
Proceedings

Foundations of Computer Security
Affiliated with LICS’05

Chicago, IL
June 30 - July 1, 2005

Edited by
Andrei Sabelfeld

Table of Contents

Preface . iii

Program Committee . v

Invited Talk I

Language-Based Intrusion Detection . 3
Jan Vitek

Language-Based Security

Dynamic Updating of Information-Flow Policies . 7
Michael Hicks, Stephen Tse, Boniface Hicks, and Steve Zdancewic

Monitoring Information Flow . 19
Gurvan Le Guernic and Thomas Jensen

Optimized Enforcement of Security Policies . 31
Mahjoub Langar and Mohamed Mejri

Information Flow

Unifying Confidentiality and Integrity in Downgrading Policies . 45
Peng Li and Steve Zdancewic

Keeping Secrets in Incomplete Databases . 55
Joachim Biskup and Torben Weibert

Non-Interference for a Typed Assembly Language . 67
Ricardo Medel, Adriana Compagnoni, and Eduardo Bonelli

i

Network Security and Denial-of-Service Attacks

Trusting the Network . 81
Tom Chothia, Dominic Duggan, and Ye Wu

Formal Modeling and Analysis of DoS Using Probabilistic Rewrite Theories . 91
Gul Agha, Michael Greenwald, Carl A. Gunter, Sanjeev Khanna, Jose Meseguer, Koushik Sen, and

Prasannaa Thati

Invited Talk II

Constructive Authorization Logics . 105
Frank Pfenning

Security Protocols and Decidability Issues

A Constraint-Based Algorithm for Contract-Signing Protocols . 109
Detlef Kähler and Ralf Küsters

Logical Omniscience in the Semantics of BAN Logic . 121
Mika Cohen and Mads Dam

Partial model checking process, algebra operators and satisfiability procedures for (automatically)
enforcing security properties . 133

Fabio Martinelli and Ilaria Matteucci

ii

Preface

Computer security is an established field of Computer Science of both theoretical and practical signifi-
cance. In recent years, there has been increasing interest in foundations for various methods in computer
security, including the formal specification, analysis and design of cryptographic protocols and their ap-
plications, the formal definition of various aspects of security such as access control mechanisms, mobile
code security, denial-of-service attacks, trust management, and the modeling of information flow and its
application to confidentiality policies, system composition and covert channel analysis.

This workshop continues a tradition, initiated with the Workshops on Formal Methods and Secu-
rity Protocols—FMSP—in 1998 and 1999, then with the Workshop on Formal Methods and Computer
Security—FMCS— in 2000, and finally with the LICS satellite Workshop on Foundations of Computer
Security—FCS—in 2002, 2003 and 2004, of bringing together formal methods and the security com-
munity. The aim of the workshop this year is to provide a forum for continued activity in this area, to
bring computer security researchers in contact with the LICS community, and to give LICS attendees an
opportunity to talk to experts in computer security.

FCS received 30 submissions this year. The Program Committee selected 11 of them for presen-
tation as the outcome of the reviewing process. In addition, the program features two invited talks, by
Frank Pfenning and Jan Vitek.

The contributions of many people have made the workshop a success. The Program Committee has
put much effort in providing helpful reviews. Many thanks are due to Frank Pfenning and Jan Vitek,
the invited speakers, for their brave decisions to concentrate on cutting-edge research in their invited
talks. Phil Scott and Radha Jagadeesan, our connections to LICS, have been of much help for FCS to
run smoothly. Aslan Askarov deserves special thanks for his help in compiling the proceedings. Most
of all, we are thankful to the authors and the attendees who made this workshop an inspiring and fruitful
event.

Andrei Sabelfeld
FCS’05 Program Chair

iii

iv

Program Committee

Michael Backes, IBM Zurich, Switzerland
Gilles Barthe, INRIA, France
Iliano Cervesato, Tulane University, USA
Sabrina De Capitani Di Vimercati, University of Milan, Italy
Joshua Guttman, MITRE, USA
Joe Halpern, Cornell University, USA
Naoki Kobayashi, Tohoku University, Japan
Ralf Kuesters, University of Kiel, Germany
Cathy Meadows, NRL, USA
John Mitchell, Stanford University, USA
Frank Pfenning, Carnegie-Mellon University, USA
Mark Ryan, University of Birmingham, UK
Andrei Sabelfeld (chair), Chalmers, Sweden
Vitaly Shmatikov, University of Texas at Austin, USA

v

vi

Session I

Invited Talk I

1

Language-Based Intrusion Detection

Jan Vitek
Department of Computer Science

Purdue University
http://www.cs.purdue.edu/people/jv

Host-based intrusion detection systems attempt to identify attacks by discovering program behaviors that deviate
from expected patterns. While the idea of performing behavior validation on-the-fly and terminating errant tasks as
soon as a violation is detected is appealing, this presents numerous practical and theoretical challenges. In this talk
we focus on automated intrusion detection techniques, i.e. techniques which do not require human intervention.
Of particular interest are techniques that rely on, or leverage, programming language semantics to find novel ways
of detecting attacks. We will review the main attack models, describe the state of the art in host-based intrusion
detection techniques and conclude with a list of challenges for the research community.

3

4

Session II

Language-Based Security

5

Dynamic Updating of Information-Flow Policies

Michael Hicks∗ Stephen Tse‡ Boniface Hicks† Steve Zdancewic‡
∗University of Maryland † Pennsylvania State University ‡ University of Pennsylvania

Abstract

Applications that manipulate sensitive information should ensure end-to-end security by satisfying two
properties: sound execution and some form of noninterference. By the former, we mean the program should
always perform actions in keeping with its current policy, and by the latter we mean that these actions should
never cause high-security information to be visible to a low-security observer. Over the last decade, security-
typed languages have been developed that exhibit these properties, increasingly improving so as to model
important features of real programs. No current security-typed language, however, permits general changes
to security policies in use by running programs. This paper presents a simple information flow type system
for that allows for dynamic security policy updates while ensuring sound execution and a relaxed form of
noninterference we term noninterference between updates. We see this work as an important step toward using
language-based techniques to ensure end-to-end security for realistic applications.

1 Introduction

Increasingly, personal and business information is being made available via networked infrastructures, so the
need to protect the confidentiality of that information is becoming more urgent. A typical approach to enforcing
data confidentiality is via access control. Unfortunately, access control only governs the release of information,
not its propagation. Once a principal (e.g., a user, process, party, etc.) legally reads some data, he can freely
share it, whether purposefully or inadvertently, despite the possible wishes of its owner. Instead, we would prefer
applications to enforce end-to-end security by governing information flow: a principal should not, through error
or malice, be permitted to transmit confidential information to an unauthorized party.

An information flow control system typically aims to enforce two properties: noninterference and sound execu-
tion. Given a principal hierarchy that defines the relative security levels of various principals, a program satisfies
noninterference when it ensures that high security data is never visible, whether directly or indirectly, to low se-
curity observers. A program satisfies sound execution if it does not generate errors at run time. A typical way to
satisfy these properties is to use a security-typed language [14] wherein the standard types on program variables
include annotations to specify which principals are allowed to read. If a program type checks under a princi-
pal hierarchy, then, it is guaranteed that the program is noninterfering and sound with respect to the hierarchy.
Security-typed languages are appealing because these properties are proven in advance of actual execution.

Typical security-typed languages assume that the principal hierarchy remains fixed during program execution.
For long-running programs, such an assumption is unrealistic, as policies often change over time, e.g., to perform
revocations [6, 2]. On the other hand, simply allowing the principal hierarchy to change at runtime could violate
both the soundness and noninterference properties of running programs.

This paper presents a new security-typed language that allows dynamic updating of information-flow policies,
particularly the delegation relations in the principal hierarchy. Section 2 defines a typical security-typed source
language λΠ

≤, and then Section 4 defines λΠ
tag as an extension of λΠ

≤ with tags and the ability to accommodate
updates to the principal hierarchy. We prove that λΠ

≤ programs can be compiled to λΠ
tag programs automatically,

that these programs are sound, and that they respect a flavor of noninterference we dub noninterference between

7

p ::= X | p, p ` ::= p : p | `, ` E ::= · | E m | v E | if E m m
Π ::= · | Π, p ≤ p u ::= bool` | u→u
m ::= true` | false` | x | λx :u. m | m m | if m m m | if (p ≤ p) m m

Figure 1: Syntax of λΠ
≤: principals p, labels `, permission Π, types u, terms m, and holes E .

updates. To our knowledge, ours is the first system to safely permit general updates to the principal hierarchy,
including revocations, in security-typed languages. Our discussion of the meaning of noninterference in the pres-
ence of revocation, and the definition of the term noninterference between updates, is also new. We believe our
approach is an important step to making security-typed languages expressive enough to be used in real systems.

2 A Simple Security-Typed Language, λΠ
≤

To make our discussion of policy updates more concrete, we introduce a calculus λΠ
≤, a formalization of the

decentralized label model [10] (DLM) based on the simply-typed lambda calculus. We present a discussion on
policy updates, their challenges, and our solution to making them sound in the following two sections.

Figure 1 presents the syntax of λΠ
≤. Security policies specify confidentiality policies, defining which principals

are allowed to read which data. Policies are specified in two parts. First, types and simple values are annotated
with labels ` that consist of one or more pairs (p1 : p2), where p1 is the policy owner specifying p2 as the reader.
Principals p can be either literals X or principal sets (p1, . . . , pn). A label with multiple pairs, written (`1, `2) can
be used to specify more restrictive policies: a potential reader must satisfy all of the label restrictions. The second
part of a DLM security policy is the principal hierarchy, or a permission context, Π is represented as a list of
delegations between principals p1 ≤ p2.

Terms m and types u are largely standard. We write evaluation as Π ` m1 −→ m2, which states that m1 evaluates
in a single step to become m2 under runtime principal hierarchy Π. The principal hierarchy can be accessed
dynamically using the run-time test of principal delegation if (p1 ≤ p2) e1 e2 [17]:

Π ` p1 ≤ p2

Π ` if (p1 ≤ p2) m1 m2 −→ m1

Π 6` p1 ≤ p2

Π ` if (p1 ≤ p2) m1 m2 −→ m2

The typing judgment has the form Π;Γ ` m : t, where Γ tracks the types of bound variables as usual, and
permission context Π statically tracks knowledge of the principal hierarchy. Most rules are standard [17], as
shown in Figure 2. The judgment lab(u) = ` returns the label of the type:

lab(bool`) = `
lab(u2) = `

lab(u1→u2) = `

There are two additional typing rules. The first one type-checks the run-time test of principal delegation. If the
principal delegation test succeeds, the first branch can statically assume that Π ` p1 ≤ p2 holds inside by adding1

p1 ≤ p2 to the permission context Π.

Π, p1 ≤ p2; Γ ` m1 : u Π;Γ ` m2 : u
Π;Γ ` if (p1 ≤ p2) m1 m2 : u

Π;Γ ` m : u1 Π ` u1 � u2

Π;Γ ` m : u2

1The second branch cannot assume Π ` p1 ≤ p2; hence, there is no addition of constraints to the context for the second branch in
the typing rule. Adding negative constraints (p1 6≤ p2) to the context is unnecessary, because subtyping can be decided with positive
constraints.

8

Π;Γ, x :u ` x : u
Π;Γ ` m1 : bool` Π;Γ ` m2 : u Π;Γ ` m3 : u lab(u) = `

Π;Γ ` if m1 m2 m3 : u

Π;Γ ` true` : bool`

Π;Γ, x :u1 ` m : u2

Π;Γ ` λx :u1. m : u1→u2

Π;Γ ` false` : bool`

Π;Γ ` m1 : u1→u2 Π;Γ ` m2 : u1

Π;Γ ` m1 m2 : u2

Figure 2: Typing rules of λΠ
≤: Π;Γ ` m : t (under hierarchy Π and context Γ, the term m has type t).

The second one is the subsumption rule that allows the flexibility of implicitly appealing to principal delegations
in the permission context during typing. There exist straightforward and efficient algorithms [7, 17] for context
subtyping Π1 ≤ Π2 (meaning Π1 is more permissive than Π2), label subtyping Π ` `1 v `2 (meaning `1 is less
restrictive than `2 under Π), principal subtyping Π ` p1 ≤ p2 (meaning principal p1 is delegating to p2 under Π),
and type subtyping Π ` u1 � u2 (meaning u1 is a subtype of u2 under Π); we leave their formal specification to
our companion technical report.

We have proved the desired properties of sound execution and noninterference for λΠ
≤ by a sound translation to

a target language, which is to be described in Section 4.

3 The Meaning of Policy Updates

Now we consider the means and the meaning of security policy updates in λΠ
≤ (and similar languages). An

information-flow security policy can change in two ways. First, the label on a particular piece of data might be
altered, thereby making access to it more restricted or less restricted. The former case is permitted automatically
by the subsumption rule: it is always safe to treat a piece of data more restrictively. The latter case is potentially
dangerous, as the relabeling might expose sensitive information, so it is typically allowed only by an explicit
declassify operation. A second way of changing the information-flow policy is to alter the principal hierarchy,
which in turn alters the relative ordering between labels. Here again there are two kinds of changes: one can
add a (directed) edge between two principals (e.g., the delegation p1 ≤ p2), which corresponds to increasing
the privileges of an observer. This kind of policy change is like a global form of declassification. One can also
remove edges, corresponding to revocation, strengthening the security policy and decreasing the set of permissible
information flows.

In this paper, we address the second style of policy update in which the principal hierarchy can change. To
determine how and when the hierarchy should be permitted to change, we must consider the impact of policy
updates on a program’s security properties: sound execution and noninterference.

3.1 Models of updating

It is easy to see that naively allowing arbitrary policy updates could make evaluation unsound: the program could
act in a way not consistent with its current policy. As an example, consider this simple program (extending the
syntax presented earlier with let and integers):

let x : intp2: = (if (p1 ≤ p2) 1p1: 3p2:) in if (p2 ≤ p3) x 2p3:

9

If we evaluate this program under Π = p1 ≤ p2, after one step the if branch succeeds yielding

let x : intp2: = 1p1: in if (p2 ≤ p3) x 2p3: (Ex 1)

Now say we wish to change the principal hierarchy to be Π′ = p2 ≤ p3. If we allow this update to occur, then the
program’s next evaluation step will be unsound. It will allow the data 1p1: to flow to variable x, whose label p2: is
not equal or higher under Π′. Clearly, this update should not be permitted.

Noninterference is more subtle because it is a global property: it ratifies all information flows that might occur
during a program’s entire evaluation relative to a single, fixed principal hierarchy. When the hierarchy can change,
this definition no longer makes sense. One alternative is noninterference between updates, meaning that when
a policy update occurs, the history of how some data received a certain label is forgotten, and the question of
noninterference is reconsidered for the current program at the current policy. As motivation for this definition,
imagine some data (a file, say) labeled as p1 : under Π′′ = p1 ≤ p2, p1 ≤ p3, meaning principals p2 and p3 are
allowed to read it. If principal p3 is fired and p4 is hired, we might like to change the principal hierarchy to be
p1 ≤ p2, p1 ≤ p4; i.e. to revoke the assertion p1 ≤ p3 and add the assertion p1 ≤ p4. From the point of view of the
file labeled p1 : and the original hierarchy Π′′, the changed hierarchy both rejects flows previously allowed (p3 can
no longer read the file) and permits flows not previously admitted (p4 can read the file, but could not before). Thus,
at least some portion of the file’s information flow history must be forgotten to permit this intuitively reasonable
policy change.

On the other hand, noninterference between updates can permit unintuitive, perhaps unintended flows. For
example, say the program (Ex 1) takes an additional step under Π yielding

if (p2 ≤ p3) 1p1: 2p3:

Under the initial principal hierarchy Π, the program would terminate with result 2p3:. However, if we were to
change the hierarchy to Π′′′ = p1 ≤ p2, p2 ≤ p3, then the if branch would be taken, and we would terminate
with result 1p1:. The evaluation is sound and noninterfering under Π′′′ from the point of the change to termination.
However, from the point of view of the entire program evaluation, the observed flow would have been disallowed
under Π, and thus violates noninterference when considered relative to Π. Moreover, a program that satisfies non-
interference between updates says nothing about the security ramifications of updates themselves. For example,
one risk is that if an attacker can observe when a policy update occurs and what it consists of, he may be able to
deduce the values of private data in the program.

An ideal security property would both permit policy updates to selectively “forget the past” and also reason
about some flows across updates. It is an open question as to what information flow systems should enforce even
when policy updates are disallowed—noninterference, though commonly supported, is too restrictive in practice.
As a first step, for this paper, we ensure that program execution is sound and respects noninterference between
updates, recognizing and expecting that a better property is needed. We plan to investigate stronger, adequately
expressive security properties in future work.

3.2 Overview of approach

At first glance, defining principal hierarchy updates for λΠ
≤ that ensure soundness and noninterference between

updates may seem straightforward. In particular, we can show noninterference between updates by proving the
standard notion of noninterference: the type system is parameterized by a fixed principal hierarchy that is enforced
as usual, since it implies that as long as the policy does not change, the program is noninterfering.

Proving soundness would seem equally simple: to update the principal hierarchy Π to Π′ while running program
m requires that we simply type check m under Π′: if type checking succeeds then we permit the update. While this

10

approach is sound (by definition), it is overly restrictive. Consider our example program again. Say the program
evaluates under Π and becomes as in Ex 1. Then say we wish to change the hierarchy to be Π′. This program will
not type check since the expression 1p1: cannot be given type intp2: under Π′. But conceptually it should be legal,
because x (which we have substituted for here with 1p1:) should be treated as having type intp2:, as defined in the
original program. This fact is not revealed, however, in the run-time representation of the current state. That is, an
important fact of the past (changing the type of 1p1: to intp2:) has been forgotten.

We can solve this problem by moving away from the view of subtyping as subset to the view of subtyping as
coercion for evaluation. Rather than viewing data 1p1: as having type intp2: under Π, we say that we can coerce
1p1: to a value that has type intp2:; that is, we can coerce it to 1p2:. To do this, we extend λΠ

≤ with permission tags
that act as coercion functions. In particular, the expression [` v `′]1` will evaluate to 1`′ . With this change, our
original program becomes

let x : intp2: = if (p1 ≤ p2) ([p1: v p2:]1p1:) 3p2: in if (p2 ≤ p3) ([p2: v p3:]x) 2p3:

That is, the uses of subsumption are made explicit as tags. Then the program will evaluate under Π to become

if (p2 ≤ p3) ([p2: v p3:]1p2:) 2p3:

Now we can see that changing to Π′ will be legal, as 1 has a label that can be properly typed in the new policy. At
the same time, we still prevent illegal updates to the policy. In the more general case that 1p1: were some expression
mp1:, it would be unsound for the policy to change until m is a base value. Thus, while m is being evaluated (i.e.,
in the context of the if expression), it is guarded with the tag [p2: v p3:]. An update that violated this constraint
would not be allowed (as desired).

In addition to providing a more flexible coercion semantics, it turns out that permission tags can also lead to
a more efficient implementation. In particular, rather than having to type check the entire program body at each
proposed change in policy, we only need to look at the tags, which succinctly capture how the current policy is
being used. Section 4 presents a dynamic traversal that discovers these tags at update points without having to
consider function bodies. We conjecture that with only a little more work, we can adjust the evaluation semantics
to keep track of the current “tag context”. This would allow us to replace the traversal with a simple check.

3.3 Example

To show how these issues might arise in practice, we conclude this section with an example. Figure 3 shows a class
for accessing the records of a company database, written in a Java-like syntax. This class defines two run-time
principals mgr, which is a division manager, and div, which represents a division of company employees.2 Lines
5 through 8 define some utility functions getting query inputs from the system user, processing them, creating
summaries, and displaying information to the user. The policies on these methods establish that queries and the
resulting processed data are owned by the mgr principal and readable by all principals in the group div, but that the
results of auditing a query are only readable by mgr. These policies are explicit in the program: for example, the
label on line 5 indicates that the result of get_query is owned by the principal mgr and readable by (principals in)
the group div; similarly the audit method takes data readable by div and returns data only readable mgr (owners
are implicitly considered to be readers in our model).

The method access_records is parameterized by a principal emp (employee), which is the current user of
the database system. Line 15 dynamically checks that emp is a member of the division div, whose data is stored
encapsulated in this database object. This line results in a runtime check of the principal hierarchy and succeeds
only if div ≤ emp is true at the time when the check is made. Assuming that check succeeds, employee queries
are received, processed, and displayed to the user until the user quits. In this scenario, the program also audits the

2Run-time principals represent principals as run-time entities, and could readily be added to our system [17].

11

01. class Database {
02. principal div; /* division group */
03. principal mgr; /* manager for the division */
04.
05. Query{mgr:div} get_query() {...}
06. Data{mgr:div} process_query(Query{mgr:div} q) {...}
07. Data{mgr:} audit(Data{mgr:div} d) {...}
08. void display(principal p, Data{mgr:p} {...}
09.
10. void access_records(principal emp) {
11. Query{mgr:div} query;
12. Data{mgr:emp} result;
13. Data{mgr:} summary;
14.
15. if (div < emp) { /* employee is a member of the division */
16. while (true) {
17. query = get_query();
18. if (query == Quit) break;
19. result = process_query(query);
20. summary = audit(result);
21. display(emp, result);
22.
23. if (mgr < emp) { /* employee is a manager */
24. display(emp, summary);
25. }
26. ... /* log audit information */
27. }
28. } else { abort(); }
29. }
30. }

Figure 3: Information-flow in a database system with principal delegations.

employee queries, perhaps to generate some statistics useful for making management decisions. The results of the
audit process are readable only by managers (i.e. those principals p for which mgr ≤ p). For convenience, if the
user of the system is a manager, the results of the audit are displayed immediately—the dynamic check on line
23 ensures that only managers receive this sensitive data. Presumably the program would also log the auditing
information for later inspection by a manager; in this case, the current user is not able to see that data.

The code makes an important assumption: though it checks div ≤ emp only once, it assumes that this relation-
ship holds for the entire execution of the while loop. A problem arises if this relationship is revoked while the
loop executes, say if the employee is fired or just moved to a different division. In this case, an employee who no
longer belonged to a particular division would still have access to its files. Even worse, if the employee were made
a manager (i.e., introducing mgr ≤ emp into the principal hierarchy) in a new division, he would suddenly have
privileges not allowed under either policy—he could read files belonging to his original division. These scenarios
reveal how policy changes can violate both sound execution and our intuitive notion of noninterference.

Introducing permission tags solves these problems. In particular, to store the returned value of process_query
into result, the label of the returned value must be coerced from mgr:div to mgr:emp. This will be witnessed
by a coercion [mgr:div v mgr:emp] on process_query(query), which in turn will prevent the revocation of the

12

t ::= bool` | t→t
v ::= true` | false` | λ[Π]x :u. e E ::= · | E e | v E | if E e e | [` v `]E
e ::= true` | false` | x | λ[Π]x :t. e | e e | if e e e | if (p ≤ p) e e | [` v `]e

Figure 4: Syntax of λΠ
tag : types t, values v, terms e, holes E .

edge div ≤ emp from the principal hierarchy.3

4 A language with dynamic policy and tagging, λΠ
tag

This section formally describes an extension to λΠ
≤, called λΠ

tag , that permits dynamic updates to the principal
hierarchy. As just described, we use permission tags of the form [`1 v `2] to prevent illegal updates of the
principal hierarchy during execution. We prove that λΠ

tag enjoys the security properties of sound execution and
noninterference described earlier, even as policies change at run-time. Permission tag annotations need not burden
the programmer; they can be automatically inserted by the compiler. At the end of this section, we present an
automatic translation from the source calculus presented earlier to the target calculus here, based on the standard
formulation of subtyping as coercions, and prove it sound.

The syntax of λΠ
tag is presented in Figure 4, and closely matches the source calculus, λΠ

≤ in Section 2, except the
addition of permission tags. The typing rules are the same, with one exception: the subsumption rule for subtyping
is now eliminated, effectively replaced by the new typing rule for tags:

Π ` `1 v `2 Π;Γ ` e : bool`1

Π;Γ ` [`1 v `2]e : bool`2

We maintain the invariant that the current principal hierarchy Π always respects the permission tag [`1 v `2]
around the term e, as shown in the judgment Π ` `1 v `2. Another invariant, which is enforced during the
translation in Section 4.2, is that only boolean values are tagged. This permits the following evaluation rules:

Π ` [`1 v `2]true`1 −→ true`2 Π ` [`1 v `2]false`1 −→ false`2

Functions are not directly tagged: they contain future computations in the body that, unlike booleans, cannot
be coerced to work under different security policies. Our strategy is to extend function terms with the permission
context, λ[Π′]x : t. e, such that the context Π′ of the function body can be summarized to guard against illegal
updates. The typing rules for functions and applications are:

Π ≤ Π′ Π′; Γ, x :t1 ` e : t2

Π;Γ ` λ[Π′]x :t1. e : t1→t2

Π;Γ ` e1 : u1→u2 Π;Γ ` e2 : u1

Π;Γ ` e1 e2 : u2

Given these tags, we can soundly and efficiently check if a policy update is legal during execution. We introduce
dynamic tag checking Π ` e, as shown in Figure 5, for ensuring that principal hierarchy Π is valid with respect
to the running program e. Any hierarchy is valid against boolean values. Section 4.1 proves that that the dynamic
tag checking soundly approximates the static type checking with respect to the validity of policy updates.

At last, we formalize an update to the principal hierarchy of an evaluating program by defining a top-level
evaluation relation. Under hierarchy Π, a program can either take a small evaluation step, or change to use the

3In a formal operational semantics, loops are implemented by expanding each iteration of the loop into to a fresh version of the original.
Each fresh version would contain this tag, preventing any update that would violate it for the duration of the loop’s execution.

13

Π ≤ Π′

Π ` λ[Π′]x :t. e
Π ` e1 Π ` e2

Π ` e1 e2

Π, p1 ≤ p2 ` e1 Π ` e2

Π ` if (p1 ≤ p2) e1 e2

Π ` `1 v `2 Π ` e

Π ` [`1 v `2]e

Π ` true` Π ` false`

Π ` e1 Π ` e2 Π ` e3

Π ` if e1 e2 e3

Figure 5: Tag checking Π ` e (determines whether principal hierarchy Π is legal for the running program e).

pending hierarchy Π′. The latter step is only permitted if the new hierarchy is legal with respect to the current
program, that is, if dynamic tag checking Π ` e succeeds:

Π ` e −→ e′

(Π; e)|Π′ −→ (Π; e′)
Π′ ` e

(Π; e)|Π′ −→ (Π′; e)

Note that dynamic tag checking is meant to approximate an implementation. That is, while our formulation
requires a traversal over the active part of the program (i.e., the part without functional terms), this traversal
could be avoided by statically gathering the set of tags S, S′ that appear in the body e1, e2, respectively, of each
if (p1 ≤ p2) e1 e2 expression, and then annotating the if with a tag constraint (p1 ≤ p2 ⇒ S) ∪ S′ (similar to
conditional types [1]). These tag constraints can be maintained to form a tag context at run-time, so that dynamic
tag checking merely considers the current tag context, rather than the active part of the program.

4.1 Security theorems

To show that the execution of a program written in our calculus is sound, we prove that any well-typed, closed
term runs without any error. To show that the information flow satisfies end-to-end security, we prove that any
well-typed low-security term is noninterfering by the high-security data. These type safety and the noninterference
properties are formally stated as follows.

Here ⇓ is the top-level evaluation for the whole program, ignoring the number of policy updates, while −→∗ is
the transitive-closure of the non-updating evaluations. Therefore, type safety is guaranteed during the evaluation
of the whole program, but noninterference is guaranteed between updates (as discussed in Section 3.1).

Theorem 1 (Security of dynamic policy updating)

1. Type safety during execution: If Π; · ` e : t, then (Π, e) ⇓ (Π′, v).

2. Noninterference between updates: If (1) Π; x : bool`1 ` e : bool`2 , and (2) Π; · ` v1 : bool`1 , and (3)
Π; · ` v2 : bool`1 , and (4) Π ` `1 6� `2, then Π ` e{v1/x} −→∗ v iff Π ` e{v2/x} −→∗ v.

The proof for type-safety uses the standard technique of combining the progress and the preservation of a well-
typed term. Some important lemmas for showing the soundness of tagging and tag checking are below. The first
lemma states a well-typed value can also be well-typed under the empty principal hierarchy Π = ·, which is critical
in the substitution lemma. The second states that the evaluation rule Π ` if (p1 ≤ p2) m1 m2 −→ m1 in Section 2
is type-preserving. The last lemma below shows that dynamic checking Π ` e is a sound approximation of static
type checking Π;Γ ` e : t.

14

r Π;Γ, x :u1 ` m : u2

Π;Γ ` λx :u1. m : u1→u2

z
= λ[Π]x :Ju1K. JΠ;Γ, x :u1 ` m : u2K

rΠ;Γ ` m : u1 Π ` u1 � u2

Π;Γ ` m : u2

z
= JΠ ` u1 � u2K JΠ;Γ ` m : u1K

JΠ ` bool`1 � bool`2K = λ[Π]x :bool`1 . [`1 v `2] x (fresh x)

rΠ ` u3 � u1 Π ` u2 � u4

Π ` u1→u2 � u3→u4

z
= λ[Π]x1 :Ju1K→Ju2K. λ[Π]x2 :Ju3K. (fresh x1, x2)

JΠ ` u2 � u4K (x1 (JΠ ` u3 � u1K x2))

Figure 6: Translating principal delegations to permission taggings.

Lemma 2 (Soundness of dynamic tag checking)

1. If Π;Γ ` v : t, then ·; Γ ` v : t.

2. If Π, p1 ≤ p2; Γ ` e : t and Π ` p1 ≤ p2, then Π;Γ ` e : t.

3. If Π; · ` e : t, then Π ` e. Moreover, if Π; · ` e : t and Π′ ` e, then Π′; · ` e : t.

The proof for noninterference uses a logical relation for modeling the observable equivalence of a well-typed
term with respect to an external observer, and shows that the substitutions preserve the equivalence [17]. Space
precludes a formal development of the proofs here. Our companion technical report contains the complete rules
of our calculus and the full proofs of both the type-safety and the noninterference properties. In addition, the
type-safety property of the target language as well as the soundness of the translation in the next subsection are
formally specified and mechanically verified4 in Twelf (a logical framework).

4.2 Translation from λΠ
≤ to λΠ

tag

Figure 6 shows the translation rules from the typing derivation of a λΠ
≤ term m to a typing derivation of a λΠ

tag term
e. The main work is in the translation of the subsumption rule which takes the subtyping derivation of the source
types and produces a well-typed coercion function in the target language. Breazu-Tannen et al. propose [3] such
coercion semantics for the subtyping between types in the simply-typed lambda calculus. Our translation slightly
extends the semantics for types with labels and permission tags. Our translation is sound as follows:

Theorem 3 (Soundness of permission tagging)

1. Typing: If JΠ;Γ ` m : uK = e, then Π; JΓK ` e : JuK.

2. Subtyping: If JΠ ` u1 � u2K = e, then Π;Γ ` e : Ju1K→Ju2K.

We conjecture that the translation can be made coherent [3], meaning that target terms translated from different
typing and subtyping derivations of the same source term have the same evaluation behavior. In particular, the

4We do not use the higher-order abstract syntax for encoding variable bindings. We have not performed the totality check which ensures
that all proof cases have been completed — this property is verified externally by hand.

15

tag checking Π ` e performs the same checks whether we tag the function or the argument of an application,
hence coherent in allowing the same set of legal policy updates. To achieve such coherent translation, algorithmic
subtyping must be used, instead of declarative subtyping as presented in this paper. The conversions and theories
between these variants of subtyping are standard [12].

4.3 Discussion

As mentioned in Section 3.1, the fact that a program is noninterfering between updates says nothing of possible
information flows across updates. Indeed, in the system described in this section, if an attacker p3 can observe
when updates occur, and what they consist of, it is possible for the timing of an update to communicate a secret
value. Consider the following program:

let x = (if bp1: (λx :bool. truep1:) (λ[p2 ≤ p1]x :bool. [p2 :v p1 :]truep2:)) in
let y = (if (p2 ≤ p1) truep3: falsep3:) in
let z = . . . use x . . . in y

Suppose that the program begins evaluating with principal hierarchy Π = p2 ≤ p1 and that an update Π′ = ∅
becomes available just after x has been computed (call this program p). In the case that b was truep1: then p
would be

let x = λx :bool. truep1: in
let y = (if (p2 ≤ p1) truep3: falsep3:) in
let z = . . . use x . . . in y

Thus, the policy update succeeds and falsep3: is returned. On the other hand, if b was falsep1:, then p is

let x = λ[p2 ≤ p1]x :bool. [p2 :v p1 :]truep2: in
let y = (if (p2 ≤ p1) truep3: falsep3:) in
let z = . . . use x . . . in y

Thus, the policy update is delayed due to the annotation p2 ≤ p1 on the function x until z has been evaluated,
meaning that truep1: is returned. Hence, p3 is able to observe bp1

even though this is allowed by neither Π or Π′.
This particular example is an artifact of our dynamic tag checking algorithm, since it treats each branch of

the initial if independently, once evaluated. A more static checking system, suggested earlier, would impose
the same constraint on updates whichever function was chosen for x, and eliminate this flow. Nonetheless, the
noninterference between updates property is too weak to illuminate this issue or its proposed fix, so we plan to
consider refinements in future work.

5 Related Work

Security-typed languages for enforcing information flow control are a rich area of research [14]. Security policies
are expressed as labels on terms and a principal hierarchy defining delegation relationships; in most systems this
hierarchy is fixed at compile-time. Jif [10] and recent formal work [17, 19] support runtime principals, which
make it possible for the hierarchy to grow at runtime, but do not allow revocations. Our calculus is the first to
address generalized, dynamic updates to the principal hierarchy.

Security-type systems are intended to provide a noninterference guarantee [13, 4, 5, 9], modulo certain small-
bandwidth information channels permitted for performance reasons (timing and termination channels) and an
explicit “escape hatch” in the form of a robust downgrading mechanism. The introduction of such downgrading
into these languages opened a new chapter in discussions about the meaning of noninterference that is still on-
going [18, 11, 8, 15]. As we have described, our dynamic policy updating is complementary to declassification.

16

Declassification, as typically used, relabels a data value from one label to another; policy updates as considered in
this paper permit the relationship between the labels to change over time. Both features are necessary in practice,
and both can potentially be abused—it is possible that work on structured uses of declassification, as provided by
robustness [18, 11] or intransitive-noninterference [8] may apply to policy updates as well. We believe our dis-
cussion of dynamic policy updating here provides a new avenue for understanding the meaning of noninterference
policies for realistic programs.

