhead
but has to refuse the answer more often as a precaution, leading to a lack of availability. For example, a censor
that always refuses to answer is very fast but leads to total unavailability. On the other hand, the censor from this
paper was constructed by adding exactly one additional refuse-condition at each of the six security configurations
affected by harmful meta inferences. This heuristics is intended to guarantee maximum availability, though we
have no formal proof for this proposition.

So far, our work is limited to propositional logic. At first glance, this is a serious restriction. Nevertheless,
at this time, our framework may already be integrated into simple applications that involve only a small set of
atoms. Such an integration will be the subject of future work. More complex applications demand that higher
logics are used, for example first-order logic. Then, implication is only decidable within certain restrictions, for
example under a fixed finite domain, or when only certain types of sentences are allowed. We also get decidability
if we consider finite implications, i. e., taking care of finite models only [14]. It is still to be fully analyzed which
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versions or fragments of relational databases fit our framework, in particular when allowing open queries rather
than only closed (yes/no-)queries as in the present paper (see for example [1] for an overview about complexity
and decidability issues in relational databases).

Furthermore, we assume that exactly one user is querying the database. When we have a set of different,
possibly colluding users, there are two options: First, one can regard all users as being the same and sharing
the same user log. Second, one can keep a separate user log for each of the users. The latter option is the
more interesting one, though it demands that there is a formal representation of the collusions, i. e., of the partial
information the users share with each other.

Finally, there are some aspects already studied for complete information systems [3] which still have to be
adapted to our new framework, including different kinds of security policies and the special case that the user does
not know the elements of the security policy, which might be exploited by our system in order to achieve a gain of
availability.
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Non-Interference for a Typed Assembly Language
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Abstract

Non-interference is a desirable property of systems in ailengl security architecture, stating that confi-
dential information is not disclosed in public output. Thealenge of studying information flow for assembly
languages is that the control flow constructs that guide ttadyais in high-level languages are not present.
To address this problem, we define a typed assembly langhatades pseudo-instructions to impose a stack
discipline on the control flow of programs. We develop a typgtam for checking that assembly programs
enjoy non-interference and its proof of soundness.

1 Introduction

The confidentiality of information handled by computingteyss is of paramount importance. However, standard
perimeter security mechanisms such as access control ibel dsggnatures fail to address the enforcement of
information-flow policies. On the other hand, languageeblastrategies offer a promising approach to information
flow security. In this paper, we study confidentiality for ass@mbly language using a language-based approach
to security via type-theory.

In a multilevel security architecture information can ranfgom having low (public) to high (confidential)
security level. Information flow analysis studies whetheattacker can obtain information about the confidential
data by observing the output of the system. The non-intemfer property states that any two executions of
the same program, where only the high-level inputs diffebath executions, does not exhibit any observable
difference in the program’s output.

In this paper we define SIF, a typed assembly language foresécformation flow analysis with security
types. This language contains two pseudo-instructiopash L andcjmp L, for handling a stack of code
labels indicating the program points where different bhescof code converge, and the type system enforces a
stack policy on those code labels. Our development culménatith a proof that well-typed SIF programs are
assembled to untyped machine code that satisfy non-intexde.

The type system of SIF detects explicit illegal flows as wsliraplicit illegal flows arising from the control
structure of a program. Other covert channels such as tlasssllon termination, timing, and power consumption,
are outside the scope of this paper.

2 SIF, A Typed Assembly Language

In information flow analysis, a security level is associatdith the program countep€) at each program execution

point. This security level is used to detect implicit infation flow from high-level values to low-level values.

Moreover, control flow analysis is crucial in allowing thiscsirity level to decrease where there is no risk of illicit
flow of information.
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Consider the example in Figure 1(a), wherdnas high security level anzl has low security level. Notice
thaty cannot have low security level, since information abrutan be retrieved frony, violating the non-
interference property. Since the execution path depenttseoralue stored in the high-security variakleentering
the branches of thé-then-else changes the security level of tpe to high, indicating that only high-level
variables can be updated. On the other hand, smce modified after both branches, there is no leaking of
information from eithely or x to z. Therefore, the security level of tlpe can be safely lowered.

Sec. level ofpc Li: bnz r,L2 %if x #0 goto L2
low if x=0 move r2 «—1 %y=1
high then y:=1 jmp L3
high else y:=2 L2: move ro—2 %y= 2
low z:=3 L3: move r3«—3 %z:=3
(a) High-level program (b) Assembly program

Figure 1: Example of implicit illegal information flow.

A standard compilation of this example to assembly languagy produce the code shown in Figure 1(b). Note
that the block structure of thi&then-else is lost, and it is not clear where it is safe to lower the sdguri
level of thepc. We address this problem by including in our assembly laggw@eastack of code labels accessed by
two pseudo-instructiongpush L andcjmp L, to simulate the block structure of high-level languages.

The instructioncpush L pushesL onto the stack whilejmp L first popsL from the stack ifL is already
at the top, and then jumps to the instruction labelledlbyl'he extra label information injmp L allows us to
statically control that the intended label is removed, ébgrpreventing ill structured code.

The SIF code for the example in Figure 1(a) is shown below.chue atl. 7 pushes the labdl3 onto the stack.
The code at.3 corresponds to the instructions following tiighen-else in the source code. Observe that
the code atL3 can only be executed once, because the instrucjiop L3 at the end of the code pointed to by
L1 (then branch), or at the end df2 (else branch), removes the top of the stack and jumps to the coaegobi
to by L3. At this point it is safe to lower the security level of the, since updating the low-security register
does not leak any information abatjt

L1: A{ro:intt,ri:int’,ro:int’ 73 :intT,pc: L} e
cpush L3 % set junction point.3
bnz ri, L2 %if x #0 goto L2
arithi ro 1o+ 1 %y:= 1, withr,=0
cjmp L3

L2: {ro:int™,ro:int vz :intT pc: T} L3¢
arithi ro 10 + 2 %y= 2
cjmp L3

L3: {ro:intt,rz:intt,pc: L} e
arithi r3 «— 19+ 3 %z:= 3
halt
eof

Moreover, as in HBAL [1], the type-checking of the progranséparated from the verification of the safety
of the machine configuration where the program is assemblieds, following the schema shown below, a type-

checker can verify if a program is safe for executionamly safememory configuration, and the runtime environ-
ment only needs to check that the initial machine configomnais safe before each run.

— Compiler — Assembler ——— <Is machine safe? Eval >

Typechecker

Unsaf e Code Unsaf e Menory.
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The assembler removepush L and translategjmp L into jmp L, an ordinary unconditional jump,
leaving no trace of these pseudo-instructions in the eabbritcode (see the definition of the assembly function
Asm(—) in section 2.4).

2.1 The Type System

We assume given a lattic8sec Of security labels[8], with an ordering relatioriC, least (L) and greatestT()
elements, and join.() and meet () operations. These labels assign security levels to elesmodrihe language
through types. The type expressions of SIF are given by thevimg grammar:

security labels Il € Lsec

security types o = W

word types w u= ant | [7]

memory location types T = oX...xo | code

Security typego) are word types annotated with a security label. The exfmedsABL (o) returns the security
label of a security type. A word type(w) is either an integer typeir{t) or a pointer to a memory location type
([7]). Memory location typeér) are tuples of security types, or a special tgpele . We user|c], with ¢ a positive
integer, to refer to the!” word type of the product type. Since the typeode indicates the type of an assembly
instruction, our system distinguishes code from data.

A context(T" || A) contains a register contektand a junction points stack. A junction points stackA) is a
stack of code labels, each representing the convergenoeddai fork in the control flow of a program. The empty
stack is denoted by. A register contexi” contains type information about registers, mapping therseturity
types. We assume a finite set of registérs, . . ., 7, }, with two dedicated registersy, that always holds zero,
andpc, the program counter.

We write Dom (T") for the domain of the register contelkt The empty context is denoted By. The register
context obtained by eliminating froin all pairs withr as first component be denoted By, while ', T denotes
the union of register contexts with disjoint domains. We lise : ¢ as a shorthand fdr, {r : ¢}, andI'[r := o]
as a shorthand fdr ., {r : o}.

Since the program counter is always a pointer to code, welysudte pc : I instead ofpc : [code |'. We also
usel'(pc) instead of LaBL (T'(pc)).

2.2 Syntax of SIF programs

A program (P) is a sequence of instructions and code labels ended by thetide eof . SIF has standard
assembly language instructions such as arithmetic opagtconditional branching, load, and store, plus pseudo-
instructionscpush andcjmp to handle the stack of code labels.

program P == eof | L;P | pP

instructions p == halt | jmp L | bnz r L
| load 7« r[c] | store r[c]<r
| arth r«—ror | arithi r—roi
| cpush L | cjmp L

operations © = + | — | x | /

We usec to indicate an offset, andlto indicate integer literals. We assume an infinite enuniersdst of code
labels. Intuitively, the instructioepush L pushes the junction point represented by the code latmelto the
stack, while the instructiogjmp L behaves as a pop and a jump.Lifs at the top of the stack, it popgsand
then jumps to the instruction labeléd
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rcr 1ct Cixt(P) Fs P

ST_RegBank T_Halt ﬁ T_Eof
(T,pc:L||A) < (IV,pc: ' || A) T|ekby halt ;P | ebs eo
(T|A) <S(L) S(L) kg P (T|A) <S(L) Ctxt(P) ks P
T_Label T Jmp
I'|Abs Ly P T|A Fs jmp L; P

(T,r: mtl/,pc LUl A <XB(L) Tyr: mtll,pc AUl A Fs P
T_CondBrnch

T,r:int' ,pc:l||A s bnz r,L; P

D(rq) = whd Tq,Ts,Tt 7 pC Td,Ts 7 pC
I(rs) = int's Ul Ul Cly [(rq) = w' IUL Cly
I'(r¢) = int't Ipc:l|A s P [(rs) = intls I,pc:l||A Fs P
(re) = in pe:llld e P gy (rs) = in pe:lIAFe P o pichi
L,pc:l||A by arith  rg—rs ©@ry P Dypc: || A by arithi rq— 15 O P
L(rs) = [r]" Td,Ts 7# pC L(ra) = [r]" ra,Ts 7# pC
[(rq) = w' IULClCly T(ro) =7[]=w" 1ULCI
=wle I,pc:l|A s P is code -free I,pc:l|A s P
T[C} We , pPC H Py T_Load T pc H = T_Store
Iypc:l||A bx load 14« r4c]; P D,pc:l||A Fx store  rglc] < rs; P
IC2(L)(pc) T,pc:l||L-AFs P S(L)=T"||A T")pc CT)pe Ctxt(P) s P
T_Cpush T_Cjmp
Dypc:l||A ks cpush L; P || L-A Fx cjmp L; P

Figure 2: Subtyping for contexts and typing rules for progsa

2.3 Typing rules

A signature(X) is a mapping assigning contexts to labels. The coriigXt) contains the typing assumptions for
the registers in the program point pointed to by the labeThe judgment” || A Fy P is a typing judgment for
a SIF programP, with signatureX, in a context” || A. We say that a prograrf is well-typedif Ctxt(P) s P,
whereCtxt(P) is the partial function defined a€txt(L; P) = 3(L), Ctxt(eof ) = {} || e.

The typing rules for SIF programs, shown in Figure 2, aregiesi to prevent illegal flows of information. The
directiveeof is treated as halt instruction. So, rule§ _Eof andT_Halt ensure that the stack is empty.

Rule T_Label requires that the current context be compatible with theecarexpected at the position of the
label, as defined in the signatuig)(of the program. Jumps and conditional jumps are typed ®smlJmp and
T_CondBrnch. In both rules the current context has to be compatible viighcontext expected at the destination
code. InT_CondBrnch, both the code pointed to bl and the remaining prograrfR are considered destinations
of the jump included in this operation. In order to avoid implflows of information, the security level of the
in the destination code should not be lower than the curienirity level and the security level of the registey (
that controls the branching.

In T_Arith the security level of the source registers andphshould not exceed the security level of the target
register to avoid explicit flows of information. The secutiével of r4 can actually be lowered to reflect its new
contents, but, to avoid implicit information flows, it canrim® lowered beyond the level of tipe. Similarly for
T_Arithi, T_Load andT _Store. In T_Load, an additional condition establishes that the securitgllef/the pointer
to the heap has to be lower than or equal to the security |ébeovord to be read.

The ruleT_Cpush controls whethecpush L can add the code labél to the stack. Sincé is going to be
consumed by ajmp L instruction, its security level should not be lower than tlerent level of thepc. The
cjmp L instruction jumps to the junction point pointed to by laldel Furthermore, to prevent ill structured
programs the rul@ _Cjmp forces the code labdl to be at the top of the stack, and the current context has to be
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compatible with the one expected at the destination codaveder, since &jmp instruction allows the security
level to be lowered, there are no conditions on its secugitgll

2.4 Type soundness of SIF

In this section we define a semantics for the untyped assangihyctions operating on a machine model, we give
an interpretation for SIF types which captures the way tgresmplemented in memory, and finally we prove that
the execution of a well-typed SIF program modifies a type-sahfiguration into another type-safe configuration.

Let Reg = {0,1,...,Rmax} be the register indices, with two dedicated registeg®$0) = 0, and R(pc) is
the program counter. Ldtoc C Z be the set of memory locations on our machiviéd be the set of machine
words that can stand for integers or locations, @nde be the set of machine words which can stand for machine
instructions. To simplify the presentation, we assume Wat is disjoint from Code; so, our model keeps code
separate from data.

A machine configurationV/ is a pair(H, R) where H : Loc — Wrd & Code is a heap configuration, and
R : Reg — Wrd is a register configuration.

Given a programP, a machine assembled fd? is a machine configuration which contains a representation
of the assembly program, with machine instructions stoneslbime designated contiguous portion of the heap.
SupposingP = p1;...;pn,, the assembly process defines a functdadr : 1,...,n — Loc which gives the
destination location for the code when assembling the typstiuctionp,,, wherel < u < n. For each of the
locations?¢ where P is stored,H (¢) € Code. The assembly process also defines the fundtiddr(L), which
assigns to each label iR the heap location where the code pointed to by the label vasrased.

Given a machine configuratioh/ = (H, R), we define anachine transitionM/ — M’, as follows: First,

M’ differs from M by incrementingR(pc) according to the length of the instruction (R (pc)); then, the
transformation given in the table below is applied to obthamnew heag’, or register bank?’. The operations
onrg have no effect.

jmp L R’ = R[pc := LAdr(L)]
, R, if R(r)=0
bnz r, L R = { R[pc := LAdr(L)], otherwise
arith  rg —r, Oy R’ = R[rq == R(rs) © R(r)]
arithi = rq — 7, © i R' = R[rq := R(rs) © i
load rq < 75[c] R' = R[rq :== H(R(rs) + ¢)]
store  rglc] — rs H' = H[R(rq) + c = R(rs)]

Asm(p,) stands for the sequence of untyped machine instructionshwkithe result of assembling a typed
assembly instructiop,,:

Asm(L) =€ Asm(eof )= halt Asm(cpush L)=¢€¢ Asm(cimp L)=jmp L Asm(p,) = pu

. Asm(py, . . , : iy .
We write 17 ) M, if M executes td\/’ through the instructions iAsm(p,,), by zero or one transitions in
M. The reflexive and transitive closure of this relation is miedi by the following rules.

Refl M, Asm_(pf‘) My M, = My My—=— Msj
M — M € Incl Trans
- M, = M, M, = M3

2.4.1 Imposing Types on the Model

A heap context) is a function that maps heap locations to security types.aplwentext contains type information
about the heap locations required to type the registBrsn (i) denotes the domain of the heap contéxtThe
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empty context is denoted Hy. We writei)[¢ := 7| for the heap context resulting from updatingvith ¢ : 7. Two
heap contextg andy’ arecompatible denoteccompat (v, ¢'), if for all £ € Dom () N Dom ('), ¥ (£) = o' (£).
The following rules assign types to heap locations:

H(¢) € Code H(¢) € Wrd
T_HLocCode T_HLoclnt
H;{¢:code} = ¢ :code hloc H;{¢:int'} = ¢ int' hloc
H(¢) € Wrd  compat(s, {€: [1]'}) H; = H(¢) : 7 hloc compat(¢), ') H; = £: 7 hloc
T_HLocPtr W_HLoc
H;ypu{e:[r]'} = £ [r]) hloc H;yp Uy L7 hloc

m; = Sizdog) + ...+ sizdo;—1) H;¢p =L+ m;:0;hloc forall0 <i<n
H;v=Ll:09x...%x 0, hloc

T_HLocProd

In order to define the notion of satisfiability of contexts bgghine configurations, we need to define a satisfi-
ability relation for registers.

r # pc H;v | R(r) : 7 hloc H R r:oreg compat(i,)’
— T_Reglint T_RegPtr ( ) v ( ) W_Reg
M g r:int’ reg (H,R) =y 7 : [7]' reg (H,R) Eyuy 1 : 0 reg

A machine configuratiorl/ satisfiesa typing assignmerit with a heap typing context (written M =, T)
if and only if for each register; € Dom(I'), M satisfies the typing statemehf =, r; : I'(r;) reg, the heap
contextsy; are pairwise compatible, ant= Uy;);.

A machine configuratiod/ = (H, R) is in final stateif H(R(pc)) = halt . We define an approximation to
the execution of a typed prografh= p1;...;p, by relating the execution of the code locations in the maghin
with the control paths in the program by means of the relagipr- p,,, which holds between pairs of instructions
indexed by the set:

{(#,i+1) | p; Zjmp, cimp, andi < n}
U
{(t,j+1) | pp=jmp L,bnz r L, orcimp L, andp; = L}.

Py ~ o denotes the reflexive and transitive closur@gf~ p,,.

2.4.2 Type Soundness

In this section we show that our type system ensures thaethetion rules preserve type safety. The soundness
results imply that if the initial memory satisfies the inlitigping assumptions of the program, then each memory
configuration reachable from the initial memory satisfiesttping assumptions of its current instruction.

The typing assumptions of each instruction of a program @aaltained from the initial context by the type-
checking process. For a well-typed progr&m= p1;...py;. .. ;pn, the derivationCtxt(P) Fy P determines a
sequence of contexts; || Ay, ...,y || A, from sub-derivations of the forf,, || Ay Fsx pu; Dut1;-- -5 Pn-

A machine configuration is considered type-safe if it sassthe typing assumptions of its current instruction.
Given a well-typed progran® = ps;...py;...;p, and a heap context, we sayM = (H, R) is type safe at
for P with ) if M is assembled foP; R(pc) = PAdr(u); andM = I',.

We prove two meta-theoretic results Progress and Subjetiid®en. Progress (Theorem 1) establishes that a
non-final-state type safe machine can always progress & avaehine by executing a well-typed instruction, and
Subject Reduction (Theorem 2) establishes that if a typerealchine progresses to another machine, the resulting
machine is also type safe.
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Theorem 1 (Progress)
Suppose a well-typed prograf = p1;...py;. .. ;p, and a machine configuratial type safe at.. Then there

. Asm(pa o
existsM’ such thath? “™ %) A7 or M is in final state

Theorem 2 (Subject Reduction)
Suppose’ = py;...py;-- - ;Pn IS @awell-typed program andd, R) is a machine configuration type safeuatand
(H,R) Asm(pe) M'. Then there existg, € P such thap, ~ p, andM’ is type safe at.

The proof of this theorem proceeds by case analysis on thertunstructiorp,,, analyzing each of the possible
instructions that follow,,, based on the definition of program transitions. See the aaiop technical report [13]
for details.

3 Non-Interference

Given an arbitrary (but fixed) security levglof anobservey non-interference states that computed low-security
values C () should not be affected by high-security input valugs ¢). In order to prove that a prograt
satisfies non-interference one must show that any two tetmmexecutions fired from indistinguishable (from the
point of view of the observer) machine configurations yigldistinguishable configurations of the same security
observation level.

In order to establish what it means for machine configuratiorbe indistinguishable from an observer’s point
of view whose security level i§, we define &-indistinguishability relation for machine configurat#n

The following definitions assume a given security leyetwo machine configurationd/; = (H;, R;) and
M, = (H», R»), two heap contextg; and,, and two register contexis; andI';, such thatM/; =, I'; and
M; [y, Ta.

Two register banks aré-indistinguishable if the observable registers in one bargkalso observable in the
other, and the contents of these registers arecaladistinguishable.

Definition 3.1 ((-indistinguishability of register banks)
Two register bankgz; and R, are(-indistinguishable, written> s, ., i, 121 : I'1 ¢ R : I's regBank, if for
all» € Dom(I'y) U Dom(I'), with r # pc:

r € Dom(Ry) N Dom(Ry) N Dom(T'1) N Dom(Ts),
LABL(T1(r)) C ¢ or LABL(T'3(r)) C ¢ implies¢ T'y(r) =T(r), and
D Hypr , Ho o 121 (7“) ¢ RQ(T) : F1(7“) val

Two word values); andw, of typew' are considered-indistinguishable, writtep- Hiby, Hosabo U1 A2 V2 whval,
if [ C ¢ implies that both values are equal. In case of pointers tp kazations, the locations have to be afso
indistinguishable.

Two heap valueg; and/, of typer are considered-indistinguishable, written> 7, ., fr,.9, 1 ~¢ f2 : T hval,
if {1 € Hy, ¢ € Hy, and either the type is code and/; = /5, or7 = 01 X ... X o, and each pair of offset
locations?y + m; andfy + m; (with m; as in ruleT _HLocProd) are(-indistinguishable, or is a word type with
a security label and! C ¢ implies that both values are equal.

The proof of our main result, the Non-Interference Theoremeguires two notions of indistinguishability of
stacks (Low and High). If one execution of a program branatres condition while the other does not, the
junction points stacks may differ in each of the paths foloviby the executions. If the security level of theis
low in one execution, then it has to be low in the other execudis well, and the executions must be identical. The
first three rules of Figure 3 define the relation of low-initigiishability for stacks. In low-security executions
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C ~
LowAxiom E(L)(pc) T ¢ s A ~=¢ Az Low

N LowLow
D>ne A € Low BeL- Ay ~¢ L+ As Low
E(L1)(pe) £ ¢ X(L2)(pc) £ ¢ >x A ~¢ Az Low
LowHigh
>xLy - A1 =¢ Lz - Az cstackLow
>sAr ~¢ Az Low S(L)(pc) Z ¢ >x A1 =¢ Az High
—— HighAxiom HighLeft
>xAl ¢ Ao High >xL - Ay 74 Ao High
E(L)(pc) Z¢ s A ~=¢ A2 High
HighRight

>xA1 ~¢ L- Az High
Figure 3:¢-indistinguishability of junction points stacks.

the associated stacks mus be of the same size, and each betelthe stack of the first execution must be
indistinguishable from that of the corresponding elemerihé second one.

If the security level of thepc of one of the two executions is high, then the other one mustigie too. The
executions are likely to be running different instructipasd thus the associated stacks may have different sizes.
However, we need to ensure that both executions follow I@sof the same condition. This is done by requiring
that both associated stacks have a common (low-indisshgbie) sub-stack. The second three rules of Figure 3
define the relation of high-indistinguishability for stackAlso note that, as imposed by the typing rules, the code
labels added to the stack associated to high-security begrare of high-security level.

Finally, we define the relation of indistinguishability @@ machine con from the point of view of an observer
of level €.

Definition 3.2
Two machine configurationd/; = (H;, Ry) and My = (Hs, Re) are(-indistinguishable denoted by the judg-
ment>p M : Fl, Al, ’lﬂl ¢ M - FQ, AQ, 77/}2 mConfig, if and onIy if

1. My =y, ' andMs =y, T,

2. My and M, are assembled faP at the same addresses,

3. D Hy Howpo B 1 T &¢ Ry : I' regBank, and

4. either
(@) I'i(pc) =T'a2(pc) E ¢ and Ry (pc) = Ra(pc) and>xp Ay ~¢ Ay Low, or
(b) T'1(pc) Z ¢ andI'y(pc) £ ¢ and>x Ay ~¢ Ay High.