This work was inspired by a similar system called Proteus that we developed for ensuring type-safety of dynamic
software updates [16]. In Proteus, users can define named types T. When given that type T= t (for some type
t), treating a value of type T as a t or vice versa requires an explicit coercion. When a program is dynamically
updated to change the definition of T to be t′, a dynamic analysis can check for these coercions in any functions
not being updated (updated functions are assumed compatible with the new definition). If such a coercion is found
then the update is only allowed if Γ ` t′ � t, where Γ is the updated type environment. This dynamic analysis
is analogous to dynamic tag checking Π ` e, which essentially ensures for the new Π that Π ` `1 v `2 for all
tags [`1 v `2] in e. In Proteus, this dynamic analysis can be replaced with a simpler run-time given certain static
information; we conjecture a similar result for λΠ

tag .
Primarily in the context of public key infrastructures (PKI), the specific case of credentials revocation has been

the subject of considerable study [6, 2]. This work has focused on the exploration of the fundamental tradeoff
between security and cost. To simplify, on-line revocation servers effectively permit only a very small window
of vulnerability for illicit use of compromised credentials, but often incur a high computation cost. Off-line
systems provide a lower computational cost, but do so at the expense of longer latencies for receiving revocation
notification. The issue of introducing policy revocation into a running program in a way that maintains sound
execution has not been explored in the literature.

6 Conclusion

We have presented a new security-typed language that allows dynamic updating of information-flow policies,
in particular the delegation relations in the principal hierarchy. Assumptions needed for sound execution can
be represented within the program as permission tags, and a run-time tag checking mechanism can be used to
prevent illegal updates to the principal hierarchy. Tags are implemented as run-time coercions that capture dynamic
labeling behavior, which can prevent spurious rejection of legal policy updates. Tags are added to programs via an
automatic translation from a standard source language. We are the first to formalize an information flow language
that is sound yet permits dynamic revocations. Our language also satisfies noninterference between updates, which
seems to us be a reasonable security property in the presence of updates. We hope that our work stimulates interest
in making security-typed languages expressive enough to be used in real systems, where policies regularly change.

Acknowledgments We thank Jeff Foster, Peter Sewell, and the anonymous reviewers for their comments. Hicks
is supported in part by NSF grant CCF-0346989 (CAREER: Programming Languages for Reliable and Secure
Low-level Systems). Zdancewic and Tse are supported in part by NSF grant CCR-0311204 (Dynamic Security
Policies) and NSF grant CNS-0346939 (CAREER: Language-based Distributed System Security).

References

[1] Alexander Aiken, Edward L. Wimmers, and T. K. Lakshman. Soft typing with conditional types. In Pro-
ceedings of the ACM Symposium on Principles of Programming Languages, pages 163–173, 1994.

[2] D. Boneh, X. Ding, G. Tsudik, and M. Wong. A method for fast revocation of public key certificates and
security capabilities. In Proceedings of USENIX Security Symposium, pages 297–308, Aug 2001.

17

[3] Val Breazu-Tannen, Thierry Coquand, Carl Gunter, and Andre Scedrov. Inheritance as implicit coercion.
Information and Computation, 93:172–221, 1991.

[4] J. A. Goguen and J. Meseguer. Security policies and security models. In IEEE Symposium on Security and
Privacy, pages 11–20. IEEE Computer Society Press, April 1982.

[5] J. A. Goguen and J. Meseguer. Unwinding and inference control. In IEEE Symposium on Security and
Privacy, pages 75–86. IEEE Computer Society Press, April 1984.

[6] Carl A. Gunter and Trevor Jim. Generalized Certificate Revocation. In ACM Symposium on Principles of
Programming Languages, 2000.

[7] Nevin Heintze and Jon G. Riecke. The SLam Calculus: Programming with Secrecy and Integrity. In ACM
Conference on Principles of Programming Languages (POPL), 1998.

[8] Heiko Mantel and David Sands. Controlled declassification based on intransitive noninterference. In Pro-
ceedings of the 2nd ASIAN Symposium on Programming Languages and Systems, APLAS 2004, volume 3302
of LNCS, pages 129–145. Springer Verlag, 2004.

[9] John McLean. Security models and information flow. In IEEE Symposium on Security and Privacy, pages
180–187. IEEE Computer Society Press, 1990.

[10] Andrew C. Myers. Mostly-static decentralized information flow control. Technical Report MIT/LCS/TR-
783, Massachussetts Institute of Technology, University of Cambridge, January 1999. Ph.D. thesis.

[11] Andrew C. Myers, Andrei Sabelfeld, and Steve Zdancewic. Enforcing Robust Declassification. In Proc.
of 17th IEEE Computer Security Foundations Workshop, pages 172–186, Asilomar, CA, June 2004. IEEE
Computer Society Press.

[12] Benjamin Pierce. Types and Programming Languages. MIT Press, 2002.

[13] John C. Reynolds. Syntactic control of interference. In Proc. 5th ACM Symp. on Principles of Programming
Languages (POPL), pages 39–46, 1978.

[14] Andrei Sabelfeld and Andrew C. Myers. Language-based information-flow security. IEEE Journal on Se-
lected Areas in Communications, 21(1):5–19, January 2003.

[15] Andrei Sabelfeld and David Sands. Dimensions and principles of declassification. In Proc. of the 18th IEEE
Computer Security Foundations Workshop, 2005.

[16] Gareth Stoyle, Michael Hicks, Gavin Bierman, Peter Sewell, and Iulian Neamtiu. Mutatis Mutandis: Safe and
flexible dynamic software updating. In Proceedings of theACM Conference on Principles of Programming
Languages (POPL), January 2005.

[17] Stephen Tse and Steve Zdancewic. Run-time Principals in Information-flow Type Systems. In IEEE 2004
Symposium on Security and Privacy. IEEE Computer Society Press, May 2004.

[18] Steve Zdancewic and Andrew C. Myers. Robust declassification. In Proc. of 14th IEEE Computer Security
Foundations Workshop, pages 15–23, Cape Breton, Canada, June 2001.

[19] Lantian Zheng and Andrew C. Myers. Dynamic security labels and noninterference. In Proceedings of
the 2nd International Workshop on Formal Aspects in Security and Trust (FAST), Toulouse, France, August
2004.

18

Monitoring Information Flow

Gurvan Le Guernic Thomas Jensen
Université de Rennes 1 / CNRS

IRISA,Campus de Beaulieu, 35042 Rennes Cedex, France
{gleguern,jensen}@irisa.fr

Abstract

We present an information flow monitoring mechanism for sequential programs. The monitor executes a
program on standard data that are tagged with labels indicating their security level. We formalize the monitor-
ing mechanism as a big-step operational semantics that integrates a static information flow analysis to gather
information flow properties of non-executed branches of theprogram. Using the information flow monitoring
mechanism, it is then possible to partition the set of all executions in two sets. The first one contains executions
whichare safeand the other one contains executions whichmay be unsafe. Based on this information, we show
that, by resetting the value of some output variables, it is possible to alter the behavior of executions belonging
to the second set in order to ensure the confidentiality of secret data.

Keywords: security, noninterference, language-based security, information flow control, monitoring, dy-
namic analyses, semantics

1 Introduction

This paper is concerned with the monitoring (or dynamic analysis) of information flow in sequential programs
in order to ensure confidentiality. The goal of confidentiality analysis is to ensure that secret data will not be
revealed to unauthorized parties by the execution of a program [3, 6]. A by now standard way of formalizing
safe information flow is via the notion ofnoninterferenceintroduced by Goguen and Meseguer [9]. Following the
notation of Sabelfeld and Myers [18], noninterference (w.r.t. some low-equivalence relations=L and≈L on states
and observations) can be expressed as follows:

∀s1, s2 ∈ S. s1 =L s2 ⇒ [[C]]s1 ≈L [[C]]s2 (1)

This equation states that a commandC is said to benoninterferingif and only if for any two statess1 ands2

that associate the same value to low (public) data (writtens1 =L s2), the executions of the commandC in the
initial states1 ands2 are “low-equivalent” ([[C]]s1 ≈L [[C]]s2). The “low-equivalent” relation characterizes the
observational power of the attacker, by stating what he can distinguish. This may vary from requiring the output
of low level of security to be equal for both executions, to requiring the two executions to have the same energy
consumption. In the work presented in this paper, the attacker is considered to be only able to observe the low data
of the initial state and of the final state.

As witnessed by the recent survey paper by Myers and Sabelfeld [18] there has been a substantial amount
of research on static analysis for checking the noninterference property of programs, starting with the abstract
interpretation of Mizuno and Schmidt [10] and the type basedapproach of Volpano, Smith and Irvine [21, 22].
Static analyses may reject a program because ofsomeof its executions which might be unsafe; and thus deny

19

executions which are safe. The work presented in this paper attempt at preventing executions which are unsafe,
while still allowing safe ones. This requires the definitionof what is meant by “safe execution”. An execution of
a commandC starting in the original states1 is said to be safe (or noninterfering) if and only if:

∀s2 ∈ S. s2 =L s1 ⇒ [[C]]s1 ≈L [[C]]s2 (2)

In order to allow such noninterfering executions, one approach could consist in combining a standard static
information flow analysis with other static analyses in order to determine conditions on input that lead to noninter-
fering executions. The determination of such conditions isa difficult problem. For example, it would be possible
to run a partial evaluation of the program followed by a standard information flow analysis. However there would
be infinitely many partial evaluations to run, one for each set of low-equivalent initial states. The approach pre-
sented in this paper extends the execution mechanism with a monitor that allows detecting illicit information flows
and forbids final states which contain illicit information flows. This will allow validating certain executions of
programs beyond the reach of current static analyses, at theprice of additional run-time overhead incurred by the
monitoring.

Monitoring information flow is more complicated thane.g. monitoring divisions by zero, since it has to take
into account not only the current state of the program but also the execution paths that were not taken during
execution. For example, executions in an initial state where h is false andx is 0 of
(a) if h then x := 1 else skip;
and
(b) if h then skip else skip;
are equivalent concerning executed commands. However, if (b) is obviously a noninterfering program, the exe-
cution of (a) with the given initial state is not noninterfering. The execution of (a), with a low-equivalent initial
state whereh is true andx is 0, does not give the same final value for the low outputx .

This leads to a monitoring mechanism which integrates a static analysis of commands which were not executed.
The monitor will be defined formally as an operational semantics ([[]]) computing with tagged values. At any step
of the evaluation of a program, the tags associated to any data identify a set of inputs which may have influenced
the current value of the data up to this evaluation step. Thismonitoring mechanism is combined with a predicate
(Safe) on the final state of the computation to obtain the followingproperty for any commandC:

∀s1 ∈ S. Safe([[C]]s1) ⇒ (∀s2 ∈ S. s2 =L s1 ⇒ [[C]]s1 ≈L [[C]]s2) (3)

This states that all executions starting in a start state whose low (public) part is identical to the low part of the
initial state of an execution satisfyingSafe will be noninterfering (i.e. return the same values for low output).
By comparison with static information flow analyses, we obtain information flow knowledge for a restricted set
of input states, whereas static analyses infer a result valid for all executions. This implies a restriction of the
potential paths taken into account; which enables the achievement of a better precision than with a standard static
information flow analysis.

The paper is organized as follows. The next section presentsa semantics integrating a monitor of information
flow. It also gives a definition of the predicateSafe. This semantics and the predicate definition satisfy the
equation (3), hence with this pair (semantics and predicate) it is possible to detect noninterfering executions. Once
an information leak has been detected, the program behaviormust be modified in order to prevent the leakage.
Section 3 explores the idea of program behavior alteration based on information flow monitoring in order to
ensure the respect of the confidentiality of secret data. It is observed that a simple analysis as the one developed
in Section 2, althoughsoundwith regard to noninterference between secret inputs and public outputs, is not
adequate to serve as a basis for behavior alteration. We thenshow a possible refinement of the analysis so that the
information flow monitoring mechanism can “safely” direct the program’s behavior alteration. Finally, the paper
concludes by presenting some related works and possible future developments of the information flow monitoring
approach.

20

2 Detecting noninterfering executions

The programming language considered in this paper is a sequential language with integer and boolean expressions
and including loop, conditional and assignment statements. The grammar is given in Figure 1.c stands for any
constant value,op for any binary operator or relation on values, andid for any variable identifier (or name).

v ::= c

e ::= e1 op e2 | id | v

S ::= if e then S else S end

| while e do S done

| S ; S | skip | id := e

Figure 1: Grammar of the language

Variables and values are tagged with labels, intended for indicating their security level. In order to simplify
our exploration of the concepts exposed in this paper, the security lattice considered is constituted of only two
elements (> and⊥ with the usual ordering⊥ v >).

The special semantics on tagged data is defined as a “big step”evaluation semantics that defines an evaluation
relation⇓. It uses a value store to keep track of the value of variables.Similarly, a “tag store” is used to track the
information flow between the inputs of the program and the current values in variables. Each input of the program
receives a tag which reflects its security level (> for high (secret) input and⊥ for low (public) input). At any step
of the execution, the set of tags associated to any variable by the “tag store” contains the tag of any input which
has influenced the current value of the variable.

The forms of semantic judgments are described on top of Figure 2. The first environmental parameter is the
value store (notedσ in the semantics rules); the second one is the tag store (noted ρ in the semantics rules). The
evaluation of an expression returns a value and a set of tags.This set includes the tag of all input whose value
influenced the value of the expression evaluated. For the evaluation of statements there is a third environmental
parameter (notedT pc in the semantics rules). It is a set of tags reflecting the information flowing through the
“program counter”. It contains the tag of any input which hasinfluenced the control flow of the program up to this
point in the evaluation. The evaluation of a statement returns a new value store and a new tag store reflecting all
the previous information flows created and those generated by the evaluation of this statement.

2.1 SDIF: Static and Dynamic Information Flow analysis

The semantic rules are given in Figure 2 page 4. In order to reduce the number of rules and focus on the
information flow computation mechanism, the semantics usesop andc. op is the function corresponding to the
symbolop. Similarly, c is the value corresponding to the constantc .

The rule (ES-ASSIGN) updates the value of the variable “id” with the result of the evaluation of the expression
e. It also updates the tags set of the variable in the resultingtags store. The new tags set is the union ofT e, which
reflects the information flowing through the expression, andT pc, which reflects the information flowing through
the control flow of the program. The rule (ES -IF) evaluates the statement designated by the evaluation of the
conditione, and updates the resulting tags store with the information flows created by the branch not evaluated
using a special functionΦ.

The functionΦ (: Id → P(Tag)) × P(Tag) × S → (Id → P(Tag)) is used whenever anif -statement is
evaluated. Its aim is to modify the tag store so that it reflects the information flow created by the fact that one
branch of the statement is not executed. In the following program “if h then x := k else skip end ”,

21

(Id → Value); (Id → P(Tag)) `S Expr ⇓ Value : P(Tag)

(Id → Value); (Id → P(Tag));P(Tag) `S S ⇓ (Id → Value) : (Id → P(Tag))

σ; ρ `S e ⇓ v : T e σ; ρ;T pc ∪ T e `S Sv ⇓ σ′ : ρ′

σ; ρ;T pc `S if e then Strue else Sfalse end ⇓ σ′ : Φ(ρ′, T e, S¬v)
(ES -IF)

σ; ρ;T pc `S if e then S ; while e do S done else skip end ⇓ σ′ : ρ′

σ; ρ;T pc `S while e do S done ⇓ σ′ : ρ′
(ES -WHILE)

σ; ρ `S e ⇓ v : T e

σ; ρ;T pc `S id := e ⇓ [id 7→ v]σ : [id 7→ T pc ∪ T e]ρ
(ES -ASSIGN)

σ; ρ;T pc `S skip ⇓ σ : ρ
(ES -SKIP)

σ; ρ;T pc `S S1 ⇓ σ′ : ρ′ σ′; ρ′;T pc `S S2 ⇓ σ′′ : ρ′′

σ; ρ;T pc `S S1 ; S2 ⇓ σ′′ : ρ′′
(ES -SEQUENCE)

σ; ρ `S e1 ⇓ v1 : T1 σ; ρ `S e2 ⇓ v2 : T2

σ; ρ `S e1 op e2 ⇓ op(v1, v2) : T1 ∪ T2

(ES -OP)

σ; ρ `S id ⇓ σ(id) : ρ(id)
(ES-VAR)

σ; ρ `S c ⇓ c : ∅
(ES-VAL)

Figure 2: Semantics rules

the fact thatx is different fromk means that thethen -branch has not been executed; and then thath is false.
In this situation (whereh is false), the final value ofx is influenced by the initial value ofh but not ofk ; even
if k is the expression appearing on the right side of the assignment. The functionΦ is built and used in order to
take into account such information flows. A definition of the functionΦ is given in Figure 3 using a combining
functionq (q ≡ λfλgλx. (f x) ∪ (g x)). Φ adds the tags appearing in the tags set given in parameter to the tags
set associated to any variable appearing on the left side of an assignment statement.

Φ(ρ, T, “S1 ; S2”) = Φ(ρ, T, “S1”) q Φ(ρ, T, “S2”)

Φ(ρ, T, “if e then S1 else S2 end”) = Φ(ρ, T, “S1”) q Φ(ρ, T, “S2”)

Φ(ρ, T, “while e do S done”) = Φ(ρ, T, “S”)

Φ(ρ, T, “id := e”) = [id 7→ (ρ(id) ∪ T)]ρ

Φ(ρ, T, “skip”) = ρ

Figure 3:Φ’s semantics

The definition given here is a simple one. However it is sufficient to detect noninterfering executions with a
reasonable level of precision. In the majority of cases, forprograms manipulating more public inputs than secret

22

ones, the method presented in this section is more precise than flow insensitive analyses. Among those flow
insensitive analyses are the standard security type systems which are wildly studied in the domain of language
based security. In the following program, wherel is a public input,h a secret input,x a public output andtmp
a temporary variable, a type system would give a security level to x at least as high than the one ofh; and then
reject the program.

1 if (l < 0) then { tmp := h } else { skip } end
2 if (l > 0) then { x := tmp } else { skip } end

Using the semantics of Figure 2, all the executions of this program are detected as noninterfering (i.e. the tag ofx
at the end of the execution is⊥). The reason of this better precision lies in the fact that the monitoring mechanism
gives us the best possiblelow control flowinformation: low control flowdesignates the control flow produced by
branching statements whose condition has a low level of security.

The evaluation of a command produces a value store and a tag store. The notation[[C]]Vσ,ρ designates the output
value store produced by the evaluation of the commandC with input valuesσ and input tagsρ. [[C]]Tσ,ρ is similarly
defined to be the output tag store. To summarize on those notations, the following holds:

σ; ρ; ∅ `S C ⇓ [[C]]Vσ,ρ : [[C]]Tσ,ρ

Four sets of variables give a security specification of the program.Hi andLi form a partition of the program’s
variables. Hi contains the variables holding a secret data in the initial sate (i.e. secret inputs) andLi contains
public inputs. Similarly,Ho andLo form a partition of the program’s variables in which publicly observable
variables in the final state belong toLo and unobservable variables in the final state belong toHo. A tag storeρ is
said “well-tagged” if it respects the following properties:

∀x ∈ Hi. ρ(x) = {>}

∀x ∈ Li. ρ(x) = {⊥}

Definition 2.1 (Safe)
Safe([[C]]Tσ1,ρ) ≡ ∀x ∈ Lo. [[C]]Tσ1,ρ(x) ⊆ {⊥}

Using the semantics and definition ofSafe presented, the following theorem is an instance of the schema in
equation (3).

Theorem 2.1 For any commandC, value storesσ1 andσ2, and “well-tagged” tag storeρ, such thatSafe([[C]]Tσ1,ρ)

and [[C]]Vσ2,ρ 6= ⊥, if σ1 =Li
σ2 then[[C]]Vσ1,ρ =Lo

[[C]]Vσ2,ρ.

This theorem states that, for a given command, if the low outputs of an executionε are all tagged with⊥, then for
all other terminating execution if the low inputs are equal to those ofε, (σ1 =Li

σ2), then the low outputs will be
equal to those ofε, ([[C]]Vσ1,ρ =Lo

[[C]]Vσ2,ρ).
The theorem 2.1 is similar to the equation (3) given in introduction. In fact, as the attacker can only observe

the low outputs, the equality of the low outputs ([[C]]Vσ1,ρ =Lo
[[C]]Vσ2,ρ) matches the equivalence of the final states

as defined in the equation ([[C]]s1 ≈L [[C]]s2). And similarly, the equality of low inputs (σ1 =Li
σ2) corresponds

to the low equivalence of the initial states. The only visible difference is the statement “[[C]]Vσ2,ρ 6= ⊥” in the
theorem 2.1. However, as the attacker is unable to observe the termination behavior of the program, this statement
is implied by the definition of low-equivalence of final states used in the equation (3). Therefore, we can conclude
that if all the low outputs are tagged with⊥ then the current execution is noninterfering, and then an attacker is
unable to deduce any information about the high inputs.

23

To illustrate what precede, the result of the evaluation of the following programP is given in Table 1.

1 x := 0;
2 if l then
3 if h then { x := 1 } else { skip } end
4 else { skip } end

In this program,x is a low level output,l is a low level input (with tag⊥), andh is a high input (with tag>).

σ(l) σ(h) [[P]]Vσ,ρ(x) [[P]]Tσ,ρ(x)
True True 1 >
True False 0 >
False True 0 ⊥

False False 0 ⊥

Table 1: Results for the outputx

3 Altering the program’s behavior

The semantics described in the previous section enables thedetectionof a subset of noninterfering executions. The
next step consists in the alteration of programs behavior inorder toenforcethe confidentiality of secret data. Our
goal is to ensure that the set of all altered executions, for any programP, respects the noninterference property of
Goguen and Meseguer as defined by the equation (1). This property states that any execution of the program is a
noninterfering execution as defined by the equation (2). Consequently, the behavior alteration consists in:

• doing nothing for executions which are detected as noninterfering,

• modifying the output values of executions which may be interfering.

The altered execution of the programP started in the initial states is noted[̃[P]]s.
The predicateSafe partitions the set of executions of the programP into two setsEni (containing the executions

for which the predicateSafe is true) andE? (containing the executions for which the predicateSafe is false). From
the equation (3), we know that all the executions inEni are noninterfering. The problem lies in the executions of
E? among which some are noninterfering and some are not, and so may reveal information about the secret data.
The solution envisioned consists in using a default output statesd

o. As it is possible to detect, during the execution
of the programP, if the current execution belongs toEni or E?, it is possible to force the output store of all the
executions belonging toE? to besd

o. Then, for any programP and initial states1 the following properties hold:

Safe([[P]]s1) ⇒ (Safe([̃[P]]s1) ∧ (∀s2 ∈ S. s2 =L s1 ⇒ [̃[P]]s1 = [[P]]s1 ≈L [[P]]s2 = [̃[P]]s2)) (4)

¬Safe([[P]]s1) ⇒ (¬Safe([̃[P]]s1) ∧ [̃[P]]s1 = sd
o) (5)

If the predicateSafe gives the same answer for any two executions started in low-equivalent states, then the
equations (4) and (5) imply that for all altered executions of any programP the following holds:

∀s1, s2 ∈ S. s2 =L s1 ⇒ (([̃[P]]s1 ≈L [̃[P]]s2) ∨ [̃[P]]s1 = [̃[P]]s2 = sd
o) (6)

It is then obvious that the set of all altered executions, forany programP, respects the noninterference property of
Goguen and Meseguer as defined in equation (1).

24

The following example illustrates the ideas exposed above using a program transformation altering the final
value of the outputx depending on its final tag.

1 x := 0;
2 if h then
3 if l then { x := 1 } else { skip } end
4 else { skip } end
5 if (T in tag(x)) then { x := 2 }

The 4 first lines correspond to the original program in whichx is a low level output,l is a low level input (with tag
⊥), andh is a high input (with tag>). The 5th line is added to prevent information leakage. If, at the beginning
of line 5, the tag ofx contains>, thenx is reset to a default value (2 in this case, it could be what ever value is
desired). The idea behind the 5th line is thatif , at the beginning of line 5,x may have different values for two
executions having the same low inputsthen the tag ofx will be >; so the test of the 5th line will succeed for both
executionsand then x will be reset to the same value (2 in this case) for both executions. This way, the program
has been corrected in order to respect the noninterference property.

The tag, as computed by the semantics given in Section 2, at the end of line 4 (i.e. just before the information
flow test) is given in Table 2 as a function of the input value ofl (horizontally) andh (vertically). In this program,

P
P

P
P

P
P

P
PP

σ(h)
σ(l)

True False

True > ⊥

False > >

Table 2:[[P]]Tσ,ρ(x)

if l is true it is possible to deduce the value ofh by looking at the value ofx before line 5. Ifx is 1 thenh is true,
and if x is 0 thenh is false. This is reflected by the tag ofx which is> in both cases. Consequently, the value
of x will be reset in both cases; those two altered executions of the program will then respect the noninterference
property (i.e. the value of the output x is identical whatever the value of the high input is). Nevertheless, the
statement added for correction is troublesome in a situation which was safe without it.

If l is false thenx is equal to 0 whatever the value ofh is. This means that those two executions respect the
noninterference property before line 5. However, the tag ofx is ⊥ if h is true, and> if h is false. Both tags are
correct because there is no flow fromh to x and the tag reflects only a “mayinfluence” relation. The problem with
those tags is that, in the case wherel is false, the correcting statement will change the value ofx if and only if h
is false. So, in the case wherel is false, the value ofx after the line 5 depends on the value ofh. This implies that
the set of all altered executions of the program does not respect the noninterference property.

3.1 A fully dynamic tag semantics

As shown in what precedes, in order for the equation (6) to holds, it is required that the predicateSafe returns
the same answer for two executions started in low-equivalent states. If and only if that is the case, it is possible
to secure programs based on the information flow computed dynamically. In our case, it means that the semantics
must compute the same output tag stores for any two executions having the same low inputs. It is not the case for
the semantics studied in Section 2.

Another semantics, whose rules can be found in Figure 4 page 8, has been developed. This semantics goes
through all possible paths in order to compute adequate tags. When it encounters a branching statement it evaluates
completely the branch that the condition designates (i.e. computes the new value store and tag store), and computes

25

σ; ρ `F e ⇓ v : T e

σ; ρ;T pc ∪ T e `F Strue ⇓ σtrue : ρtrue

σ; ρ;T pc ∪ T e `F Sfalse ⇓ σfalse : ρfalse

σ; ρ;T pc `F if e then Strue else Sfalse end ⇓ σv : {|ρtrue, ρfalse|}
T e

v

(EF -IF)

σ; ρ `F e ⇓ v : T e

σ; ρ;T pc ∪ T e `F S ; while e do S done ⇓ σ′ : ρ′

σ; ρ;T pc `F while e do S done ⇓ {|σ′, σ|}∅v : {|ρ′, ρ|}T e

v

(EF -WHILE)

σ; ρ `F e ⇓ v : T e

σ; ρ;T pc `F id := e ⇓ [id 7→ v]σ : [id 7→ T pc ∪ T e]ρ
(EF -ASSIGN)

σ; ρ;T pc `F skip ⇓ σ : ρ
(EF -SKIP)

σ; ρ;T pc `F S1 ⇓ σ′ : ρ′ σ′; ρ′;T pc `F S2 ⇓ σ′′ : ρ′′

σ; ρ;T pc `F S1 ; S2 ⇓ σ′′ : ρ′′
(EF -SEQUENCE)

σ; ρ `F e1 ⇓ v1 : T1 σ; ρ `F e2 ⇓ v2 : T2

σ; ρ `F e1 op e2 ⇓ op(v1, v2) : T1 ∪ T2

(EF -OP)

σ; ρ `F id ⇓ σ(id) : ρ(id)
(EF -VAR)

σ; ρ `F � ⇓ � : ∅
(EF -VAL)

{|x, y|}T e

v =





x ∪ y if > ∈ T e

x if > 6∈ T e andv = true

y if > 6∈ T e andv = false

Figure 4: Rules of the full-paths semantics

the new tag store returned by the evaluation of the other branch. The tag store the semantics returns in such a
situation is the join of the two tag stores (one for each branch). Using this semantics, the following theorem has
been proved to hold.

Theorem 3.1 For any commandC, value storesσ1 andσ2, and “well-tagged” tag storeρ, such thatSafe([[C]]Tσ1,ρ)

and [[C]]Vσ2,ρ 6= ⊥, if σ1 =Li
σ2 then[[C]]Vσ1,ρ =Lo

[[C]]Vσ2,ρ and [[C]]Tσ1,ρ =Lo
[[C]]Tσ2,ρ.

This is sufficient to be able to safely alter the behavior of programs in order to ensure the respect of the nonin-
terference property. Nevertheless, the semantics used is highly inefficient. For any execution of a program, the
semantics evaluates all paths which are accessible by any execution started in a low-equivalent initial state. More-
over, as soon as the semantics encounters awhile-statement branching on a condition influenced by a high level
input (but not if the condition depends only on public inputs), the semantics loops forever. This is quite disturbing
and the reason for the current development of another semantics.

26

4 Related Works

The vast majority of information flow analyses are static andinvolve type systems [18]. In the recent years,
this approach has reached a good level of maturity. Pottier and Conchon described in [16] a systematic way
of producing a type system usable for checkingnoninterference. Profiting from this maturity, some “real size”
languages including a security oriented type system have been developed. Among them are JFlow [11], JIF [14],
and FlowCaml [19, 17]. There also exists an interpreter for FlowCaml. This interpreter dynamically type data,
commands and functions which are successively evaluated. Nevertheless, it types commands the same way the
static analysis does. And then, the interpreter merges the types of both branches of anif -statement without taking
into account, when possible, the fact that one branch is executed and the other one is not.

One of the drawbacks of type systems concerns the level of approximation involved. In order to improve the
precision of those static analyses, dynamic security testshave been included into some languages and taken into
account in the static analyses. The JFlow language [11, 12],which is an evolution of Java, uses thedecentralized
label modelof Myers and Liskov [13]. In this model, variables receive a label which describes allowed information
flows among the principals of the program. Some dynamic testsof the principals hierarchy and variables labels are
possible, as well as some labels modifications [26]. Zheng and Myers [27] include dynamic security labels which
can be read and tested at run-time. Nevertheless, labels arenot computed at run-time. Using dynamic security
tests similar to the Java stack inspection, Banerjee and Naumann developed in [2] a type system guarantying
noninterference for well-typed programs and taking into account the information about the calling context of
method given by the dynamic tests.

Going further thantestingdynamically labels, there has been research on dynamicallycomputinglabels. At the
level of languages, Abadi, Lampson, and Lévy expose in [1] adynamic analysis based on the labeledλ-calculus
of Lévy. This analysis computes the dependencies between the different parts of aλ-term and its final result in
order to save this result for a faster evaluation of any future equivalentλ-term. Also based on a labeledλ-calculus,
Gandhe, Venkatesh, and Sanyal [8] address the information flow related issue ofneed. It has to be noticed that
even some “real world” languages dispose of similar mechanisms. The language Perl includes a special mode
called “Perl Taint Mode” [23]. In this mode, thedirect information flows originating with user inputs are tracked.
It is done in order to prevent the execution of “bad” commands. None of those works take into accountindirect
flows created by the non-execution of one of the branches of a statement. At the level of operating systems,
Weissman [24] described at the end of the 60’s a security control mechanism which dynamically computes the
security level of newly created files depending on the security level of files previously opened by the current job.
Following a similar approach, Woodward presents itsfloating labelsmethod in [25]. This method deals with the
problem of over-classification of data in computer systems implementing the MAC security model. The main
difference between those two works and ours lies in the granularity of label application. In those models [24, 25],
at any time, there is only one label for all the data manipulated. Data’s “security levels” cannot evolve separately
from each other. More recently, Suh, Lee, Zhang, and Devadaspresented in [20] an architectural mechanism,
calleddynamic information flow tracking. Its aim is to prevent an attacker to gain control of a system by giving
spuriousinputs to a program which may be buggy but is not malicious. Their work looks at the problem of security
under the aspect of integrity and does not take care of information flowing indirectly throw branching statements
containing different assignments. At the level of computers themselves, Fenton [7] describes a small machine,
in which storage locations have afixeddata mark. Those data marks are used to ensure a secure execution with
regard to noninterference between private inputs and non-private outputs. However, the fixed characteristic of
the data marks forbids modularity and reuse of code. As Fenton shows himself, his mechanism does not ensure
confidentiality withvariable data marks. At the same level, Brown and Knight [4] describe amachine which
dynamically computes security level of data in memory wordsand try to ensure that there are no undesirable
flows. This work does not take care of non-executed commands.As it has been shown in this paper, this is a
feature which can be used to gain information about secrets in some cases. For example, Table 1 shows that it

27

is possible to deduce the value ofh when l is true and[[P]]Vσ,ρ(x) is 0; even if no assignment tol or x has been
executed. With a program similar to the one used as example inpage 6, their machine does not prevent the flow
from h to x whenl is true andh is false.

5 Conclusion

In this paper, we refine the notion of noninterference, concerning all possible executions of a program, to a
notion of noninterfering execution. All possible initial states of a program are partitioned in equivalence classes.
The equivalence relation is based on the value of the public inputs of the program. Two initial states are equivalent
if and only if they have the same values for public inputs. An execution, started in the initial states, is said to be
noninterfering if any execution, started in an initial state belonging to the same equivalence class thans, returns
the same values for the public outputs of the program.

Refining the notion of noninterference to the level of execution offers two main advantages. The first one is that
it is now possible tosafelyrun noninterfering executions of a program which is not noninterfering. The second
benefit is a better precision in the analysis of some programs. A static information flow analysis has to take into
consideration all the potential paths of all the executionsof the program. Using the method presented in this paper
to ensure the respect of confidentiality, only the potentialpaths of executions low-equivalent to the current one are
taken into consideration. This feature results in a better precision towards possible execution paths. For example,
in the following program,h is a secret input,l a public input,tmp a temporary variable which is not an output,
andx is the only public output.

1 if ((cos l)ˆ2 < 0.1) then { tmp := h } else { skip } end
2 if ((tan l) < 3) then { x := tmp } else { skip } end

It is likely that a static analysis would conclude that the program is not noninterfering because of a bad flow from
h to x . However, the programis noninterfering. As “(cos x)2 + (sin x)2 = 1” and “tan x = sin x

cos x
”, there is no

l such that(cos l)2 < 0.1 and(tan l) < 3. It follows that there is no execution of the program which evaluates
both assignments. Consequently, there is never a flow fromh to x . The mechanism proposed in this paper would
allow all executions of this program. The reason is that, forany low-equivalent class of executions, there is exactly
onepossible path. And so, only the current execution path is taken into consideration when determining if a given
execution is noninterfering or not.

Concerning the capacity of the attacker, this work considers an attacker which is only able to get information
from the low outputs of the program at the end of the computation. Another limitation concerns termination of
programs. The mechanism developed here does not prevent information leakage from the study of the termination
behavior of programs (neither does it take care of timing covert channels either). The system proposed in this
paper could prevent those flaws using a technique similar to the one found in [5]. In short, the authors of this
paper track the security level of variables appearing in while-loop conditions and other statements influencing the
termination. This is efficient but restrictive since it forbids any loop conditioned by a secret. That is the reason
why those types of covert channels are not taken into consideration at first.

We propose a special semantics and a predicate on the final state of an execution which, together, are able to
detect noninterfering executions. This semantics mixes dynamic mechanism and static analysis techniques. When
the semantics encounters a branching statement, the branchdesignated by the value of the condition is evaluated
and the other branch is analyzed. The aim of the analysis is toextract the information flow created by the fact
that the given branch is not executed. The result of the analysis and the evaluation of the other branch are merged
together to build the resulting information flows corresponding to the evaluation of the branching statement.

The next step of this work consists in altering programs behavior in order to ensure an appropriate behavior
of programs towards confidentiality. However, the first semantics presented does not necessarily return the same

28

result about noninterference for two executions whose initial states belong to the same equivalence class. This
prevents the use of this semantics for the programs behavioralteration in order to ensure confidentiality. In
Section 3 we describe succinctly a first attempt at improvingthe semantics. The resulting semantics is proved
sufficient to ensure the respect of confidentiality by all altered execution of any program. However, this semantics
does not terminates for programs containing a while-statement conditioned by a “secret” data.

Future work will involve the development of a semantics having a precision enabling the insertion of dynamic
tests, but having better termination properties. This semantics will use an analysis of non-executed branches based
on the model of flow logic [15] in a way similar to [5] since thismodel seems to have a good precision. In
particular, it does not require that a variable keeps the same security level in all the statements. The precision of
this model will be improved by taking into account the knowledge (i.e. the value store) gathered by the semantics
up to the starting point of the analysis.

Acknowledgment. Discussions with David Schmidt and Anindya Banerjee duringthe development of this work
have been helpful; as well as their comments on this paper.

References

[1] M. Abadi, B. Lampson, and J.-J. Lévy. Analysis and caching of dependencies. InProc. ACM International
Conf. on Functional Programming, pages 83–91, 1996.

[2] A. Banerjee and D. A. Naumann. Using access control for secure information flow in a Java-like language.
In Proc. IEEE Computer Security Foundations Workshop, pages 155–169, 2003.

[3] D. E. Bell and L. J. LaPadula. Secure computer systems: A mathematical model. Technical Report MTR-
2547, Vol. 2, MITRE Corp., Bedford, MA, May 1973. Reprinted in J. of Computer Security, vol. 4, no. 2–3,
pp. 239–263, 1996.

[4] J. Brown and T. F. Knight, Jr. A minimal trusted computingbase for dynamically ensuring secure information
flow. Technical Report ARIES-TM-015, MIT, Nov. 2001.

[5] D. Clark, C. Hankin, and S. Hunt. Information flow for Algol-like languages.J. Computing Languages,
28(1):3–28, 2002.

[6] D. E. Denning and P. J. Denning. Certification of programsfor secure information flow.Commun. ACM,
20(7):504–513, July 1977.

[7] J. S. Fenton. Memoryless subsystems.Computing J., 17(2):143–147, May 1974.

[8] M. Gandhe, G. Venkatesh, and A. Sanyal. Labeled lambda-calculus and a generalized notion of strictness (an
extended abstract). InProc. Asian C. S. Conf. on Algorithms, Concurrency and Knowledge, pages 103–110,
1995.

[9] J. A. Goguen and J. Meseguer. Security policies and security models. InProc. IEEE Symp. Security and
Privacy, pages 11–20, 1982.

[10] M. Mizuno and D. Schmidt. A security flow control algorithm and its denotational semantics correctness
proof. J. Formal Aspects of Computing, 4(6A):727–754, 1992.

29

[11] A. C. Myers. JFlow: Practical mostly-static information flow control. InProc. ACM Symp. Principles of
Programming Languages, pages 228–241, 1999.

[12] A. C. Myers.Mostly-Static Decentralized Information Flow Control. PhD thesis, MIT, 1999.

[13] A. C. Myers and B. Liskov. Complete, safe information flow with decentralized labels. InProc. IEEE Symp.
Security and Privacy, pages 186–197, 1998.

[14] A. C. Myers, N. Nystrom, L. Zheng, and S. Zdancewic. Jif:Java information flow, 2001. Soft. release.
http://www.cs.cornell.edu/jif.

[15] H. R. Nielson and F. Nielson. Flow logic: A multi-paradigmatic approach to static analysis. InThe Essence
of Computation, volume 2566 ofLNCS, pages 223–244, 2002.

[16] F. Pottier and S. Conchon. Information flow inference for free. InProc. ACM International Conf. on Func-
tional Programming, pages 46–57, 2000.

[17] F. Pottier and V. Simonet. Information flow inference for ML. ACM Trans. on Programming Languages and
Systems, 25(1):117–158, 2003.

[18] A. Sabelfeld and A. C. Myers. Language-based information-flow security.IEEE J. Selected Areas in Com-
munications, 21(1):5–19, Jan. 2003.

[19] V. Simonet. Fine-grained information flow analysis foraλ-calculus with sum types. InProc. IEEE Computer
Security Foundations Workshop, pages 223–237, 2002.

[20] G. E. Suh, J. W. Lee, D. Zhang, and S. Devadas. Secure program execution via dynamic information flow
tracking. InProc. Int. Conf. Architectural Support for Programming Languages and Operating Systems,
pages 85–96, 2004.

[21] D. Volpano and G. Smith. A type-based approach to program security. InProc. Theory and Practice of
Software Development, volume 1214 ofLNCS, pages 607–621, 1997.

[22] D. Volpano, G. Smith, and C. Irvine. A sound type system for secure flow analysis.J. Computer Security,
4(3):167–187, 1996.

[23] L. Wall, T. Christiansen, and J. Orwant.Programming Perl, 3rd Edition. O’Reilly, July 2000.

[24] C. Weissman. Security controls in the adept-50 timesharing system. InProc. AFIPS Fall Joint Computer
Conf., volume 35, pages 119–133, 1969.

[25] J. P. L. Woodward. Exploiting the dual nature of sensitivity labels. InProc. IEEE Symp. Security and Privacy,
pages 23–31, 1987.

[26] S. Zdancewic and A. C. Myers. Robust declassification. In Proc. IEEE Computer Security Foundations
Workshop, pages 15–23, 2001.

[27] L. Zheng and A. C. Myers. Dynamic security labels and noninterference. InProc. Workshop Formal Aspects
in Security and Trust, 2004.

30

Optimized Enforcement of Security Policies∗

M. Langar M. Mejri
LSFM Research Group

Computer Science Department,
Laval University, Sainte-Foy, Qc, G1K 7P4, Canada.

Abstract

Given a programP and a security policyΦ, this paper introduce an approach that can automatically produce
anotherP ′ such thatP ′ |= Φ andP andP ′ are ”equivalent” (with respect to a precise de finition of equivalence).
In reality, the programP ′ is the programP to which some tests are added in some critical places so that the
security policy will be respected. Finally, some static analysis are performed onP ′, using typing system, in
order to eliminate tests that can be statically verified.

Key Words: Security policy, Monitoring, Typing System.

1 Introduction

With the dazzling proliferation of Internet and distributed systems such as the world wide web, combined with the
convergence of voice, data and image, the mobile code has seen an important increasing use. Basically, a mobile
code is a program (ActiveX controls, Java applets, script run within the browser, etc.) that is downloaded and
executed in our machine (computer, PDA, mobile phone, etc.); generally, without our explicit request. Since the
sources of mobile codes could be malicious, they are generally untrusted and the responsibility of verifying their
safety belong to the consumers. The machines of consumers must maintain a strict control over mobile codes so
that they will never violate their requested security policy.

Despite the great progress in the computer security research field, fully secure computer systems are still a
distant dream. In one hand, this is due to the subtleness and the complexity of the problem. And, in the other hand,
it is due to the missing of efficient and powerful formal methods to deal with this kind of problems. As a result,
many computer system in the world suffer for security flaws.

Basically the literature records two classes of techniquesthat deal with the verification of computer system:
static analysis [1, 2, 3] that consists on checking programsbefore their executions and dynamic analysis [9, 10, 11]
that consists on checking the programs during their executions.

Generally, these techniques complement each other since there are some properties that could not be verified
dynamically and vice-versa. For instance, liveness properties (some thing good will happen) could not be ensured
dynamically. Other properties that depend on some values known only at run time could not be verified statically.
Readers are invited to see [4] for more details about properties that could be verified statically and the ones

∗This research is supported by NSERC (the Natural Sciences and Engineering Research Council of Canada) and FQRNT (Fonds
Québécois de la Recherche sur la Nature et les Technologies)

31

that could be verified dynamically. Since dynamic analysis may slow considerably the execution of programs and
requests supplementary memory, it is generally recommended to very statically all properties that could be verified
both statically and dynamically.

In this paper, we propose a formal approach that allows us to enforce security policies in an efficient way.
More precisely, given a programP and a security policyΦ, we want to produce another programP ′ such that the
following conditions hold:

• P ′ |= Φ; meaning that the programP ′ respects the required security policy.

• P andP ′ are two ”equivalent” programs; meaning that all the sequences of actions that can be performed by
P ′ could be performed byP and all the sequences of actions that could be performed byP without violating
the security policy could be also performed byP ′.

• All parts ofΦ that could be statically verified haven’t to be taken into consideration byP ′.

• The parts ofΦ that could not be verified statically have to be taken into consideration byP ′ in an efficient
way. In other words, we will produceP ′ from P by inserting ”in the right place” only the necessary tests.

The rest of this paper is structured as follows : Section 2 defines the logic used to specify security policies.
Section 3 presents the syntax and the semantics of our process algebra. Section 4 show how we can easily ensure
that a program can never violate its security policy. Section 5 defines a typing system that statically optimizes the
tests requested by security policies. Section 6 illustrates our technique by some examples. Section 7 deals with the
equivalence of a program and its optimized version. Finally, in Section 8 some concluding remarks on this work
and future research are ultimately sketched as a conclusion.

2 Logic

In this section, we define a logic for the specification of security properties that we can enforce dynamically.
Security properties can be divided in two classes: safety properties and liveness properties. The first class expresses
the fact that ”bad things should never happen during the execution of a program”, and the second class expresses
the fact that ”good things must happen”. In a dynamic context, there is no way to enforce liveness properties
[5]. So, in this study we focus only on the class of safety properties. Such properties can be expressed by regular
expressions (e.g. Security Automata [5]) or by logic (e.g. LTL [6]). The logic used in this paper will be denoted by
Lϕ and it is inspired from Kleene algebras [7] and regular expressions. Basically, it allows us to specify properties
which can be checked on a trace-based model, and properties related to infinite behavior (e.g. a server shouldn’t
send the pass-word of users). The choice of this logic is motivated by its syntax that is close to the one chosen for
processes and this similarity is helpful to simplify the static and dynamic analysis steps.

2.1 syntax

The syntax of the logicLϕ is given by the BNF grammar shown by Tab. 1.
In this syntax,p is a proposition related to atomic actions. It could be an effect (an atomic action) under a

condition such assend(x) : x ≥ 0, read(x) : x ≤ 0, etc., or a boolean expression suchx = 5, x > 3, etc. Also,
a proposition could be effect without condition, in this case we writef : tt. The formulaφ1.φ2 means that the
program must respectφ1 and thenφ2. And, the formulaφ∗1φ2 means that the program must respectφ1 repeatedly
and as soon asφ1 is violated this program must respectφ2 (It is the continuous version of the Kleene operator∗

[7]).

32

Table 1: Syntax ofLϕ.

φ ::= p | φ1.φ2 | φ1 ∨ φ2 | ¬φ | φ∗1φ2

p ::= b | f : b
f ::= read(x1, . . . , xn1

) | write(x1, . . . , xn2
) | send(x1, . . . , xn3

) | . . .

Note that usual shortcuts such that∧ , →, ↔, tt andff , F (Φ) (eventuallyΦ) andG(Φ) (alwaysΦ) can be
used with there usual meaning shown hereafter:

tt ≡ ¬Φ ∨Φ ff ≡ ¬tt
Φ1 ∧ Φ2 ≡ ¬(¬Φ1 ∨ ¬Φ2) Φ1 → Φ2 ≡ ¬Φ1 ∨ Φ2

F (Φ) ≡ ¬G(¬Φ) G(Φ) ≡ Φ∗ff
Φ1 ↔ Φ2 ≡ Φ1 → Φ2 ∧ Φ2 → Φ1

2.2 Semantics

Since a formula will be considered as a part of a process, thenthe semantics of the logic will be given within the
operational semantics of processes. In other word, in orderto understand when a processP respects a formula
Φ, the reader needs to understand how the process(P,Φ) evolves. Intuitively, a process respects a formula (the
process(P,Φ) can evolve) if the first action of the process respects the first proposition of the formula and the
residual part of the process respects the residual part of the formula.

2.3 Examples

• Φ = send(x) : x > 3: A process respects this formula if it starts by sending a value greater than3.

• Φ = (¬read(x))∗((¬send(y))∗ff): A process respects this formula if it does not perform a sendon the
network after reading some data.

3 Program Specification

Hereafter, we give the syntax and the semantics of the language that we use to specify programs. Basically, it is a
modified version of the the ”Basic Process Algebra” (BPA) [12]. This new algebra will be denoted in the rest of
this paper byBPAΦ.

3.1 Syntax

As shown by Table 2, the syntax ofBPAΦ is similar to the one ofBPA except that we introduce new form
of process which is(P,Φ). Basically, a process is a combination of some operators, atomic actions and other
processes according to some rules. The constants0 andδ represent respectively a successful termination and anor-
mal termination. Atomic actions will be designed by lettersa, b, etc.. The operator ”.” represents the sequential
composition. A processP1.P2 has to runP1 until it terminates, and then behaves asP2. Also, the operator ”+”
represents the alternative composition. A processP1 + P2 has a choice to execute the processP1 or the process
P2. To represent iteration and infinite processes we use the Kleene star operator denoted by ”*”. A processP ∗

1 P2

behaves asP2 if P1 is not able to evolve otherwise it behaves asP1.P
∗
1 P2. Finally, the process(P, φ), whereP

is a process andΦ is a formula inLϕ, can be seen as the processP controlled byΦ. Note that for this paper

33

we suppose that the different APIs functions are actions such as : read(x), write(x), readF ile(y), etc. and
assigning a value of an expression to some variable,x = e. We suppose also that all variables of processes ranges
over a setX

Table 2: Syntax ofBPAφ.

P ::= 0 | δ | a | P1.P2 | P1 + P2 | P
∗
1 P2 | (P, φ)

3.2 Semantics

Hereafter, we define the semantics of our language in an operational way. As shown by Table 5 the definition of
the transition relation→ of BPAΦ is based on different kind of relations such as↓, ≡ and |= that are defined
hereafter.

Normal Form (↓) As we have stated before, a process(P,Φ) can evolve only if the first action ofP respects
the first proposition ofΦ and the residual part ofP respects the residual part ofΦ. Therefore, we need somehow
to know what are the first possible actions ofP and the first proposition ofΦ.

3.2.1 Definition.[Normal form]
A formulaφ (resp. a processP) is called in normal form iff it has the following form :

φ↓ =
∨

1≤i≤n

pi.ϕi (resp.P↓ =
∑

1≤i≤n

ai.Pi +
∑

1≤j≤m

bj)

wherepi is a proposition andϕi is a formula

Simplification relation (≡) In order to simplify the operational semantics ofBPAΦ, we introduce the relation
≡ defined by Table 8. Most of the axiomsA1 . . . A5) of the Table 8 are presented in [12]. The axiomA6 expresses
the fact that a process((P, φ1), φ2) can evolve only ifP satisfies bothφ1 andφ2.

Table 3: Axiomes ofBPAφ.

P1 + P2 ≡ P2 + P1 (A1) P + 0 ≡ P (A2)
P + δ ≡ P (A3) δ.P ≡ δ (A4)

0.P ≡ P (A5) ((P, φ1), φ2) ≡ (P, φ1 ∧ φ2) (A6)

Environment (ξ) The semantics of a process(P, φ) is defined according an environmentξ = (Γ,∆), where:

• Γ is a store (a memory) that links all variables of the evaluated process to values. It should be seen as a
mapping that attributes a value to a variable (i.e.,Γ : X −→ Z). If a is an atomic action in the processP ,
thenaΓ denotes the same action where variables are substituted by their values inΓ.

34

• ∆ is also a formula environment (a mapping). To each variable in a given formula we attribute the set of
values that could be attributed to this variable (i.e.,∆ : X −→ ℘(Z)).

– If for x ∈ X we have∆(x) = Z, then∆ will be denoted by⊤.

– If for x ∈ X we have∆(x) = ∅, then∆ will be denoted by⊥.

– If there existsx ∈ X such that∆(x) = ∅, then we say that∆ ≈ ⊥.

– A formula environment∆1 is generally reduced to its significant part which are the variables that are
not attached toZ.

– If ∆1 et∆2 are two formulas environment, then∆1 ∪∆2 =
⋃

x∈X {x 7→ ∆1(x) ∪∆2(x)}.

– If ∆1 et∆2 are two formulas environment, then∆1 ∩∆2 =
⋃

x∈X {x 7→ ∆1(x) ∩∆2(x)}.

Evaluation functions To simplify the presentation of the operational semantics of BPAφ, we suppose that the
semantics of boolean expressions and elementary program’sactions are given by the following tow functions :

• J−KΓ
B : B → (Γ → {tt,ff}) : this function gives semantics of a boolean condition underan environmentΓ.

It takes a boolean condition and returns a function that takes an environment and returns a boolean value.

• J−KΓ
A : A → (Γ → Γ) : this function takes an action and returns a function that takes environment and

returns a new environment.

Satisfaction Relation (�) Since a process(P,Φ) can evolve only if the first action ofP respects the first propo-
sition ofΦ, then we need to define when an atomic action satisfies a proposition (or a formula in general). For that
reason, we introduce the satisfaction relation�. The relation� takes an actiona, a storeΓ, and a formulaφ and
returns an environment formula∆ showing under which restrictionsaΓ respects the formulaφ. The definition of
”�” is given by Table 4.

Here are some examples:

• send(x), [x 7→ 3] � send(y), [y 7→ {3}].

• send(3),Γ � ¬read(x),⊤.

• send(3),Γ � ¬send(x),⊥.

Transition Relation The operational semantics ofBPAφ (see Table 5) is defined by the relation−→⊆ C×A×C,
whereC is the set of configurations (C = P ×Υ, whereP is the set of processes andΥ is the set of environments)
andA is the set of actions.

4 Formal monitor

The main aim of this work is to ensure that a programP will not violate a given security policyΦ at run time. To
achieve this goal, we have just to execute the process(P,Φ). In fact, the semantics of our language was defined in
such a way that the program(P,Φ) can evolve only when the security policy is respected otherwise the program
is interrupted. Note also that our language allows us to easily attach a formula to any slice of a given program.
In fact, if, for instance,P1.P2 is a process then(P1,Φ).P2 is also a process where the sliceP1 has to respects the
formulaΦ. Different formulas can also be attached to different slices.

Since some parts of the formula could generally be verified statically, therefore it will be interesting to ”elimi-
nate” from a formula all what can be verified statically. For instance ifP = send(2).read(y).send(y) andΦ is
send(x).¬read(5).send(y), then(P,Φ) can be simplified to the processsend(2).(read(y),¬read(5)).send(y).
The optimisation issue is addressed by the following section.

35

Table 4: The satisfaction relation�.

JbKΓ
B = tt

a,Γ � b,⊤
JbKΓ

B = ff
a,Γ � b,⊥

∃σ | aΓ = fσ ∧ JbσKΓ
B = tt

a,Γ � f : b,∪[x 7→v]∈σ{x 7→ {v}}
(∀σ | aΓ 6= fσ) ∨ (∃σ | aΓ = fσ ∧ JbσKΓ

B = ff)
a,Γ � f : b,⊥

∃σ | aΓ = fσ ∧ JbσKΓ
B = tt

a,Γ � ¬f : b,⊥
(∀σ | aΓ 6= fσ) ∨ (∃σ | aΓ = fσ ∧ JbσKΓ

B = ff)
a,Γ � ¬f : b,⊤

a,Γ � φ1,∆
1 a,Γ � φ2,∆

2

a,Γ � φ1 ∨ φ2,∆
1 ∪∆2

a,Γ � ¬φ1 ∧ ¬φ2,∆
a,Γ � ¬(φ1 ∨ φ2),∆

a,Γ � φ1,∆
1 a,Γ � φ2,∆

2

a,Γ � φ1 ∧ φ2,∆
1 ∩∆2

a,Γ � ¬φ1 ∨ ¬φ2,∆
a,Γ � ¬(φ1 ∧ φ2),∆

a,Γ � p,∆
a,Γ � p.φ,∆

a,Γ � φ,∆
a,Γ � ¬¬φ,∆

a,Γ � (φ1.φ2)↓,∆
a,Γ � φ1.φ2,∆

a,Γ � (¬(φ1.φ2))↓,∆
a,Γ � ¬(φ1.φ2),∆

a,Γ � (φ∗1φ2)↓,∆
a,Γ � φ∗1φ2,∆

a,Γ � (¬(φ∗1φ2))↓,∆
a,Γ � ¬(φ∗1φ2),∆

5 Security Enforcement Simplification by Typing

In this section, we define a typing system that aims to statically optimize a program by removing all useless tests
(tests that can be statically evaluated). A jugement of the typing system has the following form:

H ⊢ P : τ,∆

where

• H is an environment used to handle recursive programs so that their typing will always terminate. The initial
value of this environment is generally the empty set.

• P is the initial program that we want to optimize.

• τ is the type ofP which is it’s optimized version.

• ∆ is a formula environment used to propagate values of instantiated variables in formulas.

Note that, for the sake of simplicity, the typing system handles only a subset ofBPAφ that has the same ex-
pressivity of the the completeBPAφ. The difference is related only to recursive processes and recursive formulas.
With the subset of processes handle by the typing system, we consider only recursive processes that have the form
P ∗δ and recursive formulas that have the formΦ∗ff , whereP andΦ do not contain the operator∗. It has been

36

Table 5: Operational semantics ofBPAφ.

(R≡)
P ≡ P1 P1, ξ

a
−→ P2, ξ

′ P2 ≡ Q

P, ξ
a
−→ Q, ξ′

(Ra) �

a, (Γ,∆)
a
−→ 0, (JaKΓ,∆)

(Ra
φ)

a,Γ � φ,∆′

(a, φ), (Γ,∆)
a
−→ 0, (Γ,∆′ ∩∆)

∆′ ∩∆ 6≈ ⊥

(Ra
¬φ)

a,Γ � φ,∆′

(a, φ), (Γ,∆)
δ
−→ δ, (Γ,⊥)

∆′ ∩∆ ≈ ⊥ (RP
φ)

(P, φ)↓, ξ
a
−→ P2, ξ

′

(P, φ)
a
−→ P2, ξ

′
(P 6= a)

(R+)
P1, ξ

a
−→ P ′, ξ′

P1 + P2, ξ
a
−→ P ′, ξ′

a 6= δ (R.)
P1, ξ

a
−→ P ′, ξ′

P1.P2, ξ
a
−→ P ′.P2, ξ

′

(R∗)
P1, ξ

a
−→ P ′, ξ′

P ∗
1 P2, ξ

a
−→ P ′.(P ∗

1 P2), ξ
′

(Rd
∗)

∄ a : P1, ξ
a
−→ P ′′, ξ′′ P2, ξ

a
−→ P ′, ξ′

P ∗
1 P2, ξ

a
−→ P ′, ξ′

shown, in [7, 8], that the formP ∗δ, whereP is ∗ free, is as expressive asP ∗
1 P2, meaning that every program can

be transformed to an equivalent one that contains at most oneloop which is not followed by any instruction.
The Typing rules are given by Table 6 where the function TypeOf(a, φ) is defined as following:

TypeOf(a, φ) =

{
(δ, C),⊥ If a
 φ, (C,⊥)
(a,C), ξ If a
 φ, (C, ξ) andξ 6≡ ⊥

(1)

where
 is defined by Table 7. Note thatC(σ) and¬C(σ) are two boolean conditions extracted forσ as
following:

C(ε) = tt
C({x 7→ t} ∪ σ) = (x = t) ∧ C(σ)

¬C(ε) = ff
¬C({x 7→ t} ∪ σ) = (x! = t) ∨ ¬C(σ)

Note that the program returned by the typing system can be considerable simplified using the rewriting rules of
table 8.

6 Example

Before presenting the example, it will be interesting to make a link between our language and the usual notation
used within imperative languages. This link is summarized by Table 9. Note also that(send(x),¬send(3)) is
equivalent representation of(send(x), x! = 3) sinceTypeO(send(x),¬send(3)) = (send(x), x! = 3).

6.1 Exemple 1

• Program written in usual imperative language notation:

37

Table 6: Typing System.

(S0)
�

H ⊢ 0 : 0,⊤ (S0φ) �

H ⊢ (0, φ) : 0,⊤

(Sδ)
�

H ⊢ δ : δ,⊥ (Sδφ) �

H ⊢ (δ, φ) : δ,⊥

(Sact)
�

H ⊢ a : a,⊤ (Sactφ) �

H ⊢ (a, φ) : TypeOf(a, φ)

(S∗)
H ⊢ P : τ,∆

H ⊢ P ∗δ : τ∗δ,∆
(Sφ)

H ⊢ (P, φ)↓ : τ,∆
H ⊢ (P, φ) : τ,∆

P 6= a

(S.)
H ⊢ P1 : τ1,∆1 H ⊢ P2 : τ2,∆

2

H ⊢ P1.P2 : τ1.τ2,∆
1 ∩∆2 ∆1 ∩∆2 6≈ ⊥ (S⊥)

H ⊢ P1 : τ1,∆
1 H ⊢ P2 : τ2,∆

2

H ⊢ P1.P2 : δ,⊥ ∆1 ∩∆2 ≈ ⊥

(S+)
H ⊢ P1 : τ1,∆

1 H ⊢ P2 : τ2,∆
2

H ⊢ P1 + P2 : τ1 + τ2,∆
1 ∪∆2 (SH) �

H ∪ {P 7→ τ} ⊢ P : τ, ε

(S∗∗)
H†[(P, 0)] ⊢ (P1.P

∗
1 δ, φ.φ∗ff) : τ,∆

H ⊢ (P ∗
1 δ, φ∗ff)

︸ ︷︷ ︸

P

: τ∗δ,∆
(S∗φ)

H ⊢ (P ∗
1 δ, φ∗ff) : τ,∆

H ⊢ (P ∗
1 δ, φ∗ff.φ′)

︸ ︷︷ ︸

P

: τ,∆
∀τ ′ : (P, τ ′) /∈ H

while(true)
do
read(x);
if(x = Pwd)

read(y);
send(y);

else
send(x);

endDo

• Equivalent program inBPAΦ:

(r(x).((r(y).s(y), x = Pwd) + (s(x), x 6= Pwd)))
︸ ︷︷ ︸

P

∗δ

wherer denotes theread, s denotes thesend andp denotes theprint action.

• Formulaφ : (read(x).¬send(3))∗ff meaning that a read action can never be followed bysend(3)

• The result of the typing (the proof is omitted due to the lack of space) of(P,Φ) is:

38

Table 7: The satisfaction relation
.

∃σ | σ = mgu(a, f)

a
 f : b, (C(mgu(a, fσ)),
⋃

[x 7→t]∈mgu(aσ,f)

{x 7→ {t}})

∃σ | σ = mgu(a, f)
a
 ¬f : b, (¬C(mgu(a, fσ)),⊤) a
 b, (ε,⊤)

∀σ : aσ 6= fσ
a
 ¬f : b, ε,⊤

∀σ : aσ 6= fσ
a
 f : b, (ε,⊥)

a
 φ1, (C1,∆1) a
 φ2, (C2,∆2)
a
 φ1 ∨ φ2, (C1 ∨C2,∆1 ∪∆2)

a
 ¬φ1 ∧ ¬φ2,Γ
a
 ¬(φ1 ∨ ¬φ2),Γ

a
 φ1, (C1,∆1) a
 φ2, (C1,∆1)
a,
 φ1 ∧ φ2, (C1 ∧ C2,∆1 ∩∆2)

a
 ¬φ1 ∨ ¬φ2,Γ
a
 ¬(φ1 ∧ φ2),Γ

a
 p,Γ
a
 p.φ,Γ

a
 φ,Γ
a
 ¬¬φ,Γ

a
 (φ1.φ2)↓,Γ
a
 φ1.φ2,Γ

a
 (¬(φ1.φ2))↓,Γ
a
 ¬(φ1.φ2),Γ

a
 (φ∗1φ2)↓,Γ
a
 φ∗1φ2,Γ

a
 (¬(φ∗1φ2))↓,Γ
a
 ¬(φ∗1φ2),Γ

Table 8: Rewriting Rules

(a, tt) → a (a, ff) → δ
P + P → P P + 0 → P
P + δ → P δ.P → δ

0.P → P P.0 → P
(a1, φ1) + (a1, φ2) → (a1, φ1 ∨ φ2) P.P ∗δ → P ∗δ

a.P1 + a.P2 → a.(P1 + P2) a1.P + a2.P → (a1 + a2).P

(r(x).((r(y).(s(y), y 6= 3), x = Pwd) + (s(x), x 6= Pwd ∧ x 6= 3)))∗δ

• Optimized program written in usual imperative language notation :

while(true)
do
read(x);

39

Table 9: Imperative Language vsBPA∗

Imperative Language Processes

P1;P2 P1.P2

while c do P (P, c)∗δ

if c then P elseQ (P, c) + (Q,¬c)

if(x = Pwd)
read(y);
if(Y != 3)

send(y);
else

if(x != 3)
send(x);

endDo

6.2 Exemple 2

• We consider the same program as the one of the first example, but with the following formula.

• FormulaΦ : (tt.¬send(3)∗ff (tt means every action). Note that the simplicity of the formulais due to the
lack of space and we want to show how we deal with loops.

• The result of the typing (the proof is omitted due to the lack of space) of(P,Φ) is:

(r(x).((r(y).s(y),x = Pwd)+(s(x), x 6= Pwd∧x 6= 3)).r(x).((r(y).(s(y), y 6= 3), x = Pwd)+(s(x), x 6= Pwd∧x 6= 3)))∗δ

Intuitively, we have a process of the form(P ∗δ, φ∗ff), then we can apply only the rule(S∗∗). This will add
the process(P ∗δ, φ∗ff) to the static environmentH that will ensure the termination of the typing procedure.
In fact, after two iterations, as shown in the code below, we return to the initial process.

• Optimized program written in usual imperative language notation:

while(true)
do
read(x);
if(x = Pwd)

read(y);
send(y);

else

40

if(x != 3)
send(x);

read(x);
if(x = Pwd)

read(y);
if(Y != 3)

send(y);
else

if(x != 3)
send(x);

endDo

7 Equivalence Theorem

The aim of this section is to prove that the optimized version(type) of any process is equivalent to its original
version. The equivalence relation that we looking for, denoted by∼, is the bisimulation. However, we prove our
result for a more general relation, denoted by∼H (bisimulation modulo a well formed environment), which gives
the requested result whenH is an empty set. First let’s define a well formed environment.

7.0.1 Definition.[Well Formed Environment]
EnvironmentH is said to be well formed iff for all(P, τ) ∈ H, these two condition are satisfied :

1. P is of the form(P ∗
1 δ, φ∗ff);

2. τ is equal to 0.

Now let’s define∼H.

7.0.2 Definition.[∼H]
Let H a well formed environment. We define∼H as the biggest relation satisfying the following conditions:
P ∼H Q if :

1. (P ,Q) ∈ H, or

2. (i) If P, ξ
a
−→ P ′, ξ′ thenQ, ξ

a
−→ Q′, ξ′ andP ′ ∼H Q′, and

(ii) If Q, ξ
a
−→ Q′, ξ′ thenP, ξ

a
−→ P ′, ξ′ andQ′ ∼H P ′

Note that whenH is an empty set∼H is the bissimulation.

7.0.3 Theorem.
∀P ∈ BPAΦ,∀H, a well formed environment, we have: H ⊢ P : τ,∆ =⇒ P ∼H τ

The proof of the previous theorem is omitted due to space restriction.

41

8 Conclusion and Future works

In this paper, we have defined a new process algebra that contains a special form of precess(P, φ). The semantic
of the proposed algebra ensure that the programP can evolve only if it does not violate the security policy
φ. Furthermore, we have defined a typing system that allows us to optimize a program by efficiently removing
the tests required by the security and that can be verified statically. Finally, we have proved the correctness of
optimization performed by the typing system tanks to the Theorem 7.0.3.

As a future work, we want to extend our logicLφ to give to the end-user more flexibility to handle the case
where the program reach a point at which it violates the security policy. In this paper, we decided to interrupt
a program as soon as its security property is violated. However it is not necessarily the suitable decision for all
application and it is better to give the chose to the end-userthat specify the series of actions that he/she want to
execute when the security property is violated (It’s similar to the principle of exceptions in Java for example). To
this end, we can extendLϕ by simply adding the form(φ, P). Intuitively, using this new formula, the program
(P1, (φ, P2) behaves asP1 until the formulaφ is violated and then behaves likeP2.

References

[1] D. Grossman and J. G. Morrisett, Scalable Certification for Typed Assembly Language.In Proc. of TIC
’00: Selected papers from the Third International Workshop on Types in Compilation, pages 117-146, 2001.
Springer-Verlag.

[2] P. Cousot, An indo-french school on abstract interpretation 1em plus 0.5em minus 0.4emOverview, 1996.

[3] E. M. Clarke, O. Grumberg and D. A. Peled, Model Checking.MIT Press, 2000.

[4] L. Bauer,J. Ligatti and D. Walker, More Enforceable Security Policies. In Proc. of the FLoC’02 workshop
on Foundations of Computer Security, pages 95-104, 2002. Iliano Cervesato.

[5] Fred B. Schneider, Enforceable security policies.ACM Trans. Inf. Syst. Secur., volume 3, pages 30-50,
2000. ACM Press.

[6] E.A. Emerson,Temporal and modal logic. In J. van Leeuwen, editor,Handbook of Theoretical Computer
Science: Volume B, pages 995-1072, 1990.

[7] D. Kozen, Kleene Algebra with Tests.ACM Transactions on Programming Languages and Systems, volume
19, pages 427-443, 1997.

[8] M. Mirkowska, Algorithmic logic and its applications. PhD thesis, Warsaw school, 1972.

[9] A. R. Twyman, Flexible code safety for Win32. Msc thesis,Massachusetts Institute of Technology, 1999.

[10] Fred B. Schneider and U. Erlingsson, SASI Enforcement of Security Policies: A Retrospective.In Proc. of
New Security Paradigms Workshop, 1999. ACM Press.