Note that both machine configurations must be consistertit thiéir corresponding typing assignments, and
they must be executing the code resulting from assemisting

We may now state the non-interference theorem establighatgstarting from two indistinguishable machine
configurations assembled for the same progranf each execution terminates, the resulting machine cordig
tions remain indistinguishable.

In the following theorem and lemmas, for any instructignin a well-typed programP = pq;...;p,, the
contextT’; || A; is obtained from the judmeri; | A; tx pi; pn, Which is derived by a sub-derivation of
Ctxt(P) Fx P.
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Theorem 3 (Non-Interference)
Let P = ps;...;p, be a well-typed program/; = (H;, R1) and M, = (Hs, Ry) be machine configurations
such that both argype safeat 1 for P with ¢ and

>pMy :T1,€,90 ¢ My : T'1, €,1 mConfig.
If My = M{ andMy = M3, with M{ and M} in final state then
>pM : Ty, €,91 m¢ My : Ty, €, 19 mConfig.

The technical challenge that lies in the proof of this theore that thel-indistinguishability of configurations
holds after each transition step. The proof is developeddrstages. Firstit is proved that tweindistinguishable
configurations that have a low (and identical) level forghean reduce in bck step fashioin a manner invariant
to the(-indistinguishability property. This is stated by the @mlling lemma.

Lemma 1 (Low-PC step)
Let P = py;...;p, be awell-typed program, such that andp,, are inP, M, = (Hi, Ry) andMsy = (Ha, Ry)
be machine configurations. Suppose

1. M is type safe at, and M, is type safe ato, for P with ¢, and)s, respectively,
2. I>PM1 : FvlaAv17¢1 ¢ M2 : FU2,AU2,¢2 mConfig,
3. 'y, (pc) E ¢ andl'y, (pc) C ¢,

Asm(py
4. My "M% 4 and

a1

. there existp,,, in P such thap,,, ~ p.,, andMj is type safe atv; with 3.
Then, there exists a configuratidd, such that:

A v
(a) M2 SKQ) Mé,

(b) there exist®,,, in P such thap,, ~ p.,, andM} is type safe atv, with 1,4, and

(€) >pM] : T, Ay, Y3 ¢ My 2 Ty, Ay, 04 mConfig.

When the level of thec is low, the programs execute the same instructions (witlsiplysdifferent heap and
register bank). They may be seen todymchronizedand each reduction step made by one is emulated with a
reduction of the same instruction by the other. The resyitimchines must b&indistinguishable.

However, a conditional branclhiiz ) may cause the execution to fork on a high value. As a consegyéoth
of their pc become high and we must provide proof that there are spindistinguishable machines to which
they reduce. Then, the second stage of the proof consistsowfisg that every reduction step of one execution
whosepc has a high-security level can be met with a number of redocteps (possibly none) from the other
execution such that they reach indistinguishable configurs. The High-PC Step Lemma states such result.

Lemma 2 (High-PC Step)
Let P = py;...;p, be a well-typed program, such that andp,, are inP, andM; = (H;, Ry) and My =
(H2, R2) be machine configurations. Suppose

1. M, is type safe at, and M5 is type safe ats, for P with v andeys, respectively.
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2. >pMi : P’Ul;A’Ulawl ¢ MQ : FUQ,AUQ,’I/JQ mConfig,

3. Iy, (pc) Z ¢ andTy, (pc) Z ¢,

A v
4. M, %) A and

5. there exist®,,, in P such thap,, ~ p,, andMj is type safe atv; with .

Then, either the configuratiol/, diverges or there exists a machine configurafiéfisuch that
(a) M2 —— Mé,
(b) there existg,,, in P such thap,, ~ p.,, and My} is type safe atv, with 4, and

(€) >pM] : T, Aw,, Y3 ¢ My 2 Ty, Ay, 04 mConfig.

The main technical difficulty here is the proof of the case mbre execution doescmp instruction that low-
ers thepc level. In this case, the other execution should, in a numbsteps, also reduce itg level accordingly.
This is guaranteed by two facts. First, high-indistingaisle stacks share a sub-stack whose top is the label to the
junction point where thec level is reduced and both executions converge. Seconditypaltl programs reach
final states only with an empty stack, having visited all tieels indicated by the junction point stack.

4 Related Work

Information flow analysis has been an active research arbe ipast three decades [18]. Pioneering work by Bell
and LaPadula [4], Feiertag et al. [9], Denning and Denning[8Neumann et al. [17], and Biba [5] set the basis
of multilevel security by defining a model of information flamhere subjects and objects have a security level
from a lattice of security levels. Such a lattice is instruaé in representing a security policy where a subject
cannot read objects of level higher than its level, and inoamrite objects at levels lower than its level.

The notion ofnon-interferencewvas first introduced by Goguen and Meseguer [10], and thesédoban a sig-
nificant amount of research on type systems for confidetytifdr high-level languages including Volpano and
Smith [20], and Banerjee and Naumann [2]. Type systems feildével languages have been an active subject of
study for several years now, including TAL [14], STAL [15];TBL [21], Alias Types [19], and HBAL [1].

In his PhD thesis [16], Necula already suggests informatiow analysis as an open research area at the
assembly language level. Zdancewic and Myers [22] presdoivdevel, secure calculus with ordered linear
continuations. An earlier version of our type system wagpinesl by that work. However, we discovered that
in a typed assembly language it is enough to have a junctiimt ptack instead of mimicking ordered linear
continuations. Barthe et al. [3] define a JVM-like low-lelemhguage with a heap and an operand stack. The type
system is parameterized by control dependence regionsit andssumed that there exist functions that obtain
such regions. In contrast, SIF allows such regions to beesgpd in the language by using code labels and its
well-formedness to be verified during type-checking. Crtrgl. [6] define a low-level calculus for information
flow analysis, however, their calculus has the structurimgstructif-then-else , unlike SIF that uses typed
pseudo-instructions that are assembled to standard neaicisinuctions.

5 Conclusions and Future Work

We defined SIF, a typed assembly language for secure infamtibw analysis. Besides the standard features,
such as heap and register bank, SIF introduces a stack oflaloels in order to simulate at the assembly level
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the block structure of high-level languages. The type sygearantees that well-typed programs assembled on
type-safe machine configurations satisfy the non-interfee property: for a security level if two type-safe
machine configuration argindistinguishable, then the resulting machine configanat after execution are also
¢-indistinguishable.

An alternative to our approach is to have a list of the progpaimts where the security level of tipe can
be lowered safely. This option delegates the security aisalyf where thepc level can be safely lowered to a
previous step (that may use, for example, a function to tatiewontrol dependence regions [12]). This delegation
introduces a new trusted structure into the type systemiypersystem, however, does not need to trust the well-
formation of such a list. Moreover, even the signatlg ttached to SIF programs is untrusted in our setting,
since, as we explained in section 2.3, its information alloeiisecurity level of thec is checked in the rules for
cpush andcjmp in order to prevent illegal information flows.

We are currently developing a version of our language th@tidies a runtime stack, in order to define a stack-
based compilation function from a high-level imperativegnamming language to SIF.
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Abstract

Cryptography is often used to secure the secrecy and integrity of data, but its ubiquitious use (for example
on every read and write of a program variable) is prohibitive. When protecting the secrecy and integrity of data,
applications may choose to reply on the underlying runtime or network, or they may seek to secure the data
themselves using cryptographic techniques. However specifying when to rely on the environment, and when
to explicitly enforce security, is usually specified informally without recourse to explicit policies. This article
considers an approach to making explicit when the runtime or network is trusted to carry data in cleartext, and
when the data must be explicitly protected. The approach is based on associating levels of trust to parts of the
system where data may reside in transit, and levels of relative sensitivity to data that is transmitted. The trust
policy is enforced by a type system, one that distinguishes between security policies for access control and trust
policies for controlling the safe distribution of data.

1 Introduction

This article addresses the question: When should one trust the network over which data is communicated?
What is a network? We take a very generic point of view: a network is any communication medium through
which messages are exchanged between entities in a computing system. Examples include:

¢ hosts exchanging packets through the Internet;

e processes exchanging data across a virtual private network secured using IPsec;
e processes on the same machine communicating via IPC;

¢ threads in a single address space exchanging messages via a message queue.

We assume that the data being exchanged has both secrecy and integrity constraints associated with it. We
say that a network igrustedif parties using that network to communicate rely on the network itself to realize
the desired secrecy and integrity guarantees. For example in type-based information flow control systems, the
“network” is represented by global shared variables, and a type system ensures that secrecy constraints are enforced
for all participants. On the other hand, in distributed programming over the Internet, the network is not trusted; so
cryptographic technigues are used to secure secrecy and integrity properties (encryption and signing, respectively).
There is still some trust: cryptographic operations may not be performed until data is about to be output from the
network card, since the operating system and its buffers are assumed to be trusted. Virtual private networks use
cryptographic techniques to build a virtual trusted network that entities can use to communicate with assurance
that the requisite properties are satisfied.
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In most of these examples, the desired secrecy and integrity properties, and the level of trust in the network, are
expressed relatively informally. There is then little hope of relating the two to make sure that there is enough trust
in the network to enforce these properties, and if not to use cryptographic techniques to achieve those properties.
In type-based information flow systems and distributed programming over the Internet, it appears clear where
to place trust (everywhere and nowhere, respectively). But there are gradations between these extremes: typed
threads may communicate through an operating system component that is outside the type system, or across an
untrusted network; hosts may communicate across a trusted subnet behind a firewall.

In this article we provide formalizations of both secrecy and integrity properties, and of the trust placed in parts
of the network, and we relate them in such a way that the properties are guaranteed to be achieved (provided, that
is, one has not placed trust in an unreliable part of the network).

Various models have been proposed for specifying secrecy and integrity properties of information in the type
system [15, 16, 8]. These systems associate sets of policies (zddkdg with variables, along with their types.

This article works with a much simpler model, where a label simply specifies a set of principals (actually four
sets of principals, each for a different purpose). Nevertheless the system presented here could be applied to the
aforesaid information flow control systems. Our system is simplified because we do consider notions such as
declassification. The novelty of this work is in a model of trust for networks, and how that is related to secrecy
and integrity constraints on data exchanged over a network.

Work has previously considered type-based APIs to cryptographic operations [1, 11, 8] that relate secrecy and
integrity policies, as defined in program types, with the use of cryptographic operations to dynamically enforce
those policies where necessary (when transmitting data over the Internet, for example). However absent from
these models is when these operationsstbe performed. Requiring them to be always performed is in practice
ridiculous: every write of a variable would require encryption and signing, and every read of a variable would
require decryption and authentication. However sometimes these operations must be performed, e.g., when non-
trivial policies must be enforced over a raw TCP/IP channel. Implicit in these extremes is where the trust is placed
in the network.

We formalize this notion of trust using a notion ones A zone is an abstraction of any notion of network
location, be it a process address space, a host, or a physical or virtual network. Entities specify that certain zones
are trusted for certain communications. If data is transmitted across a zone that is trusted, then policies can be left
to be enforced by the type system. For example, a general may send a message to soldiers in the field commending
them or informing them of promotion; type-based techniques can guarantee that the general is the originator of
the message. If data is transmitted across an untrusted zone, then the policies must be cryptographically enforced.
For example, the general may place less trust in the network when sending a command to field commanders for
a coordinated attack. On the other hand, if the general is in conference with field commanders within a secure
conference room, it may be sufficient to rely on lightweight type-based security for such local communications.

We use the terntrust policyto distinguish it fromsecurity policy We use the latter to refer to access control
policies to enforce secrecy and integrity constraints. We use the former to refer to levels of trust that are placed
in parts of the network to respect such security policies. There should be no confusion with the term “trust
management,” although our approach could obviously be enriched with notions of delegation.

Trust and security policies are largely orthogonal. Security policies specify fine-grained read and write per-
missions for data. Trust policies specify the relative trustworthiness of parts of the network for enforcing those
security policies, without application intervention using cryptography. Both forms of policies are specified using
a type system. The type system ensures that security policies are respected by all well-typed processes. It also
ensures that data with non-trivial security policies is not transmitted in cleartext over parts of the network that are
not trusted to only contain well-typed processes.

1. A principal may be included in the trust secrecy policy for a piece of data but not the security secrecy policy.
This simply means that processes for that principal may execute in zones where the principal is not allowed
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to access the data; the principal is “trusted” to respect the security policy (as far as that piece of data is
concerned).

2. Aprincipal may be included in the security secrecy policy for a piece of data but not the trust secrecy policy.
The principal is allowed to access the data, but cannot execute at any zones where the data is transmitted in
cleartext. This is admittedly strange, but harmless, and demonstrates the orthogonality of trust and secrecy
policies. There are extensions of our system, involving declassification, where this scenario may be useful.

We give an informal introduction to zones and trust policies in the next section. In Sect. 3 we provide a
formalization of the type system. Finally Sect. 4 considers related work, while Sect. 5 provides conclusions.

2 Informal Motivation

The type system we introduce incorporates notiongrioicipals, labelsandpolicies Every program variable has
both a type and a label. A labkl= (Ty,T») is a pair ofpolicies one for secrecy and the other for integrity. A
policy m= ({P1},{P2}) is a pair of sets of principals:

1. The first set specifies tisecurity policy the set of principals that are allowed to access that variable (reading
the variable in the case of a secrecy policy, and writing into that variable in the case of an integrity policy).

2. The second set specifies thast policy, the set of principals that are expected to respect the security policy.
The security policies are only enforced statically at sites that are accessible to principals included in the
corresponding trust policies. At all other sites, cryptographic techniques must be used to enforce the security
policies dynamically.

The security policy is enforced by the type system. At load time (e.g., via bytecode verification in a Java
Virtual Machine), programs are checked by type-checking to ensure that the security policies are respected. We
are assuming a model where code is signed and the loader checks code signatures before running them. Thus a
process does not attempt to read a variable unless the principal for which it executes (the principal that signed its
code base) is in the set of principals specified by the read security policy. Any program for which this check fails
is rejected by the loader.

In a perfect world, all running processes are typed and security policies are always respected. Zones allow
relative levels of trust to be placed on parts of the network. If data is transmitted through a zone that is not trusted,
then cryptographic techniques must be used to protect it. Therefore, orthogonal to security policies, data also has
trust policies associated with it.

Zonesare an abstractions for network and network trust. A zone is abstractly a location that contains processes
and messages. A process may only receive messages that are in its own zone. A process can send a message locally
(within its own zone). A process may also send a message to another zone (routing). Routers are modelled just as
normal user-space programs that accept messages and forward them to other zones. For simplicity we assume a
fully-connected graph of network connections, though it would be trivial to enforce more restricted connectedness.

A zone has devel reflecting the level of trust that is placed in it. A level is denoted simply as a set of
principals. The only processes that can send and receive messages in a zone are those executing for the principals
in the corresponding zone level.

Zone levels effectively enforce which principals are allowed access to a zone, for sending or for receiving. An
insider attack consists of running “untyped” code in a zone. For an outside attacker to access a zone, it must
compromise a principal allowed in that zone and then mount an insider attack. Network trust policies can then be
defined based on (a) which principals can execute processes in a zone and (b) how susceptible those principals’
processes are to insider or outsider attacks. There is implicit in this model some notion of authenticating the
right of code to execute in a zone. We simplify our model by assuming that the only code that runs in a zone is
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that which is allowed by the zone’s level. The actual details of authentication can be assumed to be part of the
trusted computing base (TCB). An interesting direction for further work is to see how this authentication could be
reflected from application programs into the TCB.

2.1 Examples

Fig. 1 gives an example of processes executing for principals, and implicitly the zones for those principals. We
assume a zone level CJIS (Criminal Justice Information

NCIC NICS Division) partitioned into two sublevels: NCIC (Na-
tional Crime Information Center) and NICS (National
R Instant Criminal Background Check System). NCIC al-
Q& O lows processes for two principals, A and B, to execute
there, while NICS allows processes for principal C. An-
A B C other zone level, PAPD (Port Authority Police Depart-
ment), allows processes for principals X and Y to exe-
CPD cris  cute there. Processes for principals B and X are required

to be able to share data, therefore we establish an inter-
mediate zone level CPD (Central Police Desk) for just

AQ Q those two principals. CPD describes all sites on which
only processes for those principals can execute. This
X Y PAPD  could be implemented as a trusted path, a physical fire-

wall, or a distributed firewall or VPN established using
cryptographic techniques. The framework introduced

here does not depend on the details of how access to
zones is established. Processes for B may execute in the same zones as processes for A and C (at levels NCIC
and NICS). Similarly processes for X may execute in the same zone as processes for Y (at level PAPD). Messages
exchanged between processes for B and processes for X may be passed in cleartext in zones of level CPD.

Now whether messages exchanged between B and X may be passed in cleartext in zones of level NCIC and PAPD,
for example, depends on the relative sensitivity of the data and the relative level of trust placed in such zone levels.
We can label data with the level of its relative sensitivity, and then compare this with the level of a zone through

which the data is transmitted.

We assume that policies are specified as sets of principals. This is clearly a simplifying assumption that could
be removed by introducing some notion of levels or roles in the security system, and relying on authorization
certificates to allow people to assume particular roles. Then policies could be specified in terms of such roles or
levels. However for simplicity in the article we stay with sets of principals. For the example above we can define
the following:

Figure 1: Principals and Zone Levels

prinset NCIC = {A,B};
prinset NICS = {C};

prinset CJIS = NCIC U NICS;
prinset PAPD = {X,Y};
prinset CPD = CJIS N PAPD;
prinset World;

We can treatiorld as a special marker for the set of all principals. Now using these definitions of sets of
principals, we can specify the following policies:

policy TopSecret = ( CPD, CPD );

policy FBI_Secret = ( CPD, NCIC U {X} );

policy Internal = ( NCIC U PAPD, CJIS U PAPD );
policy Public = ( World, World );
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For exampleFBI_Secret defines information that is only intended for CPD personnel to see, but we trust

members of the FBI to carry this information without violating confidentiality.
We focus in this example on secrecy. We define the following labels where we elide the integrity policies:

label TopSecretL = ( TopSecret, ... );
label FBI_SecretL = ( FBI_Secret, ... );
label Internall. = ( Intermal, ... );

A packet where the payload has laliepSecretL and the address has lalislternall expresses that the
payload is top secret, but we allow the address to be visible within the organization, so it may be viewed for
example by couriers that carry information back and forth. This example requires the payload to be encrypted
outside CPD. A more lenient policy retains the notion that the payload is top secret, but enforces this based on the
trustworthiness of the principals in the environment rather than relying on encryption. If we label the payload as
FBI_SecretL and the address aaternall, then we allow top secret information to be transmitted by processes
for FBI (CJIS) personnel who may not have authority to read the information that they are conveying, however we
do not trust unauthorized PAPD processes to respect the access restrictions.

In these examples the message-passing communication system checks the access control specifications on the
data being transmitted with the mapping from zones names to sets of principals, to detect violations of the policy
specified in the types. Since the former mapping will change after programs have been compiled, some amount of
dynamic checking is unavoidaBleNevertheless in the remainder of the article we rely on static checking using
a type system. This at least formulates the properties that any kind of type checking is seeking to achieve, and
leaves open the possibility of some hybrid regimen of static and dynamic policy checking.

To model attacks by adversaries who do not respect the restrictions of the type system, we assume a special
principal Eve. There are many possibilities for the kinds of attacks we can allow this adversary to mount. At one
extreme processes executing e may be completely untyped. However it becomes difficult (not impossible,
but somewhat complex) to say useful things about the ability of the system to withstand such attacks. In any case,
untyped attacks based on bypassing the type system may often be caught in this message-passing context during
the unmarshalling stage of communication. We assume a weaker attack model thetefarespects the type
system but can ignore the labels on the types of data and she can ignore the access control checks, both for secrecy
and integrity. For examplé&yve may mount an attack ofilice by sending her a channel with the payload label

(({Alice,Bob},...), ({Bob},...))

The security parts of the policies asséiée that this is a private channel between her &od, created byBob.

We consider in the next section hdWice can defend herself against this attack using trust policies. For now we
note that the type system ensures thdivié¢ does obtain access to a piece of data, tBenmust have been one

of the principals allowed in the original trust policy. In other words, if an attacker obtains access to a data by
subverting the type system, the original owner of the data must have mistakenly placed its trust in an unreliable
principal.

3 Type System: Formal Description

The syntax of types is provided in Fig. 2. In this language without cryptographic operations, there are two kinds

of data: message channels (for message-passing communication) and tuples (for data structures). Data have both
types andabels where a label is a pair giolicies the secrecy policyand theintegrity policy Each of these

policies is in turn separated into security and trust components, which in this system are simply sets of principals.

1This dynamic checking would consist of checking that the trust restrictions on data being routed to a different zone are satisfied by the
set of principals that are allowed to execute at that zone.
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TeType := Chan(LT) Channel
| (LT4,...,LTx) Tuple

nePolicy = ({P1},{P2}
L eLabel = (my,m)
LT € Labelledtype = T:

Figure 2: Syntax of Sensitivity Types

veValue = wxy,z Variable
| ab,c,n Channel name
| (Vo W) Tuple
|Vt Annotated value
Re Process = stop Stopped process

let, Xx=(v1,...,%); R Create tuple

let (x1,...,X) =V; R Decompose tuple

|

|

\ lety x=V; R Annotate value

| receive €?X; R Message receive

| send Vlv Message send

| send VIV Message route

| new(a:LT);R New channel

| (R|Rp) Parallel composition
N € Network := empty Empty network

| (P,Y)[R Located process

| new(a:LT)N Channel binding

| (N1|Np) Wire

Figure 3: Syntax of Values, Processes and Networks

For a trust policy, the set of principals in the secrecy component denotes those principals twhstadeto honor
secrecy restrictions for the datavhile the set of principals in the integrity component denotes those who are
trusted to honor integrity restrictions for the datdVe highlight this explanation becausest policies do not
themselves specify secrecy and integrity restrictiofiBese restrictions should be expressed using the security
policy. It is straightforward to extend our simple security policies with the other kinds of policy languages.

The syntax of values, processes and networks is given in Fig. 3. Values include variables, channel names and
tuples. Processes include parallel composition (for forking new processes), new channel creation, operations for
building and taking apart tuples, and basic message-passing operations (blocking receive and non-blocking send).
This is a two-level syntax: every process executes under the authority of a principal and at a particular zone
(network location). So the network is the parallel composition of a collection of located processes, each of the
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VEFv: Tt Well-formed value
VEF (P,0)[R]  Well-formed process
VEFN Well-formed network

Figure 4: Judgements for Type System

form (P, ¢)[R] whereP is the principal,/ the zone andR the process. The purpose of this two-level syntax is
twofold:

e to enforce security policies based on the authority of the principal under which a process executes; and

e {0 support aouting operatiorthat allows a process at one zone to route a message to another zone.

We provide a type system using judgements of the form given in Fig. 4. The type system for processes uses
judgements of the forrVE - (P, ¢)[R] to check that the proce$sis well-formed, under the assumption that it
will be evaluated (executed) under the authority of the prindihait the zon€, with free names bound in the
environmen¥E. An environment is a sequence of pairs, binding variables or names to types:

VEeValueEnv = {} | {x:LT)} | {(a:LT)} | VELUVE,

The types of values, processes and networks are provided in the full version of the paper [9].

As noted, we denote attacker processes as those executing for the special pEncip@n example was
provided in Sect. 2Eve is still subject to checks on where in the network her processes can exédiagtecan
prevent the forgery attack described in Sect. 2 by only accepting a private channel sent in a zone that does not allow
Eve to execute processes (in the integrity part of the trust policy). ButAtiea andBob can only communicate in
the same trusted space. The more interesting cases then are where cryptography is used to secure communication
over untrusted spaces, and whé&ke may still attempt to mount attacks based on interception and forgery of
cryptographic keys.