[11] D. Walker, A type system for expressive security policies. In Proc. of the 27th ACM SIGPLAN-SIGACT
symposium on Principles of programming languages, , pages 254-267, 2000. ACM Press.

[12] J. C. M. Baeten and W. P. Weijand, Process Algebra. Cambridge University Press, 1990.

42

Session III

Information Flow

43

Unifying Confidentiality and Integrity in Downgrading Policies

Peng Li Steve Zdancewic
Department of Computer and Information Science

University of Pennsylvania
{lipeng,stevez}@cis.upenn.edu

Abstract

Confidentiality and integrity are often treated as dual properties in formal models of information-flow con-
trol, access control and many other areas in computer security. However, in contrast to confidentiality policies,
integrity policies are less formally studied in the information-flow control literature. One important reason is
that traditional noninterference-based information-flowcontrol approaches give very weak integrity guarantees
for untrusted code. Integrity and confidentiality policiesare also different with respect to implicit information
channels.

This paper studies integrity downgrading policies in information-flow control and compares them with their
confidentiality counterparts. We examine the drawbacks of integrity policies based on noninterference formal-
izations and study the integrity policies in the framework of downgrading policies and program equivalences.
We give semantic interpretations for traditional securitylevels for integrity, namely,tainted anduntainted, and
explain the interesting relations between confidentialityand integrity in this framework.

Keywords: language-based security, information flow, integrity, downgrading, security policy.

1 Introduction

Language-based information-flow security [11] provides end-to-end guarantees on the dependency and the propa-
gation of information in the system, which is usually formalized asnoninterference[2, 5] properties. Such security
guarantees are ideal for protectingconfidentiality, where secret information is not permitted to propagate to pub-
lic places. On the other hand, information-flow control can also be used to provideintegrity guarantees, where
important data in the system is not allowed to be affected by untrusted sources of information. Confidentiality
and integrity can be viewed as duals [1] in many areas of computer security. In information flow, confidentiality
policies prevent secret data from being leaked out to the adversary, while integrity policies restrict the use of data
coming from the adversary.

There are very practical applications of information-flow policies for integrity. For example, an unsafe script
on the web server could use strings from untrusted inputs to compose a SQL query string and then have the
database management system execute the query, which potentially allow the attacker to execute commands in the
database. The Perl programming language provides built-insupport for dynamic information-flow checking. Data
from user inputs and the network is marked as tainted, while system calls require untainted data. Tainted data
can be converted to untainted data through pattern matching, which effectively forces the programmer to examine
untrusted data and avoid malicious attacks. Code analysis tools such as cqual [12] perform static information-
flow checking to detect the use of dangerous data. Such tools have been used to find bugs in large-scale software
systems.

45

Despite the practical interests, integrity policies are often less formally studied in the literature of language-
based information-flow security. Many formal studies are focused on confidentiality and merely mention that
confidentiality and integrity are duals. In fact, confidentiality and integrity are not symmetric in traditional ap-
proaches based on noninterference. The noninterference property is too emphasized for confidentiality and it is
not appropriate for integrity. For example, noninterference does not give useful integrity guarantees for untrusted
code, and it is often too strong for practical use because it rules out all implicit information flows, most of which
are not harmful. Noninterference also does not handle downgrading. Section 2 identifies these challenges on
integrity policies in information-flow.

To fix the aforementioned weaknesses of noninterference-based integrity policies, we need alternative formal-
izations for information flow. Out recent research [4] uses downgrading policies and program equivalences to
formalize the goals of language-based information-flow security. The original motivation is to achieve an end-
to-end security guarantee like noninterference whendowngrading(or declassification) is available in the system.
While this framework was originally focused on confidentiality, it also provides a basis for very expressive in-
tegrity downgrading policies. Moreover, it is possible to achieve a better formal security goal for integrity that
avoids the drawbacks of noninterference-based definitions. Section 3 extends the framework of downgrading poli-
cies with integrity policies. We discuss how to formalize the security goal for integrity present a highly symmetric
view over confidentiality and integrity in this framework.

2 Challenges of Integrity

2.1 Policy expressiveness

The formal definition of noninterference gives an intuitiveand absolute meaning of confidentiality, but its rela-
tionship with integrity is less straightforward. In general, integrity has many meanings in computer security. For
example, Pfleeger’s security textbook [8] describes integrity policies that require that: data is modified only by
authorized principals, data is modified in permitted ways, data is consistent, valid, meaningful and correct, etc.
The actual meaning of integrity depends on the specific context. Noninterference only provides a particular kind
of integrity guarantee, that is, trusted data is not affected by the propagation of untrusted data. Apparently, there
are many information integrity policies that noninterference cannot express. Most useful integrity policies involve
accurate description of the actual computation. Integritypolicies should not only specify who modified the data,
but also specify how the data is manipulated.

2.2 Untrusted code

For untrusted code, noninterference gives a strong and practically useful guarantee for data confidentiality. This
makes information-flow control a killer application for safely executing untrusted programs while giving them
accesses to secret information.

However, traditional noninterference gives almost no integrity guarantee for untrusted code. The reason is that,
when the code is not trusted, the adversary can manipulate trusted data in arbitrary ways in the program. For
example, suppose the following functionfoo is written by an adversary. It takes two input arguments, performs
some computation and returns auntainted value.

untainted int foo(untainted int a, tainted int b) { return a-a+0xff00; }

Althoughfoo satisfies the noninterference policy, i.e. there is no information flow from thetainted input
b to theuntainted result, the result is not at all trustworthy because the adversary can return any arbitrary
value in this function. Therefore, the data coming from untrusted programs (or software modules) must always be
treated as tainted. Integrity policies based on noninterference definitions can only used in trusted environments,

46

where the programmers are cooperative and goal is to preventaccidental security exploits in trusted code. For the
same reason, the two-dimensionaldecentralized label model[7] for confidentiality falls back to a one-dimensional
model for integrity [3], which makes the integrity labels much less expressive in languages with information-flow
type systems, such as FlowCaml [13, 9, 10] and Jif [6].

2.3 Downgrading

Pure noninterference is too ideal for practical applications. Most of the time, we do need to use information from
untrusted sources in trusted places, as long as the tainted data can are verified to be safe. In the example of taint-
checking mode in Perl, tainted data can be converted to untainted using pattern-matching. Clearly, there can be
information propagation from untainted data to tainted, and noninterference policies are not directly applicable.
This is the dual case for confidentiality, where secret data also needs to be declassified. This paper extends the
framework ofdowngrading policies[4] and presents a symmetrical version of integrity downgrading policies,
sometimes calledendorsement.

2.4 Implicit information flow

Most confidentiality policies do not tolerate implicit information leakage. There are many implicit information
channels such as control flow, timing channels and various side-effects that must be considered when untrusted
code is available. For example, the following code has an implicit information leak fromsecret to x via control
flow. If the code is not trusted andx is a publicly visible, the adversary can easily know the lastbit of secret by
observing the value ofx. Noninterference policies rules out such implicit flows.

if (secret%2=1) then x:=1 else x:=0;

A straightforward solution is to usedowngradingon the branching conditions where implicit flows are allowed.
However, such implicit information propagation is almost always acceptable for data integrity policies, where the
programmers are trusted and the goal is to prevent accidental destruction of trustworthy data. For example, the
taint-checking mode in Perl does not check implicit information flows at all. Since the value of any trustworthy
data can be directly modified by the programmer without violating information-flow policies as we have shown in
thefoo function above, there are few reasons to prevent implicit information flows, which are much more difficult
to exploit to cause damage. Therefore, the security policy for protecting integrity does not have to be as strict as
pure noninterference policies. Implicit information flow should be allowed by default, without the awkwardness
of using explicit downgrading mechanisms.

3 Downgrading Policies for Integrity

To avoid the drawbacks of noninterference-based integritypolicies, we study them in an alternative formal frame-
work. Our recent research [4] uses downgrading policies andprogram equivalences to formalize the security goals
of language-based information-flow security. This framework was originally focused on confidentiality, and this
paper extends the integrity aspect of it. Similar to confidentiality labels, we define a partial ordering on integrity
labels, formalizes the downgrading relation for integrity, and give interpretations to traditional security levels such
asuntaintedandtainted. To highlight the symmetry between confidentiality and integrity, the definitions for two
kinds of policies are given in parallel for the rest of the paper.

Briefly, this framework usesdowngrading policiesto express security levels of data and define the ordering
among these security levels, which generalizes the simple security latticespublic v secret for confidentiality and
untainted v tainted for integrity. A security level is simply a non-empty set of downgrading policies, where

47

each policy describes the computation related to downgrading. We reason about the programs in an end-to-end
fashion. Each program takes input data and produces output data. Confidentiality policies are specified for each
program input; integrity policies are specified for the program output. The security goal is then formalized using
such security policies.

3.1 Downgrading policies and security labels

type τ ::= int | τ →τ
constant c ::= 0, 1, 2, ...
operator ⊕ ::= +,−,%,=, ...
downgrading policy m ::= λx :τ.m |m m | x | c | ⊕ | if m m m
confidentiality label cl ::= {m1, . . . ,mk} | secretτ | publicτ

integrity label il ::= {m1, . . . ,mk} | taintedτ | untaintedτ

Figure 1: Downgrading Policies and Security Labels

The syntax of downgrading policies and security labels is shown in Figure 1. Each downgrading policy is a
term in the simply-typedλ-calculus, extended with operators and constants. The policy language is intended to
be a fragment of the full language for which equivalence is decidable, so that the primitive operators will match
those in the full language. Each downgrading policy represents some computation associated with downgrading
as following:

• Confidentiality policies: each policy is a function that specifies how the data can be released to the public
in the future. When this function is applied to the annotateddata, the result is considered as public. For
example, if a secret variablex is annotated with the confidentiality policyλx.x%2, it means the last bit of
x can be released to public.

• Integrity policies: each policy is a term that specifies how the data has been computed in the past. For
example, the integrity policy “2” means the data must be equal to2 and works like a singleton type. The
policy can be a function, too. For example, the policyλx.x%10 for an integer means that the integer must
have been computed byx%10, wherex is potentially untrusted and we do not know whatx is. Another
useful policy isλx.λy.match(x, y), wherematch is a predefined pattern matching function and the policy
means the data is the result of pattern matching. The weakestpolicy is the identity function,λx.x, which
simply gives no information about the how the data has been computed in the past.

Policies are typed in the simply-typedλ-calculus using the judgmentΓ ` m : τ . We use standardβ-η equiv-
alencesΓ ` m1 ≡ m2 : τ for policy terms. Policy terms can be composed as functions using the following
definitions.

Definition 3.1.1 (Policy composition) If Γ ` m1 : τ1→ τ3 andΓ ` m2 : τ2→ τ1, the composition ofm1 andm2

is defined asm1 ◦Γ m2

4
= λx :τ2.m1 (m2 x)

Definition 3.1.2 (Multi composition) If Γ ` m1 : τ → τ ′ andΓ ` m2 : τ1→ . . .→ τk→ τ , the multi-composition

of m1 andm2 is defined asm1 �Γ m2

4
= λx1 :τ1. . . . λxk :τk.m1(m2 x1 . . . xk)

Given the definition of downgrading policies, we can define a security label as a non-empty set of downgrading
policies. We slightly abuse the notation to usecl to range over confidentiality labels andil to range over integrity
labels. Labels are well-formed with respect to the type of data it annotates.

48

Definition 3.1.3 (Label wellformedness)
` cl / τ ⇐⇒ ∀m ∈ cl,∃τ1,` m : (τ →τ1)

` il / τ ⇐⇒ ∀m ∈ il,∃τ1, . . . ,∃τk,` m : (τ1→ . . .→τk→τ)

The meanings of two kinds of labels are symmetric:

• Confidentiality labels: each policy in the label can be used to declassify the data in the future. For example,
if the valuep is annotated with the confidentiality label{(λp.λx.p=x), (λp.p%2)}, it means thatp can be
declassified by comparing it with some other value, or by extracting its last bit.

• Integrity labels: each policy describes a possible computation that generated the value as the result in the
past. For example, if the valuep is annotated with the integrity label{(λx.match(x, c1)), c2}, it means the
value is either the result of pattern-matching against patternc1 or a predefined constantc2.

3.2 Label Ordering

Each label is syntactically represented as a set of downgrading policies, but the semantics of the label includes far
more policies than explicitly specified. We define the interpretation of security labels as the following.

Definition 3.2.1 (Label interpretation)

Sτ (cl)
4
= {n′ | n ∈ cl, ` n′ ≡ m ◦Γ n : τ2}

Sτ (il)
4
= {n′ | n ∈ il, ` n : (τ1→ . . .→τk→τ),

` n′ ≡ (λx1 :τ ′
1
. . . . λxi :τ

′
i .n m1 . . . mj) : (τ ′

1
→ . . .→τ ′i →τ) }

To understand the above definitions, suppose the security label has the policyn:

• For confidentiality: any functionm composed withn is also a valid downgrading policy implied byn. The
intuition is that if(n x) is public, then(m (n x)) is also public, no matter whatm is.

• For integrity: if we can composen with some other terms and get a larger termn′, in whichn represent the
final step of computation, thenn′ is also implied in this label, because any data computed byn′ can also be
treated as if it is computed byn using some input data.

For example, suppose we have an integrity labelil1
4
= {λx.match(x, c1)}, then the following policies are

also inS(il1): (λa.λb.match(a + b, c1)), (match(c2, c1)), etc. Intuitively speaking, if we only know that
the data is the result of pattern-matching against the pattern c1, then there are possibilities that the value
matched withc1 could bea + b, c2, or any other values.

Based on the semantics of labels, we can easily define the ordering on security labels, using the set inclusion
relation on label interpretations. We use the notationl1 v l2 to sayl2 is a higher security level thanl1. The
definitions for confidentiality and integrity labels are completely symmetric.

Definition 3.2.2 (Label ordering)
cl1 v cl2 / τ ⇐⇒ Sτ (cl1) ⊇ Sτ (cl2), il1 v il2 / τ ⇐⇒ Sτ (il1) ⊆ Sτ (il2).

• Confidentiality: high security levels correspond to secretlevels, low security levels corresponds to public
levels. The intuition is that, each policy in the label corresponds to a path where secret data can be released
to public places. The fewer paths there are, the more secure the data is.

49

• Integrity: high security levels correspond to tainted or untrusted levels and low security levels corresponds
to trusted levels, because we would like to allow information flow from low levels to high levels but not
in the other direction. The intuition is that, each policy corresponds to a possible computation that have
generated the data. The more possibilities there are, the less trustworthy the data is.

We claim that the ordering of security labels generalizes the two-point latticespublic v secret anduntainted v
tainted. In fact, all these traditional security levels can be interpreted in the framework of downgrading policies:

Definition 3.2.3 (Interpretation of special labels)

secretτ
4
= {λx :τ.0} publicτ

4
= {λx :τ.x} taintedτ

4
= {λx :τ.x} untaintedτ

4
= {m | ` m :τ}

• Confidentiality: we can prove that all the confidentiality labels of a given type form a lattice, wheresecretτ
is the top andpublicτ is the bottom.

• Integrity: we can prove thattaintedτ is the highest label of all the integrity labels. However, there is no
single lowest label in the integrity ordering. Instead, there are many different lowest labels. For example,
supposeτ = int, then{c0}, {c1} and so on are all lowest labels. For a set of labels, their join(least upper
bound) always exists, but they may not have a lower bound.

The interpretation ofuntaintedτ is the set of policies representing computations that do notuse potentially
untrusted inputs. We choose this interpretation for two reasons. First, it reflects the meaning of “untainted”,
i.e. the corresponding computation did not use tainted data. Second, its semantics is backward compatible
with untainted in the traditional two-point security lattice, because when twountainted data meets together
during computation (i.e. when computingc1 + c2), the result can also be labeled asuntainted, which is
the way things work in the two-point lattice. Thus, the ordering on integrity labels can be understood as a
refined version of the two-point latticeuntainted v tainted.

Apparently,untaintedτ does not provide a very strong security guarantee: data withthis label can have any
value. This coincides with the facts we mentioned in Section2.2: if the code is not trusted, thenuntainted

data can be anything. However, we now have security levels that provide more precise security guarantees:
data with label{(λx.match(x, c1))} are guaranteed to match the patternc1; data with label{c1, c2} is either
c1 or c2, etc. Interestingly, the label{(λx.match(x, c1))} is not lower thanuntainted, but it provides a much
more precise security guarantee thanuntainted does.

Overall, we can see that the label orderings for confidentiality and integrity are highly symmetric. The security
levelspublic andtainted are both represented using the identity function and they both refer to data under control
of the attacker. The security levelssecret anduntainted are also symmetric in some sense:secret are represented
using constant functions, whileuntainted is represented using a set of terms that can be statically evaluated to
normal forms.

The only asymmetry is that there are multiple lowest integrity labels, while there is only one highest confiden-
tiality label. In fact, each lowest integrity label{c} has its counterpart{λx. c} in the confidentiality lattice. It is
just that all confidentiality labels{λx.m} such thatx is free inm are structurally equivalent because their label
interpretation are the same as the interpretation of a constant function. Intuitively speaking, different constant
policies provide different integrity guarantees, but all constant policies have the same effect for confidentiality.
This fact, together with the thoughts in Section 2.1, show a important difference between confidentiality and in-
tegrity in information flow. Confidentiality policies are destructive and do not care about the actual computation of
secret data. If the secret data is destroyed and becomes garbage, it does not violate any confidentiality policies and
the system is still secure. In contrast, integrity policiesare highly related to the correctness and precision actual
computation performed on the data.

50

3.3 Label Downgrading

The security label of data changes as the data is involved in some computation. We use the concept oflabel
downgradingto describe the transition of security labels. To formalizethis concept, suppose the datax1 has type
τ1, and it is annotated by labelscl1 andil1. We use the concept of anaction to model the computation onx1: an
actionm on x1 is a function applied tox1. For example, suppose the computation onx1 is hash(x1), then the
action is simply thehash function. If the computation isx1 + y, then the action is(λx.x + y). Now, given the
actionm, suppose the result(m x1) has typeτ2, we can formally define the labelcl2 andil2 on the result:

Definition 3.3.1 (Label Downgrading)

(cl1 / τ1)
m
 (cl2 / τ2) ⇐⇒ ` cl1 / τ1, ` cl2 / τ2, ∀m2 ∈ cl2,∃m1 ∈ Sτ1(cl1), ` m2 �Γ m ≡ m1 : τ

(il1 / τ1)
m
 (il2 / τ2) ⇐⇒ ` il1 / τ1, ` il2 / τ2, ∀m2 ∈ il2,∃m1 ∈ Sτ1(il1), ` m2 ≡ m�Γ m1 : τ

The judgment(cl1 / τ1)
m
 (cl2 / τ2) can be read as “the confidentiality labelcl1 at typeτ1 is transformed to

a labelcl2 at typeτ2 under the actionm”. The definition is completely symmetric for confidentiality labels and
integrity labels. Let us understand these rules by looking at some examples. For simplicity and readability, we
omit the typing information in the following examples.

• Confidentiality labels: suppose we have the following labels and actions that are related using the label
downgrading definition.

cl1
4
= {λx.λy.hash(x)%4 = y} m1

4
= λx.hash(x) (cl1 / int)

m1

 (cl2 / int)

cl2
4
= {λx.λy.x%4 = y} m2

4
= λx.x%4 (cl2 / int)

m2

 (cl3 / int)

cl3
4
= {λx.λy.x = y} m3

4
= λx.λy.x = y (cl3 / int)

m3

 (publicint / int)

Supposex2

4
= hash(x1), x3

4
= x2%4 andx4

4
= (x3 = p). If x1 has labelcl1, thenx2 has labelcl2,

x3 has labelcl3, x4 has labelpublicint. Intuitively speaking, the downgrading policies in a confidentiality
label describe paths in which data can be downgraded in the future, which may involve several steps of
computation. In the downgrading relation, the actionm matches the prefix of such a pathm1, and the
remaining pathm2 is preserved in the resulting label.

• Integrity labels: suppose we have the following labels, actions and downgrading relations:

il1
4
= taintedint m1

4
= λx.match(x, c1) (il1 / int)

m1

 (il2 / int)

il2
4
= {λx.match(x, c1)} m2

4
= λx.x + c2 (il2 / int)

m2

 (il3 / int)

il3
4
= {λx.match(x, c1) + c2}

Supposex2

4
= match(x1, c1) andx3

4
= x2 + c2. If x1 has labeltaintedint, thenx2 has labelil2 andx3 has

label il3. Intuitively speaking, the downgrading policies in an integrity label approximate the computation
in the past, from which the data could have been computed. In the downgrading relation, the actionm is
appended to the history of computationm1, and the resultm2 is in the resulting label.

3.4 Security Goals

The main question is: how to tell that a program is safe with respect to some security policies? We formalize
the security goal in a language based on the simply-typed lambda calculus, which is basically an extension of
our policy language. We define the security goals as end-to-end properties on the input-output relationship of the
program.

51

Rather than using operational semantics, we use static program equivalences in the definition: if the program is
safe, it must be equivalent to some special forms. The equivalence relation≡ is the standardβ − η equivalence,
extended with some trivial rules for conditional expressions such ase1 ≡ if 1 e1 e2. The full definition of the
equivalence relation is similar to those in our earlier work[4].

Definition 3.4.1 (Relaxed Noninterference)Suppose the program uses secret input variablesσ1, σ2, . . ., where
each input variableσi has a confidentiality labelΣ(σi) specified by the end user. For a program outpute at type
τ :

• e satisfies the confidentiality policyΣ, if e ≡ f (m1 σa1
) . . . (mn σan

), where∀i.σi /∈ FV (f) and∀j.mj ∈
Σ(σaj

).

• e satisfies the integrity policyil, if e ≡













if e1(m1 e11 e12 ...)
if e2(m2 e21 e22 ...)
....
if en(mn en1 en2 ...)

(m0 e01 e02 ...)













where∀j.mj ∈ il.

The confidentiality condition requires that the program canbe rewritten to a special form where secret variables
are leaked to public places by using only the permitted functions (downgrading policies). Confidentiality policies
are specified on theinput of the program. The integrity condition requires that the program can be rewritten to a
special form where the result is computed using one of the functions (downgrading policies) in the integrity label.
Integrity policies are specified on theoutputof the program.

To understand the integrity guarantee better, consider thefollowing two possibilities:

1. There is only one policym in il. In this case, all the branches have the samem, so we have the following
equivalence:













if e1(m e11 e12 ...)
if e2(m e21 e22 ...)
....
if en(m en1 en2 ...)

(m e01 e02 ...)













≡ m













if e1(e11)
if e2(e21)
....
if en(en1)

(e01)

























if e1(e12)
if e2(e22)
....
if en(en2)

(e02)













...

This provides a very straightforward security guarantee. The attacker can only affect the result bydown-
grading, i.e. let untrusted data go through the downgrading policym.

2. There are multiple policies inil. The body of each branch is still protected by a downgrading policy in il, but
the attacker also has the ability to choose the exact branch to be taken, thus affecting the result via implicit
control flow. Such implicit flows cannot be easily justified bydowngrading, because the conditionse1...en

are arbitrary programs not related to the downgrading policy. Our definition simply permits such implicit
flows because we defined the integrity label as a set ofpossiblecomputations. No matter which branch
is taken, the final step of computation is always captured by the integrity label. This definition meets our
requirement in Section 2.4. In contrast to the integrity condition, the confidentiality condition of Definition
3.4.1 does not tolerate any implicit information flow.

Definition 3.3.1 shows the symmetry between confidentialityand integrity conditions in a simple way: it de-
scribes how secret data are leaked to public places (for confidentiality) and how untrusted program generates
trusted result (for integrity). However, it only specify policies on one side of the program and assumes that the
program output ispublic and that the program inputs aretainted. Definition 3.3.1 can be further generalized to
achieve more fine-grained end-to-end security conditions.

52

Definition 3.4.2 (Relaxed Noninterference (refined))Suppose the program uses input variablesσ1, σ2, . . ., where
each input variableσi has a confidentiality labelΣc(σi) and integrity labelΣi(σi) specified by the end user. For
a program outpute at typeτ :

• e satisfies the confidentiality policycl, if ∀n ∈ cl, (n e) ≡ f (m1 σa1
) . . . (mn σan

), where∀i.σi /∈ FV (f)
and∀j.mj ∈ Σc(σaj

).

• e satisfies the integrity policyil, if ∀n1 ∈ Σi(σ1), ... ∀nk ∈ Σi(σk), for all fxy that make the following
substitutions well-typed,

[(n1 f11 f12 ...)/σ1] ... [(nk fk1 fk2 ...)/σk] e ≡













if e1(m1 e11 e12 ...)
if e2(m2 e21 e22 ...)
....
if en(mn en1 en2 ...)

(m0 e01 e02 ...)













where∀i.σi /∈ FV (fxy) and∀j.mj ∈ il.

In Definition 3.4.2, security policies are uniformly specified on both ends the program:Σc,Σi specify policies
on the program inputs andcl, il specify policies on the program output. The confidentialitycondition allows the
program output to have security levels other thanpublic. Compared to the integrity condition in Definition 3.4.1
where the program is simply untrusted, Definition 3.4.2 allows us to give trusted data to an untrusted program
yet still having guarantees on the program output. The integrity condition looks more verbose because we have
to use a lot of variables and term substitutions. However, the confidentiality condition and integrity condition are
inherently symmetric except that the integrity condition allows implicit flows (via theif expressions).

3.5 Extensions

Similar to the idea ofglobal downgrading policies in our previous framework [4], we can extend the policy
language with secret variables. Although this significantly changes the confidentiality lattice (for example, the
policy public is no longer the bottom of the lattice), the ordering of integrity labels is largely unchanged. In fact,
doing so will only make the integrity policies more expressive. The integrity labels{σ1} and{c1} are very much
alike — they are both singleton types; they are all lowest labels in the integrity ordering.

4 Conclusion

This paper studies the challenges on integrity policies in language-based information-flow security and provides
a symmetrical view of confidentiality and integrity in the framework ofdowngrading policies. Although it is
a common belief that confidentiality and integrity are duals, there are many aspects where integrity policies are
fundamentally different from confidentiality policies. Integrity policies should precisely describe the computations
on data in addition to the sources of data. The traditional noninterference-based approach provides no integrity
guarantees for untrusted code, and is often too strong when dealing with implicit information flow.

This paper extended the framework ofdowngrading policiesby presenting an more expressive model of in-
tegrity policies, where each label describe a set of possible functions that could have computed the data in the past.
The presentations of confidentiality policies and integrity policies are mostly symmetrical. Traditional security
levels for information-flow integrity such astainted anduntainted can be elegantly interpreted in this framework.

The asymmetry between confidentiality and integrity is shown in the ordering of security labels and also in
the formalization of security goals. The interpretation and the ordering of integrity labels show the reason that
untainted provides a weak security guarantee and suggests the use of more precise integrity labels instead of
untainted. The definition of the security goal for integrity permits information leak through control flow yet
provides formal, intuitive and practically useful security guarantees.

53

References

[1] K. J. Biba. Integrity considerations for secure computer systems. Technical Report ESD-TR-76-372, USAF
Electronic Systems Division, Bedford, MA, April 1977.

[2] J. A. Goguen and J. Meseguer. Security policies and security models. InProc. IEEE Symposium on Security
and Privacy, pages 11–20. IEEE Computer Society Press, April 1982.

[3] Peng Li, Yun Mao, and Steve Zdancewic. Information integrity policies. InProceedings of the Workshop on
Formal Aspects in Security & Trust (FAST), September 2003.

[4] Peng Li and Steve Zdancewic. Downgrading policies and relaxed noninterference. InProc. 32nd ACM Symp.
on Principles of Programming Languages (POPL), pages 158–170, January 2005.

[5] John McLean. Security models and information flow. InProc. IEEE Symposium on Security and Privacy,
pages 180–187. IEEE Computer Society Press, 1990.

[6] Andrew C. Myers. JFlow: Practical mostly-static information flow control. InProc. 26th ACM Symp. on
Principles of Programming Languages (POPL), pages 228–241, San Antonio, TX, January 1999.

[7] Andrew C. Myers and Barbara Liskov. Protecting privacy using the decentralized label model.ACM Trans-
actions on Software Engineering and Methodology, 9(4):410–442, 2000.

[8] Charles P. Pfleeger.Security in Computing, pages 5–6. Prentice-Hall, 1997. Second Edition.

[9] François Pottier and Sylvain Conchon. Information flowinference for free. InProc. 5th ACM SIGPLAN
International Conference on Functional Programming (ICFP), pages 46–57, September 2000.

[10] François Pottier and Vincent Simonet. Information flow inference for ML. InProc. 29th ACM Symp. on
Principles of Programming Languages (POPL), Portland, Oregon, January 2002.

[11] Andrei Sabelfeld and Andrew C. Myers. Language-based information-flow security.IEEE Journal on Se-
lected Areas in Communications, 21(1):5–19, January 2003.

[12] Umesh Shankar, Kunal Talwar, Jeffrey S. Foster, and David Wagner. Detecting format string vulnerabilities
with type qualifiers. InProceedings of the 10th USENIX Security Symposium, 2001.

[13] Vincent Simonet. Flow Caml in a nutshell. In Graham Hutton, editor,Proceedings of the first APPSEM-II
workshop, pages 152–165, Nottingham, United Kingdom, March 2003.

54

Keeping Secrets in Incomplete Databases [Extended Abstract∗]

Joachim Biskup and Torben Weibert
University of Dortmund, D-44221 Dortmund, Germany

{biskup|weibert}@ls6.cs.uni-dortmund.de

May 15, 2005

Abstract

Controlled query evaluation preserves confidentiality in information systems at runtime. A security policy
specifies the facts a certain user is not allowed to know. At each query, a censor checks whether the answer
would enable the user to learn any classified information. In that case, the answer is distorted, either by lying or
by refusal. We introduce a framework in which controlled query evaluation can be analyzed wrt. possibly in-
complete logic databases. For each distortion method – lying and refusal – a class of confidentiality-preserving
mechanisms is presented. Furthermore, we specify a third approach that combines lying and refusal and com-
pensates the disadvantages of the respective uniform methods.
Keywords: Information systems; Incomplete databases; Controlled query evaluation; Inference control.

1 Introduction

One basic requirement of a secure information system is preservation of confidentiality: Each piece of information
may only be accessed by people who are authorized to do so. This is often enforced by the means of static access
rights assigned to the structures of the information system. Although widely used, this approach entails a number
of problems, one of which is the inference problem: The user might combine data he has access to in order to infer
information he is not allowed to know. The inference problem has been studied in various contexts, for example
statistical (see [10, 11, 13] for an introduction and e. g. [18, 19] for more recent work), multi-level and relational
databases (see e. g. [9, 10, 15, 16, 20]). See [12] for a comprehensive review of the various approaches.

Controlled query evaluation is a dynamic approach to ensuring confidentiality, based on a fundamental logical
framework. A security policy specifies the facts a certain user is not allow to learn. Then, at each query, it
is checked whether the answer to that query would allow the user to infer any sensitive information. If this is
the case, the answer is distorted by either lying or refusal. Though computationally expensive, this approach
guarantees that no information will flow through otherwise unidentified inference channels. Controlled query
evaluation was first proposed by Sicherman et al. [17] (presenting refusal as a distortion method) and Bonatti et
al. [8] (introducing lying). Biskup [2] presents a unified framework for complete information systems in which
both lying and refusal can be studied. Further work by Biskup and Bonatti relies on this framework and studies
various aspects, including a comparison of lying and refusal [4] and a combined lying and refusal approach [5, 6].
A complete survey of the methods for complete databases can be found in [3].

Most information systems encountered in the real world are incomplete, in the respect that they cannot provide
an answer to each query, as they have only limited knowledge. The goal of this paper is to adapt part of the existing
work on controlled query evaluation to (possibly) incomplete logic databases. In our framework, a database
instance db is a consistent set of propositional sentences. A query Φ, which is a propositional sentence, is either

∗A draft of the complete paper containing detailed formalizations and proofs is available from the authors on request.

55

true, false or undef in db depending on whether Φ, its negation ¬Φ or neither of these are logically implied by db.
The security policy is specified by a set of potential secrets, each of which is a propositional sentence. Before a
query result is passed to the user, a censor checks whether this information would – now or later – enable the user
to infer any of the potential secrets. In that case, the answer is distorted. When lying, a value different from the
actual query value is provided as the answer, for example false instead of true. When refusing, the special answer
refuse is returned. We present three different classes of censors: One that exclusively uses lying as a distortion
method, one that uses only refusal, and a combined one that exploits both lying and refusal.

We say that a method of controlled query evaluation preserves confidentiality iff for each database instance,
security policy, potential secret and query sequence, there is always a (possibly different) database instance in
which that potential secret is not true, and under which the same answers would have been returned. Thus, the
user cannot rule out that this potential secret is not true.

An important property of controlled query evaluation is that it keeps track of the information disclosed by earlier
queries in order to avoid harmful inferences. This is done by the means of the user log. Prior to the first query, the
user log contains the assumed initial knowledge of the user. Then, after each query, the information provided to
the user is stored in the user log. Within the user log, we use epistemic logic in order to formalize the information
already disclosed. For the uniform lying method and for the combined lying and refusal method, it is sufficient
to store what answers the system provided to the queries. For the uniform refusal method, meta inferences evolve
as a major problem: Having knowledge about the algorithm of the censor, the user can infer which query values
might have led to a refusal in a certain situation. That way, he can draw inferences about the query value despite
the fact that the answer has been refused. The refusal method overcomes this problem by storing all possible meta
inferences from the answers in the user log.

The remainder of this paper is organized as follows: In Section 2, we give an overview about the basic ideas
behind controlled query evaluation and demonstrate the functioning of a censor. In Section 3, we outline the
formalization of our framework. The three enforcement methods – uniform lying, uniform refusal, and combined
lying and refusal – and their properties are sketched in Section 4. Finally, we conclude in Section 5.

2 Controlled Query Evaluation

In this section, we present the basic concept of controlled query evaluation. First, we define the notion of incom-
plete logic databases, and give a definition of the security policy. Then, on a rather informal level, we demonstrate
the functioning of a censor. The formalization of these ideas is then given in Section 3.

Ordinary Query Evaluation We consider (possibly) incomplete logic databases based on propositional logic.
A database schema DS is a finite set of propositions. A database instance db over the schema DS is a consistent
set of sentences, using only propositions from DS. The user issues a finite sequence of queries Q = 〈Φ1, . . . ,Φn〉,
each of which is a propositional sentence. The query Φi is either true, false or undef in db, depending on whether
Φi, its negation ¬Φi, or neither Φi nor ¬Φi are logically implied by db (as db is consistent, exactly one possibility
holds). This is formalized as the following function (|=PL denotes logical implication in propositional logic):

eval(Φ)(db) := if db |=PL Φ then true

else if db |=PL ¬Φ then false

else undef

The Security Policy The security policy defines the facts to be hidden from the user. It consists of a set
pot sec = {Ψ1, . . . ,Ψm} of propositional sentences, so-called potential secrets. The semantics is as follows:
If a potential secret Ψ is true in the given database instance db, the user is not allowed to infer this information.

56

Security Configuration eval(Φ)(db) = ...
C true false undef

{{true}, {false}, {undef}} refuse refuse refuse
{{true}, {false}} undef undef undef
{{true}, {undef}} false false false
{{false}, {undef}} true true true

{{true}} undef false undef
{{false}} true undef undef
{{undef}} true false false

∅ true false undef

Table 1: A combined lying and refusal censor

On the other hand, if Ψ is false or undef, this information may be disclosed. This is a suitable formalization for
real-life situations where the circumstance that a certain fact is true must be kept secret, but not the converse. For
example, imagine a person applying for an employment. If that person suffered from a terminal disease, this must
be kept secret (as it might be an obstacle for being chosen for the job). On the other hand, if the applicant is
healthy, this information may be disclosed. For complete information systems, another type of security policies
with different semantics, called secrecies, has been studied as well (see e. g. [3]), but in this paper, we concentrate
on potential secrets. Additionally, we assume that the user knows the set of potential secrets, but of course not
their respective values in the given database instance.

Our formal definition of confidentiality is given in Section 3. In a nutshell, it can be summarized as follows:
Whatever the actual database instance db1 and the security policy pot sec are, and whatever sequence of queries
Q the user issues, there must be a database instance db2, in which a given potential secret Ψ is not true, and under
which the same answers would have been returned. Then, the user cannot decide from the answers whether db1 or
db2 is the actual database instance, and thus whether Ψ is true or not.

Note that this is a rather declarative definition, and it does not include any hint about which techniques to be
used to operationally meet these requirements. The approach described below keeps a log of the information
already disclosed to the user, and each piece of information in that log is formalized as a sentence in epistemic
logic. Nevertheless, modal logic is only exploited as an auxiliary means here, but not to describe the situation in
general.

The Censor The most important component of our framework is the censor function that decides whether an
answer needs to be distorted in order to preserve confidentiality, and, if so, in which manner. The censor function
takes two parameters: 1. The actual value of the query eval(Φ)(db), and 2. the so-called security configuration C,
describing the threats to the security policy in the given situation. The result of the censor function is the answer
to be returned to the user, either true, false or undef (which might differ from the actual query value, in case lying
is used as a distortion technique), or even the special answer refuse, indicating that the answer is refused.

A censor function can easily be written as a decision table, with each line representing a security configuration
and each column representing a query value. Table 1 gives an example of a censor using both lying and refusal as
a distortion method. The black cells denote the situations in which a distorted answer is given. The policy of this
censor is to use lying as a distortion method whenever necessary and possible, and use refusal if lying would fail.

We formalize each piece of information disclosed to the user as an inference set, i. e., as a set of values the user
regards as possible wrt. the actual query value. Unary inference sets describe complete information about a query
value. For example, {true} denotes that the user learns that the query value is true. The uniform refusal censor
will also have to consider binary inference sets, describing incomplete information about the query value.

A security configuration is given as a set C = {V1, . . . , Vk} of inference sets, all of which would lead to a

57

disclosure of sensitive information. For example, the security configuration C = {{true}, {false}}, as in the
second line of the censor table, denotes that neither the answer false nor the answer true may be given, as both
would lead to a violation of the security policy. In Section 3, we show how the security configuration is determined
based on the user log, which contains information about all facts disclosed to the user so far.

Having understood the concept of security configurations, one can easily see how the censor works. For exam-
ple, when neither true nor false may be given as an answer (second line of Table 1), the censor responds to this
situation by returning the remaining safe answer undef, even if the actual query value is true or false. For the three
security configurations {{true}}, {{false}} and {{undef}}, the censor has two safe answers to choose from. The
security configuration {{true}, {false}, {undef}} in the first line of the censor table represents the special situation
in which none of the values true, false and undef may be given as an answer, as all of them would lead to a security
violation. In that case, the censor refuses to answer, as a last resort. Finally, the security configuration ∅ in the last
line means that neither answer is dangerous, allowing the censor to pass the unmodified query value to the user.

A special problem arises when we disallow refusal as a distortion method. As you have seen, the security
configuration {{true}, {false}, {undef}} represents the situation where all of the values true, false and undef may
not be given as an answer, as all of them would allow the user to infer sensitive information. While the combined
lying and refusal censor overcomes this situation by refusing to answer, the uniform lying mechanism has to make
certain arrangements so that this “hopeless situation” will not occur. This is done by modifying the notion of a
violation of the security policy, protecting the disjunction of all potential secrets instead of each single one, as
described in Section 3.

Refusal and Meta Inferences A first approach to refusal in incomplete databases is given in [7]. In the present
work, we adapt the ideas from that paper to our new framework and give a formal definition of the meta inferences
that evolve as the major problem when refusal is used.

Meta inferences occur when the user combines the answers received by the system with his knowledge about
how the system works. The latter is made up of two parts: 1. We follow the principle of open design and assume
that the user knows the algorithm of the censor and its auxiliary components. 2. The security configuration is
computed only by information the user has access to (the user log, the query, and, as we assume, the security
policy). Thus, whenever the user receives an answer from the system, he can determine what line of the censor
table this answer originates from, and compare the received answer to the answers found in that line.

For example, consider the following excerpt from a censor table:

C true false undef

{{true}, {false}} refuse refuse undef

Imagine the user issues a query Φ, which has the value eval(Φ)(db) = true and the associated security config-
uration C = {{true}, {false}}, meaning that both answering true and false would lead to a security violation.
Thus, the censor answers refuse. The user can now determine the security configuration and finds that refuse is
only returned as an answer if the query value is either true or false, but not undef. So the user has gained partial
information about the query value, which we express by a binary inference set, in particular {true, false}. Even
this partial information might be harmful (as a matter of fact, if both the answers true and false would lead to the
disclosure of the same potential secret, the partial information “the value is either true or false” is sufficient to
infer that secret).

In order to overcome this problem, the uniform refusal method takes two actions: 1. Also binary inference sets
are considered when determining the security configurations, i. e., the inferences harmful to the security policy
(which, admittedly, leads to computational overhead, as a greater number of implications need to be computed).
2. In case a harmful meta inference can be drawn from an answer, an additional refuse is introduced in that line of
the censor table, avoiding the respective meta inference (which on the other hands leads to a lack of availability,
as more answers need to be refused). For example, the above mentioned situation can be solved as follows:

58

C true false undef

{{true}, {false}} refuse refuse undef
{{true}, {false}, {true, false}} refuse refuse refuse

The first line represents the situation where both the inferences {true} and {false} would lead to a security viola-
tion, but the partial inference {true, false} would not. In that case, it is sufficient to refuse the answer only if the
query value is true or false. The second line represents the situation where also the partial information is harmful.
Introducing an additional refuse in the third column (for the value undef), the user cannot draw that harmful meta
inference anymore (as any value would have led to the answer refuse).

The uniform lying method does not need to consider meta inferences because the mechanism of lying, as used
by our censors, avoids them in the first place by choosing only harmless answers as a lie. Consider the following
example:

C true false undef

{{true}} false false undef

Under this security configuration, true is a harmful answer, so it is replaced by the harmless answer false. The
resulting meta inference from the answer false is then {true, false}. This partial inference is harmless, because
even the more precise inference {false} is. (If it is harmless to know that the value is false, it is also harmless to
know that the value is either true or false). By choosing only harmless answers as a lie, the censor guarantees that
the meta inference includes at least one harmless component, making the whole meta inference harmless as well.

The combined lying and refusal method, which is derived from the uniform lying method, is not affected by
meta inferences as well; on the one hand, it inherits the abovementioned properties of the uniform lying method,
and on the other hand, under the additionally introduced security configuration {{true}, {false}, {undef}}, the
answer is refused regardless of the query value, eliminating harmful meta inferences as well.

Storing the actual answers (as performed by the uniform lying and the combined lying and refusal method)
instead of the meta inferences (as used by the uniform refusal method) is advantageous for two additional reasons:
First, it leads to an increase in computational efficiency, as a lower number of inferences has to be checked for a
violation of the security policy. Second, the censor is able to keep the set of answers consistent, even if there are
lies among them.

3 Formalization

Having introduced the basic ideas of controlled query evaluation, we now outline a formal definition of its various
components.

The User Log Controlled query evaluation keeps track of the facts already disclosed to the user in order to
determine which inferences would allow the user to infer any of the potential secrets. This information is stored
in the user log. Prior to the first query, we have the assumed initial user knowledge log0. Then, after each query
Φi, the inference from the ith answer ansi is added to the user log. In order to formalize the inferences, we
use epistemic logic (S5), established by introducing the modal operator K which is to be read as “it holds in the
database that ...”. A query Φ and the inference set ∅ 6= V ⊆ {true, false, undef} from the respective answer ans
can then be converted into a sentence of epistemic logic by the function ∆∗(Φ, V) =

∨
v∈V ∆(Φ, v) with

∆(Φ, true) = KΦ, ∆(Φ, false) = K¬Φ, ∆(Φ, undef) = ¬KΦ ∧ ¬K¬Φ.

We assume that each enforcement method defines a function inference(censor, C, ans) that computes the in-
ference from an answer ans (which was given by the censor censor under the security configuration C). As

59

mentioned in Section 2, we use two different approaches: The uniform lying method and the combined lying and
refusal method take the answer as the inference set (while refusals are discarded), formalized by the function

inferenceans(censor, C, ans) := if ans = refuse then ∅ else {ans}.

On the other hand, the uniform refusal method considers the meta inferences a highly-sophisticated user can draw
from an answer. The meta inference corresponds to the set of values that lead to the answer ans under the given
security configuration C, in formulae:

inferencemeta(censor, C, ans) = { v | v ∈ {true, false, undef} and censor(C, v) = ans }.

The range of these functions, i. e., the set of inferences that can occur under a certain enforcement method, is
given by Ians = {{true}, {false}, {undef}, ∅} and Imeta = P+({true, false, undef}) respectively (where P is the
power set operator and + indicates that the empty set is excluded).

Security Violations In order to prevent a violation of the security policy, we need to define what it means
that such a violation is existent. Again, we assume that each enforcement method provides a function
violates(pot sec, log), deciding whether the user log enables the user to learn any of the potential secrets. It is
guaranteed as a precondition that the initial user log log0 does not violate the security policy. Later, this is kept as
an invariant.

We use two different versions of this function. The uniform refusal method and the combined method define
that there is a violation if one of the potential secrets from pot sec is logically implied (wrt. epistemic logic) by
the user log:

violatessingle(pot sec, log) := (∃Ψ ∈ pot sec)[log |=S5 Ψ].

On the other hand, the uniform lying method needs to avoid the hopeless situation in which neither answer may be
given. This is achieved by the stricter violates-function

violatesdisj(pot sec, log) := log |=S5

∨
Ψ∈pot sec

Ψ.

For example, consider the security policy pot sec = {s1, s2, s3} and the user log log = {Ka → s1,K¬a →
s2,¬Ka ∧ ¬K¬a → s3}. According to violatessingle, this log does not violate the security policy (as the user
does now know which of the potential secrets holds). On the other hand, this user log does violate the security
policy according to violatesdisj (as the user knows that at least one of the potential secrets holds). Moreover, when
the user issues the query Φ = a and refusal is not allowed as a distortion method, we have the aforementioned
“hopeless situation” in which either answer would disclose a potential secret.

The uniform lying method avoids this situation by keeping the stricter condition violatesdisj as an invariant for
all user logs generated throughout the query sequence. On the other hand, the refusal and the combined method
adhere to the weaker condition violatessingle, for the sake of availability.

Security Configurations As outlined in Section 2, the security configuration of a query is the set of inferences
that would lead to a user log violating the security policy. This can be formalized as the function

sec conf(pot sec, log, Φ) = { V | V ∈ I and violates(pot sec, log ∪ {∆∗(Φ, V)})}

where pot sec is the security policy, log the current user log, Φ the query and I the range of the version of the
function inference used by this method. Note that the user is assumed to know all of these parameters, so he
can himself calculate the security configuration, enabling him to draw meta inferences. The range of sec conf is
limited by I and certain constraints. For example, an inference {v1, v2} can only be dangerous if both {v1} and
{v2} are. The censors will only have to handle those relevant security configurations.

60

The Censor The censor is the most important component of controlled query evaluation. It considers the security
configuration (i. e., the current threats to the security policy) and the actual query value and decides what answer
to give, either the original query value or a modified answer. This can be formalized as the function

censor : P(P+({true, false, undef}))× {true, false, undef} → {true, false, undef, refuse}.

For each enforcement method, we will restrict the censor function to certain behavior according that method
(lying, refusal or combined) and then state a couple of requirements such a censor must meet in order to preserve
confidentiality.

Formalization and Security Based on the components described above, we can define a method of controlled
query evaluation as a function

control eval(Q, log0, db, pot sec) := 〈(ans1, log1), . . . , (ansn, logn)〉

where Q = 〈Φ1, . . . ,Φn〉 is a query sequence, log0 the initial user log, db a database instance, and pot sec a set
of potential secrets. In each step i, the answer ansi and the subsequent user log logi are generated as follows:

1. Determine the security configuration: Ci = sec conf(pot sec, logi−1,Φi)

2. Let the censor generate the answer: ansi = censor(Ci, eval(Φi)(db))

3. Add the corresponding inference to the user log: logi = logi−1 ∪ {∆∗(Φi, inference(censor, Ci, ansi))}

Each method goes along with a function precondition that defines the admissible arguments for that method. For
the methods described in this work, it is demanded that the initial user log does not violate the security policy:

precondition(db, log0, pot sec) := not violates(pot sec, log0)

Our notion of confidentiality can then be defined as follows: Let control eval be a controlled query evaluation
with precondition as associated precondition for admissible arguments. control eval is defined to preserve
confidentiality iff

for all finite query sequences Q, for all security policies pot sec, for all potential secrets Ψ ∈ pot sec,
for all initial user logs log0, for all instances db1 so that (db1, log0, pot sec) satisfies precondition,
there exists db2 so that (db2, log0, pot sec) satisfies precondition, and the following conditions hold:

(a) [db1 and db2 produce the same answers]
control eval(Q, log0, db1, pot sec) = control eval(Q, log0, db2, pot sec)

(b) [Ψ is not true in db2]
eval(Ψ)(db2) ∈ {false, undef}

4 Enforcement Methods

In the following, we give a brief overview of the enforcement methods for controlled query evaluation suitable
for incomplete databases. Each method is identified by its basic policy (lying, refusal or both), and the inference-
function and the violates-function it uses. Furthermore, we state some requirements the censor function must
meet for each security configuration C occuring under that method in order to preserve confidentiality. There
are theorems stating that a censor meeting these requirements preserves confidentiality as defined in Section 3.
Examples of the three types of censors can be found in Tables 1, 2 and 3.

61

Lying

Censor policy only lie, never refuse
Inferences inferenceans (inference corresponds to answer)
Security violations violatesdisj (disjunction of all potential secrets)
Censor requirements for each v ∈ {true, false, undef}:

(a) [safe answers] {censor(C, v)} 6∈ C
(b) [only lie if necessary] if {v} 6∈ C then censor(C, v) = v

Refusal
Censor policy only refuse, never lie
Inferences inferencemeta (meta inferences)
Security violations violatessingle (single potential secrets)
Censor requirements meta inference may not lead to a violation:

for each ans ∈ {true, false, undef, refuse}: inferencemeta(censor, C, ans) 6∈ C

Combined lying and refusal

Censor policy lie as long as possible, otherwise refuse
Inferences inferenceans (inference corresponds to answer)
Security violations violatessingle (single potential secrets)
Censor requirements (a) [safe answers] for each v ∈ {true, false, undef}: {censor(C, v)} 6∈ C

(b) [only lie if necessary]
for each v ∈ {true, false, undef}: if {v} 6∈ C then censor(C, v) = v

(c) [no meta inferences from refusals]
if censor(C, v) = refuse for any v ∈ {true, false, undef},
then censor(C, v) = refuse for all v ∈ {true, false, undef}

Security Configuration eval(Φ)(db) = ...
C true false undef

{{true}, {false}} undef undef undef
{{true}, {undef}} false false false
{{false}, {undef}} true true true

{{true}} undef false undef
{{false}} true undef undef
{{undef}} true false false

∅ true false undef

Table 2: A lying censor

The proof idea is similar to all three types of censors: The censors guarantee that the final user log logn does
not logically imply any potential secret Ψ ∈ pot sec. Thus, there must be an S5-structure M and a state s so that
(M, s) |= logn and (M, s) 6|= Ψ. Defining db2 as the set of all propositional sentences φ so that (M, s) |= Kφ,
we have eval(Ψ)(db2) = false. It can be shown by induction that db2 also returns the same answers as db1.

It turns out that the combined lying and refusal method has advantages over the two uniform methods, for three
reasons: 1. Unlike the uniform lying method, it protects each single potential secret but not the disjunction of
all secrets, leading to a gain of availability. 2. Unlike the uniform refusal method, it does not consider partial

62

Security Configuration eval(Φ)(db) = ...
C true false undef

{{true}, {false}, {undef}, ...} refuse refuse refuse
{{true}, {false}, {true, false}} refuse refuse refuse

{{true}, {false}} refuse refuse undef
{{true}, {undef}, {true, undef}} refuse refuse refuse

{{true}, {undef}} refuse false refuse
{{true}} refuse false refuse

{{false}, {undef}, {false, undef}} refuse refuse refuse
{{false}, {undef}} true refuse refuse

{{false}} true refuse refuse
{{undef}} true refuse refuse

∅ true false undef

Table 3: A refusal censor. The first line is an abbreviation for all security configurations which are a superset of
{{true}, {false}, {undef}}, all of which are treated in the same way by this censor.

information (i. e., binary inference sets), needing less computational power. 3. Unlike the uniform refusal method,
it is not vulnerable to harmful meta inferences from refusals, and thereby needs no additional refuse-conditions,
leading to a gain of availability.

5 Conclusion and Further Work

In the present paper, we have studied controlled query evaluation as a means to dynamically preserve confidential-
ity in databases that might be incomplete. We have presented three basic enforcement methods: Uniform lying,
uniform refusal and combined lying and refusal. The insight that the combined method has advantages over the
two uniform methods corresponds to the results for complete databases [6].

In [7], a refusal censor is presented that uses a mechanism similar to inferenceans in order to store inferences.
While this is a saving of computational overhead, it leads to a lack of availability: That censor only checks unary
inference sets for a violation, but not the binary ones. If two unary inference sets, for example, {true} and {false},
are identified as harmful, it is, as a precaution, assumed that also their union {true, false} is. So an additional
refuse-condition for eval(Φ)(db) = undef is introduced in order to avoid that harmful meta inference. In this
respect, the censor from Table 3 is more cooperative, as it explicitly checks whether {true, false} is harmful, and
only introduces the additional refuse if that is the case. Obviously, we have a trade-off between availability and
complexity: A refusal censor that checks fewer inferences for a possible violation avoids computational overhead
but has to refuse the answer more often as a precaution, leading to a lack of availability. For example, a censor
that always refuses to answer is very fast but leads to total unavailability. On the other hand, the censor from this
paper was constructed by adding exactly one additional refuse-condition at each of the six security configurations
affected by harmful meta inferences. This heuristics is intended to guarantee maximum availability, though we
have no formal proof for this proposition.

So far, our work is limited to propositional logic. At first glance, this is a serious restriction. Nevertheless,
at this time, our framework may already be integrated into simple applications that involve only a small set of
atoms. Such an integration will be the subject of future work. More complex applications demand that higher
logics are used, for example first-order logic. Then, implication is only decidable within certain restrictions, for
example under a fixed finite domain, or when only certain types of sentences are allowed. We also get decidability
if we consider finite implications, i. e., taking care of finite models only [14]. It is still to be fully analyzed which

63

versions or fragments of relational databases fit our framework, in particular when allowing open queries rather
than only closed (yes/no-)queries as in the present paper (see for example [1] for an overview about complexity
and decidability issues in relational databases).

Furthermore, we assume that exactly one user is querying the database. When we have a set of different,
possibly colluding users, there are two options: First, one can regard all users as being the same and sharing
the same user log. Second, one can keep a separate user log for each of the users. The latter option is the
more interesting one, though it demands that there is a formal representation of the collusions, i. e., of the partial
information the users share with each other.

Finally, there are some aspects already studied for complete information systems [3] which still have to be
adapted to our new framework, including different kinds of security policies and the special case that the user does
not know the elements of the security policy, which might be exploited by our system in order to achieve a gain of
availability.

References

[1] Serge Abitehoul, Richard Hull, and Victor Vianu. Foundations of Databases. Addison-Wesley, 1995.

[2] Joachim Biskup. For unknown secrecies refusal is better than lying. Data & Knowledge Engineering, 33:1–
23, 2000.

[3] Joachim Biskup and Piero Bonatti. Controlled query evaluation for enforcing confidentiality in complete
information systems. International Journal of Information Security, 3:14–27, 2004.

[4] Joachim Biskup and Piero A. Bonatti. Lying versus refusal for known potential secrets. Data & Knowledge
Engineering, 38:199–222, 2001.

[5] Joachim Biskup and Piero A. Bonatti. Controlled query evaluation for known policies by combining lying
and refusal. In Thomas Eiter and Klaus-Dieter Schewe, editors, FoIKS, volume 2284 of Lecture Notes in
Computer Science, pages 49–66. Springer, 2002.

[6] Joachim Biskup and Piero A. Bonatti. Controlled query evaluation for known policies by combining lying
and refusal. Annals of Mathematics and Artificial Intelligence, 40:37–62, 2004.

[7] Joachim Biskup and Torben Weibert. Refusal in incomplete databases. In Csilla Farkas and Pierangela
Samarati, editors, Research Directions in Data and Applications Security XVIII, volume 144, pages 143–
157. Kluwer/Springer, 2004.

[8] Piero A. Bonatti, Sarit Kraus, and V.S. Subrahmanian. Foundations of secure deductive databases. IEEE
Transactions on Knowledge and Data Engineering, 7(3):406–422, 1995.

[9] Alexander Brodsky, Csilla Farkas, and Sushil Jajodia. Secure databases: Constraints, inference channels,
and monitoring disclosures. IEEE Trans. Knowl. Data Eng., 12(6):900–919, 2000.

[10] Silvano Castano, Mariagrazia Fugini, Giancarlo Martella, and Pierangela Samarati. Database Security. ACM
Press, 1995.

[11] Dorothy Denning. Cryptography and Data Security. Addison-Wesley, 1982.

[12] Csilla Farkas and Sushil Jajodia. The inference problem: A survey. SIGKDD Explorations, 4(2):6–11, 2002.

[13] Ernst L. Leiss. Principles of Data Security. Plenum Press, 1982.

64

[14] Leonid Libkin. Elements of Finite Model Theory. Springer, 2004.

[15] Teresa F. Lunt, Dorothy E. Denning, Roger R. Schell, Mark Heckman, and William R. Shockley. The seaview
security model. IEEE Trans. Software Eng., 16(6):593–607, 1990.

[16] Xiaolei Qian and Teresa F. Lunt. A semantic framework of the multilevel secure relational model. IEEE
Trans. Knowl. Data Eng., 9(2):292–301, 1997.

[17] George L. Sicherman, Wiebren de Jonge, and Reind P. van de Riet. Answering queries without revealing
secrets. ACM Transactions on Database Systems, 8(1):41–59, 1983.

[18] Lingyu Wang, Sushil Jajodia, and Duminda Wijesekera. Securing OLAP data cubes against privacy breaches.
In IEEE Symposium on Security and Privacy, pages 161–178. IEEE Computer Society, 2004.

[19] Lingyu Wang, Yingjiu Li, Duminda Wijesekera, and Sushil Jajodia. Precisely answering multi-dimensional
range queries without privacy breaches. In Einar Snekkenes and Dieter Gollmann, editors, ESORICS, volume
2808 of Lecture Notes in Computer Science, pages 100–115. Springer, 2003.

[20] Marianne Winslett, Kenneth Smith, and Xiaolei Qian. Formal query languages for secure relational
databases. ACM Trans. Database Syst., 19(4):626–662, 1994.

65

66

Non-Interference for a Typed Assembly Language

Ricardo Medel Adriana Compagnoni
Stevens Institute of Technology

Hoboken, NJ

Eduardo Bonelli
LIFIA, Fac. de Informática, UNLP

La Plata (Argentina)

Abstract

Non-interference is a desirable property of systems in a multilevel security architecture, stating that confi-
dential information is not disclosed in public output. The challenge of studying information flow for assembly
languages is that the control flow constructs that guide the analysis in high-level languages are not present.
To address this problem, we define a typed assembly language that uses pseudo-instructions to impose a stack
discipline on the control flow of programs. We develop a type system for checking that assembly programs
enjoy non-interference and its proof of soundness.

1 Introduction

The confidentiality of information handled by computing systems is of paramount importance. However, standard
perimeter security mechanisms such as access control or digital signatures fail to address the enforcement of
information-flow policies. On the other hand, language-based strategies offer a promising approach to information
flow security. In this paper, we study confidentiality for an assembly language using a language-based approach
to security via type-theory.

In a multilevel security architecture information can range from having low (public) to high (confidential)
security level. Information flow analysis studies whether an attacker can obtain information about the confidential
data by observing the output of the system. The non-interference property states that any two executions of
the same program, where only the high-level inputs differ inboth executions, does not exhibit any observable
difference in the program’s output.

In this paper we define SIF, a typed assembly language for secure information flow analysis with security
types. This language contains two pseudo-instructions,cpush L andcjmp L, for handling a stack of code
labels indicating the program points where different branches of code converge, and the type system enforces a
stack policy on those code labels. Our development culminates with a proof that well-typed SIF programs are
assembled to untyped machine code that satisfy non-interference.

The type system of SIF detects explicit illegal flows as well as implicit illegal flows arising from the control
structure of a program. Other covert channels such as those based on termination, timing, and power consumption,
are outside the scope of this paper.

2 SIF, A Typed Assembly Language

In information flow analysis, a security level is associatedwith the program counter (pc) at each program execution
point. This security level is used to detect implicit information flow from high-level values to low-level values.
Moreover, control flow analysis is crucial in allowing this security level to decrease where there is no risk of illicit
flow of information.

67

Consider the example in Figure 1(a), wherex has high security level andz has low security level. Notice
that y cannot have low security level, since information aboutx can be retrieved fromy , violating the non-
interference property. Since the execution path depends onthe value stored in the high-security variablex , entering
the branches of theif-then-else changes the security level of thepc to high, indicating that only high-level
variables can be updated. On the other hand, sincez is modified after both branches, there is no leaking of
information from eithery or x to z . Therefore, the security level of thepc can be safely lowered.

Sec. level ofpc

low if x=0
high then y:=1
high else y:=2
low z:=3
(a) High-level program

L1 : bnz r1, L2 % if x 6=0 goto L2

move r2 ← 1 % y:= 1
jmp L3

L2 : move r2 ← 2 % y:= 2
L3 : move r3 ← 3 % z:= 3

(b) Assembly program
Figure 1: Example of implicit illegal information flow.

A standard compilation of this example to assembly languagemay produce the code shown in Figure 1(b). Note
that the block structure of theif-then-else is lost, and it is not clear where it is safe to lower the security
level of thepc. We address this problem by including in our assembly language a stack of code labels accessed by
two pseudo-instructions,cpush L andcjmp L, to simulate the block structure of high-level languages.

The instructioncpush L pushesL onto the stack whilecjmp L first popsL from the stack ifL is already
at the top, and then jumps to the instruction labelled byL. The extra label information incjmp L allows us to
statically control that the intended label is removed, thereby preventing ill structured code.

The SIF code for the example in Figure 1(a) is shown below. Thecode atL1 pushes the labelL3 onto the stack.
The code atL3 corresponds to the instructions following theif-then-else in the source code. Observe that
the code atL3 can only be executed once, because the instructioncjmp L3 at the end of the code pointed to by
L1 (then branch), or at the end ofL2 (else branch), removes the top of the stack and jumps to the code pointed
to by L3 . At this point it is safe to lower the security level of thepc, since updating the low-security registerr3
does not leak any information aboutr1.

L1 : {r0 : int⊥, r1 : int>, r2 : int>, r3 : int⊥, pc : ⊥} ‖ ε
cpush L3 % set junction pointL3

bnz r1, L2 % if x 6= 0 goto L2
arithi r2 ← r0 + 1 % y:= 1, with r0=0
cjmp L3

L2 : {r0 : int⊥, r2 : int>, r3 : int⊥, pc : >} ‖ L3 · ε
arithi r2 ← r0 + 2 % y:= 2
cjmp L3

L3 : {r0 : int⊥, r3 : int⊥, pc : ⊥} ‖ ε
arithi r3 ← r0 + 3 % z:= 3
halt
eof

Moreover, as in HBAL [1], the type-checking of the program isseparated from the verification of the safety
of the machine configuration where the program is assembled.Thus, following the schema shown below, a type-
checker can verify if a program is safe for execution onany safememory configuration, and the runtime environ-
ment only needs to check that the initial machine configuration is safe before each run.

Eval

No

Unsafe Code

Typechecker

Unsafe Memory.

No

Yes Yes
Compiler Assembler Is machine safe?

68

The assembler removescpush L and translatescjmp L into jmp L, an ordinary unconditional jump,
leaving no trace of these pseudo-instructions in the executable code (see the definition of the assembly function
Asm(−) in section 2.4).

2.1 The Type System

We assume given a latticeLsec of security labels[8], with an ordering relationv, least (⊥) and greatest (>)
elements, and join (t) and meet (u) operations. These labels assign security levels to elements of the language
through types. The type expressions of SIF are given by the following grammar:

security labels l ∈ Lsec

security types σ ::= ωl

word types ω ::= int | [τ]
memory location types τ ::= σ × . . .× σ | code

Security types(σ) are word types annotated with a security label. The expression LABL(σ) returns the security
label of a security typeσ. A word type(ω) is either an integer type (int) or a pointer to a memory location type
([τ]). Memory location types(τ) are tuples of security types, or a special typecode . We useτ [c], with c a positive
integer, to refer to thecth word type of the product typeτ . Since the typecode indicates the type of an assembly
instruction, our system distinguishes code from data.

A context(Γ ‖ Λ) contains a register contextΓ and a junction points stackΛ. A junction points stack(Λ) is a
stack of code labels, each representing the convergence point of a fork in the control flow of a program. The empty
stack is denoted byε. A register contextΓ contains type information about registers, mapping them tosecurity
types. We assume a finite set of registers{r0, . . . , rn}, with two dedicated registers:r0, that always holds zero,
andpc, the program counter.

We writeDom(Γ) for the domain of the register contextΓ. The empty context is denoted by{}. The register
context obtained by eliminating fromΓ all pairs withr as first component be denoted byΓ/r, while Γ,Γ′ denotes
the union of register contexts with disjoint domains. We useΓ, r : σ as a shorthand forΓ, {r : σ}, andΓ[r := σ]
as a shorthand forΓ/r, {r : σ}.

Since the program counter is always a pointer to code, we usually write pc : l instead ofpc : [code]l. We also
useΓ(pc) instead of LABL(Γ(pc)).

2.2 Syntax of SIF programs

A program (P) is a sequence of instructions and code labels ended by the directive eof . SIF has standard
assembly language instructions such as arithmetic operations, conditional branching, load, and store, plus pseudo-
instructionscpush andcjmp to handle the stack of code labels.

program P ::= eof | L; P | p; P
instructions p ::= halt | jmp L | bnz r, L

| load r← r[c] | store r[c]← r
| arith r ← r � r | arithi r ← r � i
| cpush L | cjmp L

operations � ::= + | − | ∗ | /

We usec to indicate an offset, andi to indicate integer literals. We assume an infinite enumerable set of code
labels. Intuitively, the instructioncpush L pushes the junction point represented by the code labelL onto the
stack, while the instructioncjmp L behaves as a pop and a jump. IfL is at the top of the stack, it popsL and
then jumps to the instruction labeledL.

69

Γ′ ⊆ Γ l v l′

ST RegBank
(Γ, pc : l ‖ Λ) ≤ (Γ′, pc : l′ ‖ Λ)

Ctxt(P) `Σ P
T Halt

Γ ‖ ε `Σ halt ; P

T Eof
Γ ‖ ε `Σ eof

(Γ ‖ Λ) ≤ Σ(L) Σ(L) `Σ P
T Label

Γ ‖ Λ `Σ L; P

(Γ ‖ Λ) ≤ Σ(L) Ctxt(P) `Σ P
T Jmp

Γ ‖ Λ `Σ jmp L; P

(Γ, r : int
l′ , pc : l t l′ ‖ Λ) ≤ Σ(L) Γ, r : int

l′ , pc : l t l′ ‖ Λ `Σ P
T CondBrnch

Γ, r : int
l′ , pc : l ‖ Λ `Σ bnz r, L; P

Γ(rd) = ωld rd, rs, rt 6= pc

Γ(rs) = int ls l t ls t lt v ld
Γ(rt) = int lt Γ, pc : l ‖ Λ `Σ P

T Arith
Γ, pc : l ‖ Λ `Σ arith rd ← rs � rt; P

rd, rs 6= pc

Γ(rd) = ωld l t ls v ld
Γ(rs) = int ls Γ, pc : l ‖ Λ `Σ P

T Arithi
Γ, pc : l ‖ Λ `Σ arithi rd ← rs � i; P

Γ(rs) = [τ]ls rd, rs 6= pc

Γ(rd) = ωld l t ls v lc v ld
τ [c] = ωlc

c Γ, pc : l ‖ Λ `Σ P
T Load

Γ, pc : l ‖ Λ `Σ load rd ← rs[c]; P

Γ(rd) = [τ]ld rd, rs 6= pc

Γ(rs) = τ [c] = ωls l t ld v ls
τ is code -free Γ, pc : l ‖ Λ `Σ P

T Store
Γ, pc : l ‖ Λ `Σ store rd[c]← rs; P

l v Σ(L)(pc) Γ, pc : l ‖ L · Λ `Σ P
T Cpush

Γ, pc : l ‖ Λ `Σ cpush L; P

Σ(L) = Γ′ ‖ Λ Γ′/pc ⊆ Γ/pc Ctxt(P) `Σ P
T Cjmp

Γ ‖ L · Λ `Σ cjmp L; P

Figure 2: Subtyping for contexts and typing rules for programs.

2.3 Typing rules

A signature(Σ) is a mapping assigning contexts to labels. The contextΣ(L) contains the typing assumptions for
the registers in the program point pointed to by the labelL. The judgmentΓ ‖ Λ `Σ P is a typing judgment for
a SIF programP , with signatureΣ, in a contextΓ ‖ Λ. We say that a programP is well-typedif Ctxt(P) `Σ P ,
whereCtxt(P) is the partial function defined as:Ctxt(L; P) = Σ(L), Ctxt(eof) = {} ‖ ε.