In the extension of the system with cryptographic operations, there are now types for encrypted and signed data,
E{T} andS{T} respectively. There are also types for public and private keys, for encryption and signing. Each
of these key types is indexed by a policy. This reflects the intuition that a key fundamentally is used to enforce a
policy across address spaces. If decryption of ciphertext succeeds, then the secrecy policy associated with the key
type is re-established for the resulting cleartext. Similarly if authentication of signed ciphertext succeeds, then the
integrity policy associated with the key type is re-established for the resulting cleartext.

Theorem 1 (Type Preservation) Suppose VE N; and N, TEVE, Ny, then VE- N».

A networkN is “stuck” if no evaluation rule is applicable to it.
Theorem 2 (Progress)If a network N is stuck, then the remaining processes are of the form:
1. Areceive operation with no matching send message to synchronize with.

2. A decrypt operation where the decryption key is not the inverse of the encryption key for the ciphertext.

3. An authentication operation where the authentication key is not the inverse of the signing key for the cipher-
text.
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In particular this justifies omitting run-time access checks in the semantics. Note that the checks for processes’
permissions to execute in zones is determined statically in the type system, as mentioned earlier. This static
restriction could be relaxed with the addition of zone variables to the language.

We still need to say something about the extent to which processegeahay subvert the security of the
system. We focus on names (channel names and cryptographic keys) as the values whose secrecy is paramount.
Say that a name igakedif there is a free occurence as a subterm of a proceds/fgmwhere that occurence does
not occur as part of a piece of ciphertext.

Theorem 3 Given VE and N, wittic : T) € VE and c is leaked in N. Thelfve € SLEV(L).

Intuitively the secrecy trust policy for the data reflects all possible principals in all possible zones where the data
may be transmitted in cleartext. If the data is encrypted, then the type rule for encryption keys requires that the
decryption key have at least as strict a secrecy trust level. If the data or key is transmitted directly from a process
of Eve in the current zone, even with annotati@ve must be included in the set of principals that can execute in
the zone where the key was created. If the data or key is transmitted via an intermediary (trusted) process, then
that process or some ancestor in a chain of intermediaries exchanged the data or key in a Zéve arith since
none of the intermediaries have access to the annotation operation, the trust secrecy policy for the data or key must
includeEve as a principal.

4 Related Work

The motivation for this work has been the need for proper programming abstractions for applications that must
manage the task of securing their own communication. Much of the work on abstractions for Internet programming
has focused on security, for example, providing abstractions of secure channels [4, 3], controlling key distribution
[7], reasoning about security protocols [1, 5], tracking untrustworthy hosts in the system [14, 19], etc.

The work of Riely and Hennessy [14, 19] in particular has some relationship to this work. They provide a type
system that reflects the relative level of trust in hosts in the network. They are motivated by ensuring that mobile
agents do not migrate to untrusted hosts. An “untrusted” host in our system amounts to a zone that includes a
process executing for the attackere. This extra level of indirection is more than cosmetic, since it reflects our
concern with enforcing access control policies through a combination of static and dynamic techniques, with trust
policies used to determine when dynamic techniques (cryptography) must be used.

Abadi [1] considers a type system for ensuring that secrecy is preserved in security protocols. For secur-
ing communication over untrusted networks, he includes a “universal” typ@habited by encrypted values.

His type system prevents “secrets” from being leaked to untrusted parties, but allows encrypted values to be di-
vulged. In an analogous way, encrypted values in our type system provide a way to temporarily subvert the
access controls in the type system, with the secrecy properties enforced by labels reasserted when the cipher-
text is decrypted/authenticated. Gordon and Jeffrey [12, 13] have developed a type-based approach to verifying
authentication protocols.

Abadi and Blanchet [2, 6] have worked on analyzing security protocols, showing how it is possible to guarantee
secrecy properties and then generalizing this to guarantee integrity. Their system uses a type of “secret,” and a
type system that ensures that secret items are never put on channels that are shared with untrusted parties. They
can translate types in their system into logic programs that can then be used to check protocols for correctness.
The emphasis of this work is somewhat different, since Bruno and Blancet work in a more “black and white”
environment where there are trusted parties and untrusted parties. In contrast our interest is in a more refined
type system where we allow certain parties to access certain data, and where different levels of trust are placed in
different parts of the network.
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Other work on security in programming languages has focused on ensuring safety properties of untrusted code
[17] and preventing unwanted security flows in programs [10, 15, 21, 18]. Sabelfeld and Myers [20] provide an
excellent overview of work in language-based information-flow security. Our security concerns have largely been
with access control, but the work can be extended with ideas from the decentralized label model of JIF [16, 8].

Our work is clearly related to that of J/Split [9, 22]. That system partitions a sequential JIF program into a
distributed system, where portions of the program run on hosts that are trusted for the principals for whom the
code runs. There is then a tight relationship between the access restrictions on data (specified using the richer
form of access restrictions allowed by JIF) and the hosts where data may be stored in cleartext. For two mutually
distrustful principals engaged in a distributed game, for example, a trusted third party (the board) is responsible
for communicating data from one party to the other. Network security (cryptographic operations) is implicitly part
of the TCB.

Our model can be viewed as attempting to expose some of the TCB machinery of this approach to the appli-
cation, with the eventual goal of modeling the J/Split runtime as application programs in our approach. Thus
although hosts can be viewed as analogous to zones (both are simply abstractions of network locations, hardly a
new concept), we decouple the security and trust policies because each means different things.

5 Conclusions

The ultimate goal of this research program is to provide a programming environment where secrecy and integrity
requirements are specified explicitly in the type system, where these requirements are related to the relative trust-
worthiness of parts of the network. Security policy specifies what must be protected; trust policy specifies how it
must be protected. Finally a type-based API to cryptographic operations relates the use of these operations to the
requirements that they are intended to satisfy.

The antithesis of such an environment is one where all security requirements are enforced inside the runtime.
This leads to a bloated trusted computing base (TCB) and flies in the face of the well-known end-to-end argu-
ment in system design. An interesting possible avenue for the application of our approach is in Web services
authentication, where end-to-end security considerations predominate [5].

We have deliberately chosen a very simple language for presenting our approach. There are numerous avenues
to pursue with this work. Clearly it can be combined with the full extent of KDLM [8], which provides a somewhat
richer policy language, borrowing ideas from JIF [16] and adding declassification certificates. A more interesting
direction to consider is allowing zone variables, so that processes can build routing tables and perform dynamic
routing decisions, while continuing to perform static checking as much as possible. Zone types based on zone
levels, perhaps building on the work of Riely and Hennessy [14, 19], appear to be a promising direction in this
regard.
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Formal Modeling and Analysis of DoS
Using Probabilistic Rewrite Theories

Gul Agha, Michael Greenwald, Carl A. Gunter, Sanjeev Khanna
Jose Meseguer, Koushik Sen, and Prasannaa’Thati

Abstract

Existing models for analyzing the integrity and confidelitiieof protocols need to be extended to enable
the analysis of availability. Prior work on such extensishews promising applications to the development of
new DoS countermeasures. Ideally, it should be possibl@plydhese countermeasures systematically in a
way that preserves desirable properties already estelligthis paper investigates a step toward achieving this
ideal by describing a way to expand term rewriting theorneimtlude probabilistic aspects that can be used to
show the effectiveness of DoS countermeasures. In patjeué consider the shared channel model, in which
adversaries and valid participants share communicatioiaith according to a probabilistic interleaving
model, and a countermeasure known as selective verificagiplied to the handshake steps of the TCP reliable
transport protocol. These concepts are formulated in aghibtic extension of the Maude term rewriting
system, called PMuDE. Furthermore, we formally verified the desired properti€she countermeasures
through automatic statistical model-checking techniques

1 Introduction

There are well-understood models on which to base the analysis of integglioafidentiality. The most common
approaches are algebraic techniques [6] based on idealized ciypiagprimitives and complexity-theoretic
techniques [5] based on assumptions about complexity. There has alsghlmgress on unified perspectives
that enable using the simpler algebraic techniques to prove properties lge ¢énsured by the more complete
cryptographic techniques. However, neither of these approachieionifications are designed to approach
the problem of availability threats in the protocols they analyze. For exampose a protocol begins with a
sender sending a short message to a receiver, where the reséigeistep is to verify a public key signature on
the message. A protocol like this is generally considered to be problemasius®ean adversarial sender can send
many packets with bad signatures at little cost to himself while the receiver veitl tework hard to (fail to)
verify these signatures. Algebraic and complexity-theoretic analysisitpesiensure only that the recipient will
not be fooled by the bad packets and will not leak information as a restdteiving them. However, they do not
show that the receiver will be available to a valid sender in the preserareeadr more attackers.

In [7] we began an effort to explore a formal model for the analysis @f Dased on a simple probabilistic
model called the “shared channel” model. This effort showed that thedtdannel model could be used to
prove properties of DoS countermeasures for authenticated brodldatsould be verified in experiments. We
have subsequently conducted a number of experiments to explore theatipplaf such countermeasures to other
classes of protocols. The aim of this paper is to explore the prospeatsifay the shared channel model as a

*This work was supported in part by ONR Contract NO0014-02-1-0715
T Addresses of the authors: K. Sen, G. Agha, C. A. Gunter, J. Mesegniversity of lllinois at Urbana-Champaign; Michael Green-
wald, Lucent Bell Labs; Sanjeev Khanna, University of Pennsylvdiasannaa Thati, Carnegie-Mellon University,
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foundation for extending term rewriting models of network protocols to c®@&S aspects of the protocols and
their modification with counter-measures. Our particular study is to investigatesthof a probabilistic extension

of the Maude rewrite system called RMDE and its application to understanding the effectiveness of a DoS
countermeasure known as “selective sequential verification” [7]. fHuisnique was explored for authenticated
broadcastin [7] butin the current paper we consider its applicationtadieake steps of the TCP reliable transport
protocol.

At a high level, our ultimate aim is to demonstrate techniques for showing hoviwarkeprotocol can be
systematically “hardened” against DoS using probabilistic techniques wiedegving the underlying correctness
properties the protocol was previously meant to satisfy. SpecificallgngivprotocolP and a set of properties
T, we would like to expand’ to a theoryT™ that is able to express availability properties and show that a
transformationP* of P meets the constraints ifi* without needing to re-prove the propertiBghat P satisfied
in the restricted language. The shared channel model provides a mattadfinatiework for this extension.

In this paper, we develop a key element of this program: a formal langaag@ch to express the propertiés
and show that availability implications hold fét*. We attempt to validate this effort by showing its effectiveness
on a selective verification for TCP. In particular, we show how we cacifpTCP/IP 3-way handshake protocol
in PMAUDE algebraically. First, we take a previously specified formal non-determimistidel of the protocol.
We then replace all non-determinism by probabilities. The resulting model wéhtidied non-determinism (or
probabilities) is then analyzed for quantitative properties such as availaBiligyanalysis is done by combining
Monte-Carlo simulation of the model with statistical reasoning. In this way, werdge the existing modelling
and reasoning techniques to quantified reasoning without interfering witimitherlying non-quantified properties
of the model.

The rest of the paper is organized as follows. In Section 2, we givertienmnaries of DoS theory followed
by its application to TCP/IP 3-way handshaking protocol in Section 3. Themnefly describe PMUDE in
Section 4. In Section 5, we describe and discuss the algebraic probabibistification of DoS hardened TCP/IP
protocol in PMAUDE. We describe the results of our analysis of some desired properties wnttea query
language for the specification of TCP/IP protocol in Section 6.

2 DoS Theory

On the face of it, the conventional techniques for establishing confidentaddyintegrity are inappropriate for
analyzing DoS, since they rely on very strong models of the adversamtsol of the network. In particular, they
assume that the adversary is able to delete packets from the network atwébw&rsary with this ability has an
assured availability attack. Typical analysis techniques therefore tdspissumption in one of two ways. A first
form of availability analysis is to focus on the relationship between the semikthe attacker and ask whether
the attacker/sender is being forced to expend at least as much efttw galid receiver. In our example, this
is an extremely disproportionate level of effort, since forming a bad sigmaunuch easier than checking that
it is bad. Thus the protocol is vulnerable to the imposition of a disproporticefedet by the receiver. This is
a meaningful analysis, but it does not answer the question of whettaidasender will experience the desired
availability. A second form of availability analysis is to ask whether the recaian handle a specified load. For
instance, a stock PC can check about 8000 RSA signatures eachl sandrit can receive about 9000 packets
(1500 bytes per packet) each second over a 100Mbps link. Thusiageis unable to check all of the signatures it
receives over such a channel. A protocol of the kind we have enedimtherefore deemed to be vulnerable to a
signature floodattack based on cycle exhaustion. By contrast, a stock PC can chedstieston 77,000 packets
each second, so a receiver that authenticates with hashes can s#roiciés bandwidth using a fraction of its
capacity. This sort of analysis leads one to conclude that a protocedi lmsspublic key signatures is vulnerable
to DoS while one based on hashes is not.
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These techniques are sound but overly conservative, becausgatimey explicitly account for the significance
of valid packets that reach the receiver. Newer techniques for analyzinghBaaSemerged in the last year that
provide a fresh perspective by accounting for this issue. In esstrese new models are both more realistic for
the Internet and suggest new ideas for countermeasures. We refer basic version of this new approach as the
shared channel modeThe shared channel model is a four-tuple consisting of the minimum batidWiglof the
sender, the maximum bandwidki; of the sender (wherd’y, < W), the bandwidthy of the adversary, and the
loss ratep of the sender where < p < 1. The ratioR = /W is theattack factorof the model. WherR = 1,
this is aproportionateattack and, wherR > 1, it is a disproportionateattack. As in the algebraic model, the
adversary is assumed to be able to replay packets seen from valid padi#sa the target with anything he can
form from these. But in the shared channel model he is not able to deletdis packets from the network. In
effect, he is able to interleave packets among the valid ones at a specifiedunmarate. This interleaving may
contribute to the loss rateof the sender, but the rate of loss is assumed to be boundediy randomly applied
to the packets of the sender.

The key insight that underlies the techniques in this paper arises fragmemg theasymmetnthe attacker
aims to exploit; his willingness to spend his entire bandwidth on an operatiomtiadisénigh cost for the receiver
also offers opportunities to burden the attacker in disproportionate wetgtive to the valid sender. This can be
seen in a simple strategy we caktlective verification.The idea is to cause the receiver to treat the signature
packets she receives as arriving inatificially lossy channel. The sender compensates by sending extra copies
of his signature packets. If the recipient checks the signature patieteseives with a given probability, then
the number of copies and the probability of verification can be varied to magdiodd that the recipient is able
to check. For example, suppose a sender sends a 10Mbps streantéivarrdout this is mixed with a 10Mbps
stream of DoS packets devoted entirely to bad signatures. To relievecthine of the need to check all of these
bad signatures, the receiver can check signatures with a probability%f &nd, if the sender sends about 20
copies of each signature packet, the receiver will find a valid packetanpifobability of more than 99% even if
the network drops 40% of the sender’s packets. This technique is ingxpescales to severe DoS attacks, and is
adaptable to many different network characteristics.

3 SYN Floods as DoS for TCP/IP

TCP is an extremely common reliable bi-directional stream protocol that ubeseaway handshake to establish
connections. Glossing over many details, a sender initiates a connectiendigg a packet with the SYN flag set
and an initial sequence number. The receiver responds by ackrgingdettie SYN flag, and sending back a SYN
with its ownsequence number. When the original sender acknowledges theerc&VN (this ACK is the 3rd
packet in a 3-way handshake), then the connection is ESTABLISHED.

Each established connection requires a TCB (Transmission Control)Blbelach end of the connection. The
TCB occupies a few hundred bytes of identification and control informasitaistics, as well as a much larger
allocation of packet buffers for received data and (re)transmissien&s. In most operating system kernels, both
packet buffer space and the number of available TCBs are fixed #tilma) and they constitute a limited resource.
This opens a significant vulnerability to adversaries who aim to overwheagithit by flooding a server with
SYN packets; this is typically called &YN flood attack.This threat is mitigated in many systems by storing
connection information in a SYN cache (a lighter-weight data structurerdaiwy only identity information and
sequence numbers for the connection) until the connection becomesBESAED, at which point the (more
expensive) full TCB is allocated. Normally, a legitimate connection occupsést & the SYN cache for only one
round trip time (RTT). If no ACK for the SYN+ACK arrives, then the serewentually removes the entry from
the SYN cache, but only after a much longer timeout intemval,

SYN flooding constitutes an easy denial of service attack because ¥ eatries are relatively scarce, while
the bandwidth needed to send a single SYN packet is relatively cheapatfBlo&er gains further leverage from
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the disparity between the one RTT slot occupancy (often on the ordemilfisecond or less) for a legitimate
client, compared with a fraudulent SYN packet that typically holds a sghecalot for a value of 4 ranging from
30-120 seconds.

A SYN attack is simple to model; attackers merely send SYN packets at a cumuktvehich we denote
by r4. We can compute the effectiveness of the DoS attack by the probabilitycoéssi of a client’s attempt to
connect, and from that compute the number of legitimate connections pedsthed the server can support under
a given attack rate4. If the server offers no defense, and if the order in which incoming S#ié processed at
the server is adversarially chosen, then it is clear that an attack yat€ O(B/t4) suffices to completely take
over a syn-cache of sizB. To see this, observe that in every secaBd: 4 of the attacker’s slots in the SYN cache
expire, andB/t 4 new ones arrive to take their places. Even in a more realistic model wheirctraing SYN
requests are assumed to be ordered in accordance with a random piermiitis easy to show that an attack rate
of O(B/t4) suffices.

It is clear from this analysis (as well as from abundant empirical evigletihat even a moderate rate of DoS
attack can totally disable a server. For a server with a SYN cache of3sizel0, 000 and a timeout interval of
75 seconds a moderate attack rate of 200 to 300 SYNS per second i©i¢a@hignost completely overwhelm the
server! (An energetic attacker can generate SYN packets 1000 timegkly @s this on a commodity 100Mbps
Fast Ethernet link.)

Selective verification can improve this performance significantlyet B denote the number of slots in the
SYN cache. Suppose we want to ensure that the attacker never blockghan a fractionf of the table, for
0 < f < 1. We ask the server to process each incoming SYN with probabilitherep satisfiegpt 474 < fB,
then we ensure that at leastia— f)-fraction of the SYN cache is available to legitimate users. We effectively
inflate the bandwidth cost of mounting an attack rate ofo ber 4 /p. Considering once again an attacker on 100
Mbps channel300,000 SYNs/sec), if we seb = 1073/6, we ensure that the attacker cannot occupy more than
half the table at any point in time. The attacker can still deny service, butisr@guired to invest as much in
bandwidth resources as the collective investment of the clients that it isiatjack

If we increase the cache size by a factoBof we can get an identical guarantee with- .005. The overhead
on a valid client to establish a connection then is dilg SYN packets, roughlgKB, for each request. These
overheads are not insignificant but they allow us to provide unconditgpraEmantees on availability of resources
for valid clients. If we downloaded the PS version of this paper (500l blowup increases the transfer size
by 2%. Moreover, these overheads should be contrasted with thealtgweative: the cache size would have to
be increased t6 x 107 to get the same guarantee.

4 Probabilistic Rewrite Theories

Rewriting logic is an expressive semantic framework to specify a wide rahgencurrent systems [11]. In prac-
tice, however, some systems may be probabilistic in nature, either becathsér @nvironment, or by involving
probabilistic algorithms by design, or both. This raises the question of wisibh systems can also be formally
specified by means of rewrite rules in some suitable probabilistic extensiewnfing logic. This would provide
a general formal specification framework for probabilistic systems anlfl smpport different forms of symbolic
simulation and formal analysis. In particular, DoS-resistant communicatmogmnis such as the DoS-hardened
TCP/IP protocol discussed in Section 3 could be formally specified arigzakthis way.

The notion of a probabilistic rewrite theory provides an example of sucimarstic framework. Usually, the
rewrite rules specifying a non-probabilistic system are of the form

Techniques such as SYN cookies are also effective against SYNrftndibwever they do not preserve the underlying behavior of
TCP.
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t=t if C
where the variables appearingtirare typically a subset of those appearing,iand whereC' is a condition. The
intended meaning of such a rule is that if a fragment of the system’s statelistion instance of the pattetn
say with substitutiod, and the conditio(C') holds, then our system can perform a local transition in that state

fragment changing it to a new local sta#tg’). Instead, in the case of a probabilistic system, we will be using
rewrite rules of the form,

H7T)=*t¢(Z,y) if C(Z) with probability ¥y :=m.(7)

where the first thing to observe is that the tefrias new variableg’ disjoint from the variables’” appearing irt.
Therefore, such a rule ison-deterministicthat is, the fact that we have a matching substituficuch that(C')
holds, does not uniquely determine the next state fragment: there can pdliffiarent choices for the next state
depending on how we instantiate the extra variafjesin fact, we can denote the different such next states by
expressions of the formi(6(2), p(y)), whered is fixed as the given matching substitution, puainges along all
the possible substitutions for the new variablgsThe probabilistic nature of the rule is expressed by the notation
Wi th probability % :=m.(2), wherer,.(7') is a probability distributiorwhich depends on the matching
substitutiond, and we then choose the values 7@t that is the substitutiop, probabilistically according to the
distributionr,.(0(7)).

We can illustrate these ideas with a very simple example, namely a digital battergteq clock that measures
time in seconds. The state of the clock is represented by adewuok(t, c), wheret is the current time in

seconds, and is a rational number indicating the amount of charge in the battery. The cldcka@rording to
the following probabilistic rewrite rule:

clock(t,c) = if B then clock(t + 1,c-15;) el se broken(t,c - &) fi
wi th probability B := BERNOULLI ( 1&5)

Note that the rule’s righthand side has a new boolean varBlleall goes well 8 = tr ue), then the clock
increments its time by one second and the charge is slightly decreasedBbut if al se, then the clock will go
into a broken statbr oken(t, ¢ - 155) - Here the boolean variabkis distributed according to the Bernoulli
distribution with meanlocm. Thus, the value oB probabilistically depends on the amount of chatgt in the
battery: the lesser the charge level, the greater the chance that the dlobkeak; that is, we have different
probability distributions for different matching substitutichef the rule’s variables (in particular, of the variable
C).

Of course, in this example the varialidas a discrete binary variable; but we could easily modify this example
to involve continuous variables. For example, we could have assumddizet a real number, and we could have
specified that the time is advanced to a new ttme- t’ , witht’ a new real-valued variable chosen according
to an exponential distribution. In general, the set of new variaplesuld contain both discrete and continuous
variables, ranging over different data types. In particular, both@ie@nd continuous time Markov chains can be
easily modeled, as well as a wide range of discrete or continuous probalsijistems, which may also involve
nondeterministic aspects [9]. Furthermore, theARME extension of the Maude rewriting logic language allows
us to symbolically simulate probabilistic rewrite theories [10, 3], and we candlly analyze their properties
according to the methods described in [3]. Due to space constraints, ma dive the mathematical definition of
probabilistic rewrite theories. Readers are referred to [10, 9] fdr details.

In general, a probabilistic rewrite theofy involves both probabilities and non-determinisnThe non-
determinism is due to the fact that, in genedifferent rules, possibly with different subterm positions and sub-
stitutionscould be applied to rewrite a given statethe choice of what rule to apply, and where, and with which
substitution isnon-deterministic It is only when such a choice has been made that probabilities come into the
picture, namely for choosing the substitutiprior the new variable§; . In particular, for the kind of statistical
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Figure 1: An instance of the TCP’s 3-way handshake protocol.

model checking discussed in [13, 14] that will be used to formally analyzeboS-resistant TCP/IP protocol,
we need to assume thall non-determinism has been eliminatiedm our specification; that is, that at most one
single rule, position, and substitution are possible to rewrite any given state.
What this amounts to, in the specification of a concurrent system sucleasark protocol, is thguantification
of all non-determinism due to concurrency using probabilitiBlsis is natural for simulation purposes and can be
accomplished by requiring the probabilistic rewrite theory to satisfy some simglérements described in [3].
We will consider rewrite theories specifying concurrent actor-like dkjé2] and communication by asyn-
chronous message passing; this is particularly appropriate for communipatitocols. In rewriting logic, such
systems (see [12] for a detailed exposition) have a distributed state thia¢ capresented asaultisetof objects
and messages, where we can assume that objects have a genedalikea@presentation of the formnane:
o] ay:wvy,...a1 : v1), Whereo is the object’s name and the : v; its corresponding attribute-value pairs in a
given state. It is also easy to model in this wagl-time concurrent object systenme very simple way to model
them is to include a global clock as a special object in the multiset of objectmiasshges. Rewrite rules in such
a system will involve an object, a message, and the global time and will consenmeeisage, change the object’s
state, and send messages to other objects. To deal with message delthergordbabilistic treatment, we can
represent messagesstheduled objecthat are inactive until their associated delay has elapsed.

5 Probabilistic Rewrite Specification of DoS resistant TCP 3-way Handshakg

We now present an executable specification of TCP’s 3-way hanegirakocol in probabilistic rewriting logic.
We consider a protocol instance composedvofionest clients’, . . ., C'y trying to establish a TCP connection
with the serverS, and a single attacket that launches a SYN-flood attack éh(see Figure 1). The clients;
transmit SYN requests t§ at the rate ¢, while the attacker floods spurious SYN requests at the raje These
rates are assumed to be parameters of an exponential distribution fromtivaitme for sending the next packet
is sampled. The servef drops each packet it receives, independently, with probabilitwe assume that each
message across the network is subject to a constant transmissiorl déibgourse, these assumptions about the

various distributions can be easily changed in the implementation that follows.
Each clientC; is modeled as an object with four attributes as follows.

<nanme: C(i) | isn:N, repcnt:s(CNT), sendto: SN, connected:fal se>

The attributel sn specifies the sequence number that is to be used for the TCP connsetiait, 0 specifies

the name of serves, r epcnt specifies the number of times the SYN request is to be (re)transmitted in order to
account for random dropping of packetsSatandconnect ed specifies if the connection has been successfully
established as yet. The attacker is modeled as an object with a single attrifnlteves.
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<name: AN | sendto: SN >
The servelS is modeled as an object with two attributes.
<nanme: SN | isn: M, synlist: SC >

The attributei sn specifies the sequence number tRatises for the next connection request it receives, while

synl i st is the SYN cache tha® maintains for the pending connection requests.
Following is the probabilistic rewrite rule that models the cli€htsending a SYN request.

<name: C(i) | isn:N, repcnt:s(CNT), sendto: SN, connected:false> (C(i)«poll) T
= <name: C(i) | isn:N, repcnt:CNT, sendto: SN, connected:fal se>
[ d+ T, (SN—SYN(C(i),N)) ] [ t+T, ((i)—poll) ] T

with probability ¢ := EXPONENTI AL(7¢)

We use special poll messages to control the rate at wiijctetransmits the SYN requests. Specificadly,
repeatedly sends itself a poll message, and each time it receives a paigeéssends out a SYN requestSo
The poll messages are subject to a random detlagt is sampled from the exponential distribution with parameter
rc. Specifically, the message is scheduled at timel’, whereT is the current global time. The net effect of this
is thatC; sends SYN requests ® at rater. Perhaps it is important to point out that the poll messages are not
regular messages that are transmitted across the network; they havatbegunced only for modeling purposes.
Further, note that the approach of simply freezifydy scheduling it at tim&” + ¢ does not work since that would
also preven(; from receiving any SYN+ACK messages that it may receive ftvkrmeanwhile. Finally, note
that the replication count is decremented by one after the transmission ofrf®¥shge, and the message itself is
scheduled with a delay.

The rule for SYN flooding by the attacker is very similar, except that it waedomly generated sequence
numbers.

<name: AN | sendto: SN > (AN «— poll) T = <nane: AN | sendto: SN > T
[ d + T, (SN~ SYN(AN, random{counter))) ] [ ¢t + T, (AN—poll) ]
with probability ¢ := EXPONENTI AL(74)

The following rule models the processing of SYN requests by the sérver

<nane: SN | isn: M, synlist: SC > (SN— SYN(ANY,N)) T
= if(drop? or size(SC) > SYN CACHE-SI ZE) then <name: SN | isn: Msynlist: SC> T
el se <name: SN | isn:s(M, synlist:add(SC entry(ANY, M) >
[ d+T, (ANY+ SYN+ACK(SN, N, M )] [TI MEQUT+T, (SN—tmout (entry(ANY,M))] T fi
with probability drop? := BERNOULLI (p)

The random dropping of incoming messages is modeled by sampling from theuledistribution with the
appropriate parameter An incoming request can also be dropped if the SYN cache is full. If tbhecés not

full, for each request that is not dropped, the seS/enakes an entry for the request in the cache, and sends out a
SYN+ACK message to the source of the request. A cache entry is of timeefotr r y( N, M whereNis the name

of the source which has requested a connection Misdhe sequence number for the connection. Timing out of
entries in the cache is modeled by locally sending a message to self that ialechedter an interval of time equal

to the timeout period. Here is the rule for removing timed out entries.

<nane: SN isn: N,synlist: [s(SZ), (L1 entry(ANY,M L2)]> (SN «—
tmout (entry(ANY, M))
= <name: SN | isn: N, synlist: [ SZ, (L1 L2) ] >

The first argument in the value of tieynl i st attribute above is the number of entries in the list, while the
second argument is the actual list of entries. The rule for processirgthe-ACK message at the clients is as
follows.
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<nanme: C(i)|isn:N, repcnt:CNT, sendto: SN, connected: fal se> (C(i)«— SYNWACK(SN,NNM) T
= <nane: C(i)|isn:N, repcnt: CNT, sendto: SN, connected: true> [ d+T, ( SN—
ACK(C(i), M)] T

The rule is self-explanatory; the only significant point to be noted is thattthibuteconnect ed is set to true
after processing the SYN+ACK message. Since the clients replicate the@stsdo account for random dropping
of packets at the server, it is possible for them to receive a SYN+ACKagesfor a connection that has already
been established. Such SYN+ACK messages are simply ignored as follows.

<nane: C(i)]isn: N, repcnt: CNT, sendto: SN, connected: true> (C(i)« SYN+ACK(SN, N, M)
= <name: C(i)]|isn: N, repcnt: CNT, sendto: SN, connected: true> .

In contrast to the honest clients, the attacker ignores all the SYN+ACKagesshat it receives from the senfer
<nane: AN sendto: SN > (AN— SYN+ACK(SN, N, M) = <nane: AN| sendto: SN >

Finally, the initial configuration of the system is

< name: AN| ... > [ t1, <name: C(1) | ... >]1 [ t2, <name: C(2) | ... >]
[t , <name: C(N) | ... >] <nanme: SN| ... >
wherety, ..., t, are all distinct and positive. Note that, since all the clients are schedultifeatnt times, it

follows [3] that the system does not contain any un-quantified non+datism, which is essential for statistical
analysis to be possible.

6 Analysis

We have successfully used the statistical model-checking ta8inX [13, 14] to verify various desired properties
of the probabilistic model in Section 5. In the following, we first describe tlodé YESTA and its integration
with PMAUDE. We then elaborate on the verification of one important property of they3ramadshake protocol
presented in the previous section.

The integration of PMUDE and VESTA is described in detail in [3]. In the integrated tool, we assume that
VESTA is provided with a set of sample execution paths generated through thetdisvent simulation of a

PMAUDE specification with no non-determinism. We assume that an execution path fegrapn our sample

is a sequence = sy o, s1 2N S9 i -+, wheresy is the unique initial state of the system,is the state of the

system after thé!" computation step (rewrite), artdis the difference of global time between the states and
s;. We also assume that there is a labelling functicthat assigns to each statea set of atomic propositions that
hold in that state; the set of atomic propositions are all those that appearpnojiierty of interest (see below).
Thus,L : S — 247, where AP is a set of relevant atomic propositions afids the set of system states. In
PMAUDE, this labelling function is defined as an operator that maps terms represstatiag to sets of atomic
propositions.

In VESTA, we assume that the properties are expressed in a sublogic of Cor#tiStmehastic Logic — CSL
(without stationary state operators). CSL was introduced in [1] as a logixpeess probabilistic properties.
The syntax and the semantics of the logic and the statistical model-checkinghagéor CSL are described
in [13, 14]. In our experiments, we model checked the following propexpressed in CSL for different values
of the attacker rate4.

P<0.01 (O (successfubttack)))

wheresuccessfulittack) is true in a state if the SYN cache §fis full, i.e., the attacker has succeeded in launching
the SYN flood attack. The property states that the probability that eventuallgttackerA successfully fills up
the SYN cache of is less than 0.01.

The results of model-checking are shown in the following table for two casedhe absence of DoS
counter-measure and in the presence of DoS counter-measure withrdhgeperp set t00.9. In all experiments,
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we used scaled down parameters so that our experiments could be coniplateshsonable amount of time.
Specifically, we used a SYN cache size of 10,000, cache timeout of d@dgcand 100 clients. The experiments
were carried out on 1.8 GHz Xeon Server with 2 GB RAM and running MakelLinux 9.2.

Model-checking X’s attack rate (SYNs per second)
P<0.01 (O (successfubttack))) 1| 5| 64|100|200| 400| 800 | 1000| 1200
result F| F F T T T T T T
p = 0.0(No counter-measure) u. 42 sec)| 47 | 87 | 280 | 605 | 183| 183| 182| 182 181
result F| F F F F F F T T

p = 0.9 (With counter-measure

time (102 sec)| 68 | 75 | 217 | 328 | 896 | 3102 | 11727| 2281 | 1781

The results show that in the presence of DoS counter-measure witld).9, S can sustain an attack from
with attack rate 10 times larger than that in the case of no counter-measwreefdre, the results validate our
hypothesis thaselective verificatioman be used as an effective counter-measure for DoS attacks.

To gain more insight into the probabilistic model, we realized that model-chetsamay sufficient. Specifically,
we found thdrue (T) andfalse(F) answers given by the model-checker is not sufficient to undetstenvarious
quantitative aspects of the probabilistic model. For example, we wanted totkieogxpected number of clients
that get connected in the presence of SYN flood attack. Therefordditian to model-checking, we used a query
language calle@uantitative Temporal Expressiofsr QUATEX in short). The language is mainly motivated by
probabilistic computation tree logic (PCTL) [8] andh&LE [4]. In QUATEX, some example queries that can be
encoded are as follows:

1. What is the expected number of clients that successfully conn8abuid of 100 clients?
2. What is the probability that a client connecte@twithin 10 seconds after it initiated the connection request?

A detailed discussion of the WQATEX is beyond the scope of this paper. However, we provide a brief inttmofuc

of QUATEX in the Appendix.
We evaluated the following QATEX expression with different values of the attacker rate

CountConnected() = if completed() thencount() else O (CountConnected()) fi;
evalE[CountConnected()]

In this expressioncompleted() is true in a state if all the client§; have either sent all of their SYN packets
or have managed to connect with The expressiorount() in a state returns the number of clients that have
successfully connected . The expression queries the expected number of clients that eventuatigatavith
S in the presence of DoS attack by the attacker

The results of evaluating the above expression for different valuetadker rate- 4 are plotted in Figure 2.
The results show that most of the clients get connected as long as the attae&enot manage to fill up the SYN
cache buffer. However, as soon as the attacker's SYN rate becaghesriough to fill the SYN cache buffer, none
of the clients gets connected. The plot also illustrates that sgtbctive verificationhe server can withstand an
order of magnitude higher SYN flood rates than without.

7 Conclusions
We have presented a general framework for verification of DoS piiepeof communication protocols. We are
able to express and prove key properties, but performance limitation® agfulomated system in our current

formulation require us to use scaled down version of parameters thairgpissectice. Addressing these efficiency
limitations and verifying the properties for general systems remain futurk @lmectives.
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Figure 2: Expected number of clients out of 100 clients that get connedtiedhe server under DoS attack

References

[1]

(2]
3]

[4]

[5]
[6]
[7]
(8]
9]

(10]

[11]
[12]
[13]

[14]

A. Aziz, K. Sanwal, V. Singhal, and R. K. Brayton. Verifig continuous-time Markov chains. Rroceedings of the
8th International Conference on Computer Aided Verifiaa(iGAV’'96) volume 1102, pages 269-276.

G. Agha. Actors: A Model of Concurrent Computation in Distributedstgyns MIT Press, 1986.

G. Agha, J. Meseguer, and K. Sen. PMaude: Rewrite-bgsedfiation language for probabilistic object systems. In
3rd Workshop on Quantitative Aspects of Programming LaggadQAPL'05)2005.

H. Barringer, A. Goldberg, K. Havelund, and K. Sen. Rbksed runtime verification. IRroceedings of 5th Interna-
tional Conference on Verification, Model Checking and Adogtinterpretation (VMCAI'04)volume 2937 oL .NCS
pages 44-57. Springer, January 2004.

R. Cramer and V. Shoup. A practical public key cryptosysiprovably secure against adaptive chosen ciphertegkatta
Lecture Notes in Computer Sciendd62, 1998.

D. Dolev and A. C. Yao. On the security of public-key protts. IEEE Transactions on Information Theg2(29):198—
208, 1983.

C. A. Gunter, S. Khanna, K. Tan, and S. Venkatesh. Dosegtimn for reliably authenticated broadcast. Natwork
and Distributed System Security (NDSS Qdjernet Society, 2004.

H. Hansson and B. Jonsson. A logic for reasoning about fimd reliability. Formal Aspects of Computing(5):512—
535, 1994.

N. Kumar, K. Sen, J. Meseguer, and G. Agha. Probabilistigrite theories: Unifying models, logics and tools.
Technical Report UIUCDCS-R-2003-2347, Univ.of lllinoisldrbana-Champaign, 2003.

N. Kumar, K. Sen, J. Meseguer, and G. Agha. A rewritingdshmodel for probabilistic distributed object systems.
In Proceedings of 6th IFIP International Conference on Forrivbdthods for Open Object-based Distributed Systems
(FMOODS’03) volume 2884 of. NCS pages 32—-46, 2003.

N. Marti-Oliet and J. Meseguer. Rewriting logic: roadmap and bipaphy.Theoretical Computer Scienc285:121—
154, 2002.

J. Meseguer. A logical theory of concurrent objects @sdealization in the Maude language. Research Directions
in Concurrent Object-Oriented Programmingages 314—-390. MIT Press, 1993.

K. Sen, M. Viswanathan, and G. Agha. Statistical modhaaking of black-box probabilistic systems. 16th confer-
ence on Computer Aided Verification (CAV'04dlume 3114 of NCS pages 202-215, 2004.

K. Sen, M. Viswanathan, and G. Agha. On statistical nhathecking of stochastic systems. 1ith Conference on
Computer Aided Verification (CAV'OS)NCS (To Appear). Springer, 2005.

100



A QUATEX

We introduce the notation that describes the syntax and the semantiecs\@EQ followed by a few motivating
examples. Then we describe the language formally, along with an exampietaewe have used to investigate
if the DoS free 3-way TCP/IP handshaking protocol model meets ouiresgents. The results of our query on
various parameters are given in Section 6.

We assume that an execution path is an infinite sequence

m™=8)—~>81 —~> 82 — -
wheres is the unique initial state of the system, typically a term of €mf i g representing the initial global
state,s; is the state of the system after #'i& computation step. If thet! state of this sequence cannot be rewritten
any further (i.e. is absorbing), then= s, for all ¢ > &.

We denote thé'" state in an execution pathby 7[i] = s;. Also, denote the suffix of a pathstarting at the
ith state byw(i) = 8 — Si+1 — Si+2 — ---. We let Path(s) be the set of execution paths starting at state
s. Note that, because the samples are generated through discrete-avetdticn of a PMauDE model with
no non-determinismpPath(s) is a measurable set and has an associated probability measure. Thisigksse
compute the expected value of a path expression from a given state.

A.1 QUATEX through Examples

The language QATEX, which is designed to query various quantitative aspects of a probabilistielradlows

us to write temporal query expressions like temporal formulas in a tempoial ligsgupports a framework for
parameterized recursive temporal operator definitions using a few pemitin-temporal operators and a temporal
operator (). For example, suppose we want to knttiwe probability that along a random path from a given
state, the clientd(0) gets connected witF® within 100 time units.” This can be written as the following query

IfConnectedInTime(t) = if ¢ > time() thenO elseif connected() thenl
else O (IfConnectedInTime(t)) fi fi;
evalE[IfConnectedInTime(time() + 100)];

The first four lines of the query define the operaté€onnectedInTime(t), which returns 1, if along an execution
path A(0) gets connected t& within time ¢ and returns 0 otherwise. The state functiiome() returns the global
time associated with the state; the state functionnecte() returns true, if in the state(0) gets connected with
B and returns false otherwise. Then the state query at the fifth line reterexgiected number of time$(0)
gets connected t& within 100 time units along a random path from a given state. This number lj@slinsince
along a random path eithet(0) gets connected t& within 100 time units or4(0) does not get connected 19
within 100 time units. In fact, this expected value is equal to the probability thagaaandom path from the
given state, the clierd(0) gets connected wit® within 100 time units.

A further rich query that is interesting to our probabilistic model is as follows

NumConnectedInTime(t, count) = if ¢t > time() thencount
elseif anyConnected() then O (NumConnectedInTime(t, 1 + count))
else O (NumConnectedInTime(t, count)) fi fi;
eval E[NumConnectedInTime(time() + 100, 0)]

In this query, the state functiomnyConnected() returns true if any clienti(i) gets connected t® in the state.
We assume that in a given execution path, at any state, at most one ctienbgeected t@, which is true with
our probabilistic model. We use a simpler variant of this query in our expetimen

A.2 Syntax of QUATEX

The syntax of QATEX is given in Fig. 3. A query in QATEX consists of a set of definition® followed
by a query of the expected value of a path expresgiéhap. In QUATEX, we distinguish between two kinds

101



Q == D evalE[PEzxp]; SExp == c| f| F(SEzpi,...,SEzpy) | x;
D := setofDefn PEzp == SEzp| ON(SEzp1,...,SExpy,)
Defn = N(x1,...,2m) = PExp; | if SEzp then PEzp, else PExpy fi

Figure 3: Syntax of QATEX

(s)[clp
(s)[fIp
($)[F(SEzp1,...,SExpi)]p
(s)[E[PEzp]]lp =
(m)[if SExp thenPExp, elsePExp; fi] p
(W)[[ON(SExph?SExpm)]]D =
W) [Bla1 — (x[0)[SEzp1]p, - -, 2 — (7[0])[SEzpm] b
where N(zi,...,z,)=B€D

I
— 0

(s)

((s)[SEzp1]p,-- -, (s)[SEzpk]p)

[(M)[PExp]p | m € Paths(s)]

if (7[0])[SEzp]p = true then(m)[PEzp1]p else(n)[PEzp2]p

|
m

Figure 4: Semantics of QATEX

of expressions, namelgtate expression&enoted bySFExp) and path expressiongdenoted byPFEzp); a path
expression is interpreted over an execution path and a state expressitarpseted over a state. A definition
Defn € D consists of a definition of semporal operator A temporal operator definition consists of a nafvie
and a set of formal parameters on the left-hand side, and a path egpreasthe right-hand side. The formal
parameters denote thieeze formal parameter$Vhen using a temporal operator in a path expression, the formal
parameters are replaced by state expressions. A state expressi@ieceorstant, a functionf that maps a state

to a concrete value, f-ary function mapping: state expressions to a state expression, or a formal parameter. A
path expression can be a state expression, a next operator follovaedipylication of a temporal operator already
defined inD, or a conditional expression ifFzp then PEzxzp, else PEzp, fi. We assume that expressions
are properly typed. Typically, these types wouldilve eger , r eal , bool ean etc. The conditiorEzp in the
expression if SExp then PExp, else PExps fi must have the typbool ean. The temporal expressialEzp

in the expressiolE[ PExzp] must be of type eal . We also assume that expressions of tyjpé eger can be
coerced to the eal type.

A.3 Semantics of QATEX

Next, we give the semantics of a subset of query expressions thaeocaritten in QIATEX. In this subclass,
we put the restriction that the value of a path expresgtéiap that appears in any expressiBhPFEzp] can be
determined from a finite prefix of an execution path. We call such tempapaéssiondoundedpath expres-
sions. The semantics is given in Fig. &r)[PEzp]p is the value of the path expressiétExzp over the path
7. Similarly, (s)[SEzp]p is the value of the state expressiSfizp in the states. Note that if the value of a
bounded path expression can be computed from a finite prgfibof an execution path, then the evaluations
of the path expression over all execution paths having the common pigfixre the same. Since a finite prefix
of a path defines a basic cylinder set (i.e. a set containing all paths hta@rrgmmon prefix) having an associ-
ated probability measure, we can compute the expected value of a bouattieekpression over a random path
from a given state. In our analysis tool, we estimate the expected valugthsouulation instead of calculating
it exactly based on the underlying probability distributions of the model. Thetgxocedure can be found at
http://osl.cs.uiuc.edu/ ~ksen/vesta?2/.
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Constructive Authorization Logics

Frank Pfenning
Department of Computer Science
Carnegie Mellon University
http://www.cs.cmu.edu/~fp/

Authorization logics are traditionally used to specify access control policies. More recently, in the proof-
carrying authorization architecture, they have also been employed directly to enforce policies via explicit checking
of proofs expressed in the logic. Authorization logics provide a great deal of flexibility, but this may make it
difficult for principals to understand the consequences of their policy decisions and for users to obtain the necessary
proof objects.

In ongoing work we investigate a new constructive foundation for authorization logics which makes it easier
to construct them modularly and to reason about them mechanically. At the core is the separation of judgments
from propositions and a lax modality indexed by principals. We have formally verified some properties of the core
logic itself, such as cut-elimination, and we are now interested in methods for establishing properties of policies
expressed in the logic, such as independence and non-interference.

In this talk we explain the underlying design philosophy and the indexed lax logic at the heart of our approach.
We also give a brief survey of the technical results obtained so far.

Joint work with Deepak Garg and Kevin Watkins.
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A Constraint-Based Algorithm for
Contract-Signing Protocols

Detlef Kahler and Ralf Kiuisters
Institut fur Informatik und Praktische Mathematik
Christian-Albrechts-Universitat zu Kiel, 24098 Kiel, (Beany
{kaehl er, kuesters}@i .informatik. uni-kiel.de

Abstract

Research on the automatic analysis of cryptographic potgdas so far mainly concentrated on reacha-
bility properties, such as secrecy and authenticationy @tently it was shown that certain game-theoretic
security properties, such as balance for contract-sigpiotpcols, are decidable in a Dolev-Yao style model
with a bounded number of sessions but unbounded messagéisizever, this result does not provide a prac-
tical algorithm as it merely bounds the size of attacks. s ffaper, we prove that game-theoretic security
properties can be decided based on standard constraiimigpiiocedures. In the past, these procedures have
successfully been employed in implementations and tooleefchability properties. Our results thus pave the
way for extending these tools and implementations to dethl game-theoretic security properties.