The typing rules for SIF programs, shown in Figure 2, are designed to prevent illegal flows of information. The
directiveeof is treated as ahalt instruction. So, rulesT Eof andT Halt ensure that the stack is empty.

RuleT Label requires that the current context be compatible with the context expected at the position of the
label, as defined in the signature (Σ) of the program. Jumps and conditional jumps are typed by rulesT Jmp and
T CondBrnch. In both rules the current context has to be compatible with the context expected at the destination
code. InT CondBrnch, both the code pointed to byL and the remaining programP are considered destinations
of the jump included in this operation. In order to avoid implicit flows of information, the security level of thepc

in the destination code should not be lower than the current security level and the security level of the register (r)
that controls the branching.

In T Arith the security level of the source registers and thepc should not exceed the security level of the target
register to avoid explicit flows of information. The security level of rd can actually be lowered to reflect its new
contents, but, to avoid implicit information flows, it cannot be lowered beyond the level of thepc. Similarly for
T Arithi, T Load andT Store. In T Load, an additional condition establishes that the security level of the pointer
to the heap has to be lower than or equal to the security level of the word to be read.

The ruleT Cpush controls whethercpush L can add the code labelL to the stack. SinceL is going to be
consumed by acjmp L instruction, its security level should not be lower than thecurrent level of thepc. The
cjmp L instruction jumps to the junction point pointed to by labelL. Furthermore, to prevent ill structured
programs the ruleT Cjmp forces the code labelL to be at the top of the stack, and the current context has to be

70

compatible with the one expected at the destination code. However, since acjmp instruction allows the security
level to be lowered, there are no conditions on its security level.

2.4 Type soundness of SIF

In this section we define a semantics for the untyped assemblyinstructions operating on a machine model, we give
an interpretation for SIF types which captures the way typesare implemented in memory, and finally we prove that
the execution of a well-typed SIF program modifies a type-safe configuration into another type-safe configuration.

Let Reg = {0, 1, . . . ,Rmax} be the register indices, with two dedicated registers:R(0) = 0, andR(pc) is
the program counter. LetLoc ⊆ Z be the set of memory locations on our machine,Wrd be the set of machine
words that can stand for integers or locations, andCode be the set of machine words which can stand for machine
instructions. To simplify the presentation, we assume thatWrd is disjoint fromCode; so, our model keeps code
separate from data.

A machine configurationM is a pair(H,R) whereH : Loc ⇁ Wrd] Code is a heap configuration, and
R : Reg→Wrd is a register configuration.

Given a programP , a machine assembled forP is a machine configuration which contains a representation
of the assembly program, with machine instructions stored in some designated contiguous portion of the heap.
SupposingP = p1; . . . ; pn, the assembly process defines a functionPAdr : 1, . . . , n → Loc which gives the
destination location for the code when assembling the typedinstructionpu, where1 ≤ u ≤ n. For each of the
locations` whereP is stored,H(`) ∈ Code. The assembly process also defines the functionLAdr(L), which
assigns to each label inP the heap location where the code pointed to by the label was assembled.

Given a machine configurationM = (H,R), we define amachine transitionM −→ M ′, as follows: First,
M ′ differs fromM by incrementingR(pc) according to the length of the instruction inH(R(pc)); then, the
transformation given in the table below is applied to obtainthe new heapH ′, or register bankR′. The operations
on r0 have no effect.

jmp L R′ = R[pc := LAdr(L)]

bnz r, L R′ =

{

R, if R(r) = 0
R[pc := LAdr(L)], otherwise

arith rd ← rs � rt R′ = R[rd := R(rs) � R(rt)]
arithi rd ← rs � i R′ = R[rd := R(rs) � i]
load rd ← rs[c] R′ = R[rd := H(R(rs) + c)]
store rd[c]← rs H ′ = H [R(rd) + c := R(rs)]

Asm(pu) stands for the sequence of untyped machine instructions which is the result of assembling a typed
assembly instructionpu:

Asm(L) = ε Asm(eof) = halt Asm(cpush L) = ε Asm(cjmp L) = jmp L Asm(pu) = pu

We writeM
Asm(pu)
−→ M ′, if M executes toM ′ through the instructions inAsm(pu), by zero or one transitions in

M . The reflexive and transitive closure of this relation is defined by the following rules.

Refl
M =⇒M

M1
Asm(pu)
−→ M2

Incl
M1 =⇒M2

M1 =⇒M2 M2 =⇒M3
Trans

M1 =⇒M3

2.4.1 Imposing Types on the Model

A heap contextψ is a function that maps heap locations to security types. A heap context contains type information
about the heap locations required to type the registers.Dom(ψ) denotes the domain of the heap contextψ. The

71

empty context is denoted by{}. We writeψ[` := τ] for the heap context resulting from updatingψ with ` : τ . Two
heap contextsψ andψ′ arecompatible, denotedcompat(ψ,ψ′), if for all ` ∈ Dom(ψ)∩Dom(ψ′), ψ(`) = ψ′(`).
The following rules assign types to heap locations:

H(`) ∈ Code
T HLocCode

H ; {` : code } |= ` : code hloc

H(`) ∈ Wrd
T HLocInt

H ; {` : int l} |= ` : int l hloc

H(`) ∈Wrd compat(ψ, {` : [τ]l}) H ;ψ |= H(`) : τ hloc
T HLocPtr

H ;ψ ∪ {` : [τ]l} |= ` : [τ]l hloc

compat(ψ, ψ′) H ;ψ |= ` : τ hloc
W HLoc

H ;ψ ∪ ψ′ |= ` : τ hloc

mi = size(σ0) + . . .+ size(σi−1) H ;ψ |= `+mi : σi hloc for all 0 ≤ i ≤ n
T HLocProd

H ;ψ |= ` : σ0 × . . .× σn hloc

In order to define the notion of satisfiability of contexts by machine configurations, we need to define a satisfi-
ability relation for registers.

r 6= pc
T RegInt

M |={} r : int l reg

H ;ψ |= R(r) : τ hloc
T RegPtr

(H,R) |=ψ r : [τ]l reg

(H,R) |=ψ r : σ reg compat(ψ, ψ′)
W Reg

(H,R) |=ψ∪ψ′ r : σ reg

A machine configurationM satisfiesa typing assignmentΓ with a heap typing contextψ (writtenM |=ψ Γ)
if and only if for each registerri ∈ Dom(Γ), M satisfies the typing statementM |=ψi

ri : Γ(ri) reg, the heap
contextsψi are pairwise compatible, andψ = ∪∀iψi.

A machine configurationM = (H,R) is in final stateif H(R(pc)) = halt . We define an approximation to
the execution of a typed programP = p1; . . . ; pn by relating the execution of the code locations in the machineM
with the control paths in the program by means of the relationpu pv, which holds between pairs of instructions
indexed by the set:

{(i, i+ 1) | pi 6= jmp , cjmp , and i < n}
∪

{(i, j + 1) | pi = jmp L, bnz r, L, or cjmp L, and pj = L}.

pu
∗
 pv denotes the reflexive and transitive closure ofpu pv.

2.4.2 Type Soundness

In this section we show that our type system ensures that the reduction rules preserve type safety. The soundness
results imply that if the initial memory satisfies the initial typing assumptions of the program, then each memory
configuration reachable from the initial memory satisfies the typing assumptions of its current instruction.

The typing assumptions of each instruction of a program can be obtained from the initial context by the type-
checking process. For a well-typed programP = p1; . . . pu; . . . ; pn, the derivationCtxt(P) `Σ P determines a
sequence of contextsΓ1 ‖ Λ1, . . . ,Γn ‖ Λn from sub-derivations of the formΓu ‖ Λu `Σ pu; pu+1; . . . ; pn.

A machine configuration is considered type-safe if it satisfies the typing assumptions of its current instruction.
Given a well-typed programP = p1; . . . pu; . . . ; pn and a heap contextψ, we sayM = (H,R) is type safe atu
for P withψ if M is assembled forP ; R(pc) = PAdr(u); andM |=ψ Γu.

We prove two meta-theoretic results Progress and Subject Reduction. Progress (Theorem 1) establishes that a
non-final-state type safe machine can always progress to a new machine by executing a well-typed instruction, and
Subject Reduction (Theorem 2) establishes that if a type safe machine progresses to another machine, the resulting
machine is also type safe.

72

Theorem 1 (Progress)
Suppose a well-typed programP = p1; . . . pu; . . . ; pn and a machine configurationM type safe atu. Then there

existsM ′ such thatM
Asm(pu)
−→ M ′, orM is in final state.

Theorem 2 (Subject Reduction)
SupposeP = p1; . . . pu; . . . ; pn is a well-typed program and(H,R) is a machine configuration type safe atu, and

(H,R)
Asm(pu)
−→ M ′. Then there existspv ∈ P such thatpu pv andM ′ is type safe atv.

The proof of this theorem proceeds by case analysis on the current instructionpu, analyzing each of the possible
instructions that followpu, based on the definition of program transitions. See the companion technical report [13]
for details.

3 Non-Interference

Given an arbitrary (but fixed) security levelζ of anobserver, non-interference states that computed low-security
values (v ζ) should not be affected by high-security input values (6v ζ). In order to prove that a programP
satisfies non-interference one must show that any two terminating executions fired from indistinguishable (from the
point of view of the observer) machine configurations yield indistinguishable configurations of the same security
observation level.

In order to establish what it means for machine configurations to be indistinguishable from an observer’s point
of view whose security level isζ, we define aζ-indistinguishability relation for machine configurations.

The following definitions assume a given security levelζ, two machine configurationsM1 = (H1, R1) and
M2 = (H2, R2), two heap contextsψ1 andψ2, and two register contextsΓ1 andΓ2, such thatM1 |=ψ1

Γ1 and
M2 |=ψ2

Γ2.
Two register banks areζ-indistinguishable if the observable registers in one bankare also observable in the

other, and the contents of these registers are alsoζ-indistinguishable.

Definition 3.1 (ζ-indistinguishability of register banks)
Two register banksR1 andR2 areζ-indistinguishable, written�H1:ψ1,H2:ψ2

R1 : Γ1 ≈ζ R2 : Γ2 regBank, if for
all r ∈ Dom(Γ1) ∪Dom(Γ2), with r 6= pc:

LABL (Γ1(r)) v ζ or LABL (Γ2(r)) v ζ implies







r ∈ Dom(R1) ∩Dom(R2) ∩Dom(Γ1) ∩Dom(Γ2),
Γ1(r) = Γ2(r), and
�H1:ψ1,H2:ψ2

R1(r) ≈ζ R2(r) : Γ1(r) val

Two word valuesv1 andv2 of typeωl are consideredζ-indistinguishable, written�H1:ψ1,H2:ψ2
v1 ≈ζ v2 : ωl val,

if l v ζ implies that both values are equal. In case of pointers to heap locations, the locations have to be alsoζ-
indistinguishable.

Two heap values̀1 and`2 of typeτ are consideredζ-indistinguishable, written�H1:ψ1,H2:ψ2
`1 ≈ζ `2 : τ hval,

if `1 ∈ H1, `2 ∈ H2, and either the typeτ is code and`1 = `2, or τ = σ1 × . . . × σn and each pair of offset
locations`1 +mi and`2 +mi (with mi as in ruleT HLocProd) areζ-indistinguishable, orτ is a word type with
a security labell andl v ζ implies that both values are equal.

The proof of our main result, the Non-Interference Theorem 3, requires two notions of indistinguishability of
stacks (Low and High). If one execution of a program brancheson a condition while the other does not, the
junction points stacks may differ in each of the paths followed by the executions. If the security level of thepc is
low in one execution, then it has to be low in the other execution as well, and the executions must be identical. The
first three rules of Figure 3 define the relation of low-indistinguishability for stacks. In low-security executions

73

LowAxiom
�Σε ≈ζ ε Low

Σ(L)(pc) v ζ �Σ Λ1 ≈ζ Λ2 Low
LowLow

�ΣL · Λ1 ≈ζ L · Λ2 Low

Σ(L1)(pc) 6v ζ Σ(L2)(pc) 6v ζ �Σ Λ1 ≈ζ Λ2 Low
LowHigh

�ΣL1 · Λ1 ≈ζ L2 · Λ2 cstackLow

�ΣΛ1 ≈ζ Λ2 Low
HighAxiom

�ΣΛ1 ≈ζ Λ2 High

Σ(L)(pc) 6v ζ �Σ Λ1 ≈ζ Λ2 High
HighLeft

�ΣL · Λ1 ≈ζ Λ2 High

Σ(L)(pc) 6v ζ �Σ Λ1 ≈ζ Λ2 High
HighRight

�ΣΛ1 ≈ζ L · Λ2 High

Figure 3:ζ-indistinguishability of junction points stacks.

the associated stacks mus be of the same size, and each code label in the stack of the first execution must be
indistinguishable from that of the corresponding element in the second one.

If the security level of thepc of one of the two executions is high, then the other one must behigh too. The
executions are likely to be running different instructions, and thus the associated stacks may have different sizes.
However, we need to ensure that both executions follow branches of the same condition. This is done by requiring
that both associated stacks have a common (low-indistinguishable) sub-stack. The second three rules of Figure 3
define the relation of high-indistinguishability for stacks. Also note that, as imposed by the typing rules, the code
labels added to the stack associated to high-security branches are of high-security level.

Finally, we define the relation of indistinguishability of two machine con from the point of view of an observer
of level ζ.

Definition 3.2
Two machine configurationsM1 = (H1, R1) andM2 = (H2, R2) areζ-indistinguishable, denoted by the judg-
ment�PM1 : Γ1,Λ1, ψ1 ≈ζ M2 : Γ2,Λ2, ψ2 mConfig, if and only if

1. M1 |=ψ1
Γ1 andM2 |=ψ2

Γ2,

2. M1 andM2 are assembled forP at the same addresses,

3. �H1:ψ1,H2:ψ2
R1 : Γ1 ≈ζ R2 : Γ2 regBank, and

4. either

(a) Γ1(pc) = Γ2(pc) v ζ andR1(pc) = R2(pc) and�ΣΛ1 ≈ζ Λ2 Low, or

(b) Γ1(pc) 6v ζ andΓ2(pc) 6v ζ and�ΣΛ1 ≈ζ Λ2 High.

Note that both machine configurations must be consistent with their corresponding typing assignments, and
they must be executing the code resulting from assemblingP .

We may now state the non-interference theorem establishingthat starting from two indistinguishable machine
configurations assembled for the same programP , if each execution terminates, the resulting machine configura-
tions remain indistinguishable.

In the following theorem and lemmas, for any instructionpi in a well-typed programP = p1; . . . ; pn, the
contextΓi ‖ Λi is obtained from the judmentΓi ‖ Λi `Σ pi; pn, which is derived by a sub-derivation of
Ctxt(P) `Σ P .

74

Theorem 3 (Non-Interference)
Let P = p1; . . . ; pn be a well-typed program,M1 = (H1, R1) andM2 = (H2, R2) be machine configurations
such that both aretype safeat 1 forP with ψ and

�PM1 : Γ1, ε, ψ ≈ζ M2 : Γ1, ε, ψ mConfig.

If M1 =⇒M ′
1 andM2 =⇒M ′

2, withM ′
1 andM ′

2 in final state, then

�PM
′

1 : Γv, ε, ψ1 ≈ζ M
′

2 : Γw, ε, ψ2 mConfig.

The technical challenge that lies in the proof of this theorem is that theζ-indistinguishability of configurations
holds after each transition step. The proof is developed in two stages. First it is proved that twoζ-indistinguishable
configurations that have a low (and identical) level for thepc can reduce in alock step fashionin a manner invariant
to theζ-indistinguishability property. This is stated by the following lemma.

Lemma 1 (Low-PC step)
LetP = p1; . . . ; pn be a well-typed program, such thatpv1 andpv2 are inP ,M1 = (H1, R1) andM2 = (H2, R2)
be machine configurations. Suppose

1. M1 is type safe atv1 andM2 is type safe atv2, for P with ψ1 andψ2, respectively,

2. �PM1 : Γv1,Λv1 , ψ1 ≈ζ M2 : Γv2,Λv2 , ψ2 mConfig,

3. Γv1(pc) v ζ andΓv2(pc) v ζ,

4. M1
Asm(pv1

)
−→ M ′

1, and

5. there existspw1
in P such thatpv1 pw1

, andM ′
1 is type safe atw1 with ψ3.

Then, there exists a configurationM ′
2 such that:

(a) M2
Asm(pv2

)
−→ M ′

2,

(b) there existspw2
in P such thatpv2 pw2

, andM ′
2 is type safe atw2 with ψ4, and

(c) �PM
′
1 : Γw1

,Λw2
, ψ3 ≈ζ M

′
2 : Γw2

,Λw2
, ψ4 mConfig.

When the level of thepc is low, the programs execute the same instructions (with possibly different heap and
register bank). They may be seen to besynchronizedand each reduction step made by one is emulated with a
reduction of the same instruction by the other. The resulting machines must beζ-indistinguishable.

However, a conditional branch (bnz) may cause the execution to fork on a high value. As a consequence, both
of their pc become high and we must provide proof that there are someζ-indistinguishable machines to which
they reduce. Then, the second stage of the proof consists of showing that every reduction step of one execution
whosepc has a high-security level can be met with a number of reduction steps (possibly none) from the other
execution such that they reach indistinguishable configurations. The High-PC Step Lemma states such result.

Lemma 2 (High-PC Step)
Let P = p1; . . . ; pn be a well-typed program, such thatpv1 andpv2 are inP , andM1 = (H1, R1) andM2 =
(H2, R2) be machine configurations. Suppose

1. M1 is type safe atv1 andM2 is type safe atv2, for P with ψ1 andψ2, respectively.

75

2. �PM1 : Γv1,Λv1 , ψ1 ≈ζ M2 : Γv2,Λv2 , ψ2 mConfig,

3. Γv1(pc) 6v ζ andΓv2(pc) 6v ζ,

4. M1
Asm(pv1

)
−→ M ′

1, and

5. there existspw1
in P such thatpv1 pw1

andM ′
1 is type safe atw1 with ψ3.

Then, either the configurationM2 diverges or there exists a machine configurationM ′
2 such that

(a) M2 =⇒M ′
2,

(b) there existspw2
in P such thatpv2

∗
 pw2

andM ′
2 is type safe atw2 with ψ4, and

(c) �PM
′
1 : Γw1

,Λw1
, ψ3 ≈ζ M

′
2 : Γw2

,Λw2
, ψ4 mConfig.

The main technical difficulty here is the proof of the case when one execution does acjmp instruction that low-
ers thepc level. In this case, the other execution should, in a number of steps, also reduce itspc level accordingly.
This is guaranteed by two facts. First, high-indistinguishable stacks share a sub-stack whose top is the label to the
junction point where thepc level is reduced and both executions converge. Second, well-typed programs reach
final states only with an empty stack, having visited all the labels indicated by the junction point stack.

4 Related Work

Information flow analysis has been an active research area inthe past three decades [18]. Pioneering work by Bell
and LaPadula [4], Feiertag et al. [9], Denning and Denning [8, 7], Neumann et al. [17], and Biba [5] set the basis
of multilevel security by defining a model of information flowwhere subjects and objects have a security level
from a lattice of security levels. Such a lattice is instrumental in representing a security policy where a subject
cannot read objects of level higher than its level, and it cannot write objects at levels lower than its level.

The notion ofnon-interferencewas first introduced by Goguen and Meseguer [10], and there has been a sig-
nificant amount of research on type systems for confidentiality for high-level languages including Volpano and
Smith [20], and Banerjee and Naumann [2]. Type systems for low-level languages have been an active subject of
study for several years now, including TAL [14], STAL [15], DTAL [21], Alias Types [19], and HBAL [1].

In his PhD thesis [16], Necula already suggests informationflow analysis as an open research area at the
assembly language level. Zdancewic and Myers [22] present alow-level, secure calculus with ordered linear
continuations. An earlier version of our type system was inspired by that work. However, we discovered that
in a typed assembly language it is enough to have a junction point stack instead of mimicking ordered linear
continuations. Barthe et al. [3] define a JVM-like low-levellanguage with a heap and an operand stack. The type
system is parameterized by control dependence regions, andit is assumed that there exist functions that obtain
such regions. In contrast, SIF allows such regions to be expressed in the language by using code labels and its
well-formedness to be verified during type-checking. Craryet al. [6] define a low-level calculus for information
flow analysis, however, their calculus has the structuring constructif-then-else , unlike SIF that uses typed
pseudo-instructions that are assembled to standard machine instructions.

5 Conclusions and Future Work

We defined SIF, a typed assembly language for secure information flow analysis. Besides the standard features,
such as heap and register bank, SIF introduces a stack of codelabels in order to simulate at the assembly level

76

the block structure of high-level languages. The type system guarantees that well-typed programs assembled on
type-safe machine configurations satisfy the non-interference property: for a security levelζ, if two type-safe
machine configuration areζ-indistinguishable, then the resulting machine configurations after execution are also
ζ-indistinguishable.

An alternative to our approach is to have a list of the programpoints where the security level of thepc can
be lowered safely. This option delegates the security analysis of where thepc level can be safely lowered to a
previous step (that may use, for example, a function to calculate control dependence regions [12]). This delegation
introduces a new trusted structure into the type system. Ourtype system, however, does not need to trust the well-
formation of such a list. Moreover, even the signature (Σ) attached to SIF programs is untrusted in our setting,
since, as we explained in section 2.3, its information aboutthe security level of thepc is checked in the rules for
cpush andcjmp in order to prevent illegal information flows.

We are currently developing a version of our language that includes a runtime stack, in order to define a stack-
based compilation function from a high-level imperative programming language to SIF.

Acknowledgments:We are grateful to Pablo Garralda, Healfdene Goguen, David Naumann, and Alejandro Russo
for enlightening discussions and comments on previous drafts. This work was partially supported by theNSF
project CAREER: A formally verified environment for the production of secure software– #0093362 and the
Stevens Technogenesis Fund.

References
[1] David Aspinall and Adriana B. Compagnoni. Heap bounded assembly language.Journal of Automated Reasoning, Special Issue on

Proof-Carrying Code, 31(3-4):261–302, 2003.

[2] A. Banerjee and D. Naumann. Secure information flow and pointer confinement in a java-like language. InProceedings of Fifteenth
IEEE Computer Security Foundations - CSFW, pages 253–267, June 2002.

[3] G. Barthe, A. Basu, and T. Rezk. Security types preserving compilation. InProceedings of VMCAI’04, volume 2937 ofLecture
Notes in Computer Science. Springer-Verlag, 2004.

[4] D. Bell and L. LaPadula. Secure computer systems: Mathematical foundations and model. Technical Report Technical Report MTR
2547 v2, MITRE, November 1973.

[5] K. Biba. Integrity considerations for secure computer systems. Technical Report ESD-TR-76-372, USAF Electronic Systems Divi-
sion, Bedford, MA, April 1977.

[6] Karl Crary, Aleksey Kliger, and Frank Pfenning. A monadic analysis of information flow security with mutable state. Technical
Report CMU-CS-03-164, Carnegie Mellon University, September 2003.

[7] D. E. Denning and P. J. Denning. Certification of programsfor secure information flow.Communications of the ACM, 20(7):504–513,
July 1977.

[8] Dorothy E. Denning. A lattice model of secure information flow. Communications of the ACM, 19(5):236–242, May 1976.

[9] R. J. Feiertag, K. N. Levitt, and L. Robinson. Proving multilevel security of a system design. In6th ACM Symp. Operating System
Principles, pages 57–65, November 1977.

[10] J. A. Goguen and J. Meseguer. Security policy and security models. InProceedings of the Symposium on Security and Privacy, pages
11–20. IEEE Press, 1982.

[11] Daniel Hedin and David Sands. Timing aware informationflow security for a javacard-like bytecode. InProceedings of BYTECODE,
ETAPS’05, to appear, 2005.

[12] Xavier Leroy. Java bytecode verification: an overview.In G. Berry, H. Comon, and A. Finkel, editors,Proceedings of CAV’01,
volume 2102, pages 265–285. Springer-Verlag, 2001.

[13] Ricardo Medel, Adriana Compagnoni, and Eduardo Bonelli. A typed assembly language for secure information flow analysis.
http: //www.cs.stevens.edu/˜ rmedel/hbal/publications/sifTec hReport.ps , 2005.

[14] G. Morrisett, D. Walker, K. Crary, and N. Glew. From System F to Typed Assembly Language.ACM Transactions on Programming
Languages and Systems, 21(3):528–569, May 1999.

77

[15] Greg Morrisett, Karl Crary, Neal Glew, and David Walker. Stack-based typed assembly language. InSecond International Workshop
on Types in Compilation, pages 95–117, Kyoto, March 1998. Published in Xavier Leroyand Atsushi Ohori, editors,Lecture Notes in
Computer Science, volume 1473, pages 28-52. Springer-Verlag, 1998.

[16] George Necula.Compiling with Proofs. PhD thesis, Carnegie Mellon University, September 1998.

[17] Peter G. Neumman, Richard J. Feiertag, Karl N. Levitt, and Lawrence Robinson. Software development and proofs of multi-level
security. InProceedings of the 2nd International Conference on Software Engineering, pages 421–428. IEEE Computer Society,
October 1976.

[18] A. Sabelfeld and A. Myers. Language-based information-flow security. IEEE Journal on Selected Areas in Communications, 21(1),
2003.

[19] Frederick Smith, David Walker, and Greg Morrisett. Alias types. In Gert Smolka, editor,Ninth European Symposium on Program-
ming, volume 1782 ofLNCS, pages 366–381. Springer-Verlag, April 2000.

[20] Dennis M. Volpano and Geoffrey Smith. A type-based approach to program security. InTAPSOFT, pages 607–621, 1997.

[21] Hongwei Xi and Robert Harper. A dependently typed assembly language. Technical Report OGI-CSE-99-008, Oregon Graduate
Institute of Science and Technology, July 1999.

[22] S. Zdancewic and A. Myers. Secure information flow via linear continuations.Higher Order and Symbolic Computation, 15(2–3),
2002.

78

Session IV

Network Security and Denial-of-Service
Attacks

79

Trusting the Network
(Extended Abstract)

Tom Chothia
Laboratoire d’Informatique (LIX)

École Polytechnique
91128 Palaiseau Cedex, France.

Dominic Duggan
Dept of Computer Science

Stevens Institute of Technology
Hoboken, NJ, USA.

Ye Wu
Dept of Computer Science

Stevens Institute of Technology
Hoboken, NJ, USA.

Abstract

Cryptography is often used to secure the secrecy and integrity of data, but its ubiquitious use (for example
on every read and write of a program variable) is prohibitive. When protecting the secrecy and integrity of data,
applications may choose to reply on the underlying runtime or network, or they may seek to secure the data
themselves using cryptographic techniques. However specifying when to rely on the environment, and when
to explicitly enforce security, is usually specified informally without recourse to explicit policies. This article
considers an approach to making explicit when the runtime or network is trusted to carry data in cleartext, and
when the data must be explicitly protected. The approach is based on associating levels of trust to parts of the
system where data may reside in transit, and levels of relative sensitivity to data that is transmitted. The trust
policy is enforced by a type system, one that distinguishes between security policies for access control and trust
policies for controlling the safe distribution of data.

1 Introduction

This article addresses the question: When should one trust the network over which data is communicated?
What is a network? We take a very generic point of view: a network is any communication medium through

which messages are exchanged between entities in a computing system. Examples include:

• hosts exchanging packets through the Internet;

• processes exchanging data across a virtual private network secured using IPsec;

• processes on the same machine communicating via IPC;

• threads in a single address space exchanging messages via a message queue.

We assume that the data being exchanged has both secrecy and integrity constraints associated with it. We
say that a network istrustedif parties using that network to communicate rely on the network itself to realize
the desired secrecy and integrity guarantees. For example in type-based information flow control systems, the
“network” is represented by global shared variables, and a type system ensures that secrecy constraints are enforced
for all participants. On the other hand, in distributed programming over the Internet, the network is not trusted; so
cryptographic techniques are used to secure secrecy and integrity properties (encryption and signing, respectively).
There is still some trust: cryptographic operations may not be performed until data is about to be output from the
network card, since the operating system and its buffers are assumed to be trusted. Virtual private networks use
cryptographic techniques to build a virtual trusted network that entities can use to communicate with assurance
that the requisite properties are satisfied.

81

In most of these examples, the desired secrecy and integrity properties, and the level of trust in the network, are
expressed relatively informally. There is then little hope of relating the two to make sure that there is enough trust
in the network to enforce these properties, and if not to use cryptographic techniques to achieve those properties.
In type-based information flow systems and distributed programming over the Internet, it appears clear where
to place trust (everywhere and nowhere, respectively). But there are gradations between these extremes: typed
threads may communicate through an operating system component that is outside the type system, or across an
untrusted network; hosts may communicate across a trusted subnet behind a firewall.

In this article we provide formalizations of both secrecy and integrity properties, and of the trust placed in parts
of the network, and we relate them in such a way that the properties are guaranteed to be achieved (provided, that
is, one has not placed trust in an unreliable part of the network).

Various models have been proposed for specifying secrecy and integrity properties of information in the type
system [15, 16, 8]. These systems associate sets of policies (calledlabels) with variables, along with their types.
This article works with a much simpler model, where a label simply specifies a set of principals (actually four
sets of principals, each for a different purpose). Nevertheless the system presented here could be applied to the
aforesaid information flow control systems. Our system is simplified because we do consider notions such as
declassification. The novelty of this work is in a model of trust for networks, and how that is related to secrecy
and integrity constraints on data exchanged over a network.

Work has previously considered type-based APIs to cryptographic operations [1, 11, 8] that relate secrecy and
integrity policies, as defined in program types, with the use of cryptographic operations to dynamically enforce
those policies where necessary (when transmitting data over the Internet, for example). However absent from
these models is when these operationsmustbe performed. Requiring them to be always performed is in practice
ridiculous: every write of a variable would require encryption and signing, and every read of a variable would
require decryption and authentication. However sometimes these operations must be performed, e.g., when non-
trivial policies must be enforced over a raw TCP/IP channel. Implicit in these extremes is where the trust is placed
in the network.

We formalize this notion of trust using a notion ofzones. A zone is an abstraction of any notion of network
location, be it a process address space, a host, or a physical or virtual network. Entities specify that certain zones
are trusted for certain communications. If data is transmitted across a zone that is trusted, then policies can be left
to be enforced by the type system. For example, a general may send a message to soldiers in the field commending
them or informing them of promotion; type-based techniques can guarantee that the general is the originator of
the message. If data is transmitted across an untrusted zone, then the policies must be cryptographically enforced.
For example, the general may place less trust in the network when sending a command to field commanders for
a coordinated attack. On the other hand, if the general is in conference with field commanders within a secure
conference room, it may be sufficient to rely on lightweight type-based security for such local communications.

We use the termtrust policyto distinguish it fromsecurity policy. We use the latter to refer to access control
policies to enforce secrecy and integrity constraints. We use the former to refer to levels of trust that are placed
in parts of the network to respect such security policies. There should be no confusion with the term “trust
management,” although our approach could obviously be enriched with notions of delegation.

Trust and security policies are largely orthogonal. Security policies specify fine-grained read and write per-
missions for data. Trust policies specify the relative trustworthiness of parts of the network for enforcing those
security policies, without application intervention using cryptography. Both forms of policies are specified using
a type system. The type system ensures that security policies are respected by all well-typed processes. It also
ensures that data with non-trivial security policies is not transmitted in cleartext over parts of the network that are
not trusted to only contain well-typed processes.

1. A principal may be included in the trust secrecy policy for a piece of data but not the security secrecy policy.
This simply means that processes for that principal may execute in zones where the principal is not allowed

82

to access the data; the principal is “trusted” to respect the security policy (as far as that piece of data is
concerned).

2. A principal may be included in the security secrecy policy for a piece of data but not the trust secrecy policy.
The principal is allowed to access the data, but cannot execute at any zones where the data is transmitted in
cleartext. This is admittedly strange, but harmless, and demonstrates the orthogonality of trust and secrecy
policies. There are extensions of our system, involving declassification, where this scenario may be useful.

We give an informal introduction to zones and trust policies in the next section. In Sect. 3 we provide a
formalization of the type system. Finally Sect. 4 considers related work, while Sect. 5 provides conclusions.

2 Informal Motivation

The type system we introduce incorporates notions ofprincipals, labelsandpolicies. Every program variable has
both a type and a label. A labelL = (π1,π2) is a pair ofpolicies, one for secrecy and the other for integrity. A
policy π = ({P1},{P2}) is a pair of sets of principals:

1. The first set specifies thesecurity policy, the set of principals that are allowed to access that variable (reading
the variable in the case of a secrecy policy, and writing into that variable in the case of an integrity policy).

2. The second set specifies thetrust policy, the set of principals that are expected to respect the security policy.
The security policies are only enforced statically at sites that are accessible to principals included in the
corresponding trust policies. At all other sites, cryptographic techniques must be used to enforce the security
policies dynamically.

The security policy is enforced by the type system. At load time (e.g., via bytecode verification in a Java
Virtual Machine), programs are checked by type-checking to ensure that the security policies are respected. We
are assuming a model where code is signed and the loader checks code signatures before running them. Thus a
process does not attempt to read a variable unless the principal for which it executes (the principal that signed its
code base) is in the set of principals specified by the read security policy. Any program for which this check fails
is rejected by the loader.

In a perfect world, all running processes are typed and security policies are always respected. Zones allow
relative levels of trust to be placed on parts of the network. If data is transmitted through a zone that is not trusted,
then cryptographic techniques must be used to protect it. Therefore, orthogonal to security policies, data also has
trust policies associated with it.

Zonesare an abstractions for network and network trust. A zone is abstractly a location that contains processes
and messages. A process may only receive messages that are in its own zone. A process can send a message locally
(within its own zone). A process may also send a message to another zone (routing). Routers are modelled just as
normal user-space programs that accept messages and forward them to other zones. For simplicity we assume a
fully-connected graph of network connections, though it would be trivial to enforce more restricted connectedness.

A zone has alevel, reflecting the level of trust that is placed in it. A level is denoted simply as a set of
principals. The only processes that can send and receive messages in a zone are those executing for the principals
in the corresponding zone level.

Zone levels effectively enforce which principals are allowed access to a zone, for sending or for receiving. An
insider attack consists of running “untyped” code in a zone. For an outside attacker to access a zone, it must
compromise a principal allowed in that zone and then mount an insider attack. Network trust policies can then be
defined based on (a) which principals can execute processes in a zone and (b) how susceptible those principals’
processes are to insider or outsider attacks. There is implicit in this model some notion of authenticating the
right of code to execute in a zone. We simplify our model by assuming that the only code that runs in a zone is

83

that which is allowed by the zone’s level. The actual details of authentication can be assumed to be part of the
trusted computing base (TCB). An interesting direction for further work is to see how this authentication could be
reflected from application programs into the TCB.