1 Introduction

One of the central results in the area of automatic analysisyptographic protocols is that the security of cryp-
tographic protocols is decidable when analyzed w.r.t. &fimumber of sessions, without a bound on the message
size, and in presence of the so-called Dolev-Yao intrudee,(g.9., [14, 1]). Based on this result, many fully
automatic tools (see, e.g., [2, 7, 13]) have been developedaccessfully been applied to find flaws in published
protocols, where most of these tools employ so-catiealstraint solving proceduresee, e.g., [13, 7, 4]). How-
ever, the mentioned decidability result and tools are idstt to security properties such as authentication and
secrecy which are reachability properties of the transidgstem associated with a given protocol. In contrast,
crucial properties required of contract-signing and eslatrotocols (see, e.qg., [9, 3]), for instance abuse-fieene
[9] and balance [5], are game-theoretic properties of theekire of the transition system associated with a proto-
col. Balance, for instance, requires that in no stage of topob run, the intruder or a dishonest party has both a
strategy to abort the run and a strategy to successfully Eefhe run and thus obtain a valid contract.

Only recently [11], the central decidability result memigol above was extended to such game-theoretic security
properties, including, for instance, balance. Howevenilar to the result by Rusinowitch and Turuani [14] for
reachability properties, the decision algorithm presginig11] is merely based on the fact that the size of attacks
can be bounded, and hence, all potential attacks up to arceite have to be enumerated and checked. Clearly,
just as in the case of reachability properties, this is cetepf impractical. For reachability properties, one has
therefore developed the mentioned constraint solvingguhoes to obtain practical decision algorithms.

The main contribution of the present work iscanstraint-baseddecision algorithm for the game-theoretic
security properties of the kind considered in [11]. The nfaiture of our algorithm is that it can be built on
top of standard constraint solving procedurésee, e.g., [13, 7, 4] and references therein). As mentjosigzh
procedures have successfully been employed for readiygimitperties in the past and proved to be a good basis
for practical implementations. Hence, our algorithm paVesway for extending existing implementations and
tools for reachability properties to deal with game-th&orsecurity properties.

In a nutshell, our constraint-based algorithm works asvail Given a protocol along with the considered
game-theoretic security property, first the algorithm gesswhat we call a symbolic branching structure. This
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structure represents a potential attack on the protocolcarmgsponds to the interleavings, which are, however,
linear structures, guessed for reachability propertieghé second step of the algorithm, the symbolic branching
structure is turned into a so-called constraint systems $tadp requires some care due to the branching issue and
write-protected channels considered in our model (alsledaecure channels here), i.e., channels that are not
under the control of the intruder. Then, a standard comstsgilving procedure (see above) is used to compute
a finite sound and complete set of so-called simple constsgisiems. A simple constraint system in such a set
represents a (possibly infinite) set of solutions of theindbconstraint system and the sound and complete set
of these simple constraint systems represents the st eblutions of the original constraint system. Finally, it

is checked whether (at least) one of the computed simplereamissystems in the sound and complete set passes
certain additional tests.

There are some crucial differences of our constraint-basgatithm to algorithms for reachability properties:
First, as mentioned, instead of symbolic branching strestufor reachability properties only interleavings,,i.e.
linear structures, need to be guessed. Turning thesedaténgs into constraint systems is immediate due to the
absence of the branching issue and the absence of secureetheecond, and more importantly, for reachability
properties it suffices if the constraint solving procedundy eturns one simple constraint system, rather than a
sound and complete set. Third, the final step of our constbaised algorithm—performing additional tests on
the simple constraint system—is not required for reachglgtoperties.

We emphasize that even though for reachability propertigsfiices if the constraint solving procedure returns
only one simple constraint system, standard constraivirgplprocedures are typically capable of computing
sound and complete sets of simple constraint systems. Asty gocedure can be used by our constraint-based
algorithm as a black-box for solving constraint systemsds Tiakes it possible to extend existing implementations
and tools for reachability properties to deal with gamesthéc properties since the core of the algorithms—
solving constraint systems—remains the same, provideditbaonsidered cryptographic primitives can be dealt
with by the constraint solving procedure (see Section 4).

The protocol and intruder model that we use is basically treegroposed in [11], which in turn is the “bounded
session” version of a model proposed in [5]. We slightly niptlie model of [11]—without changing its expres-
sivity and accuracy—in order to simplify our constrainsbkd algorithm (see Section 2 and 3). For instance, while
in [11] intruder strategies are positional, it turns out tive constraint-based algorithm is considerably simper f
intruder strategies which may depend on the history of tléopol run. However, it is not hard to show that both
notions of strategies are equivalent in our setting, anddene can w.l.0.g. choose the notion of strategy that fits
best for our purpose.

Further related work.  Contract-signing and related protocols have been analyagtdmanually [5], based on a
relatively detailed model (as mentioned, our model is a fatmd session” version of this model), and using finite-
state model checking (see, e.g., [15, 12]), based on a cdarge-state model. Drielsma and Modersheim [8]
were the first to apply an automatic tool based on constraintrg to the contract-signing protocol by Asokan,
Shoup, and Waidner [3]. Their analysis is, however, rdstlico reachability properties since game-theoretic
properties cannot be handled by their tool. The results shiowthe present work pave the way for extending such
tools in order to be able to analyze game-theoretic pragserti

Structure of this paper. In Section 2, we recall the protocol and intruder model an8etion 3 the intruder
strategies and the game-theoretic properties first intedlun [11], and point out the mentioned differences.
Section 4 provides the necessary background on constimg. In Section 5, we present our constraint-based
decision algorithm along with an example and state our mesnlt—soundness, completeness, and termination
of the algorithm.

Full definitions and proofs can be found in our technical ref®].
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2 The Protocol and Intruder Model

The protocol and intruder model that we use basically cdexiwith the model first introduced in [11], which in
turn is the “bounded session” version of the model proposd8]i We only slightly modify the model in [11] in
that we impose a restriction on principals which is necgskarprincipals to perform feasible computations.

In our model, a protocol is a finite set of principals and eveniycipal is a finite tree, which represents all
possible behaviors of the principal, including all subpoaiis a principal can carry out. Each edge of such a tree
is labeled by a rewrite rule, which describes the receiveetsetion that is performed when the principal takes this
edge in a run of the protocol.

When a principal carries out a protocol, it traverses ite,tstarting at the root. In every node, the principal
takes its current input, chooses one of the edges leavingpithe, matches the current input with the left-hand side
of the rule the edge is labeled with, sends out the messagshwehdetermined by the right-hand side of the rule,
and moves to the node the chosen edge leads to. While in tidasthDolev-Yao model (see, e.g., [14]) inputs to
principals are always provided by the intruder, in our madplts can also come from the secure channel, which
the intruder does not control, i.e., the intruder cannoayeluplicate, remove messages, or write messages onto
this channel under a fake identity (unless he has corruppdtg). However, just as in [5], the intruder can read
the messages written onto the secure channel. We note thegsults also hold in case of read-protected secure
channels. Another difference to standard Dolev-Yao madélsat, in order to be able to formulate game-theoretic
properties, we explicitly describe the behavior of a protas an infinite-state transition graph which comprises
all runs of a protocol.

We now describe the model in more detail by defining terms aessages, the intruder, principals and proto-
cols, and the transition graph.

Terms and Messages. As usual, we have a finite s&t of variables, a finite setl of atoms, a finite sek’ of
public and private keys equipped with a bijectiort assigning public to private keys and vice versa. In addjtion
we have a finite sel of principal addressegor the secure channels and @finite set.A; of intruder atoms
containing nonces and symmetric keys the intruder can ganeill of the mentioned sets are assumed to be
disjoint.

We define two kinds of terms by the following grammar, nanm@in termsandsecure channel terms

plain-terms 1= V[ A[A; | (plain-termsplain-terms | {plain-terms jjain-terms |
{plain-termg% | hash(plain-termg | sig,-(plain-termg
sec-terms ::= sc(N, N, plain-termg
terms ::= plain-terms| sec-termg N/

While the plain terms are standard in Dolev-Yao models, argechannel term of the forsc(n, n’, ¢) stands for
feeding the secure channel framto »’ with ¢. Knowingn grants access to secure channels with sender address
n. A (plain/secure channel) messagea (plain/secure channel) ground term, i.e., a term witkatiables.

Intruder. Given a setZ of messages, the (infinite) sétZ) of messages the intruder can derive franis
the smallest set satisfying the following conditioris: C d(Z); if m,m’ € d(Z), then (m,m’) € d(Z); if
(m,m') € d(I), thenm € d(Z) andm’ € d(Z); if m,m’ € d(Z), then{m}?, € d(T); if {m}?, € d(I)
andm’ € d(Z), thenm € d(Z); if m € d(Z) andk € d(Z) N K, then{m}{ € d(Z); if {m}? € d(Z) and
k! € d(T), thenm € d(Z);if m € d(Z), thenhash(m) € d(Z); if m € d(Z) andk~! € d(Z)NK, thensig,,(m)
(the signature contains the public key but can only be géeen&the corresponding private key is known); if
m € d(Z),n € d(Z)NN,andn’ € N, thensc(n,n’,m) € d(Z) (writing onto the secure channeld; C d(7)
(generating fresh constants
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Intuitively, n € d(Z) N N means that the intruder has corrupted the principal withiesdoh and therefore can
impersonate this principal when writing onto the securenoka

In our model, all (strongly) dishonest parties are subsumdtie intruder. Weakly dishonest parties can be
modeled as principals whose specification deviates frorspkeification of the protocol.

Principals and Protocols. Principal rulesare of the formR = S whereR is a term orc andS is a term.

A rule treell = (V, E,r,{) is a finite tree rooted at € V where/ maps every edgév,v’) € E of Il to a
principal rule/(v,v").

A principal is a tuple consisting of a rule trdé = (V, E,r,¢) and a finite set of plain messages, thigial
knowledge of the principalWe require that every variable occurring on the right-haiat® of a principal rule
£(v,v") in II also occurs on the left-hand side &b, v) or on the left-hand side of a principal rule on the path
from r to v. In addition, and unlike [11], we require a condition neeegdor the principal to perform a feasi-
ble computation: The decryption and signature verificatiperations performed when receiving a message can
actually be carried out, i.e., terms in key positionsitg {¢}¢, k=! in {t}¢, andk in sig,(¢)) on the left-hand
side of principal rules can be derived from the set congjstiirthe left-hand side of the current principal rule, the
left-hand sides of preceeding rules, and the initial knog&eof the principal. Obviously, the above condition is
satisfied for all realistic principals. Moreover, it allowssimplify the constraint-based algorithm (Section 5).

Forv € V, we writeII|v to denote the subtree of rooted atv. For a substitutiorr, we write ITo for the
principal obtained froniI by substituting all variables occurring in the principal rules dai by o (z).

A protocol P = ((I14, ..., I1,),Z) consists of a finite sequence of principilsand a finite se¥ of messages,
theinitial intruder knowledge We require that each variable occurs in the rules of onlymimeipal, i.e., different
principals must have disjoint sets of variables. We assumatintruder atoms, i.e., elements.f, do not occur
in P.

As an example protocol, let us consider, as depicted in Figure 1. This protocols consists of two [jpals
II; andlII; and the initial knowledg&, = {{a}}, {b};} of the intruder. The principals are described by the two
trees on the left-hand side of the figure; the tree on the-hghtd side is used later. Informally speakiik, can,
without waiting for input from the secure channel or theunder, decide whether to write, b) or (b, b) into the
secure channel frorid, to I1;. While the intruder can read the message written into thesohkl, he cannot modify
or delay this message. Also, he cannot insert his own megstagnis channel as he does not have the principal
address 2 in his intruder knowledge, and hence, cannot afeneressages of the forse(2, -,¢). Consequently,
such messages must come froijm Principalll; first waits for a message of the forfm, b) in the secure channel
from Il to IT;. In casell, wrote, say,(a, b) into this channely is substituted by:, and this message is written
into the network, and hence, given to the intruder. NBxtwaits for input of the form{y};. This is not a secure
channel term, and thus, comes from the intruder. In casentheder sendgb};, say, thery is substituted by.
Finally, IT; waits for input of the formu (in the edges fronys to f4 and f3 to f5) or b (in the edge fromf; to
f6). Recall thatr was substituted by andy by b. If the intruder sends, say, therll, takes the edge fronf; to
fe and outputs:, into the network. If the intruder had semtII; could have chosen between the first two edges.
We note that this protocol is not meant to perform a usefl.tétss rather used to illustrate different aspects of
our constraint-based algorithm ([11] contains a formak#fmation of the contract-signing protocol by Asokan,
Shoup, and Waidner [3] in our model).

2.1 Transition Graph Induced by a Protocol

A transition graphGp induced by a protocoP comprises all runs of a protocol. To define this graph, we first
introduce states and transitions between these states.

A stateis of the form((Ily, ... ,I1,),0,Z,S) whereo is a ground substitution, for ea¢hll; is a rule tree such
thatIl;o is a principal,Z is a finite set of messages, timtruder knowledgeands is a finite multi-set of secure
channel messages, teecure channelThe idea is that when the transition system gets to suchie, steen the
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Figure 1:ProtocolP., = ({II1, 11}, Zo) with Zy = {{a};,{b};}, initial knowledge{1,a, b, k, c1, 2} of IT; and initial
knowledge{2, a,b} of II,. Strategy treel,, for P., with Z; = Zo U {(a,b)}, Zo = Zo U {(b,b)}, o1 = {z — a},

o9 = o1y U{y — b}, 03 = {& — b}, andoy = o3 U {y — b}. Also, for brevity of notation, in the first component of the
states we write, for instancé, instead oflI; | f1. The strategy property we conside({&.,, C.,)) = (({c2}, {c1})).

substitutiono has been performed, the accumulated intruder knowledgbas ean be derived from, the secure
channels hold the messagesdnand for each, I, is the “remaining protocol” to be carried out by principal
This also explains whys is a multi-set: messages sent several times should be aligeveral times. Given a
protocol P = ((I1y,...,II,),Z) theinitial state of Pis ((II,...,11,),0,Z,()) whereo is the substitution with
empty domain.

We have three kinds of transitions: intruder, secure charamal e-transitions. In what follows, lefl;
(Vi, By, ri, 4;) andlIl, = (V/, EI, ri, £;) denote rule trees. We define under which cwcumstancesmarteansnlon

(My,...,1,),0,7,S) — ((IT},...,11,),0", 7', S") (1)

with = an appropriate label.

1. Intruder transitions: The transition (1) with label, m, I exists if there exists € V; with (r;,v) € E; and
¢;(r;,v) = R = S, and a substitution” of the variables ilRo such that (a)n € d(Z), (b) o’ = o Uc”, (c)
Ro' =m, (d)II}; = 11; for everyj # i, I} = II;|v, (€)' = ZU{So'} if S # sc(-,-,-), andZ’ = ZU{to'}
if S = sc(-,-,t)for somet, (f) S’ = Sif S # sc(-,-,-), andS’ = S U {Sc¢’} otherwise. This transition
models that principal reads the message from the intruder (i.e., the public network).

2. Secure channel transitiong:he transition (1) with label, m, sc exists if there exists € V; with (r;,v) €
E; and/;(r;,v) = R = S, and a substitution” of the variables inRo such thatn € S, (b)—(e) from 1.,
andS’ = S\ {m}if S # sc(-,-,-), andS’ = (S \ {m}) U {Sc’} otherwise. This transition models that
principali reads message from the secure channel.

3. e-transitions: The transition (1) with label exists if there exists € V; with (r;,v) € E; and?;(r;,v) =
e = S such that’ = o and (d), (e), (f) from above. This transition models thaerforms a step where
neither a message is read from the intruder nor from the setwannel.

Given a protocolP, thetransition graphGp induced byP is the tuple(Sp, Ep, qp) wWheregp is the initial state
of P, Sp is the set of states reachable fragi by a sequence of transitions, aht is the set of all transitions
among states i¥p. We writeq € Gp if ¢ is a state inGp andg = ¢’ € Gp if ¢ = ¢’ is a transition inGp.
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We note thatip is a DAG since by performing a transition, the size of the imhponent of a state decreases.
While the graph may be infinite branching, the maximal lengjtla path in this graph is bounded by the total
number of edges in the principdlk of P.

3 Intruder Strategies and Strategy Properties

We now define intruder strategies on transition graphs aadytial the intruder tries to achieve following his
strategy. As mentioned in the introduction, while in [11]sgimnal intruder strategies have been considered
where the strategy of the intruder at a global state of théopab run may only depend on the current state,
here we allow the intruder to take the whole path leading i@ gtate (i.e., the history) into account. While this
potentially provides the intruder with more power, theséams are in fact equivalent (see Proposition 2). The
main motivation for the new notion of strategy is that it ischibetter suited for the constraint solving approach
(Section 5).

To define intruder strategies, we introduce the notion ofatexy tree, which captures that the intruder has a
way of acting such that regardless of how the other prinsipalt he achieves a certain goal, where goal in our
context means that a state will be reached where the intaaederive certain constants and cannot derive others
(e.g., for balance, the intruder tries to obtaitruderHasContract but tries to preventHonestPartyHasContract
from occurring).

More concretely, let us consider the proto¢dl, depicted in Figure 1. We want to know if the intruder has a
strategy to get to a state where he can derive atpivut not atome; (no matter what the principal8; andIl,
do). Such a strategy of the intruder has to deal with bothsitats principall, may make in the first step because
the intruder cannot control which edge is takenIby It turns out that regardless of which message is sent by
principalll, in its first step, the following simple strategy allows th&umler to achieve his goal: The intruder can
send{b}; to principalll; in the second step di; and in the last step dil;, the intruder sendsto principalll;.

This guarantees that in the last steplhf, the left-most edge is never taken, and thysis not returned, but at
least one of the other two edges can be taken, which in anyyigsls c,. Formally, such strategies are defined
as trees. In our example, the strategy tree corresponditig tetrategy informally explained above is depicted on
the right-hand side of Figure 1.

Definition 1 For ¢ € Gp a g-strategy treel, = (V, E,r, v, () is an unordered tree where every vertex V'
is mapped to a staté, (v) € Gp and every edgév,v’) € E is mapped to a label of a transition such that the
following conditions are satisfied for all, v’ € V, principals j, messages:, and stateg/, ¢”:

1. ly(r)=gq.

2. ly(v) teler)) ly(v') € Gp forall (v,v') € E. (Edges correspond to transitions.)

3. Ifby(v) = ¢ and¢ R q" € Gp, then there exists” € V such that(v,v"”) € E, ly(v") = ¢’, and
lp(v,v") = j. (All e-transitions originating ing’ must be present iff,.)

4. If by (v) = ¢ andq il q" € Gp, then there exists” € V such that(v,v”) € E, ¢y (v") = ¢”, and
lg(v,v") = j,m,sc. (The same as 3. for secure channel transitions.)

5. If (v,v") € E, Lg(v,v") = j,m, I, and there existg” # (v (v') with £y (v) ] q" € Gp, then there exists
" with (v,0") € E, lg(v,v") = j,m, I and?y (v") = ¢”. (The intruder cannot choose which principal
rule is taken byj if several are possible given the input provided by the ithén)

A strategy propertyi.e., the goal the intruder tries to achieve, is a tup@,, C?), ..., (C;, C])) whereC;, C! C
AUKUWN. A stateq € Gp satisfies((Cy,C1), ..., (C, C))) if there existg-strategy treeq, ..., 7; such that
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every7; satisfies(C;, C!) whereZ; satisfies(C;, C!) if for all leavesv of 7; all elements fronC; can be derived
by the intruder and all elements fro@f cannot, i.e.C; C d(Z) andC! N d(Z) = () whereZ denotes the intruder
knowledge in statéy (v).

The decision problens-STRATEGY (with general rather than positional intruder strategg3ks, given a pro-
tocol P and a strategy property(Cy,C"), ..., (C;,C))), whether there exists a stajec Gp that satisfies the
property. In this case we writg?, (C1,CY), ..., (C},C])) € G-STRATEGY.

Note that in ay-strategy tre€, there may exist vertices # v with ¢y (v") = £/(v) such that the subtre&g | v
and7,|v" of 7, rooted atv andv’, respectively, are not isomorphic. In other words, theuitér's strategy may
depend on the path that leads to a state (i.e., the histahgrrthan on the state alone, as is the case for positional
strategies. As mentioned, the strategies defined in [11paséional. LetP-STRATEGY be defined analogously
to G-STRATEGY with positional intruder strategies (see [11] for the psedilefinition). Using that our strategy
properties only constrain the leaves of strategy treedpllmving is not hard to show.

Proposition 2 (P, (C1,C),...,(C;, C])) € G-STRATEGY iff (P, (C1,CY),..., (C},C])) € P-STRATEGY.
In [11] it was shown thab-STRATEGY is decidable. As an immediate corollary of Proposition 2 \w&am:

Corollary 3 G-STRATEGY is decidable.

4 Constraint Solving

In this section, we introduce constraint systems and shetevell-known fact that procedures for solving these
systems exist (see, e.g., [13] for more details). In Sediome will then use such a procedure as a black-box for
our constraint-based algorithm.

A constraintis of the formt : T wheret is a plain term and’ is a finite non-empty set of plain terms. Since
we will take care of secure channel terms when turning thebsjimbranching structure into a constraint system,
we can disallow secure channel terms in constraints.

A constraint systenC is a tuple consisting of a sequenge= t; : Ti,...,t, : T, of constraints and a
substitutionr such that the domain af is disjoint from the set of variables occurring érand, for allz in the
domain ofr, 7(x) only contains variables also occurringinWe callC simpleif ¢; is a variable for all. We calll
C valid if it satisfies the origination and monotonicity propertydesined in [13]. These are standard restrictions
on constraint systems imposed by constraint solving pruoesd Valid constraint systems are all that is needed in
our setting.

A ground substitutionr where the domain of is the set of variables ity : T1,...,t, : T, is asolutionof C
(o C)if t;o € d(T;o) for everyi. We callo o 7 (the composition o& and+ read from right to left) &omplete
solution ofC (o o 7 F. C) with 7 as above.

A simple constraint systei@ obviously has a solution. One such solution, which we debpte-, replaces all
variables inC by new intruder atoms € A; where different variables are replaced by different atovis. call
oc thesolution associated wit@ ando ¢ o 7 thecomplete solution associated with

Given a constraint systei@, a finite set{C,,...,C,,} of simple constraint systems is calledsaund and
complete solution set f& if {v | v . C} = {v | Ji s.t.v I-. C;}. Note thatC does not have a solution iff = 0.

The following fact is well-known (see, e.qg., [7, 13, 4] anterences therein):

Fact 1 There exists a procedure which given a valid constraintesysl outputs a sound and complete solution
set forC.

While different constraint solving procedures (and imptertations thereof) may compute different sound and
complete solution sets, our constraint-based algorittirodinced in Section 5 works with any of these procedures.
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It is only important that the set computed is sound and cotapl@s already mentioned in the introduction, to
decide reachability properties it suffices if the procedumty returns one simple constraint system in the sound
and complete set. However, the constraint solving proesdproposed in the literature are typically capable of
returning a sound and complete solution set.

In what follows, we fix one such procedure and call ittlastraint solver More precisely, w.l.0.g., we consider
the constraint solver to be a non-deterministic algorithiiclv non-deterministically chooses a simple constraint
system from the sound and complete solution set and retbresystem as output. We require that for every
simple constraint system in the sound and complete solsgtrthere is a run of the constraint solver that returns
this system. If the sound and complete set is empty, the i@nissolver always returnso.

We note that while standard constraint solving proceduaegeal with the cryptographic primitives considered
here, these procedures might need to be extended when dddhmgy cryptographic primitives. For example, this
is the case for private contract signatures, which are ussdrme contract signing protocols [9] and were taken
into account in [11]. However, constraint solving procexucan easily be extended to deal with these signatures.
We have not considered them here for brevity of presentatimhsince the main focus of the present work is not
to extend constraint solving procedures but to show howetlpescedures can be employed to deal with game-
theoretic security properties.

5 The Constraint-Based Algorithm

We now present our constraint-based algorithm, calelde Strategy, for decidingG-STRATEGY. As mentioned,
it uses a standard constraint solver (Fact 1) as a subpnecedu

In what follows, we present the main steps performe&blyveStrategy, with more details given in subsequent
sections. The input t8olveStrategy is a protocolP and a strategy propertyCi,C1), ..., (C;, C))).

1. Guess a symbolic branching struct&g.e., guess a symbolic pattf from the initial state ofP to a sym-
bolic stateg® and a symbolig*-strategy tre€;" . for every(C;, C7) starting from this state (see Section 5.1
for more details).

2. Derive fromB = 7°, 7 ., ..., 7. and the strategy propertfCy,C1), ..., (C;,CJ)) the induced and
valid (!) constraint syster® = Cg (see Section 5.2 for the definition). Then, run the condtsaiver onC.
If it returns no, then halt. Otherwise, l&’ be the simple constraint system returned by the solver.gRec

thatC’ belongs to the sound and complete solution set and is chasedeterministically by the solver.)

3. Letv be the complete solution associated with Check whether when applied td yields a valid path
in Gp from the initial state ofP to a statey andg-strategy treeq; , satisfying(C;, C;) for everyi. If so,
outputyes andB with v applied, and otherwise retuno (see Section 5.3 for more details). In cgss is
returned B with v applied yields a concrete solution of the problem instaiieeéC,C1), ..., (C;, C))).

We emphasize that, for simplicity of presentati®uolveStrategy is formulated as a non-deterministic algorithm.
Hence, the overall decision &olveStrategy is yes if there exists at least one computation path where is
returned. Otherwise, the overall decisioms(i.e., (P, (C1,C1),...,(C,C])) ¢ G-STRATEGY).

In the following three sections, the three step$SofveStrategy are further explained. Our main result is the
following theorem:

Theorem 4 SolveStrategy is a decision procedure fas-STRATEGY.

While we know that the problems-STRATEGY is decidable from Corollary 3, the main point of Theorem 4 is
that SolveStrategy uses standard constraint solving procedures as a blackabadxas such, is a good basis for
extending existing practical constraint-based algori#tHor reachability properties to deal with game-theoretic
security properties.
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Figure 2: Symbolic strategy treg’, for the protocolP,, whereZ; = Zy U {(a,b)} andZy = Z, U {(b,b) }. For
brevity of notation, in the first component of the symboliates we write, for instance; instead ofll | f;.

The proof of Theorem 4 is quite different from the cut-andtpargument in [11] where, similar to [14], it was
shown that an attack can be turned into a “small” attack. Mereather make use of the fact that procedures for
computing sound and complete solution sets exist, whichemalar proof (and also our algorithm) more modular
and easier to extend.

We note that if we used positional strategies as in [$bJyeStrategy would have to be extended to guess the
symbolic states of symbolic branching structures thatadeafter the substitution is applied. To avoid this, we
employ the strategies with history as explained above.

5.1 Guessthe Symbolic Branching Structure

To describe the first step &olveStrategy in more detail, we first define symbolic branching structuwesich
consist of symbolic paths and symbolic strategy trees. Tmelesymbolic paths and strategy trees, we need to
introduce symbolic states, transitions, and trees (s€ef¢t@ull details). These notions will be illustrated by the
example in Figure 1

A symbolic state® = ((I14,...,11,),Z,S) is defined just as a concrete state (see Section 2.1) exephéh
substitution is omitted and the intruder knowledgand the secure channglmay contain terms (with variables)
instead of only messages. T@nbolic initial statef a protocolP = ((I1y, ..., 1I1,,),Zg) is (114, . .., I1,,), Zo, D).

A symbolic transitionanalogously to concrete transitions, is a transition betwsymbolic states and is of the
form

(I, ...,11,),Z,S) - ((IT},...,11.), 7, S") 2)

with ¢ an appropriate label where again we distinguish betweerbsleintruder, secure channel, andran-
sitions. Informally speaking, these transitions are of fthiowing form (see [10] for details and the example
below): Forsymbolic intruder transitionthe labell is of the formi, f, I where nows is not the message delivered
by the intruder, as was the case for concrete intruder transj but a direct successor of the repof II;. The
intuition is that the principal ruld? = S the edge(r;, f) is labeled with inII; is applied. The symbolic state
((ILy,...,1I,),Z,S) is updated accordingly tq(II}, ... ,II',),Z’,S’) (see the example below). We céll = S
the principal rule associated with the symbolic transitiorsimilarly, the label of asymbolic secure channel
transition is of the formi, f, R’,sc where f is interpreted as before an@ is the term read from the secure
channel. IfR = S is the principal rule associated with the transition, ti$éis obtained by removing’ from S

117



and addingS if S is a secure channel term. When constructing the constrgsiérs, we will guarantee thdt’
unifies with R. Finally, the label osymbolics-transitionsis of the formi, f with the obvious meaning.

A symbolicg®-tree 72 = (V,E,r,ty,lE) is an unordered finite tree where the vertices are labeleld wit
symbolic states, the root is labeled wijh, and the edges are labeled with labels of symbolic tramsitguch
that an edgév, v') of the tree, more precisely, the labelsiadindy’ and the label ofv, v") correspond to symbolic
transitions. We call the principal rule associated withhsagymbolic transitiothe principal rule associated with
(v,v"). Note that the symbolic transitions of different edges mawp$sociated with the same principal rule. Now,
since the same rule may occur at different positions in the, tits variables may later be substituted differently.
We therefore need a mechanism to consistently rename lesiab

Figure 2 depicts a symbolig-tree 7., for P.,, (Figure 1) whereyj = ({111,112}, Zy, 0) is the symbolic initial
state of P.,. For brevity of notation, just as in the case of the strategg tn Figure 1, the first component of
the symbolic states in this tree does not contain the prateiput only their corresponding roots. Note that the
principal rules ofil; are applied at different places in this tree. Therefordeiht copies of the variablasandy
need to be introduced, which we do by indexing the variabjethé name of the vertex where the rule is applied.
This yields the variables,,., xx., yn,, yns IN 7.,.

A symbolic pathr® of a protocolP is a symbolicg;-tree where every vertex has at most one successogzand
is the symbolic initial state oP.

A symbolicg®-strategy tree7: = (V, E,r, ¢y, () is a symbolicg®-tree which satisfies additional conditions.
Among others, we require that in one node of this tree thedetr may only send a message to one prindipal
we show that this is w.l.o.g. Also, alltransitions applicable in one node are present. Symbiuhteg)y trees are
defined in such a way that for every symbolic statehe number of symbolig®-strategy trees is finite and all
such trees can effectively be generated. The tree depittéidire 2 is a symbolig;-strategy tree.

For a protocolP and strategy propert{(C1,C"), ..., (C;, Cj)), asymbolic branching structurs of the form
B® = n°,77,...,7° wherer® is a symbolic path of” and theZ;® are symbolicg’-strategy trees wherg’ is
the symbolic state the leaf af is labeled with. Given a protocol and a strategy properigtetare only a finite
number of symbolic branching structures and these strestoan be generated by an algorithm. In particular,
there is a non-deterministic algorithm which can guess gn&bslic branching structurB® among all possible
such structures.

For the strategy propert(C..,C!.,)) = (({c2},{c1})), we can considef?’, in Figure 2 also as a symbolic
branching structur8;,, of P., where the pathr® is empty and = 1.

5.2 Construct and Solve the Induced Constraint System

We now show how the constraint systé&n= Cg is derived from the symbolic branching structBe= 7°, 7°,

..., I (guessed in the first step 8blveStrategy) and the given strategy propertyC:, C1), ..., (Ci, C})). This
constraint system can be shown to be valid, and hence, bylFaconstraint solver can be used to solve it. In this
extended abstract, we only illustrate h@ns derived fromB and the strategy property by the example in Figure 1
(see [10] for full definitions).

Before turning to the example, we informally explain how tcede in a constraint system communication
involving the secure channel. (Another, somewhat lessdstig issue is how to deal with secure channel terms
generated by the intruder. This is explained in our techmégaort [10].) The basic idea is that we write messages
intended for the secure channel into the intruder’s knogdednd let the intruder deliver these messages. The
problem is that while every message in the secure channardgibe read once, the intruder could try to deliver
the same message several times. To prevent this, every ssgdage when written into the intruder’'s knowledge
is encrypted with aaewkey not known to the intruder and this key is also (and onlydus the principal rule
which according to the symbolic branching structure is sgpgd to read the message. This guarantees that the
intruder cannot abusively deliver the same message sdires to unintended recipients or make use of these
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encrypted messages in other contexts. Here we use thestiestron principals introduced in Section 2, namely
that decryption keys can be derived by a principal. Withbig tondition, a principal rule of the forqy}: = =
would be allowed even if the principal does not know (i.enreat derive)r. Such a rule would equip a principal
with the unrealistic ability to derive any secret key fromighertext. Hence, the intruder, using this principal as
an oracle, could achieve this as well and could potentidiiaio the new keys used to encrypt messages intended
for the secure channel.

We now turn to our example and explain how the (valid) coimstraystem, calledC.,, derived fromB?,
and((Ces, Cl,)) looks like and how it is derived frorB;,, whereB;,, as explained above, is simply the sym-
bolic strategy tre€’, (Figure 2):C., is the following sequence of constraints with an empty stigin where
ki1, ko, ks € A are new atoms and we write, .. . , t,, instead of{¢y,...,¢,}.

1. {<xh37b>}zl : Il’{<avb>}]§1 6. zp, - I27{<b7 b>}i’2?wh7?yh8
2. {<xh7’ b>}22 0 I, {<b7 b>};¢z 7. Yng - 1, {<b’ b>}2:2’ Lhrs Yhg
3. {yh4}z o I, {<a7b>}217xh3 8. C2 Il>{<a’b>}21vajllsay1L4ch
4. {yhs}z : 1—2’{<b7 b>}22axh7 9. Co @ IQ?{<bv b>}223xh7ayh8762
5. yh4 . Il,{<a,b>}zl,l’h3,yh4 ].0 Co . IQ,{<b, b>}22,xh7,yh8,02

This constraint system is obtained frd, as follows: We traverse the verticesBf, in a top-down breadth first
manner. Every edge induces a constraint except those eddels @orrespond to symbolictransitions. This is
how the constraints 1.—7. come about where 1., 3., and 5.esinéed from the left branch d8;, and 2., 4., 6.,
and 7. from the right branch. Note that in 1. and 2. we encodectimmunication with the secure channel by
encrypting the terms with new keys andk,. The terms{(a, b) };, and{(b,b) };, are not removed anymore from
the right-hand side of the constraints, i.e., from the itdnknowledge, in order fd€,.,. to satisfy the monaotonicity
property of constraint systems (recall that monotonicityyécessary for the validity of constraint systems). As
explained above, since we usewkeys and due to the restriction on principals, this does aose problems. The
constraints 8.—10. are used to ensure ¢haan be derived at every leaf @f,, a requirement that comes from our
example security propert(Ce,, C.,)) whereC., = {c2}. In vertexhg of 7.2, two symbolic intruder transitions
leave the vertex, which, as explained above, means thastueiated principal rules should both be able to read
the message delivered by the intruder.

Let C; andC; be constraint systems with empty sequences of constraidtshe substitution, = {zp, —
a, Thy — b, yp, — a,yps — b} andvy = {xp, — a,zp, — b,yn, — b,yn, — b}, respectively. It is easy to see
that{C,,C,} is a sound and complete solution set@y,. SinceC., is valid, such a set can be computed by the
constraint solver (Fact 1).

5.3 Check the Induced Substitutions

LetB® = n°,77,...,7,° be the symbolic branching structure obtained in the firgt sfe&SolveStrategy and let
C’ be the simple constraint system returned by the constraim¢iswhen applied t&€ = Cgs in the second step
of SolveStrategy. Let v be the complete solution associated with(see Section 5.2). We emphasize that for our
algorithm to work, it is important that replaces the variables @ by newintruder atoms from4; not occurring
in B®.

Basically, we want to check that when applyingo B*, which yieldsB*v = ©°v, T°v, ..., 7,°v, we obtain a
solution of the problem instange, (C1, C1), ..., (C;, C})). Hence, we need to check whetherfy corresponds
to a path inGp from the initial state ofjp to a state; € Gp and ii) Z,;°v corresponds to gstrategy tree fo(C;, C!)
for everyi. However, sincer is a complete solution df, some of these conditions are satisfied by construction. In
particular,74v is guaranteed to be a pathdi» starting from the initial state. Also, the conditions 1.e8strategy
trees (Definition 1) do not need to be checked and we knowZhatsatisfies C;, (). Hence SolveStrategy only
needs to make sure that 4. and 5. of Definition 1 are satisfieeviery 7,;°v and that7*v fulfills (0, C!). Using
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that the derivation problem is decidable in polynomial tiig(given a message: and a finite set of messagés
decide whethem € d(Z)), all of these remaining conditions can easily be checked [$0] for details).

In our example, the induced substitution 1©y is v; asC; does not contain any variables. It can easily be
verified that withC' = C, and the induced substitutian, the above checks are all successful. However, they
fail for C' = C; andv, because irhy the rulea = ¢; could also be applied but it is not present8f,. This
violates Definition 1, 5. In facB;,~; would not yield a solution of the instan¢€.,, ((Ces, C.,))). This example
illustrates that inSolveStrategy one cannot dispense with the last step, namely checkinguttsititions, and
that one has to try the different constraint systems in thi@d@nd complete solution set fGr
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Logical Omniscience in the Semantics of BAN Logic
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Abstract

BAN logic is an epistemic logic for verification of cryptograic protocols. A number of semantics have
been proposed for BAN logic, but none of them capture thenoieel meaning of the epistemic modality in
a satisfactory way. This is due to the so-calledical omniscience problemAgents are "ideal reasoners”
in existing semantics, while agents in BAN logic have onlyited cryptographic reasoning powers. Logical
omniscience is unavoidable in Kripke semantics, the stahs@mantical framework in epistemic logic. Our
proposal is to generalize the epistemic accessibilitytimraf Kripke semantics so that it changes not only the
current execution point, but also the currently predicatedsage. When instantiated on message passing sys-
tems, the semantics validates BAN logic. It makes agentsspective ("self-aware”) of their own knowledge
and of their own actions of sending, receiving and extractin

Keywords: BAN logic; Epistemic logic; Kripke semantics;cbeity protocols; Logical omniscience problem

1 Introduction

BAN logic, proposed by Burrows, Abadi and Needham in the é&gties, is an epistemic logic for verification
of cryptographic protocols ([4]). From a practical pointvwaéw, BAN logic has turned out to be quite successful:
It produces short, informative derivations that can reweddtle protocol errors. However, despite a number of
semantics proposed for BAN and BAN-like logic (cf. [1, 5, &,11, 12, 14]), the semantics of the epistemic
(knowledge) modality in BAN logic remains problematic. $ks a serious problem, since it makes it unclear what
a proof in BAN logic establishes, and it makes an analysisABogic in semantical terms, for instance using
model checking, of limited value.

The basic problem when interpreting BAN’s knowledge maglasi the well-knownlogical omniscience prob-
lem As an example, under BAN's idealized treatment of cryppdy it is reasonable to assume the entailment
M fresh = {M}, fresh However, the entailmerda knows M fresh= a knows{A/}, freshshould not be val-
idated since in BAN logic agent knows M is inside {M }; only whena knows k. From the point of view
of modal logic, the example shows the failure of thie of normalitythat allows inference of an entailment
a knowsF; = a knowsF, from the entailment; = F». As another example, in the context of the NSSK proto-
col it is reasonable to assume the entailmesaidn, b, k, {k, a}x, = k, good forb - s since the former message
is only ever uttered by when it so happens tha is b:s server key (and therefore is good for communication
betweerh ands). Yet, the entailment

a knowss saidn, b, k, {k,a}y, = a knowsk;, good forb - s 1)

*Work supported by the Swedish Research Council grants 623-2597 and 622-2003-6108
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should not be validated, since in BAN logic agertan deduce what kefk, a}, is locked with only ifa already
knowsk;. In fact, from (1) together with BAN’s message meaning rule,would get the entailment

a sees{froms: n,b, k,{k,a}, }r,, a knowsk, good fora - s |= a knowsk; good forb - ¢

which diverges even more strongly from the intended meaimmAN logic.

Logical omniscience (the rule of normality) is intimatelgd to the use of Kripke semantics. In this type of
semantics the modality knowss interpreted through an epistemic accessibility retatig connecting execution
points that are equivalent up &s restricted power of observation: At execution point KnowsF just in case
F holds at every accessible execution paihts ~, s'.

Since all Kripke semantics validate the rule of normalityfollows that we need to look to non-Kripkean

semantics to avoid validities that are unfaithful to thentted meaning in BAN logic. We suggest a generalization
of Kripke semantics that lets the jump from the current ekeaupoint to an epistemically accessible execution
point affect the predicated messages. The intuition is Bews. Say an agent views a cipher texf\/ at the
current execution poird. As in Kripke semantics we assume thanay be unsure about what execution point she
is at, because and some other execution pokitshare the same history updt observation powers. In addition,
a may be unsure about what the cipher text contains, becabss observed the same properties\bfat s as
she would have observed of some corresponding cipheéxt s’. For instance, ifi extracts)M from the third
message received ats, thena extracts)’ from the third message received ats’; if a cannot decrypf\/ at s,
thena cannot decrypfi/’ ats’, and so on.

To reflect the correspondence between messages at diffiexeatition points we relativize accessibility to
message renamings. We write-!, s’ when renaming carries each messag@é at s to a corresponding message
r(M) ats’. With the relativized accessibility relation, a generaiian of Kripke semantics is immediate:

s = aknowsF (M) & Vs :Vr:s~h s =& = F(r(M)).

For instance, agent knows thatM is fresh, if all corresponding messages at epistemicalbgsgible execution
points are fresh.

This semantics avoids logical omniscience, since the pagelil messag®/ might change under as we move
from s to an epistemically accessible poisit There is, however, an interesting weakening of normalityciv
continues to hold, namely the closure of knowledge undeditigls that only mention keys used by the agent.

F\, = F, = auses Keyd, F,), a knowsF; = a knowsE

whereKeyg Fy, F») contains all message terms that are applied as keys iand F,. To illustrate, from the
entailmentz fresh |= {z}, fresh we can infer the entailmert useg, a knowsr fresh = a knows{x}, fresh
By universal substitution of message terms for variablescan then conclude the entailment

a usedsk, a knowsM fresh = a knows{M } i fresh 2

for arbitrary (complex) message terfisand M, even when keys other thdk are applied in\/.

After instantiating the semantics on message passingsgstee show that agents are introspective of their own
knowledge, i.e. the modal logig5axioms hold, as is the custom in computer science applitatid epistemic
logic. Furthermore we show that agents are introspectivbaif own actions of sending, receiving and extract-
ing (decryption and un-pairing of received messages). fgiance, we show introspection of received messages:
areceived M= a knows a received MWhile this is immediate from the truth condition for knowtg, it is rather
significant. Firstly, it is the central point when validagiBAN logic. The unsoundness of BAN logic in related
Kripke semantics, such as [1, 12, 14], can ultimately be li@ck to the fact that agents are not introspective (in
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the above sense) of their received messagés soon as a Kripke semantics hides part of an agents |atel tst

the agent herself, as these semantics do, we lose intraspetreceived messages. Secondly, introspection of re-
ceived messages in combination with the above weakeningrofality has an interesting implication: knowledge
of cryptographic structure may at times transcend the dh#og power of the keys used.

We complete the model construction by interpreting the &d®\N predicates on message passing systems
and show soundness of BAN logic. The interpretation we psepovolves a fixed point construction to identify
keys used with keys known, a construction which may be ofpeddent interest. Finally the paper is closed by
a discussion of related and future work, in particular thespects for using the weakened rule of normality to
eliminate BAN'’s idealization step.

Our semantical investigations so far cover only the symimkay part of BAN logic. We expect no difficulties
in extending the semantics to asymmetric cryptography.

2 BAN Logic

Language Assume a set of agenisb, ..., a set oimessage atonis n, ..., a set oimessage variables, y, z, ....,
and a set oaitomic predicate®. The set oimessage termandstatementsire defined by:

Statement$” ::= p(M) | a knowsF
Message term8/, M’ ::= F |a |k |z | M,M' | {M})y | froma: M

A closed message term, aressageis a message term with no variables. A message term is optrs ihot
closed. Though the BAN language lacks negation, we provewdtrérheorem 9.2) for a language extended with
negation ) of statements.

Intuitively, atomic statemeni(M) expresses the proposition that messafsatisfies property, the operator
-, - represents pairing of messages, the opergforrepresents encryption and the operdtom- : - represents
sender field annotation. Message terms include sender fielotations and statements, because as BAN logic
is usually applied, it proves properties of so callidealizedprotocols, protocols where messages may include a
sender field and messages may contain statements exprpEjuwgitions.

The set of atomic predicates includes, at least, thedtamic BAN predicatesa seesa said fresh good fora-b
as well as the special atomic predicateises Their intended informal meaning is as follows. The pretdiGa
seeds true of a message if can extract the message from somethirmgceived. Analogousha saidis true of a
message ifi can extract the message from somethirgent. A messaggeshif it did not circulate until recently.
A message satisfiggod fora - b if every circulated message encrypted with this messageyawés said by or
b. Finally, a usesa message if uses that message as a key for decryption and encryption.

Proof rules The rules of BAN logic are summarized in Table 1. We Ks@wsto represent an arbitrary sequence
of 0 or more epistemic modalities. Table 1 leaves some dondiimplicit: We have omitted symmetric variations
and closure under cut and weakening. Note that certain asigsme that agents do not misuse idealizations. For
instance, ruldRl, themessage meaning rylassumes that sender fields inside cipher texts are relialde, rule

R7, thenonce verification ruleassumes that agents only say statements known to be triesfrash.

While the original BAN paper ([4]) reads the epistemic mdglahs "agenta believes that”, BAN logic is
intuitively consistent with a knowledge interpretations ia [8, 10], we adopt a knowledge interpretation and add
the axiomT. The atomic BAN predicatgurisdiction thereby becomes superfluous, and is therefore removed.
For a more detailed discussion we refer the reader to [8]icHdhat we generalize the customary modal logic
axiom T (a knows F- F) to arbitrary iterations of epistemic modalities, by adgknowsto antecedent and
consequent.

1Only [1] was intended to validate BAN.
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R1. asees{fromb : M},,, a knowsM’good fora - b+ a knowsb said M

R2. aknowsM freshi a knowsM, M’ fresh

R3. aknows)M fresh aknows)M’ good fora - b - a knows{ M}, fresh

R4. aseesM, M’ - aseesM

R5. asees{M});, aknowsM’good fora - bt asees\

R6. aknows b said//, M’ + a knows b said//

R7. aknowsMy, ..., F, ..., M, fresh aknowsb said\f1, ..., F, ..., M,,, - a knows b know$’
T. Knowsa knowd' - KnowsF'

Table 1: BAN proof rules

3 Semanticsfor the Non-Epistemic L anguage Fragment

In computer science, epistemic logics are customarilyrpméted onmulti-agent systemf$], pairsS = (S5,]),
whereS is a non-empty set of execution points drid a local state projection assigning a local stateto each
agenta and execution poind. Intuitively, the local state contains all the data curieatcessible to that agent. For
instance, when modeling a communication protocol, thel lsizde of an agent might be derived from the initial
condition plus the sequence of send and receive actionsashpenformed so far. Multi-agent modebn S is a
triple M = (S, |, I'), wherel is an interpretation of atomic predicates. That is, to easini predicate and each
execution points € S, the interpretatiorl assigns the sdt(p, s) of messages (closed message terms) that satisfy
pats.

Closed statements are true w.r.t. an execution pointa modelM. The truth condition for atomic closed
statements and negation (of closed statements) are agedped=y p(M) < M € I(p,s) ands Ey ~F <
s ¥y F. The truth condition for epistemic closed statements ttde$ection 4. Open statements are true w.r.t. an
assignment” of messages to message variables, and an executionspniatmodelM. Assignments are lifted to
arbitrary message terms in the usual way; wirit€ly, for the value ofA/ underV. The truth condition for open
statements isV, s =y F(M) < s =v F(|1M|v).