2.1 Examples

Fig. 1 gives an example of processes executing for principals, and implicitly the zones for those principals. We

Figure 1: Principals and Zone Levels

assume a zone level CJIS (Criminal Justice Information
Division) partitioned into two sublevels: NCIC (Na-
tional Crime Information Center) and NICS (National
Instant Criminal Background Check System). NCIC al-
lows processes for two principals, A and B, to execute
there, while NICS allows processes for principal C. An-
other zone level, PAPD (Port Authority Police Depart-
ment), allows processes for principals X and Y to exe-
cute there. Processes for principals B and X are required
to be able to share data, therefore we establish an inter-
mediate zone level CPD (Central Police Desk) for just
those two principals. CPD describes all sites on which
only processes for those principals can execute. This
could be implemented as a trusted path, a physical fire-
wall, or a distributed firewall or VPN established using
cryptographic techniques. The framework introduced
here does not depend on the details of how access to

zones is established. Processes for B may execute in the same zones as processes for A and C (at levels NCIC
and NICS). Similarly processes for X may execute in the same zone as processes for Y (at level PAPD). Messages
exchanged between processes for B and processes for X may be passed in cleartext in zones of level CPD.
Now whether messages exchanged between B and X may be passed in cleartext in zones of level NCIC and PAPD,
for example, depends on the relative sensitivity of the data and the relative level of trust placed in such zone levels.
We can label data with the level of its relative sensitivity, and then compare this with the level of a zone through
which the data is transmitted.

We assume that policies are specified as sets of principals. This is clearly a simplifying assumption that could
be removed by introducing some notion of levels or roles in the security system, and relying on authorization
certificates to allow people to assume particular roles. Then policies could be specified in terms of such roles or
levels. However for simplicity in the article we stay with sets of principals. For the example above we can define
the following:

prinset NCIC = {A,B};
prinset NICS = {C};
prinset CJIS = NCIC ∪ NICS;
prinset PAPD = {X,Y};
prinset CPD = CJIS ∩ PAPD;
prinset World;

We can treatWorld as a special marker for the set of all principals. Now using these definitions of sets of
principals, we can specify the following policies:

policy TopSecret = (CPD, CPD);
policy FBI Secret = (CPD, NCIC ∪ {X});
policy Internal = (NCIC ∪ PAPD, CJIS ∪ PAPD);
policy Public = (World, World);

84

For exampleFBI Secret defines information that is only intended for CPD personnel to see, but we trust
members of the FBI to carry this information without violating confidentiality.

We focus in this example on secrecy. We define the following labels where we elide the integrity policies:

label TopSecretL = (TopSecret, ...);
label FBI SecretL = (FBI Secret, ...);
label InternalL = (Internal, ...);

A packet where the payload has labelTopSecretL and the address has labelInternalL expresses that the
payload is top secret, but we allow the address to be visible within the organization, so it may be viewed for
example by couriers that carry information back and forth. This example requires the payload to be encrypted
outside CPD. A more lenient policy retains the notion that the payload is top secret, but enforces this based on the
trustworthiness of the principals in the environment rather than relying on encryption. If we label the payload as
FBI SecretL and the address asInternalL, then we allow top secret information to be transmitted by processes
for FBI (CJIS) personnel who may not have authority to read the information that they are conveying, however we
do not trust unauthorized PAPD processes to respect the access restrictions.

In these examples the message-passing communication system checks the access control specifications on the
data being transmitted with the mapping from zones names to sets of principals, to detect violations of the policy
specified in the types. Since the former mapping will change after programs have been compiled, some amount of
dynamic checking is unavoidable1. Nevertheless in the remainder of the article we rely on static checking using
a type system. This at least formulates the properties that any kind of type checking is seeking to achieve, and
leaves open the possibility of some hybrid regimen of static and dynamic policy checking.

To model attacks by adversaries who do not respect the restrictions of the type system, we assume a special
principalEve. There are many possibilities for the kinds of attacks we can allow this adversary to mount. At one
extreme processes executing forEve may be completely untyped. However it becomes difficult (not impossible,
but somewhat complex) to say useful things about the ability of the system to withstand such attacks. In any case,
untyped attacks based on bypassing the type system may often be caught in this message-passing context during
the unmarshalling stage of communication. We assume a weaker attack model therefore:Eve respects the type
system but can ignore the labels on the types of data and she can ignore the access control checks, both for secrecy
and integrity. For example,Eve may mount an attack onAlice by sending her a channel with the payload label

(({Alice,Bob},...),({Bob},...))

The security parts of the policies assureAlice that this is a private channel between her andBob, created byBob.
We consider in the next section howAlice can defend herself against this attack using trust policies. For now we
note that the type system ensures that ifEve does obtain access to a piece of data, thenEve must have been one
of the principals allowed in the original trust policy. In other words, if an attacker obtains access to a data by
subverting the type system, the original owner of the data must have mistakenly placed its trust in an unreliable
principal.

3 Type System: Formal Description

The syntax of types is provided in Fig. 2. In this language without cryptographic operations, there are two kinds
of data: message channels (for message-passing communication) and tuples (for data structures). Data have both
types andlabels, where a label is a pair ofpolicies: the secrecy policyand theintegrity policy. Each of these
policies is in turn separated into security and trust components, which in this system are simply sets of principals.

1This dynamic checking would consist of checking that the trust restrictions on data being routed to a different zone are satisfied by the
set of principals that are allowed to execute at that zone.

85

T ∈ Type ::= Chan(LT) Channel

| 〈LT1, . . . ,LTk〉 Tuple

π ∈ Policy ::= ({P1},{P2}

L ∈ Label ::= (π1,π2)

LT ∈ Labelled type ::= TL

Figure 2: Syntax of Sensitivity Types

v∈ Value ::= w,x,y,z Variable

| a,b,c,n Channel name

| 〈V1, . . . ,Vk〉 Tuple

| VL Annotated value

R∈ Process ::= stop Stopped process

| letL x = 〈v1, . . . ,vk〉; R Create tuple

| let 〈x1, . . . ,xk〉= v; R Decompose tuple

| letL x = v; R Annotate value

| receive c?x; R Message receive

| send v!v Message send

| send `.v!v Message route

| new(a : LT);R New channel

| (R1 | R2) Parallel composition

N ∈ Network ::= empty Empty network

| (P, `)[R] Located process

| new(a : LT)N Channel binding

| (N1 | N2) Wire

Figure 3: Syntax of Values, Processes and Networks

For a trust policy, the set of principals in the secrecy component denotes those principals who aretrusted to honor
secrecy restrictions for the data, while the set of principals in the integrity component denotes those who are
trusted to honor integrity restrictions for the data. We highlight this explanation becausetrust policies do not
themselves specify secrecy and integrity restrictions. These restrictions should be expressed using the security
policy. It is straightforward to extend our simple security policies with the other kinds of policy languages.

The syntax of values, processes and networks is given in Fig. 3. Values include variables, channel names and
tuples. Processes include parallel composition (for forking new processes), new channel creation, operations for
building and taking apart tuples, and basic message-passing operations (blocking receive and non-blocking send).
This is a two-level syntax: every process executes under the authority of a principal and at a particular zone
(network location). So the network is the parallel composition of a collection of located processes, each of the

86

VE` v : TL Well-formed value

VE` (P, `)[R] Well-formed process

VE` N Well-formed network

Figure 4: Judgements for Type System

form (P, `)[R] whereP is the principal,̀ the zone andR the process. The purpose of this two-level syntax is
twofold:

• to enforce security policies based on the authority of the principal under which a process executes; and

• to support arouting operationthat allows a process at one zone to route a message to another zone.

We provide a type system using judgements of the form given in Fig. 4. The type system for processes uses
judgements of the formVE` (P, `)[R] to check that the processR is well-formed, under the assumption that it
will be evaluated (executed) under the authority of the principalP, at the zonè , with free names bound in the
environmentVE. An environment is a sequence of pairs, binding variables or names to types:

VE∈ Value Env ::= {} | {(x : LT)} | {(a : LT)} | VE1∪VE2

The types of values, processes and networks are provided in the full version of the paper [9].
As noted, we denote attacker processes as those executing for the special principalEve. An example was

provided in Sect. 2.Eve is still subject to checks on where in the network her processes can execute.Alice can
prevent the forgery attack described in Sect. 2 by only accepting a private channel sent in a zone that does not allow
Eve to execute processes (in the integrity part of the trust policy). But thenAlice andBob can only communicate in
the same trusted space. The more interesting cases then are where cryptography is used to secure communication
over untrusted spaces, and whereEve may still attempt to mount attacks based on interception and forgery of
cryptographic keys.

In the extension of the system with cryptographic operations, there are now types for encrypted and signed data,
E{T} andS{T} respectively. There are also types for public and private keys, for encryption and signing. Each
of these key types is indexed by a policy. This reflects the intuition that a key fundamentally is used to enforce a
policy across address spaces. If decryption of ciphertext succeeds, then the secrecy policy associated with the key
type is re-established for the resulting cleartext. Similarly if authentication of signed ciphertext succeeds, then the
integrity policy associated with the key type is re-established for the resulting cleartext.

Theorem 1 (Type Preservation)Suppose VÈ N1 and N1
TE;VE−−−→ N2, then VÈ N2.

A networkN is “stuck” if no evaluation rule is applicable to it.

Theorem 2 (Progress)If a network N is stuck, then the remaining processes are of the form:

1. A receive operation with no matching send message to synchronize with.

2. A decrypt operation where the decryption key is not the inverse of the encryption key for the ciphertext.

3. An authentication operation where the authentication key is not the inverse of the signing key for the cipher-
text.

87

In particular this justifies omitting run-time access checks in the semantics. Note that the checks for processes’
permissions to execute in zones is determined statically in the type system, as mentioned earlier. This static
restriction could be relaxed with the addition of zone variables to the language.

We still need to say something about the extent to which processes ofEve may subvert the security of the
system. We focus on names (channel names and cryptographic keys) as the values whose secrecy is paramount.
Say that a name isleakedif there is a free occurence as a subterm of a process forEve, where that occurence does
not occur as part of a piece of ciphertext.

Theorem 3 Given VE and N, with(c : TL) ∈ VE and c is leaked in N. ThenEve ∈ SLEV(L).

Intuitively the secrecy trust policy for the data reflects all possible principals in all possible zones where the data
may be transmitted in cleartext. If the data is encrypted, then the type rule for encryption keys requires that the
decryption key have at least as strict a secrecy trust level. If the data or key is transmitted directly from a process
of Eve in the current zone, even with annotation,Eve must be included in the set of principals that can execute in
the zone where the key was created. If the data or key is transmitted via an intermediary (trusted) process, then
that process or some ancestor in a chain of intermediaries exchanged the data or key in a zone withEve; and since
none of the intermediaries have access to the annotation operation, the trust secrecy policy for the data or key must
includeEve as a principal.

4 Related Work

The motivation for this work has been the need for proper programming abstractions for applications that must
manage the task of securing their own communication. Much of the work on abstractions for Internet programming
has focused on security, for example, providing abstractions of secure channels [4, 3], controlling key distribution
[7], reasoning about security protocols [1, 5], tracking untrustworthy hosts in the system [14, 19], etc.

The work of Riely and Hennessy [14, 19] in particular has some relationship to this work. They provide a type
system that reflects the relative level of trust in hosts in the network. They are motivated by ensuring that mobile
agents do not migrate to untrusted hosts. An “untrusted” host in our system amounts to a zone that includes a
process executing for the attackerEve. This extra level of indirection is more than cosmetic, since it reflects our
concern with enforcing access control policies through a combination of static and dynamic techniques, with trust
policies used to determine when dynamic techniques (cryptography) must be used.

Abadi [1] considers a type system for ensuring that secrecy is preserved in security protocols. For secur-
ing communication over untrusted networks, he includes a “universal” typeUn inhabited by encrypted values.
His type system prevents “secrets” from being leaked to untrusted parties, but allows encrypted values to be di-
vulged. In an analogous way, encrypted values in our type system provide a way to temporarily subvert the
access controls in the type system, with the secrecy properties enforced by labels reasserted when the cipher-
text is decrypted/authenticated. Gordon and Jeffrey [12, 13] have developed a type-based approach to verifying
authentication protocols.

Abadi and Blanchet [2, 6] have worked on analyzing security protocols, showing how it is possible to guarantee
secrecy properties and then generalizing this to guarantee integrity. Their system uses a type of “secret,” and a
type system that ensures that secret items are never put on channels that are shared with untrusted parties. They
can translate types in their system into logic programs that can then be used to check protocols for correctness.
The emphasis of this work is somewhat different, since Bruno and Blancet work in a more “black and white”
environment where there are trusted parties and untrusted parties. In contrast our interest is in a more refined
type system where we allow certain parties to access certain data, and where different levels of trust are placed in
different parts of the network.

88

Other work on security in programming languages has focused on ensuring safety properties of untrusted code
[17] and preventing unwanted security flows in programs [10, 15, 21, 18]. Sabelfeld and Myers [20] provide an
excellent overview of work in language-based information-flow security. Our security concerns have largely been
with access control, but the work can be extended with ideas from the decentralized label model of JIF [16, 8].

Our work is clearly related to that of J/Split [9, 22]. That system partitions a sequential JIF program into a
distributed system, where portions of the program run on hosts that are trusted for the principals for whom the
code runs. There is then a tight relationship between the access restrictions on data (specified using the richer
form of access restrictions allowed by JIF) and the hosts where data may be stored in cleartext. For two mutually
distrustful principals engaged in a distributed game, for example, a trusted third party (the board) is responsible
for communicating data from one party to the other. Network security (cryptographic operations) is implicitly part
of the TCB.

Our model can be viewed as attempting to expose some of the TCB machinery of this approach to the appli-
cation, with the eventual goal of modeling the J/Split runtime as application programs in our approach. Thus
although hosts can be viewed as analogous to zones (both are simply abstractions of network locations, hardly a
new concept), we decouple the security and trust policies because each means different things.

5 Conclusions

The ultimate goal of this research program is to provide a programming environment where secrecy and integrity
requirements are specified explicitly in the type system, where these requirements are related to the relative trust-
worthiness of parts of the network. Security policy specifies what must be protected; trust policy specifies how it
must be protected. Finally a type-based API to cryptographic operations relates the use of these operations to the
requirements that they are intended to satisfy.

The antithesis of such an environment is one where all security requirements are enforced inside the runtime.
This leads to a bloated trusted computing base (TCB) and flies in the face of the well-known end-to-end argu-
ment in system design. An interesting possible avenue for the application of our approach is in Web services
authentication, where end-to-end security considerations predominate [5].

We have deliberately chosen a very simple language for presenting our approach. There are numerous avenues
to pursue with this work. Clearly it can be combined with the full extent of KDLM [8], which provides a somewhat
richer policy language, borrowing ideas from JIF [16] and adding declassification certificates. A more interesting
direction to consider is allowing zone variables, so that processes can build routing tables and perform dynamic
routing decisions, while continuing to perform static checking as much as possible. Zone types based on zone
levels, perhaps building on the work of Riely and Hennessy [14, 19], appear to be a promising direction in this
regard.

References

[1] Martin Abadi. Secrecy by typing in security protocols. InTheoretical Aspects of Computer Science, pages
611–638, 1997.

[2] Martin Abadi and Bruno Blanchet. Analyzing security protocols with secrecy types and logic programs. In
Proceedings of ACM Symposium on Principles of Programming Languages, pages 33–44, 2002.

[3] Martin Abadi, Cedric Fournet, and Georges Gonthier. Secure communications processing for distributed
languages. InIEEE Symposium on Security and Privacy, 1999.

[4] Martin Abadi, Cedric Fournet, and Georges Gonthier. Authentication primitives and their compilation. In
Proceedings of ACM Symposium on Principles of Programming Languages, 2000.

89

[5] Karthikeyan Bhargavan, Cedric Fournet, and Andrew D. Gordon. A semantics for web services authentica-
tion. In Proceedings of ACM Symposium on Principles of Programming Languages, 2004.

[6] Bruno Blanchet. From secrecy to authenticity in security protocols. In9th International Static Analysis
Symposium (SAS’02), pages 242–259, 2002.

[7] Luca Cardelli, Giorgio Ghelli, and Andrew D. Gordon. Secrecy and group creation. InConcurrency Theory
(CONCUR). Springer-Verlag, 2000.

[8] Tom Chothia, Dominic Duggan, and Jan Vitek. Type-based distributed access control. InComputer Security
Foundations Workshop, 2003.

[9] Tom Chothia, Dominic Duggan, and Ye Wu. Trusting the network.http://guinness.cs.stevens.edu/
~dduggan/Public/Papers/zones.pdf, 2005.

[10] D. E. Denning and P. J. Denning. Certification of programs for secure information flow.Communications of
the ACM, 1977.

[11] Dominic Duggan. Cryptographic types. InComputer Security Foundations Workshop, Nova Scotia, Canada,
2002. IEEE Press.

[12] Andrew D. Gordon and Alan Jeffrey. Authenticity by typing for security protocols. InIEEE Computer
Security Foundations Workshop (CSFW), June 2001.

[13] Andrew D. Gordon and Alan Jeffrey. Types and effects for asymmetric cryptographic protocols. InIEEE
Computer Security Foundations Workshop (CSFW), June 2002.

[14] Matthew Hennessy and James Riely. Type-safe execution of mobile agents in anonymous networks. InSecure
Internet Programming: Security Issues for Distributed and Mobile Objects, Lecture Notes in Computer
Science. Springer-Verlag, 1999.

[15] A. C. Myers and B. Liskov. Complete, safe information flow with decentralized labels. InIEEE Symposium
on Security and Privacy, 1998.

[16] Andrew C. Myers and Barbara Liskov. Protecting privacy using the decentralized label model.ACM Trans-
actions on Software Engineering and Methodology, 9(4), 2000.

[17] George Necula and Peter Lee. Safe kernel extensions without run-time checking. InOperating Systems
Design and Implementation, 1996.

[18] Francois Pottier and Sylvain Conchon. Information flow inference for free. InProceedings of ACM Interna-
tional Conference on Functional Programming, 2000.

[19] James Riely and Matthew Hennessy. Trust and partial typing in open systems of mobile agents. InProceed-
ings of ACM Symposium on Principles of Programming Languages, 1999.

[20] Andrei Sabelfeld and Andrew Myers. Language-based information-flow security.IEEE Journal on Selected
Areas in Communications, 2002.

[21] D. Volpano and G. Smith. A type-based approach to program security. InProceedings of the International
Joint Conference on Theory and Practice of Software Development. Springer-Verlag, 1997.

[22] Steve Zdancewic, Lantian Zheng, Nathaniel Nystrom, and Andrew C. Myers. Secure program partitioning.
Transactions on Computer Systems, 20(3):283–328, 2002.

90

Formal Modeling and Analysis of DoS
Using Probabilistic Rewrite Theories∗

Gul Agha, Michael Greenwald, Carl A. Gunter, Sanjeev Khanna
Jose Meseguer, Koushik Sen, and Prasannaa Thati†

Abstract

Existing models for analyzing the integrity and confidentiality of protocols need to be extended to enable
the analysis of availability. Prior work on such extensionsshows promising applications to the development of
new DoS countermeasures. Ideally, it should be possible to apply these countermeasures systematically in a
way that preserves desirable properties already established. This paper investigates a step toward achieving this
ideal by describing a way to expand term rewriting theories to include probabilistic aspects that can be used to
show the effectiveness of DoS countermeasures. In particular, we consider the shared channel model, in which
adversaries and valid participants share communication bandwidth according to a probabilistic interleaving
model, and a countermeasure known as selective verificationapplied to the handshake steps of the TCP reliable
transport protocol. These concepts are formulated in a probabilistic extension of the Maude term rewriting
system, called PMAUDE. Furthermore, we formally verified the desired properties of the countermeasures
through automatic statistical model-checking techniques.

1 Introduction

There are well-understood models on which to base the analysis of integrity and confidentiality. The most common
approaches are algebraic techniques [6] based on idealized cryptographic primitives and complexity-theoretic
techniques [5] based on assumptions about complexity. There has also been progress on unified perspectives
that enable using the simpler algebraic techniques to prove properties like those ensured by the more complete
cryptographic techniques. However, neither of these approaches ortheir unifications are designed to approach
the problem of availability threats in the protocols they analyze. For example, suppose a protocol begins with a
sender sending a short message to a receiver, where the receiver’s first step is to verify a public key signature on
the message. A protocol like this is generally considered to be problematic because an adversarial sender can send
many packets with bad signatures at little cost to himself while the receiver will need to work hard to (fail to)
verify these signatures. Algebraic and complexity-theoretic analysis techniques ensure only that the recipient will
not be fooled by the bad packets and will not leak information as a result ofreceiving them. However, they do not
show that the receiver will be available to a valid sender in the presence ofone or more attackers.

In [7] we began an effort to explore a formal model for the analysis of DoS based on a simple probabilistic
model called the “shared channel” model. This effort showed that the shared channel model could be used to
prove properties of DoS countermeasures for authenticated broadcast that could be verified in experiments. We
have subsequently conducted a number of experiments to explore the application of such countermeasures to other
classes of protocols. The aim of this paper is to explore the prospects forusing the shared channel model as a

∗This work was supported in part by ONR Contract N00014-02-1-0715.
†Addresses of the authors: K. Sen, G. Agha, C. A. Gunter, J. Meseguer, University of Illinois at Urbana-Champaign; Michael Green-

wald, Lucent Bell Labs; Sanjeev Khanna, University of Pennsylvania; Prasannaa Thati, Carnegie-Mellon University,

91

foundation for extending term rewriting models of network protocols to cover DoS aspects of the protocols and
their modification with counter-measures. Our particular study is to investigate the use of a probabilistic extension
of the Maude rewrite system called PMAUDE and its application to understanding the effectiveness of a DoS
countermeasure known as “selective sequential verification” [7]. Thistechnique was explored for authenticated
broadcast in [7] but in the current paper we consider its application to handshake steps of the TCP reliable transport
protocol.

At a high level, our ultimate aim is to demonstrate techniques for showing how a network protocol can be
systematically “hardened” against DoS using probabilistic techniques while preserving the underlying correctness
properties the protocol was previously meant to satisfy. Specifically, given a protocolP and a set of properties
T , we would like to expandT to a theoryT ∗ that is able to express availability properties and show that a
transformationP ∗ of P meets the constraints inT ∗ without needing to re-prove the propertiesT thatP satisfied
in the restricted language. The shared channel model provides a mathematical framework for this extension.

In this paper, we develop a key element of this program: a formal languagein which to express the propertiesT ∗

and show that availability implications hold forP ∗. We attempt to validate this effort by showing its effectiveness
on a selective verification for TCP. In particular, we show how we can specify TCP/IP 3-way handshake protocol
in PMAUDE algebraically. First, we take a previously specified formal non-deterministicmodel of the protocol.
We then replace all non-determinism by probabilities. The resulting model with quantified non-determinism (or
probabilities) is then analyzed for quantitative properties such as availability. The analysis is done by combining
Monte-Carlo simulation of the model with statistical reasoning. In this way, we leverage the existing modelling
and reasoning techniques to quantified reasoning without interfering with the underlying non-quantified properties
of the model.

The rest of the paper is organized as follows. In Section 2, we give the preliminaries of DoS theory followed
by its application to TCP/IP 3-way handshaking protocol in Section 3. Then we briefly describe PMAUDE in
Section 4. In Section 5, we describe and discuss the algebraic probabilisticspecification of DoS hardened TCP/IP
protocol in PMAUDE. We describe the results of our analysis of some desired properties writtenin the query
language for the specification of TCP/IP protocol in Section 6.

2 DoS Theory

On the face of it, the conventional techniques for establishing confidentialityand integrity are inappropriate for
analyzing DoS, since they rely on very strong models of the adversary’scontrol of the network. In particular, they
assume that the adversary is able to delete packets from the network at will. An adversary with this ability has an
assured availability attack. Typical analysis techniques therefore adaptthis assumption in one of two ways. A first
form of availability analysis is to focus on the relationship between the senderand the attacker and ask whether
the attacker/sender is being forced to expend at least as much effort asthe valid receiver. In our example, this
is an extremely disproportionate level of effort, since forming a bad signature is much easier than checking that
it is bad. Thus the protocol is vulnerable to the imposition of a disproportionateeffort by the receiver. This is
a meaningful analysis, but it does not answer the question of whether a valid sender will experience the desired
availability. A second form of availability analysis is to ask whether the receiver can handle a specified load. For
instance, a stock PC can check about 8000 RSA signatures each second, and it can receive about 9000 packets
(1500 bytes per packet) each second over a 100Mbps link. Thus a receiver is unable to check all of the signatures it
receives over such a channel. A protocol of the kind we have envisioned is therefore deemed to be vulnerable to a
signature floodattack based on cycle exhaustion. By contrast, a stock PC can check the hashes on 77,000 packets
each second, so a receiver that authenticates with hashes can serviceall of its bandwidth using a fraction of its
capacity. This sort of analysis leads one to conclude that a protocol based on public key signatures is vulnerable
to DoS while one based on hashes is not.

92

These techniques are sound but overly conservative, because theydo not explicitly account for the significance
of valid packets that reach the receiver. Newer techniques for analyzing DoShave emerged in the last year that
provide a fresh perspective by accounting for this issue. In essence, these new models are both more realistic for
the Internet and suggest new ideas for countermeasures. We refer toone basic version of this new approach as the
shared channel model. The shared channel model is a four-tuple consisting of the minimum bandwidth W0 of the
sender, the maximum bandwidthW1 of the sender (whereW0 ≤ W1), the bandwidthα of the adversary, and the
loss ratep of the sender where0 ≤ p < 1. The ratioR = α/W1 is theattack factorof the model. WhenR = 1,
this is aproportionateattack and, whenR > 1, it is a disproportionateattack. As in the algebraic model, the
adversary is assumed to be able to replay packets seen from valid parties and flood the target with anything he can
form from these. But in the shared channel model he is not able to delete specific packets from the network. In
effect, he is able to interleave packets among the valid ones at a specified maximum rate. This interleaving may
contribute to the loss ratep of the sender, but the rate of loss is assumed to be bounded byp and randomly applied
to the packets of the sender.

The key insight that underlies the techniques in this paper arises from recognizing theasymmetrythe attacker
aims to exploit; his willingness to spend his entire bandwidth on an operation that entails high cost for the receiver
also offers opportunities to burden the attacker in disproportionate ways relative to the valid sender. This can be
seen in a simple strategy we callselective verification.The idea is to cause the receiver to treat the signature
packets she receives as arriving in anartificially lossy channel. The sender compensates by sending extra copies
of his signature packets. If the recipient checks the signature packets she receives with a given probability, then
the number of copies and the probability of verification can be varied to match the load that the recipient is able
to check. For example, suppose a sender sends a 10Mbps stream to a receiver, but this is mixed with a 10Mbps
stream of DoS packets devoted entirely to bad signatures. To relieve the recipient of the need to check all of these
bad signatures, the receiver can check signatures with a probability of 25%, and, if the sender sends about 20
copies of each signature packet, the receiver will find a valid packet witha probability of more than 99% even if
the network drops 40% of the sender’s packets. This technique is inexpensive, scales to severe DoS attacks, and is
adaptable to many different network characteristics.

3 SYN Floods as DoS for TCP/IP

TCP is an extremely common reliable bi-directional stream protocol that uses athree-way handshake to establish
connections. Glossing over many details, a sender initiates a connection by sending a packet with the SYN flag set
and an initial sequence number. The receiver responds by acknowledging the SYN flag, and sending back a SYN
with its ownsequence number. When the original sender acknowledges the receiver’s SYN (this ACK is the 3rd
packet in a 3-way handshake), then the connection is ESTABLISHED.

Each established connection requires a TCB (Transmission Control Block) at each end of the connection. The
TCB occupies a few hundred bytes of identification and control information, statistics, as well as a much larger
allocation of packet buffers for received data and (re)transmission queues. In most operating system kernels, both
packet buffer space and the number of available TCBs are fixed at boot time, and they constitute a limited resource.
This opens a significant vulnerability to adversaries who aim to overwhelm this limit by flooding a server with
SYN packets; this is typically called aSYN flood attack.This threat is mitigated in many systems by storing
connection information in a SYN cache (a lighter-weight data structure, recording only identity information and
sequence numbers for the connection) until the connection becomes ESTABLISHED, at which point the (more
expensive) full TCB is allocated. Normally, a legitimate connection occupies aslot in the SYN cache for only one
round trip time (RTT). If no ACK for the SYN+ACK arrives, then the server eventually removes the entry from
the SYN cache, but only after a much longer timeout interval,tA.

SYN flooding constitutes an easy denial of service attack because SYN cache entries are relatively scarce, while
the bandwidth needed to send a single SYN packet is relatively cheap. Theattacker gains further leverage from

93

the disparity between the one RTT slot occupancy (often on the order of amillisecond or less) for a legitimate
client, compared with a fraudulent SYN packet that typically holds a syn-cache slot for a value oftA ranging from
30-120 seconds.

A SYN attack is simple to model; attackers merely send SYN packets at a cumulativerate which we denote
by rA. We can compute the effectiveness of the DoS attack by the probability of success of a client’s attempt to
connect, and from that compute the number of legitimate connections per second that the server can support under
a given attack raterA. If the server offers no defense, and if the order in which incoming SYNs are processed at
the server is adversarially chosen, then it is clear that an attack raterA of O(B/tA) suffices to completely take
over a syn-cache of sizeB. To see this, observe that in every second,B/tA of the attacker’s slots in the SYN cache
expire, andB/tA new ones arrive to take their places. Even in a more realistic model where theincoming SYN
requests are assumed to be ordered in accordance with a random permutation, it is easy to show that an attack rate
of O(B/tA) suffices.

It is clear from this analysis (as well as from abundant empirical evidence) that even a moderate rate of DoS
attack can totally disable a server. For a server with a SYN cache of sizeB = 10, 000 and a timeout interval of
75 seconds a moderate attack rate of 200 to 300 SYNS per second is enough to almost completely overwhelm the
server! (An energetic attacker can generate SYN packets 1000 times as quickly as this on a commodity 100Mbps
Fast Ethernet link.)

Selective verification can improve this performance significantly1. Let B denote the number of slots in the
SYN cache. Suppose we want to ensure that the attacker never blocks more than a fractionf of the table, for
0 < f < 1. We ask the server to process each incoming SYN with probabilityp wherep satisfiesptArA ≤ fB,
then we ensure that at least a(1 − f)-fraction of the SYN cache is available to legitimate users. We effectively
inflate the bandwidth cost of mounting an attack rate ofrA to berA/p. Considering once again an attacker on 100
Mbps channel (300, 000 SYNs/sec), if we setp = 10−3/6, we ensure that the attacker cannot occupy more than
half the table at any point in time. The attacker can still deny service, but is now required to invest as much in
bandwidth resources as the collective investment of the clients that it is attacking.

If we increase the cache size by a factor of30, we can get an identical guarantee withp = .005. The overhead
on a valid client to establish a connection then is only200 SYN packets, roughly8KB, for each request. These
overheads are not insignificant but they allow us to provide unconditional guarantees on availability of resources
for valid clients. If we downloaded the PS version of this paper (500KB),the blowup increases the transfer size
by 2%. Moreover, these overheads should be contrasted with the naivealternative: the cache size would have to
be increased to6 × 107 to get the same guarantee.

4 Probabilistic Rewrite Theories

Rewriting logic is an expressive semantic framework to specify a wide rangeof concurrent systems [11]. In prac-
tice, however, some systems may be probabilistic in nature, either because oftheir environment, or by involving
probabilistic algorithms by design, or both. This raises the question of whether such systems can also be formally
specified by means of rewrite rules in some suitable probabilistic extension of rewriting logic. This would provide
a general formal specification framework for probabilistic systems and could support different forms of symbolic
simulation and formal analysis. In particular, DoS-resistant communication protocols such as the DoS-hardened
TCP/IP protocol discussed in Section 3 could be formally specified and analyzed this way.

The notion of a probabilistic rewrite theory provides an example of such a semantic framework. Usually, the
rewrite rules specifying a non-probabilistic system are of the form

1Techniques such as SYN cookies are also effective against SYN flooding; however they do not preserve the underlying behavior of
TCP.

94

t ⇒ t′ if C

where the variables appearing int′ are typically a subset of those appearing int, and whereC is a condition. The
intended meaning of such a rule is that if a fragment of the system’s state is a substitution instance of the patternt,
say with substitutionθ, and the conditionθ(C) holds, then our system can perform a local transition in that state
fragment changing it to a new local stateθ(t′). Instead, in the case of a probabilistic system, we will be using
rewrite rules of the form,

t(−→x) ⇒ t′(−→x ,−→y) if C(−→x) with probability −→y := πr(
−→x)

where the first thing to observe is that the termt′ has new variables−→y disjoint from the variables−→x appearing int.
Therefore, such a rule isnon-deterministic; that is, the fact that we have a matching substitutionθ such thatθ(C)
holds, does not uniquely determine the next state fragment: there can be many different choices for the next state
depending on how we instantiate the extra variables−→y . In fact, we can denote the different such next states by
expressions of the formt′(θ(−→x), ρ(−→y)), whereθ is fixed as the given matching substitution, butρ ranges along all
the possible substitutions for the new variables−→y . The probabilistic nature of the rule is expressed by the notation
with probability −→y := πr(

−→x), whereπr(
−→x) is a probability distributionwhich depends on the matching

substitutionθ, and we then choose the values for−→y , that is the substitutionρ, probabilistically according to the
distributionπr(θ(

−→x)).
We can illustrate these ideas with a very simple example, namely a digital battery-operated clock that measures

time in seconds. The state of the clock is represented by a termclock(t,c), wheret is the current time in
seconds, andc is a rational number indicating the amount of charge in the battery. The clock ticks according to
the following probabilistic rewrite rule:

clock(t,c) ⇒ if B then clock(t + 1,c- c

1000) else broken(t,c - c

1000) fi
with probability B := BERNOULLI(c

1000) .

Note that the rule’s righthand side has a new boolean variableB. If all goes well (B = true), then the clock
increments its time by one second and the charge is slightly decreased; but ifB = false, then the clock will go
into a broken statebroken(t,c - c

1000). Here the boolean variableB is distributed according to the Bernoulli
distribution with mean C

1000 . Thus, the value ofB probabilistically depends on the amount of chargeleft in the
battery: the lesser the charge level, the greater the chance that the clock will break; that is, we have different
probability distributions for different matching substitutionsθ of the rule’s variables (in particular, of the variable
c).