If A is a set of statements, we writés =y Aif Vs =y F, forall F € A. If Cis a class of models:
A ¢ F, if and only if, for all modelsM in C, for all execution points in M and for all assignment¥’, if
V,s Em AthenV,s =y F.

4 Semanticsfor Knowledge

We interpret the epistemic modality through a generalizaskssibility relation~, that relates not only execution
points, but also messages at one execution point to mesatgesther. The intuition is that a cipher tet at
the current execution pointmay correspond, fou, to a different cipher texfi/’ at an epistemically accessible
execution points’. That is,M at s could, for alla knows, beM’ ats’. Letr be arenamingof messages, i.e. a
function in the set of messages, defined for all messagesn#ips every messagesto a corresponding message
ats’, we say that is acounterpart mappindpetweens ands’ for agenta, and writes ~7, s’. Given this ternary
accessibility relation-,, Kripke semantics can be generalized in an obvious way:

s v aknows F(M)s Vs’ € S :Vr i s ~0 s’ = s’ =y F(r(M)) .

Here,F'(M) is any statement in the message térim We do not assume that messaddeas somehow accessible to
agenta in s, such as once said, or seen,dyAgents may well know things about messages that are nossibte
to them. In fact, this is an essential part of BAN logic (asn@gsed by, for instance, axidr).

Counterpart mappings must be transparent to the set ohblaikeys. A renaming is transparentto a sefll
of messages, in symbals > r, if  respects all cryptographic structure accessible whermgusias keysII (used
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CLM ell=r({M}y) = {r(M)} ) C2.r(M,M'") =r(M),r(M")
C3.risinjective C4.r is surjective

C5.7(F(M)) = F(r(M)) C6.r(froma: M) = from r(a) : r(M)
C7.r(k) = k, k is agent name or message atom

Table 2: Requirements faf > r

as keys) cannot distinguish a sequeide, M, ... from (M), (M), .... Formally, we stipulate thdf o> r, if

and only if, each condition in Table 2 above is satisfied. @@ C1 says that encryption structure is plain, or
clear, when the appropriate key is available, condition &% ghat pairing structure is always plain, conditions
C3 and C4 say that distinct messages appear distinct, mndb says that atomic predicates and propositional
operators are plain text, condition C6 says that sender stelatture is plain, and condition C7, finally, says that
agent names and message atoms are plain text.

Lemma4.l
1. IT >« where. is the identity on messages
2. 07, r(I)>r" = (ror)
B H>r=rI)>r!
4. MIr, IDIN =T >r

Proof. (1) and (4) are immediate. We prove (2) here. The proof ofg8jmilar. AssumeéIr>r andr(IT)>7'. Only
requirement C1 of Table 2 is non-trivial. Assumé < II. By the assumptions;({M } ) = {r(M)},pv) and
r(M’) € r(I). Thus,'({r(M)}, ) = {r'(r(M)) b ruaryy = {(r"or) (M)} grorynarys i€, (o) ({ M }ar) =
r'({r(M)}rarry) = {r' (r (M)} eaaryy = (" 0 ) (M) }rory () - O

Counterpart mappings must, furthermore, respect the muloeal state of the agent; we assume a renaming can
be lifted pointwise to a permutation on local states. #tw be a counterpart mapping betweeand some other
points’, we require that transforms the local state of the agent @tto her local state af'.

The idea, then, is to relate the statemnds’ under the renaming for agenta, in symbolss ~" s’, just in case

a

r transforms the local state afat s into the local state of ats’ andr respects the keys used by the agent at
s~ s < r(sla) = s'|aand(ausess) > r. (3)

Each multi-agent model thus determines a unique ternastespic accessibility relatior,. In section 9 below
we address the apparent asymmetry of (3) and show that ureldetinitions otiseswhich we consider, whenever
s~ ¢ thens' ~7 ' s.

5 Crypto Normality

The semantics avoids logical omniscience (the rule of nbityhaTo see this, letS = {s}, I(p,s) = {{M }m},
I(ausess) = () ands|a = (. Then there is a renamingsuch that-({M} /) # {M}yr ands ~% s. Thus Fy
a knows P{M} ). Yet, =m p({M }ar).

There is, however, an interesting weakening of normalityctvitontinues to hold. To formulate this, let
Keyg M) be the set of message terms applied as key&/isuch thatkeyg{M},;) = {M'} U Key§M) U
KeygM'), KeysM, M') = KeySM) U KeysM'), Keygfroma: M) = Keyg M), KeysP(M)) = KeysM),
Keygk) = 0, if k is message atom or agent name, &sygx) = (), for message variables. For example,
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Keys{w, {z,k},}.) = {y, z}. LetKeysIl) = UprenKeyg M), write a used for the set{a uses M| M € II},
and writea knowsA for the set{a knowsF' | F' € A}.

Lemma5.1 |Keys(M)|y >r = r(|M|y) = |M|qov

Proof. By induction over the structure dff. The base step, wherd is a variable, an agent name or message
atom, is immediate from requirement C7 of Table 2. For theigtidn step, assume that the property holds for
messaged//; and My, i.e. |KeySM)|y > r = |[Mi|ov = r(|Mi]y) and |KeySMo)|y > r = | Malroy =
r(|Mzl|y ). AssumeKeys{ M } s, )|v > 7. Then,|KeysM; )|y U|Keys(Ma)|y U{|Mz|y} > r. By the induction
assumption and Lemma 4.1/4/, |,.v = r(|M1|y) and|Mz|. = r(|Ma|y). Then, by requirement C1 of Table
2, r({Mitalv) = r({|Milv}an)y) = {r(IMilv)beanly) = {Milrov ).y = KMitas lrov. Showing
that pairing and idealization constructions preserve thpgrty is analogous. a

From Lemma 5.1 we get the weak normality rule.
Theorem 5.2 (Crypto Normality) If A =y F then a uses Keya, F'), a knowsA =y a knowsF'.

Crypto normality says that an agents knowledge is closeérmodical validities in which all the keys applied are
used by the agent. By itself, crypto normality may appearlgvestricted, since all keys usedixor F' must also
be used by.. Crypto normality becomes more powerful, however, whenlioed with the rule of substitution.

Theorem 5.3 (Rule of Substitution) Leto be any substition of (possibly open) message terms for e ssai-
ables. IfA =y F theno(A) =y o(F).

In conjunction, the two rules allow interesting inferent@®e made, such as (2) in section 1.

6 Message Passing Systems

We instantiate models in message passing systems (cf. a6Jp the BAN literature. Since the definitions are
standard and well-known, we will only briefly hint at them. dnmessage passing system execution proceeds
in rounds. During the first round, initial shared and privatessessions are established. From then on, at each
round, every agent either sends a message, receives a mesgmgforms some unspecified internal action. By a
message passing modeé mean a multi-agent systelh = (S, |, I) based on a message passing systeriive
require that the local statga of an agent: consists of a first round of initializations followed bjs local history

of send and receive actions. As an immediate consequenestsaknow which messages they send and receive.
Assume predicatea receivedanda sent with I(a received, sfF {M | a has received/ ats}, andl(a sent, s)
interpreted analogously. The following introspectiompiple is easily seen to be valid:

Proposition 6.1 (Receive and send introspection) For message passing models:

1. areceivedV! = a knows a received/

2. asentM = aknows a send/

To see this, assume ~! . Then,r(sla) = §'|a, i.e. if a receivedM at s thena receivedr(M) at s’, and
correspondingly for messages sentbyVhile easily proved, Proposition 6.1 is nonetheless ofesoamsequence.
To begin with, the unsoundness of BAN logic in related Krigkenantics, such as [1, 12, 14], ultimately ties back
to the failure of Proposition 6.1. When a Kripke semantiaiehipart of an agents local state from the agent,
as these semantics do, we lose receiving and sending iatti@p: Saya received a cipher text/ ats. Then
there might be some point which is indistinguishable for from the current poins, but wherea received a
different cipher text\/’, not M. Moreover, Proposition 6.1 in combination with crypto natity (Theorem 5.2)
has some interesting, and perhaps surprising, implicafionknowledge of cryptographic structure. We explore

these implications in the section 7.
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7 Knowledge of the Unseen

Prima facie it might be thought that an agents knowledge yptographic structure depends solely on what
keys she uses. However, the mere finding of a cipher text attairtgplace might alone indicate something
about its contents. For instance, after the second protsteqpl in the Needham Shroder shared key protocol
(NSSK) between principala andb and with key servegs, agenta knows the contents of the ticket she is to
forward tob, despite the fact that she cannot decrypt it. The semardigsects such intuitions. To illustrate,
assume that message passing mademplements NSSK betweem b ands. We may expect the following:
areceived{n, b, k,x},, k. good fora - s =y xcontainsk,a. (The meaning otontainsshould be clear from
the context, while the precise semanticggobdis not an issue in this example.) By crypto normality (Theore
5.2) and universal substitution (Theorem 58knows a receivedn, b, k, {k, a}, }r,, a knowsk, good fora -
s, ausesk, =v a knows{k, a}y, containsk, a. By receiving introspection (Proposition 6.&)received{n, b, k,
{k,a}, }r.,a knowsk, good fora - s, a usesk, =u a knows{k, a};, containsk, a. Thus, ifk, is a’s server key
anda receives(n, b, k, {k, a}, },, thena knows the contents dfk, a};, even thoughu is not usingk; as a key.
The reason why the semantics supports deductions such abdfie is that the set of counterpart mappings is
limited not only by the current keys, but also by the currextl state. Say renamingis transparent to the keys
used at the current poist in symbols/(a usess) &> r. This does not guarantee, however, thé a counterpart
mapping froms to any execution point’: There might be na’ in the given system such thafs|a) = s'|a. In
this case the agent can rule eutven thoughr is transparent to her current keys.

8 Interpreting BAN’s Atomic Predicates

To complete the semantics for BAN logic, only the atomic jratks remain. This is a subject of subtle and
somewhat bewildering variability (cf. [1, 8, 10]). We do radaim our definitions are canonical. Our goal is to
show that the renaming semantics can be completed to a ngéalriimterpretation which validates BAN.

The way the predicates are explained informally in sectioon2e the interpretation afsesis fixed, the inter-
pretation ofsees said andgoodfollow in a fairly straightforward fashion. Specificallypif seeswe require that
I(a seess) is the smallest sdil that includes:’s initial possessions, the messagelas received at and such
thatIl is closed under decryption with keys uséd{},,, € Il andM’ € I(a usess) = M < II) and un-pairing
(M,M'" € Il = M e Il andM’ € 1I) and sender-field removar¢m b: M € II = M € II). The predicatesaid
is defined analogously for sent messages, exceptthatitial possessions are not included. lB@modwe require
thatM € I(good fora - b, s), if and only if, wheneve{ M’} is a sub term of some messagel it receiveds),
then bothM’ and{M'},; are inI(a said s) or both M’ and{M'},; are inI(b said s), for any agent and any
messagé/’. We leave the interpretation of the predicisshopen, merely requiring that it is independent of the
interpretation ofusesand that it is closed under the sub-term relatidn € I(fresh s) = M, M’ € I(freshs),
M' M € I(freshs), {M}y € I(freshs), and{M'}ys € I(freshs)). One could satisfy these requirements
by defining, similarly to [8], a message as fresh if it is nouaterm of any message said by anyone more than
rounds back, for some fixadl Interpreting the predicateeshis somewhat problematic, but it is peripheral to the
issues addressed in this paper. We refer the reader to [8rljore detailed discussions.

We then turn to the predicateses An immediate observation is that the interpretatiomsfsmust validate the
entailment

aknowsM good fora - b = a usesM . 4)

This requirement is fundamental, since otherwise rR&R3 andR5(Table 1) will not be validated.

A possible approach to the definition obesis to view usesand seesas synonyms, so that a key is used
by an agent just in case it is possessed initially or it isiveck or it can be obtained by decryption and un-
pairing from used messages. This kind of “operational” viswaken, with variations, in most papers on se-
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mantics for BAN like logics. The problem with this definitios that it does not validate (4), unless the class
of message passing systems is restricted in some way. Randesa modeM may satisfy an entailment such
as: a receivesk,a,b =y k,x good fora - b. Then, by crypto normality (Theorem 5.2) and receive irjezs
tion (prop. 6.1.1)a receivesk,a,b =y a knowsk,z good fora - b, but it might well be that: has not seen
k,z, contradicting (4). This counterexample can be fixed, ofreeuby disallowing complex terms as keys.
But other, similar counterexamples would still requirettieing the class of allowed message passing systems.
For instance, if we allowed a model specific dependency l@tweoperties of different message atoms, say
a receivesk, a, b =y k' good fora - b, thena might be able to conclude that is good without actually seeing it,
again contradicting (4).

We propose an alternative definitionugeswvhich we believe is of independent interest. The idea is tsicer
a key to be used by an agent just in case the agent knows somperfyrp of that key. Since properties (sees,
said, etc.) are defined by meansusfesitself, a recursive definition is called for. An inductivether than
a coinductive, definition seems appropriate, siaaesesshould contain the set of keys thahas gathered some
positive information about. Adopting this approach we ttefine the interpretation function on a message passing
systemS as a least interpretation functian(in an order extended point wise from set containment) shah t
s =5,y auses Mif and only if, s =g r, knowsp(M) for some atomic BAN predicatg. (We leave the local
state projectior} implicit.) If we call models that use this definition of theténpretation functionnductive we
obtain:

Theorem 8.1 Every message passing system determines a unique indonciole.

Proof. Assume a message passing systemThe interpretation function in an inductive model 8nis, by
definition, the least fixed point of the following functighthat assigns an interpretation functigi/) to every
possible interpretation functiohon S. For predicateuses f(I)(a usess) = {M | 3 atomic BAN predicate :
s [=(s,1y @ knowsp(M)} and, for atomic BAN predicates f(I)(p, s) is defined withf (I)(a usess’) as the keys
used for any agent at any points’. From lemma 4.1.4f is monotone. Thereforg, has a least fixed point. O

Inductive models obviously satisfy the requirement (4)vaholn fact, as far as requirement (4) is concerned,
we could have definedsesin terms of predicategiood alone, so thats = auses M if and only if, s =

a knows M good for - b for some agenb. Perhaps, such a solution would be even more faithful tations

in BAN logic, but it would not be quite satisfactory for someofcols (Yahalom is an example) where keys
need to be used before they are known to be good. Inductiveelsiodfer, in our opinion, an interesting, more

extensional, alternative to the more traditional operationodels.

9 Introspection Properties

We have already seen (Proposition 6.1) that agents in megssEsing models are introspective of their received
and sent messages. In this section, we observe some funth@sgection properties in inductive models. We
emphasize that these results also hold for models based @uesational interpretation afses

Lemma9.1 For inductive model#/:

L
1. s~bs

/ /
2. s~ 0, Al = s Ao g
roo/ rort
3.5~ 8 =5~ s
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Proof. (1) Immediate from Lemma 4.1.1. The proof of (2) is similar(® and left out. For (3) we first prove,
using fixed point induction, that ~!, s’ = I(a usess’) C r(I(a usess)) wherel is the interpretation function
in M. Let I; be the interpretation function at stgpn the fixed point construction of the proof of Theorem 8.1,
such thatly = 0, I;41 = f(I;), andIs = Uj51;, if ¢ is a limit ordinal. LetM;, be M with the interpretation’
replaced byl;. We show for allj that

I;(ausess)>r Ar(sla) = s'|a = I;j(a usess’) C r(I;(a usess)) (5)

The property holds fody, sincely(a usess’) = (. For successor ordinals, assume (5) holdsjforAssume
Ii11(a usess) > r andr(sla) = s'|a. Pick any messag#!’ such that)’ € I,,,(a usess’). By C4 in Table
2, M' = r(M) for some messag&/. Thens’ ):Mlj+1 a uses(r(M)). By the definition of/;,, there is an
atomic predicate such thats’ ):Mlj a knowsp(r(M)). Sincel; C I;;1, by Lemma 4.1.4];(a usess) > r.
By Lemma 4.1.37(I;(a usess)) > r~!, so by the induction hypothesis and Lemma 4.1;4¢ usess’) > r~ 1.
SinceM’ = r(M), we want to show thad/ € I,,;(a usess). By definition of I, it suffices to show that
s ):sz a knowsp(M). So pick any renaming’ and any execution point’ € S such that/;(a usess) > r’
andr’(s|a) = s”|a. Sincel;(a usess) > r, by the induction hypothesis, and conditions C3 and C4 oferap
r~1(I;(a usess’)) C I;(a usess). By Lemma 4.1.47~1(I;(a usess’)) > r’. By Lemma 4.1.2 it follows that
I;(a usess’) > r' o r~1. By the assumptions orf we get that’ o r=1(s'|a) = 7/(r~1(s'|a)) = r'(s]a) = s"|a.
Since we showed’ ):Mlj a knowsp(r(M)) we obtain thats” |:M1j p(r’ or~tor(M)). Sincer’ ands” are
arbitrary, it follows thats =y, a knowsp(M) which completes the successor part of the induction argimen
The limit case is routine. ’

For the proof of the main statement (3), assume thensthd} s, i.e. I(a usess) > r andr(s|a) = s'|a. By
Lemma4.1.3y(I(a usess))>r 1. We also obtain, from the above induction, thét usess’) C r(I(a usess)).
By Lemma 4.1.4](a usess’) > 1, sos’ ~""" s, which completes the proof. O

Using Lemma 9.1 the modal logic S5 properties follow dingctl
Theorem 9.2 (Knowledge introspection) For inductive models:
1. aknows F=F
2. aknowsF' = a knows a know$’
3. maknowsF = a knows—-a knows F

Validity (1) in Theorem 9.2 is, of course, not an introspectproperty. Rather, it can be seen as the distinguishing
line between knowledge and belief. In fact, (1) holds in aidwels, not only inductive models. From Theorem 9.2,
it follows that agents are also introspective of used and seessages:

Coroallary 9.3 (Use and sees introspection) For inductive models:
1. ausesM [ aknows a use3d/
2. aseedV | aknows a seed/

Proof. (1) is immediate from Theorem 9.2. (2) follows from cryptamality (Theorem 5.2), rule of substitution
(Theorem 5.3), receive introspection (Proposition 6,lahjl use introspection (1). O

Loosely speaking, sees introspection implies that ageatsiaospective of extracted messages. Since sees intro-
spection depends on receive introspection (Propositibpitfails in the related Kripke semantics of [1, 12, 14].
For similar reasons (see section 6), use introspectionfailsan these semantics, when cipher texts are allowed
as keys.
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10 Soundnessof BAN logic

As observed in section 2, some BAN rules assume that agentstdmisuse idealizations. Accordingly, in our
soundness result we restrict attentiorhtmestmodels, models whergom b: M € I(a said,s) = a = b and
whereM, ..., F, ..., M,, fresh,a saidM, ..., F, ..., M,, = a knows F Again, we refer the reader to [8] for details.

Soundness for each BAN rule (Table 1) is now a rather immedipplication of the following corollary, where
a knows{ M, ..., M, } goodis short fora knowsM; good fora - by, ...,a knowsM,, good fora - b,,.

Corollary 10.1 Leto be any substitution of message terms for variables. Fordtide modeldM: If A =y F
then a knows (KeygA, F)) good a knowss(A) =y a knowso (F).

Proof. Immediate from crypto normality (Theorem 5.2), rule of dithion (Theorem 5.3) and requirement (4)
in section 8. O

Theorem 10.2 BAN logic is sound w.r.t. honest inductive models.

Proof. Rule R4 (Table 1) is immediate. Rule R5 is immediate from megoent (4) in section 8. Each remaining
rule is a direct application of Corollary 10.1 on some triwialidity. For instance, rule R3 follows from the fact
thaty fresh = {y}. fresh Rule R1 needs, in addition, sees introspection (Corola8y2), while ruleT needs
Theorem 9.2.1. O

11 Related Work

Our use of a ternary accessibility relation is most closelgted to possibility relations in counterpart semantics
[9]. Itis, as far as we know, the first computationally groedduch semantics in epistemic logic.

In the BAN logic literature the semantics most closely mdiato ours are the Kripke semantics of [1, 12, 14]
where the local state of an agent is partly hidden from thentagln our framework we can recover a binary
accessibility relation similar to those used in [1, 12, 1¢]idtting s ~, s iff s ~" s’ for some renaming. In
fact, our notion of transparent renaming can be seen asddiathe message congruences of [1], and to the states
of knowledge and belief of [3, 13]. As we have pointed out, beer, a Kripke semantics resulting from such a
binary accessibility relation-, is both too strong and too weak for BAN: It makes agents ldyicanniscient,
yet fails essential introspection principlés

There are, of course, semantics in the literature that dacéh dvoid logical omniscience (cf. [6]). But no
such semantics has been shown to work for BAN-like logicsitifeumore, these semantics tend to break rather
more radically than ours with Kripke semantics. One possilgiproach is to subdivide knowledge into an implicit
and an explicit part. Implicit knowledge would be “ideal” dwledge to which logical omniscience applies, and
explicit knowledge would be somehow circumscribed to refigents limited reasoning abilities. For instance, [7]
specifies adversary capabilities in terms of abstract kedge extraction algorithms, and [2] uses an awareness
predicate to constrain, at each state, the predicates whighich an agent is aware, related to the comprehended
messages of [12].

12 Conclusion

We have introduced a semantics that validates BAN logicayeids the rule of normality (logical omniscience).
The semantics satisfies crypto normality, a weak versionoofality that filters out infeasible cryptographic
reasoning powers. The semantics makes agents introspeftiheir own knowledge and their own actions of

2But we acknowledge that only [1] was intended as a semaraidBAN.
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sending, receiving and extracting. We have showed how ledgé of cryptographic structure may at times
transcend the discriminatory power of the keys used. Binai found that knowledge and keys used could be
defined as simultaneous fixed points, making the keys useal gmthe keys known.

A semantical foundation for BAN logic opens up the posdipitif sound model checking of BAN logic spec-
ifications. Also, the semantics might be used to improveousrielements of the protocol verification process in
BAN. The crypto normality rule is a case in point. Using thiterwe can sidestep the often criticized "idealization
step” in BAN verifications. To illustrate, say we want to ddish the following property of NSSK:

a knowsk, good fora - s, a knows n fresha sees{n, b, k, {k, a}, }r, = a knowsk good fora - b (6)

As BAN is usually applied, one would instead prove a propeftan "idealization” of the protocol where the
messag€gn, b, k, {k,a}r, }r, has been annotated with sender field and the goodness peedisaan alternative,
we introduce non-epistemic protocol specific validities:

kq good fora - s, n fresh s said{n, b, k, x}r, = k good fora - b (7)

k, good fora - s = -~ asaid{n,b, k,z}, (8)

which arguably express the required properties of the pobt@ather more precisely. Starting from a (protocol
independent) triviality,

-asaid{z},, aseeqz},, y good fora - s = s said{z},, 9)

we get specification (6) by lifting (7), (8) and (9) to epistemalidities using crypto normality (Corollary 10.1),
then applying sees introspection (Corollary 9.3) and keogé introspection (Theorem 9.2)

We have focused on BAN logic, not in particular deference ANBbut simply because BAN is the standard
logic in its family. A first question to answer is whether ognsantics really captures the intended meaning of
BAN formulas. A completeness result for a collection of sulghich stays acceptably close to BAN’s original
set-up would help answer this question affirmatively, andavgecurrently working to address this issue.

It would be of interest also to use our semantics to suppdstepic security protocol logics beyond the propo-
sitional level. An extension to first-ordescalculus with rudimentary temporal operators would aline BAN
primitives to be defined, and thus eliminate much of the apgaarbitrariness in the choice of basic vocabulary in
the BAN literature. Furthermore, a first-order extensioruldallow reasoning that exploits partial knowledge of
complex data structures; this may be useful in the contertgf payment protocols, where different parts of the
negotiated data structure remain hidden from differentgipals.
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Abstract

In this paper we show how the partial model checking approach for the analysis of secure systems may
also be useful for enforcing security properties. We define a set of process algebra operators that act as pro-
grammable controllers of possibly insecure components. The program of these controllers may be automatically
obtained through the usage of satisfiability procedures for a variant of u-calculus.

1 Overview

Many approaches for the analysis of security properties have been successfully developed in the last two decades.
An interesting one is based on the idea that potential attackers should be analyzed as if they were un-specified
components of a system; thus reducing security analysis to the analysis of open systems [11, 12, 14].

More recently there has been also interest on mechanisms and techniques to enforce security properties. A
notable example is the security automata in [19] and some extensions proposed in [9].

The paradigm of analysis of security as analysis of open systems has been extended to cope with security
protocols [14], fault tolerance [7] and recently access control based on trust management [15]. In this paper we
enrich this theory with a method for (automatically) enforcing several security properties.

Basically, we define a set of process algebra operators. They act as programmable controllers of a component
that must be managed in order to guarantee that the overall system satisfies a given security policy. Also, we de-
velop a technique to automatically synthesize the appropriate controllers. This represent a significant contribution
w.r.t. to the previous work in [9, 19], where this issue was not addressed. The synthesis is based on a satisfiability
procedure for the p-calculus.

Moreover, under certain hypothesis on the observation power of the enforcing controllers, we are able to enforce
some non-interference properties (for finite-state systems) that were not intentionally addressed in [19], due to the
specific assumptions they had on the enforcing mechanisms.

Our logical approach is also able to cope with composition problems, that have been considered as an interesting
and challenging issue in [3].

This paper is organized as follows. Section 2 recalls the basic theory about the analysis of security properties,
especially non-interference as properties of open systems. Section 3 explains our approach and Section 4 extends
it to manage several kinds of enforcement mechanisms. Section 5 illustrates an example. Section 6 presents a
discussion on related work and eventually Section 7 concludes the paper.

*Work partially supported by CNR project “Trusted e-services for dynamic coalitions” and by a CREATE-NET grant for the project
“Quality of Protection (QoP)”. A full version of this paper with the proofs appears as Technical report of IIT-CNR [16].
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2 Background

In this section we briefly recall some technical machinery used in our approach and also a logical approach for
dealing with information flow properties (and security properties in general).
2.1 A language for describing concurrent and distributed systems

The Security Process Algebra (SPA) [6] is used to describe concurrent and distributed systems and is derived
from CCS process algebra of R. Milner [17]. The syntax of SPA is the following:

E:=0|a.FE|E1+Ey| Ei||E2| E\L | Z

where « is an action in Act, L. C £ and Z is a process constant that must be associated with a definition Z = F.

As usual, constants are assumed to be guarded [17], i.e. they must be in the scope of some prefix operator o. F'.

The set of SP A processes (i.e., terms with guarded constants), is denoted with &£, ranged over by | F, P,Q . . ..

We will often use some common syntactic simplifications, e.g., omission of trailing 0’s as well as omission of

brackets on restriction on a single action. Sort(E) is used to denote the set of actions that occurs in the term E.
S P A operators have the following informal meaning:

e 0 is a process that does nothing;
e o.F is a process that can perform an « action and then behaves as E;
o [ + E5 (choice) represents the nondeterministic choice between the two processes E; and Fo;

o FE1||E2 (parallel) is the parallel composition of two processes that can proceed in an asynchronous way |,
synchronizing on complementary actions, represented by an internal action 7, to perform a communication.

e E\L (restriction) is the process E when actions in L U L are prevented.
The operational semantics of SPA terms is given in terms of Labeled Transitions Systems (LTS).

Definition 2.1 A labeled transition system (£,7T) (LTS) of concurrent processes over Act has the process ex-
pressions & as its states, and its transitions T are exactly which can be inferred from the transition rules for
processes.

The interested reader may find the formal definition of the semantics below:

B, % E] By % E
oFE - E E +E - E E +FE % E)

B -5 F By -% B} 5L E BLE,
E\||Ey == E1|Ey  Eil|Es = Ei|Ey  Eil|E2 = Eq|| By

Z=E E-XF B, % E]

R— T (OzQLUf)
Z — F E\L — E}\L
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2.2 Strong and weak bisimulations

It is often necessary to compare processes that are expressed using different terms but have the same behavior. We
recall some useful relations on processes.

Definition 2.2 Let (£,7) be an LTS of concurrent processes, and let R be a binary relation over £. Then R is
called strong simulation (denoted by <) over (£, T) if and only if, whenever (E, F') € R we have:

if E % E' then there exists F' € £s.t. F % F' and (E',F') € R

Now, we can define strong bisimulation:

Definition 2.3 A binary relation R over £ is said a strong bisimulation (denoted by ~) over the LTS of concurrent
processes (€, 7T) if both R and its converse are strong simulation.

Another kind of bisimulation is the weak bisimulation. This relation is used when there is the necessity of un-
derstanding if systems with different internal structure - and hence different internal behavior - have the same
external behavior and may thus be considered observationally equivalent. The notion of observational relations is
the follow: E = E’' (or E = E)if E R (where 7." is the reflexive and transitive closure of the relation);
fora # 1, F L F'if E %5 E'. Let DerE be the set of derivatives of E, i.e., the set of process that can be
reached through the transition relations. Now we are able to give the two following definitions.

Definition 2.4 Let R be a binary relation over a set of process £. Then R is said to be a weak simulation (denoted
by 3) if, whenever (E,F) € R,

if E% E' then there exists ' € £s.t. F = F' and (E', F') € R.

Definition 2.5 A binary relation R over £ is said a weak bisimulation (=) over the LTS of concurrent processes
(E,7T) if both R and its converse are weak simulation.

Every strong simulation is also a weak one (see [17]).

2.3 Equational j-calculus

Modal p-calculus is a process logic well suited for specification and verification of systems whose behavior is
naturally described using state changes by means of actions. It is a normal modal logic K augmented with
recursion operators. It permits to express a lot of interesting properties like safety and liveness properties, as well
as allowing us to express equivalence conditions over LTS.
In equational p-calculus recursion operators are replaced by fixpoint equations. This permits to recursively
define the properties of a given systems.
We use the equational p-calculus instead of modal p-calculus because the former is very suitable for partial
model checking, that is described later (see [1], [2]).
Let a be in Act and X be a variable ranging over a finite set of variables Vars.
Given the grammar:
AZI:X|T’F|X1/\X2|X1\/X2 | <CL>X‘ [G]X
D:=X=,AD|X =, AD | ¢
where the meaning of (a)X is ’it is possible to do an a-action to a state where X holds’ and the meaning of [a] X
is ’for all a-actions that are performed then X holds’. X =, A is a minimal fixpoint equation, where A is an

assertion (i.e. a simple modal formula without recursion operator), and X =, A is a maximal fixpoint equation.
Roughly, the semantic [D] of the list of equations D is the solution of the system of equations corresponding to
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D. According to this notation, [D](X) is the value of the variable X, and E = D | X can be used as a short
notation for £ € [D](X). The following result can be proved by putting together standard results for decision
procedures for p-calculus (see [20]).

Theorem 2.1 Given a formula ~y it is possible to decide in exponential time in the length of -y if there exists a
model of v and it is also possible to give an example of it.

2.4 Partial model checking

Partial model checking (pmc) is a technique that was originally developed for compositional analysis of concurrent
systems (processes) (see [2]). The intuitive idea underlying the pmc is the following: proving that F|| F' satisfies a
formula ¢ is equivalent to prove that I satisfies a modified specification ¢/, , where / /g is the partial evaluation
function for the parallel composition operator(see [2]).In formula:

E||F = ¢ @)

In order to describe how pmc function acts, we discuss, for instance, the partial evaluation rules for the formula
(1) A w.r.t. the || operator. By inspecting the inference rules, we can note that the process E||F' (with F' unspecified
component) can perform a 7 action by exploiting one of the three possibilities:

e the process F' performs an action 7 going in a state F’ and F||F” satisfies A; this is taken into account by
the formula (7)(A /., );

e the process E performs an action 7 going in a state £’ and E’||F satisfies A and this is considered by the
di.sjunctions V g A/ Where every formula A, takes into account the behavior of £ in composition
with a 7 successor of £

o the last possibility is that the 7 action is due to the performing of two complementary actions by the two
processes. So for every a-successor £’ of £ there is a formula (a)(4,/,,).

With partial model checking we can reduce the previous property to:

FE¢/E 2)

Lemma 2.1 Given a process E||F and a formula ¢ we have:

E|FEIff Fl=¢)/5

A similar lemma holds for every operator of SPA (see [1]).

In this way, it can be noticed that the reduced formula ¢/, depends only on the formula ¢ and on process E.
No information is required on the process F' which can represent a possible enemy. Thus, given a certain system
FE, itis possible to find the property that the enemy must satisfy in order to make a successful attack on the system.
It is worth noticing that partial model checking functions may be automatically derived from the semantics rules
used to define a language semantics (Structured Operational Semantics). Thus, the proposed technique is very
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flexible. Here, we give the pmc function for parallel operator (that can be also found in [1, 2]).

(DIX) e = (Dyp)lXe
6//t = €
(X =0 AD);;y = (Xs =0 A)/s)scper@)(D)) i
X//t = X;

[l Ayys = [al(AyIAN o Ays it aT
[T]Ays = [T](A//s)/\/\SLS,A//M/\Si)S,[@](A//sf)

(A1nA2),s = ((A1)s)N((A2)/)s)
T//s = T

2.5 Characteristic formulae

A characteristic formula is a formula in equational p-calculus that completely characterizes the behavior of a
(state in a) state-transition graph modulo a chosen notion of behavioral relation. It is possible to define the notion
of characteristic formula for a given finite state process F w.r.t. weak bisimulation as follows (see [18]).

Definition 2.6 Given a finite state process E, its characteristic formula (w.r.t. weak bisimulation) Dg | Xg is
defined by the following equations for every E' € Der(E), a € Act:

Xp=( N (@)Xe) A (A Xp)
@B E SR @ E'E'AE
where ((a)) of the modality (a) which can be introduce as abbreviation (see [18]):

def def

() = nXov(NX ((a)o = (()a){(e)¢
The following lemma characterizes the power of these formulae.
Lemma 2.2 Let Iy and E5 be two different finite-state processes. If ¢ g, is characteristic for Ey then:
1. If By = Es then Ey = ¢p,

2. If By E ¢p, and E\ is finite-state then Ey ~ Es.

2.6 A logical approach for specifying and analyzing information flow properties

Information flow is a main topic in the theoretical study of computer security. We can find several formal definitions
in the literature (see [10]). To describe this problem, we can consider two users, High and Low interacting with
the same computer system. We ask if there is any flow of information from High to Low. The central property is
the Non Deducibility on composition (NDC, see [6]): the low level users cannot infer the behavior of the high level
user from the system because for the low level users the system is always the same. This idea can be represented
as follow:

VII € Highusers £ | Il = E w.r.t. Low users

(where | represents a suitable composition operator.) We study this property in term of SPA parallel composition
operator and bisimulation equivalence.
We denote with BN DC' a security property called Bisimulation Non Deducibility on Compositions (see [6]).
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Definition 2.7 Let Eg = {II | Sort(Il) C H U {7}} be the set of High users. E € BNDC' if and only if
VII € £y we have (E||II)\H ~ E\H.

By using the characteristic formula ¢ of the process E'\ H, we may express information flow property in a logical
way.
E € BNDCIiffvIl € S : (E|ID\H [ ¢ 3)

Partial model checking function gives we have a method for reducing the verification of the previous property to a
validity checking problem in u-calculus (see [11]). As a matter of fact, the property 4 turns out to be equivalent to

E € BNDCIiffvVIl € S : 11 |= ¢/ 4)

where ¢/ is the formula obtained from ¢ after pmc w.r.t the process E (and the restriction operator). Thus, due the
decidability of the validity problem for p-calculus we have.

Proposition 2.1 BN DC' is decidable for all finite state processes E.

Our logical approach has been extended to cope with several security properties. Thus the approach we are
going to introduce is applicable to a wide set of security properties.

3 Our approach for enforcing security properties

Let S be a system, and let X be one component that may be dynamically changed (e.g., a downloaded mobile
agent). We say that the system S|| X enjoys a security property expressed by a logical formula ¢ if and only if for
every behavior of the component X, the behavior of the system S enjoys that security property:

VX(SIXNH = ¢ (5)

where H = Sort(X).
By using the partial model checking approach proposed in [12], we can focus on the properties of the possibly
un-trusted component X, i.e.:

VX X Edsm (6)

Thus, we may study whether a potential enemy could exists and, in particular, which are necessary and sufficient
conditions that an enemy should satisfy for the purpose to alter the correct behavior of the system.

In order to protect the system we may simply check each process X before executing it or, if we do not have
this possibility, we may define a controller that in any case forces it to behave correctly.

We may distinguish several situations' depending on the control one may have on the process X:

1. if X performs an action we may detect and intercept it;
2. in addition to 1), it is possible to know which are the possible next steps of X;
3. X whole code is known and we are able to model check it?.

In the scenarios 1) and 2) we may imagine to develop some controllers that force the intruder to behave correctly,
i.e. as prescribed by the formula ¢\ 7.

'The last two pose several decidability issues.
2We do not consider here the possibility of manipulate the code.
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3.1 Enforcing security properties with programmable controllers

We wish to provide a framework where we are able to enforce specific security properties defining a new operator,
say Y >* X, that can permit to control the behavior of the component X, given the behavior of a control program
Y.

Example 3.1 Let E and F be two processes, and let a € Act be an action. We define a new operator >’ (controller
operator) by these two rules:

ELE FLF

Ev'F 5 B FY

ESE

ExF S EYF
This operator forces the system to make always the right action also if we do not know what action the agent X
is going to perform.

(7

®)

Eventually, we would like that the overall system S||(Y >* X) always enjoys the desired security properties
regardless of the behavior of the component X . Thus, we want to find a control program Y such that:

VX(S||Y o* X)\H = ¢ )]

Equivalently, by pmc, we get:
VX (Yo*X) ¢ 10)

where qb’ = ¢//(S,\H)

Note that differently from other approaches the control target and the controller are expressed in a similar
formalism.

While the equation 10 should be the property to manage, it might not be easy. However, we note that if the
controller operator satisfies the following additional property

Assumption 3.1 For every X andY, we have:
Yr X ~Y

then the property 10 is equivalent to:
WY E ¢ (1)

As a matter of fact, the previous assumption permits us to conclude that Y >* X and Y are strongly equivalent on
so they satisfy the same formulas. The formulation 11 is easier to be managed.
Refer to example 3.1, we are able to prove that the operator >’ enjoys Assumption 3.1.

Proposition 3.1 The operator >’ enjoys Assumption 3.1.

Note that for some properties, e.g. BNDC, it is sufficient that Y >* X and Y are weakly bisimilar. According to
definition of weak bisimulation, Y b* X ~ X (since every strong simulation is also a weak one [17]) and thus it
could be applied to enforce information flow properties (although in the scenario 1) it would not be very useful,
since it could often override the high user instructions).

While designing such a process Y could not be difficult in principle, we can take advantage of our logical
approach and obtain an automated procedure as follows.
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3.2 Automated synthesis of controllers

In this subsection, we discuss how it is possible to find a program controller Y that is a model of ¢’, the formula
in 11.

As a matter of fact, our logical approach is very useful.

The formula ¢’ is a u-calculus formula, so, referring to the theorem 2.1, it is possible to decide if there exists a
model of such ¢’. The procedure returns also a model that will be our program for our controllers.

Unfortunately, the satisfiability procedure has complexity that is, in the worst case, exponential in the size of
the formula.

3.3 Composition of properties

Our logical approach is able to struggle successfully with composition problems. If we should force many different
security policies, we have only to force the conjunction of this policies. In formulas: let ¢1, - - - , ¢, be n different
security policies, S be our system and X be an external agent, we have:

VX(SIX\NH =61 ... YX(SIX\H [ 6,
The following step to solve is reduce this n proposition to one in the following way:

VX(SIXN\H E N\ ¢ (12)

=1, n

If we assume /\izl,---n ¢; = ¢, we have the same situation that we have described by the formula 10.

4 Other controllers

We can define other controller operators as follows.

The controller >" have two rules:
ESFEFSF
E'F % B/ FY

(13)

ESEFAF
Ex'F S ESF
This controller is the most complete: if the program E' and the target F' agree on the next action both can do it in a
lock step, if F' does not have a correct behavior, the process F issues an action, so the system maintains a correct
behavior. Being able to give priorities to rule applications, definitely the first rule should have higher priority than
the second one.
The following result holds.

(14)

Proposition 4.1 The preposition 3.1 holds also for two operator: > and >".
Another interesting operator is described by the following rule:

ELEFSF
Ep"F N E! ! Y

15)

However, it is useful to note that for this operator a weaker proposition holds.
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Proposition 4.2 Between Y "' X and'Y holds the following relations:
Yo" X <Y

i.e. Y " X andY are strong similar but not bisimilar.

As a matter of fact, with this operator, we can ensure that the system is secure only w.r.t. security properties that
are safety properties. Such properties are preserved under weak simulation (e.g. see [7]). Thus, we cannot enforce
liveness properties through this controller.

4.1 Feasibility issues for our controllers

The introduction of a controller operator helps to guarantee a correct behavior of the entire system.

We discuss in this subsection, how and also if, these controllers (>, " and ') can be effectively implemented.

However, the actual feasibility of these controllers depends on the scenarios we consider. In particular, we focus
on scenarios 1) and 2).

For the first controller operator, >, we can note that this operator need to check the next action or it can directly
execute one correct action. Thus, it would be easily implementable in all the two scenarios.

The operator " cannot be implemented in the scenario 1): if we cannot decide a priori which are the possible
next steps that the external agent is not able to perform, we cannot implement the second rule (14). In the scenario
2), such an operator would be implementable. It would be also possible in the scenario 2), if we could also know
whether X is forced to make a specific action, to give priority to the first rule in order to allow always the correct
actions of the target. Thus, controller >’ would be the most appropriate in this scenario.

The last controller operator can be implemented in any scenarios. As a matter of fact, it coincides with the
monitors defined in [19].

5 A simple example

Consider the process £ = 1.0 + h.h.l.0. The system E where no high level activity is present is weakly bisimilar
to [.0.
Consider the following equational definition (please note that F' is a variable here):

F=, ([fF) AT A )T

It asserts that a process may and must perform the visible action /.

As for the study of BN DC-like properties we can apply the partial evaluation for the parallel operator we

obtain after some simplifications:

Fg =y ([7]Fg) A [R((h))T
which, roughly, expresses that after performing a visible & action, the system reaches a configuration s.t. it must
perform another visible h action.

The information obtained through partial model checking can be used to enforce a security policy which pre-
vents a system from having certain information leaks. In particular, if we use the definition of the controller as >,
we simply need to find a process that is a model for the previous formula, say Y = h.h.0.

Then, for any component X, we have (E||(Y »” X)) \ {h} satisfies F.

For instance, consider X = h.0. The system

(B " X))\ {n} — (h.LO[|(h>" 0))\ {h}
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Thus, using the second rule the controller may force to issue another h and thus we eventually get
(h.1.0[|(h 5" 0)) \ {h} - (1.0]|(0>" 0))\ {h} =~ 1.0

and so the system still preserve its security since the actions performed by the component X have been prevented
from being visible outside. On the contrary, if the controller would not be present, there would be a deadlock after
the first internal action.

6 Discussion on related work

In [13], we presented preliminary work based on different techniques for automatically synthesizing systems
enjoying a very strong security property, i.e. SBSNNI (e.g., see [6]). That work did not deal with controllers.

Much of prior work is about the study of enforceable properties and related mechanisms.

In [19], Schneider deals with enforceable security properties in a systematic way. He discusses whether a given
property is enforceable and at what cost. To study those questions, Schneider uses the class of enforceable mech-
anisms (EM) that work by monitoring execution steps of some system, herein called the farget, and terminating
the target’s execution if it is about to violate the security property being enforced. The author asserts there isn’t
any EM (Execution Monitoring) that can enforce information flow because it can’t be formalized like a safety
property. The security automata defined in [19] have the follow behavior:

o If the automaton can make a transition on given input symbol, then the target is allowed to perform that step.
The state of the automaton changes according to the transition rules.

e otherwise the target is terminated and we can deduce that security property can be violated.

He explicitly assumes to be in the scenario that we call 1).

We can note that our controller operator, >/, have the same behavior of the security automata for enforcement
that Schneider defines in his article.

The operator > have only the following rule:

ELEFLF
Ep F N E' o F

Roughly speaking, if process F' does the correct action then E "’

stops.

This fact is very important because, as we say in the proposition 4.2, Y > X and Y are strongly similar but not
bisimilar. So this two processes are not strongly equivalent and they don’t satisfy all the same formulas. So, also
with our formalism, we can not enforce information flow with this operator.

We can however define an operator in scenario 1) that enforces information flow property. The cost of this
operation is that the behavior of the controller component may be completely neglected. Thus, from a practical
point of view, our operator is not very useful.

However, we may notice that our work is a contribution w.r.t. the work of Schneider since it allows the automatic
construction of the correct monitor.

Alsoin [3, 9] there is the idea that information flow can not be forced by an automaton. In both of these articles,
many types of automata are illustrated. All of them are in the scenario 1). The automata waits for an action of the
target. In particular, in [9] there are four different automata:

F" does a correct transaction else the system

truncation automata it can recognize bad sequences of actions and halt program execution before the security
property is violated, but cannot otherwise modify program behavior. These automata are similar to Schnei-
der’s original security monitor;
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suppression automata in addition to being able to halt program execution, it has the ability to suppress individual
program actions without terminating the program outright;

insertion automata it is able to insert a sequence of actions into the program action stream as well as terminate
the program;

edit automata it combines the powers of suppression and insertion automata. It is able to truncate action se-
quences and insert or suppress security-relevant actions at will.

The interested reader may find in the full version of this paper (see [16]) the description of process algebras
operators that mimic as such automata. (Since that truncation automata is the same automata is described in [19],
we already defined a controller operator which has the same behavior.)

We use controller synthesis in order to force a system to verify security policy. The synthesis of controllers is,
however, studied also in other research areas. We describe here two papers that deal with synthesize of controller
in real-time.

In [4] the author describes an algorithm for synthesize controller from real-time specification. He presents an
algorithm for specified in a subset of the internal temporal logic Duration calculus. The synthesized controllers
are given as PLC-Automata. These are an abstract representation of a machine that periodically polls the input
and has the possibility of measuring time.

In [5] the authors tackles the following problem: given a timed automaton restrict its transition relation in a
systematic way so that all remaining behaviors satisfy certain properties. The problem is formulated using the
notion of real-time game. A strategy for a given game is a rule that tells the controller how to choose between
several possible actions in any game position.A strategy is winning if the controller, by following these rules,
always wins (according to a given definition of winning) no matter what the environment does. There is the
definition of Game automata and the authors gives a relation and using this relation is able to define a winning
strategy for the game.

7 Conclusion and future work

We illustrated some preliminary results towards a uniform theory for enforcing security properties. With this
work, we contribute to extend a framework based on process calculi and logical techniques that have been shown
to be very suitable to model and verify several security properties. With respect to prior work, we also add the
possibility to automatically build enforcing mechanisms.

Much work need to be done in order to make our approach more feasible in practice. We argue that there are
many security properties whose corresponding controller may be built more efficiently. For instance, there are
some cases in which the complexity of satisfiability problem is linear in the size of the formula (e.g., see [8]).

We argue that extending our approach to consider timed security properties should be possible and worth of
investigation.
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