Of course, in this example the variableB is a discrete binary variable; but we could easily modify this example
to involve continuous variables. For example, we could have assumed thatt was a real number, and we could have
specified that the time is advanced to a new timet + t’, with t’ a new real-valued variable chosen according
to an exponential distribution. In general, the set of new variables−→y could contain both discrete and continuous
variables, ranging over different data types. In particular, both discrete and continuous time Markov chains can be
easily modeled, as well as a wide range of discrete or continuous probabilistic systems, which may also involve
nondeterministic aspects [9]. Furthermore, the PMAUDE extension of the Maude rewriting logic language allows
us to symbolically simulate probabilistic rewrite theories [10, 3], and we can formally analyze their properties
according to the methods described in [3]. Due to space constraints, we donot give the mathematical definition of
probabilistic rewrite theories. Readers are referred to [10, 9] for such details.

In general, a probabilistic rewrite theoryR involves both probabilities and non-determinism. The non-
determinism is due to the fact that, in general,different rules, possibly with different subterm positions and sub-
stitutionscould be applied to rewrite a given stateu: the choice of what rule to apply, and where, and with which
substitution isnon-deterministic. It is only when such a choice has been made that probabilities come into the
picture, namely for choosing the substitutionρ for the new variables−→y . In particular, for the kind of statistical

95

for packets received

1

A2

An

r
A

r
A

r
X

B

X

p

honest client

attacker send rate

send rate

messages

shared channel server

drop rate

A

Figure 1: An instance of the TCP’s 3-way handshake protocol.

model checking discussed in [13, 14] that will be used to formally analyze our DoS-resistant TCP/IP protocol,
we need to assume thatall non-determinism has been eliminatedfrom our specification; that is, that at most one
single rule, position, and substitution are possible to rewrite any given state.

What this amounts to, in the specification of a concurrent system such as a network protocol, is thequantification
of all non-determinism due to concurrency using probabilities. This is natural for simulation purposes and can be
accomplished by requiring the probabilistic rewrite theory to satisfy some simple requirements described in [3].

We will consider rewrite theories specifying concurrent actor-like objects [2] and communication by asyn-
chronous message passing; this is particularly appropriate for communication protocols. In rewriting logic, such
systems (see [12] for a detailed exposition) have a distributed state that canbe represented as amultisetof objects
and messages, where we can assume that objects have a general record-like representation of the form:〈name:
o | a1 : v1, . . . a1 : v1〉, whereo is the object’s name and theai : vi its corresponding attribute-value pairs in a
given state. It is also easy to model in this wayreal-time concurrent object systems: one very simple way to model
them is to include a global clock as a special object in the multiset of objects andmessages. Rewrite rules in such
a system will involve an object, a message, and the global time and will consume the message, change the object’s
state, and send messages to other objects. To deal with message delays andtheir probabilistic treatment, we can
represent messages asscheduled objectsthat are inactive until their associated delay has elapsed.

5 Probabilistic Rewrite Specification of DoS resistant TCP 3-way Handshaking

We now present an executable specification of TCP’s 3-way handshake protocol in probabilistic rewriting logic.
We consider a protocol instance composed ofN honest clientsC1, . . . , CN trying to establish a TCP connection
with the serverS, and a single attackerA that launches a SYN-flood attack onS (see Figure 1). The clientsCi

transmit SYN requests toS at the raterC , while the attackerA floods spurious SYN requests at the raterA. These
rates are assumed to be parameters of an exponential distribution from which the time for sending the next packet
is sampled. The serverS drops each packet it receives, independently, with probabilityp. We assume that each
message across the network is subject to a constant transmission delayd. Of course, these assumptions about the
various distributions can be easily changed in the implementation that follows.

Each clientCi is modeled as an object with four attributes as follows.

<name: C(i) | isn:N, repcnt:s(CNT), sendto:SN, connected:false>

The attributeisn specifies the sequence number that is to be used for the TCP connection,sendto specifies
the name of serverS, repcnt specifies the number of times the SYN request is to be (re)transmitted in order to
account for random dropping of packets atS, andconnected specifies if the connection has been successfully
established as yet. The attacker is modeled as an object with a single attribute asfollows.

96

<name: AN | sendto: SN >

The serverS is modeled as an object with two attributes.

<name: SN | isn: M , synlist: SC >

The attributeisn specifies the sequence number thatS uses for the next connection request it receives, while
synlist is the SYN cache thatS maintains for the pending connection requests.

Following is the probabilistic rewrite rule that models the clientCi sending a SYN request.

<name:C(i) | isn:N, repcnt:s(CNT), sendto:SN, connected:false> (C(i)← poll) T
⇒ <name: C(i) | isn:N, repcnt:CNT, sendto:SN, connected:false>
[d + T , (SN← SYN(C(i),N))] [t + T , (C(i)← poll)] T

with probability t := EXPONENTIAL(rC) .

We use special poll messages to control the rate at whichCi retransmits the SYN requests. Specifically,Ci

repeatedly sends itself a poll message, and each time it receives a poll message it sends out a SYN request toS.
The poll messages are subject to a random delayt that is sampled from the exponential distribution with parameter
rC . Specifically, the message is scheduled at timet + T , whereT is the current global time. The net effect of this
is thatCi sends SYN requests toS at raterC . Perhaps it is important to point out that the poll messages are not
regular messages that are transmitted across the network; they have beenintroduced only for modeling purposes.
Further, note that the approach of simply freezingCi by scheduling it at timeT + t does not work since that would
also preventCi from receiving any SYN+ACK messages that it may receive fromS meanwhile. Finally, note
that the replication count is decremented by one after the transmission of SYNmessage, and the message itself is
scheduled with a delayd.

The rule for SYN flooding by the attacker is very similar, except that it usesrandomly generated sequence
numbers.

<name: AN | sendto: SN > (AN ← poll) T ⇒ <name: AN | sendto: SN > T
[d + T , (SN← SYN(AN,random(counter)))] [t + T , (AN← poll)]

with probability t := EXPONENTIAL(rA) .

The following rule models the processing of SYN requests by the serverS.

<name: SN | isn: M , synlist: SC > (SN← SYN(ANY,N)) T
⇒ if(drop? or size(SC) > SYN-CACHE-SIZE) then <name: SN | isn: M,synlist: SC > T

else <name: SN | isn:s(M), synlist:add(SC,entry(ANY,M))>
[d+T,(ANY← SYN+ACK(SN,N,M))] [TIMEOUT+T,(SN← tmout(entry(ANY,M)))] T fi

with probability drop? := BERNOULLI(p) .

The random dropping of incoming messages is modeled by sampling from the Bernoulli distribution with the
appropriate parameterp. An incoming request can also be dropped if the SYN cache is full. If the cache is not
full, for each request that is not dropped, the serverS makes an entry for the request in the cache, and sends out a
SYN+ACK message to the source of the request. A cache entry is of the formentry(N,M) whereN is the name
of the source which has requested a connection, andM is the sequence number for the connection. Timing out of
entries in the cache is modeled by locally sending a message to self that is scheduled after an interval of time equal
to the timeout period. Here is the rule for removing timed out entries.

<name: SN|isn: N,synlist: [s(SZ),(L1 entry(ANY,M) L2)]> (SN ←
tmout(entry(ANY,M)))

⇒ <name: SN | isn: N , synlist: [SZ , (L1 L2)] > .

The first argument in the value of thesynlist attribute above is the number of entries in the list, while the
second argument is the actual list of entries. The rule for processing theSYN+ACK message at the clients is as
follows.

97

<name: C(i)|isn:N,repcnt:CNT,sendto:SN,connected:false> (C(i)← SYN+ACK(SN,N,M)) T
⇒ <name: C(i)|isn:N,repcnt:CNT,sendto:SN,connected:true> [d+T,(SN←
ACK(C(i),M))] T .

The rule is self-explanatory; the only significant point to be noted is that theattributeconnected is set to true
after processing the SYN+ACK message. Since the clients replicate their requests to account for random dropping
of packets at the server, it is possible for them to receive a SYN+ACK message for a connection that has already
been established. Such SYN+ACK messages are simply ignored as follows.

<name: C(i)|isn:N,repcnt:CNT,sendto:SN,connected:true> (C(i)← SYN+ACK(SN,N,M))
⇒ <name: C(i)|isn:N,repcnt:CNT,sendto:SN,connected:true> .

In contrast to the honest clients, the attacker ignores all the SYN+ACK messages that it receives from the serverS.

<name: AN|sendto:SN > (AN← SYN+ACK(SN,N,M)) ⇒ <name: AN|sendto:SN > .

Finally, the initial configuration of the system is

< name: AN | ... > [t1 , < name: C(1) | ... >] [t2 , < name: C(2) | ... >] ...
[tn , < name: C(N) | ... >] < name: SN | ... >

wheret1, . . . , tn are all distinct and positive. Note that, since all the clients are scheduled atdifferent times, it
follows [3] that the system does not contain any un-quantified non-determinism, which is essential for statistical
analysis to be possible.

6 Analysis

We have successfully used the statistical model-checking tool VESTA [13, 14] to verify various desired properties
of the probabilistic model in Section 5. In the following, we first describe the tool VESTA and its integration
with PMAUDE. We then elaborate on the verification of one important property of the 3-way handshake protocol
presented in the previous section.

The integration of PMAUDE and VESTA is described in detail in [3]. In the integrated tool, we assume that
VESTA is provided with a set of sample execution paths generated through the discrete-event simulation of a
PMAUDE specification with no non-determinism. We assume that an execution path that appears in our sample

is a sequenceπ = s0
t0→ s1

t1→ s2
t2→ · · · , wheres0 is the unique initial state of the system,si is the state of the

system after theith computation step (rewrite), andti is the difference of global time between the statessi+1 and
si. We also assume that there is a labelling functionL that assigns to each statesi a set of atomic propositions that
hold in that state; the set of atomic propositions are all those that appear in theproperty of interest (see below).
Thus,L : S → 2AP , whereAP is a set of relevant atomic propositions andS is the set of system states. In
PMAUDE, this labelling function is defined as an operator that maps terms representingstates to sets of atomic
propositions.

In VESTA, we assume that the properties are expressed in a sublogic of Continuous Stochastic Logic – CSL
(without stationary state operators). CSL was introduced in [1] as a logic toexpress probabilistic properties.
The syntax and the semantics of the logic and the statistical model-checking algorithm for CSL are described
in [13, 14]. In our experiments, we model checked the following propertyexpressed in CSL for different values
of the attacker raterA.

P≤0.01(♦(successfulattack()))

wheresuccessfulattack() is true in a state if the SYN cache ofS is full, i.e., the attacker has succeeded in launching
the SYN flood attack. The property states that the probability that eventually the attackerA successfully fills up
the SYN cache ofS is less than 0.01.

The results of model-checking are shown in the following table for two cases: in the absence of DoS
counter-measure and in the presence of DoS counter-measure with the parameterp set to0.9. In all experiments,

98

we used scaled down parameters so that our experiments could be completedin a reasonable amount of time.
Specifically, we used a SYN cache size of 10,000, cache timeout of 10 seconds, and 100 clients. The experiments
were carried out on 1.8 GHz Xeon Server with 2 GB RAM and running Mandrake Linux 9.2.

Model-checking X’s attack rate (SYNs per second)
P≤0.01(♦(successfulattack())) 1 5 64 100 200 400 800 1000 1200

p = 0.0 (No counter-measure)
result F F F T T T T T T

time (102 sec) 47 87 280 605 183 183 182 182 181

p = 0.9 (With counter-measure)
result F F F F F F F T T

time (102 sec) 68 75 217 328 896 3102 11727 2281 1781

The results show that in the presence of DoS counter-measure withp = 0.9, S can sustain an attack fromA
with attack rate 10 times larger than that in the case of no counter-measure. Therefore, the results validate our
hypothesis thatselective verificationcan be used as an effective counter-measure for DoS attacks.

To gain more insight into the probabilistic model, we realized that model-checkingis not sufficient. Specifically,
we found thetrue (T) andfalse(F) answers given by the model-checker is not sufficient to understand the various
quantitative aspects of the probabilistic model. For example, we wanted to knowthe expected number of clients
that get connected in the presence of SYN flood attack. Therefore, in addition to model-checking, we used a query
language calledQuantitative Temporal Expressions(or QUATEX in short). The language is mainly motivated by
probabilistic computation tree logic (PCTL) [8] and EAGLE [4]. In QUATEX, some example queries that can be
encoded are as follows:

1. What is the expected number of clients that successfully connect toS out of 100 clients?

2. What is the probability that a client connected toSwithin 10 seconds after it initiated the connection request?

A detailed discussion of the QUATEX is beyond the scope of this paper. However, we provide a brief introduction
of QUATEX in the Appendix.

We evaluated the following QUATEX expression with different values of the attacker raterA.

CountConnected() = if completed() thencount() else© (CountConnected()) fi;
evalE[CountConnected()]

In this expression,completed() is true in a state if all the clientsCi have either sent all of their SYN packets
or have managed to connect withS. The expressioncount() in a state returns the number of clients that have
successfully connected toS. The expression queries the expected number of clients that eventually connect with
S in the presence of DoS attack by the attackerA.

The results of evaluating the above expression for different values ofattacker raterA are plotted in Figure 2.
The results show that most of the clients get connected as long as the attacker does not manage to fill up the SYN
cache buffer. However, as soon as the attacker’s SYN rate becomes high enough to fill the SYN cache buffer, none
of the clients gets connected. The plot also illustrates that withselective verificationthe server can withstand an
order of magnitude higher SYN flood rates than without.

7 Conclusions

We have presented a general framework for verification of DoS properties of communication protocols. We are
able to express and prove key properties, but performance limitations of the automated system in our current
formulation require us to use scaled down version of parameters that arisein practice. Addressing these efficiency
limitations and verifying the properties for general systems remain future work objectives.

99

 0

 20

 40

 60

 80

 100

100 101 102 103 104
N

um
be

r
of

 C
on

ne
ct

ed
 C

lie
nt

Attacker’s rate (SYN/sec)

p=0.9
p=0.0

Figure 2: Expected number of clients out of 100 clients that get connectedwith the server under DoS attack

References

[1] A. Aziz, K. Sanwal, V. Singhal, and R. K. Brayton. Verifying continuous-time Markov chains. InProceedings of the
8th International Conference on Computer Aided Verification (CAV’96), volume 1102, pages 269–276.

[2] G. Agha.Actors: A Model of Concurrent Computation in Distributed Systems. MIT Press, 1986.

[3] G. Agha, J. Meseguer, and K. Sen. PMaude: Rewrite-based specification language for probabilistic object systems. In
3rd Workshop on Quantitative Aspects of Programming Languages (QAPL’05), 2005.

[4] H. Barringer, A. Goldberg, K. Havelund, and K. Sen. Rule-based runtime verification. InProceedings of 5th Interna-
tional Conference on Verification, Model Checking and Abstract Interpretation (VMCAI’04), volume 2937 ofLNCS,
pages 44–57. Springer, January 2004.

[5] R. Cramer and V. Shoup. A practical public key cryptosystem provably secure against adaptive chosen ciphertext attack.
Lecture Notes in Computer Science, 1462, 1998.

[6] D. Dolev and A. C. Yao. On the security of public-key protocols.IEEE Transactions on Information Theory, 2(29):198–
208, 1983.

[7] C. A. Gunter, S. Khanna, K. Tan, and S. Venkatesh. Dos protection for reliably authenticated broadcast. InNetwork
and Distributed System Security (NDSS ’04). Internet Society, 2004.

[8] H. Hansson and B. Jonsson. A logic for reasoning about time and reliability.Formal Aspects of Computing, 6(5):512–
535, 1994.

[9] N. Kumar, K. Sen, J. Meseguer, and G. Agha. Probabilisticrewrite theories: Unifying models, logics and tools.
Technical Report UIUCDCS-R-2003-2347, Univ.of Illinois at Urbana-Champaign, 2003.

[10] N. Kumar, K. Sen, J. Meseguer, and G. Agha. A rewriting based model for probabilistic distributed object systems.
In Proceedings of 6th IFIP International Conference on FormalMethods for Open Object-based Distributed Systems
(FMOODS’03), volume 2884 ofLNCS, pages 32–46, 2003.

[11] N. Mart́ı-Oliet and J. Meseguer. Rewriting logic: roadmap and bibliography.Theoretical Computer Science, 285:121–
154, 2002.

[12] J. Meseguer. A logical theory of concurrent objects andits realization in the Maude language. InResearch Directions
in Concurrent Object-Oriented Programming, pages 314–390. MIT Press, 1993.

[13] K. Sen, M. Viswanathan, and G. Agha. Statistical model checking of black-box probabilistic systems. In16th confer-
ence on Computer Aided Verification (CAV’04), volume 3114 ofLNCS, pages 202–215, 2004.

[14] K. Sen, M. Viswanathan, and G. Agha. On statistical model checking of stochastic systems. In17th Conference on
Computer Aided Verification (CAV’05), LNCS (To Appear). Springer, 2005.

100

A QUATEX
We introduce the notation that describes the syntax and the semantics of QUATEX followed by a few motivating
examples. Then we describe the language formally, along with an example query that we have used to investigate
if the DoS free 3-way TCP/IP handshaking protocol model meets our requirements. The results of our query on
various parameters are given in Section 6.

We assume that an execution path is an infinite sequence
π = s0 → s1 → s2 → · · ·

wheres0 is the unique initial state of the system, typically a term of sortConfig representing the initial global
state,si is the state of the system after theith computation step. If thekth state of this sequence cannot be rewritten
any further (i.e. is absorbing), thensi = sk for all i ≥ k.

We denote theith state in an execution pathπ by π[i] = si. Also, denote the suffix of a pathπ starting at the
ith state byπ(i) = si → si+1 → si+2 → · · · . We letPath(s) be the set of execution paths starting at state
s. Note that, because the samples are generated through discrete-events simulation of a PMAUDE model with
no non-determinism,Path(s) is a measurable set and has an associated probability measure. This is essential to
compute the expected value of a path expression from a given state.

A.1 QUATEX through Examples
The language QUATEX, which is designed to query various quantitative aspects of a probabilistic model, allows
us to write temporal query expressions like temporal formulas in a temporal logic. It supports a framework for
parameterized recursive temporal operator definitions using a few primitive non-temporal operators and a temporal
operator (©). For example, suppose we want to know”the probability that along a random path from a given
state, the clientA(0) gets connected withB within 100 time units.”This can be written as the following query

IfConnectedInTime(t) = if t > time() then0 elseif connected() then1
else© (IfConnectedInTime(t)) fi fi;

evalE[IfConnectedInTime(time() + 100)];

The first four lines of the query define the operatorIfConnectedInTime(t), which returns 1, if along an execution
pathA(0) gets connected toB within time t and returns 0 otherwise. The state functiontime() returns the global
time associated with the state; the state functionconnected() returns true, if in the state,A(0) gets connected with
B and returns false otherwise. Then the state query at the fifth line returns the expected number of timesA(0)
gets connected toB within 100 time units along a random path from a given state. This number lies in[0, 1] since
along a random path eitherA(0) gets connected toB within 100 time units orA(0) does not get connected toB
within 100 time units. In fact, this expected value is equal to the probability that along a random path from the
given state, the clientA(0) gets connected withB within 100 time units.

A further rich query that is interesting to our probabilistic model is as follows

NumConnectedInTime(t, count) = if t > time() thencount

elseif anyConnected() then © (NumConnectedInTime(t, 1 + count))
else© (NumConnectedInTime(t, count)) fi fi;

evalE[NumConnectedInTime(time() + 100, 0)]

In this query, the state functionanyConnected() returns true if any clientA(i) gets connected toB in the state.
We assume that in a given execution path, at any state, at most one client gets connected toB, which is true with
our probabilistic model. We use a simpler variant of this query in our experiments.

A.2 Syntax of QUATEX

The syntax of QUATEX is given in Fig. 3. A query in QUATEX consists of a set of definitionsD followed
by a query of the expected value of a path expressionPExp. In QUATEX, we distinguish between two kinds

101

Q ::= D evalE[PExp]; SExp ::= c | f | F (SExp1, . . . ,SExpk) | xi

D ::= set ofDefn PExp ::= SExp | ©N(SExp1, . . . ,SExpn)
Defn ::= N(x1, . . . , xm) = PExp; | if SExp then PExp1 else PExp2 fi

Figure 3: Syntax of QUATEX

(s)[[c]]D = c
(s)[[f]]D = f(s)

(s)[[F (SExp1, . . . ,SExpk)]]D = F ((s)[[SExp1]]D , . . . , (s)[[SExpk]]D)
(s)[[E[PExp]]]D = E[(π)[[PExp]]D | π ∈ Paths(s)]

(π)[[if SExp thenPExp1 elsePExp2 fi]]D = if (π[0])[[SExp]]D = true then(π)[[PExp1]]D else(π)[[PExp2]]D
(π)[[©N(SExp1, . . . ,SExpm)]]D =

(π(1))[[B[x1 7→ (π[0])[[SExp1]]D , . . . , xm 7→ (π[0])[[SExpm]]D]]]D
where N(x1, . . . , xm) = B ∈ D

Figure 4: Semantics of QUATEX

of expressions, namely,state expressions(denoted bySExp) andpath expressions(denoted byPExp); a path
expression is interpreted over an execution path and a state expression isinterpreted over a state. A definition
Defn ∈ D consists of a definition of atemporal operator. A temporal operator definition consists of a nameN
and a set of formal parameters on the left-hand side, and a path expression on the right-hand side. The formal
parameters denote thefreeze formal parameters. When using a temporal operator in a path expression, the formal
parameters are replaced by state expressions. A state expression can be a constantc, a functionf that maps a state
to a concrete value, ak-ary function mappingk state expressions to a state expression, or a formal parameter. A
path expression can be a state expression, a next operator followed byan application of a temporal operator already
defined inD , or a conditional expression ifSExp then PExp1 else PExp2 fi. We assume that expressions
are properly typed. Typically, these types would beinteger, real, boolean etc. The conditionSExp in the
expression ifSExp then PExp1 else PExp2 fi must have the typeboolean. The temporal expressionPExp

in the expressionE[PExp] must be of typereal. We also assume that expressions of typeinteger can be
coerced to thereal type.

A.3 Semantics of QUATEX

Next, we give the semantics of a subset of query expressions that can be written in QUATEX. In this subclass,
we put the restriction that the value of a path expressionPExp that appears in any expressionE[PExp] can be
determined from a finite prefix of an execution path. We call such temporal expressionsboundedpath expres-
sions. The semantics is given in Fig. 4.(π)[[PExp]]D is the value of the path expressionPExp over the path
π. Similarly, (s)[[SExp]]D is the value of the state expressionSExp in the states. Note that if the value of a
bounded path expression can be computed from a finite prefixπfin of an execution pathπ, then the evaluations
of the path expression over all execution paths having the common prefixπfin are the same. Since a finite prefix
of a path defines a basic cylinder set (i.e. a set containing all paths havingthe common prefix) having an associ-
ated probability measure, we can compute the expected value of a bounded path expression over a random path
from a given state. In our analysis tool, we estimate the expected value through simulation instead of calculating
it exactly based on the underlying probability distributions of the model. The exact procedure can be found at
http://osl.cs.uiuc.edu/∼ksen/vesta2/.

102

Session V

Invited Talk II

103

Constructive Authorization Logics

Frank Pfenning
Department of Computer Science

Carnegie Mellon University
http://www.cs.cmu.edu/∼fp/

Authorization logics are traditionally used to specify access control policies. More recently, in the proof-
carrying authorization architecture, they have also been employed directly to enforce policies via explicit checking
of proofs expressed in the logic. Authorization logics provide a great deal of flexibility, but this may make it
difficult for principals to understand the consequences of their policy decisions and for users to obtain the necessary
proof objects.

In ongoing work we investigate a new constructive foundation for authorization logics which makes it easier
to construct them modularly and to reason about them mechanically. At the core is the separation of judgments
from propositions and a lax modality indexed by principals. We have formally verified some properties of the core
logic itself, such as cut-elimination, and we are now interested in methods for establishing properties of policies
expressed in the logic, such as independence and non-interference.

In this talk we explain the underlying design philosophy and the indexed lax logic at the heart of our approach.
We also give a brief survey of the technical results obtained so far.

Joint work with Deepak Garg and Kevin Watkins.

105

106

Session VI

Security Protocols and Decidability Issues

107

A Constraint-Based Algorithm for
Contract-Signing Protocols

Detlef Kähler and Ralf Küsters
Institut für Informatik und Praktische Mathematik

Christian-Albrechts-Universität zu Kiel, 24098 Kiel, Germany
{kaehler,kuesters}@ti.informatik.uni-kiel.de

Abstract

Research on the automatic analysis of cryptographic protocols has so far mainly concentrated on reacha-
bility properties, such as secrecy and authentication. Only recently it was shown that certain game-theoretic
security properties, such as balance for contract-signingprotocols, are decidable in a Dolev-Yao style model
with a bounded number of sessions but unbounded message size. However, this result does not provide a prac-
tical algorithm as it merely bounds the size of attacks. In this paper, we prove that game-theoretic security
properties can be decided based on standard constraint solving procedures. In the past, these procedures have
successfully been employed in implementations and tools for reachability properties. Our results thus pave the
way for extending these tools and implementations to deal with game-theoretic security properties.

1 Introduction

One of the central results in the area of automatic analysis of cryptographic protocols is that the security of cryp-
tographic protocols is decidable when analyzed w.r.t. a finite number of sessions, without a bound on the message
size, and in presence of the so-called Dolev-Yao intruder (see, e.g., [14, 1]). Based on this result, many fully
automatic tools (see, e.g., [2, 7, 13]) have been developed and successfully been applied to find flaws in published
protocols, where most of these tools employ so-calledconstraint solving procedures(see, e.g., [13, 7, 4]). How-
ever, the mentioned decidability result and tools are restricted to security properties such as authentication and
secrecy which are reachability properties of the transition system associated with a given protocol. In contrast,
crucial properties required of contract-signing and related protocols (see, e.g., [9, 3]), for instance abuse-freeness
[9] and balance [5], are game-theoretic properties of the structure of the transition system associated with a proto-
col. Balance, for instance, requires that in no stage of a protocol run, the intruder or a dishonest party has both a
strategy to abort the run and a strategy to successfully complete the run and thus obtain a valid contract.

Only recently [11], the central decidability result mentioned above was extended to such game-theoretic security
properties, including, for instance, balance. However, similar to the result by Rusinowitch and Turuani [14] for
reachability properties, the decision algorithm presented in [11] is merely based on the fact that the size of attacks
can be bounded, and hence, all potential attacks up to a certain size have to be enumerated and checked. Clearly,
just as in the case of reachability properties, this is completely impractical. For reachability properties, one has
therefore developed the mentioned constraint solving procedures to obtain practical decision algorithms.

The main contribution of the present work is aconstraint-baseddecision algorithm for the game-theoretic
security properties of the kind considered in [11]. The mainfeature of our algorithm is that it can be built on
top of standard constraint solving procedures(see, e.g., [13, 7, 4] and references therein). As mentioned, such
procedures have successfully been employed for reachability properties in the past and proved to be a good basis
for practical implementations. Hence, our algorithm pavesthe way for extending existing implementations and
tools for reachability properties to deal with game-theoretic security properties.

In a nutshell, our constraint-based algorithm works as follows: Given a protocol along with the considered
game-theoretic security property, first the algorithm guesses what we call a symbolic branching structure. This

109

structure represents a potential attack on the protocol andcorresponds to the interleavings, which are, however,
linear structures, guessed for reachability properties. In the second step of the algorithm, the symbolic branching
structure is turned into a so-called constraint system. This step requires some care due to the branching issue and
write-protected channels considered in our model (also called secure channels here), i.e., channels that are not
under the control of the intruder. Then, a standard constraint solving procedure (see above) is used to compute
a finite sound and complete set of so-called simple constraint systems. A simple constraint system in such a set
represents a (possibly infinite) set of solutions of the original constraint system and the sound and complete set
of these simple constraint systems represents the set ofall solutions of the original constraint system. Finally, it
is checked whether (at least) one of the computed simple constraint systems in the sound and complete set passes
certain additional tests.

There are some crucial differences of our constraint-basedalgorithm to algorithms for reachability properties:
First, as mentioned, instead of symbolic branching structures, for reachability properties only interleavings, i.e.,
linear structures, need to be guessed. Turning these interleavings into constraint systems is immediate due to the
absence of the branching issue and the absence of secure channels. Second, and more importantly, for reachability
properties it suffices if the constraint solving procedure only returns one simple constraint system, rather than a
sound and complete set. Third, the final step of our constraint-based algorithm—performing additional tests on
the simple constraint system—is not required for reachability properties.

We emphasize that even though for reachability properties it suffices if the constraint solving procedure returns
only one simple constraint system, standard constraint solving procedures are typically capable of computing
sound and complete sets of simple constraint systems. Any such procedure can be used by our constraint-based
algorithm as a black-box for solving constraint systems. This makes it possible to extend existing implementations
and tools for reachability properties to deal with game-theoretic properties since the core of the algorithms—
solving constraint systems—remains the same, provided that the considered cryptographic primitives can be dealt
with by the constraint solving procedure (see Section 4).

The protocol and intruder model that we use is basically the one proposed in [11], which in turn is the “bounded
session” version of a model proposed in [5]. We slightly modify the model of [11]—without changing its expres-
sivity and accuracy—in order to simplify our constraint-based algorithm (see Section 2 and 3). For instance, while
in [11] intruder strategies are positional, it turns out that the constraint-based algorithm is considerably simpler for
intruder strategies which may depend on the history of the protocol run. However, it is not hard to show that both
notions of strategies are equivalent in our setting, and hence, we can w.l.o.g. choose the notion of strategy that fits
best for our purpose.

Further related work. Contract-signing and related protocols have been analyzedboth manually [5], based on a
relatively detailed model (as mentioned, our model is a “bounded session” version of this model), and using finite-
state model checking (see, e.g., [15, 12]), based on a coarser finite-state model. Drielsma and Mödersheim [8]
were the first to apply an automatic tool based on constraint solving to the contract-signing protocol by Asokan,
Shoup, and Waidner [3]. Their analysis is, however, restricted to reachability properties since game-theoretic
properties cannot be handled by their tool. The results shown in the present work pave the way for extending such
tools in order to be able to analyze game-theoretic properties.

Structure of this paper. In Section 2, we recall the protocol and intruder model and inSection 3 the intruder
strategies and the game-theoretic properties first introduced in [11], and point out the mentioned differences.
Section 4 provides the necessary background on constraint solving. In Section 5, we present our constraint-based
decision algorithm along with an example and state our main result—soundness, completeness, and termination
of the algorithm.

Full definitions and proofs can be found in our technical report [10].

110

2 The Protocol and Intruder Model

The protocol and intruder model that we use basically coincides with the model first introduced in [11], which in
turn is the “bounded session” version of the model proposed in [5]. We only slightly modify the model in [11] in
that we impose a restriction on principals which is necessary for principals to perform feasible computations.

In our model, a protocol is a finite set of principals and everyprincipal is a finite tree, which represents all
possible behaviors of the principal, including all subprotocols a principal can carry out. Each edge of such a tree
is labeled by a rewrite rule, which describes the receive-send action that is performed when the principal takes this
edge in a run of the protocol.

When a principal carries out a protocol, it traverses its tree, starting at the root. In every node, the principal
takes its current input, chooses one of the edges leaving thenode, matches the current input with the left-hand side
of the rule the edge is labeled with, sends out the message which is determined by the right-hand side of the rule,
and moves to the node the chosen edge leads to. While in the standard Dolev-Yao model (see, e.g., [14]) inputs to
principals are always provided by the intruder, in our modelinputs can also come from the secure channel, which
the intruder does not control, i.e., the intruder cannot delay, duplicate, remove messages, or write messages onto
this channel under a fake identity (unless he has corrupted aparty). However, just as in [5], the intruder can read
the messages written onto the secure channel. We note that our results also hold in case of read-protected secure
channels. Another difference to standard Dolev-Yao modelsis that, in order to be able to formulate game-theoretic
properties, we explicitly describe the behavior of a protocol as an infinite-state transition graph which comprises
all runs of a protocol.

We now describe the model in more detail by defining terms and messages, the intruder, principals and proto-
cols, and the transition graph.

Terms and Messages. As usual, we have a finite setV of variables, a finite setA of atoms, a finite setK of
public and private keys equipped with a bijection·−1 assigning public to private keys and vice versa. In addition,
we have a finite setN of principal addressesfor the secure channels and aninfinite setAI of intruder atoms,
containing nonces and symmetric keys the intruder can generate. All of the mentioned sets are assumed to be
disjoint.

We define two kinds of terms by the following grammar, namelyplain termsandsecure channel terms:

plain-terms ::= V | A | AI | 〈plain-terms, plain-terms〉 | {plain-terms}s
plain-terms |

{plain-terms}a
K | hash(plain-terms) | sigK(plain-terms)

sec-terms ::= sc(N ,N , plain-terms)

terms ::= plain-terms| sec-terms| N

While the plain terms are standard in Dolev-Yao models, a secure channel term of the formsc(n, n′, t) stands for
feeding the secure channel fromn to n′ with t. Knowingn grants access to secure channels with sender address
n. A (plain/secure channel) messageis a (plain/secure channel) ground term, i.e., a term without variables.

Intruder. Given a setI of messages, the (infinite) setd(I) of messages the intruder can derive fromI is
the smallest set satisfying the following conditions:I ⊆ d(I); if m,m′ ∈ d(I), then 〈m,m′〉 ∈ d(I); if
〈m,m′〉 ∈ d(I), thenm ∈ d(I) andm′ ∈ d(I); if m,m′ ∈ d(I), then{m}s

m′ ∈ d(I); if {m}s
m′ ∈ d(I)

andm′ ∈ d(I), thenm ∈ d(I); if m ∈ d(I) andk ∈ d(I) ∩ K, then{m}a
k ∈ d(I); if {m}a

k ∈ d(I) and
k−1 ∈ d(I), thenm ∈ d(I); if m ∈ d(I), thenhash(m) ∈ d(I); if m ∈ d(I) andk−1 ∈ d(I)∩K, thensigk(m)
(the signature contains the public key but can only be generated if the corresponding private key is known); if
m ∈ d(I), n ∈ d(I) ∩ N , andn′ ∈ N , thensc(n, n′,m) ∈ d(I) (writing onto the secure channel); AI ⊆ d(I)
(generating fresh constants).

111

Intuitively, n ∈ d(I) ∩ N means that the intruder has corrupted the principal with addressn and therefore can
impersonate this principal when writing onto the secure channel.

In our model, all (strongly) dishonest parties are subsumedin the intruder. Weakly dishonest parties can be
modeled as principals whose specification deviates from thespecification of the protocol.

Principals and Protocols. Principal rulesare of the formR ⇒ S whereR is a term orε andS is a term.
A rule treeΠ = (V,E, r, `) is a finite tree rooted atr ∈ V where` maps every edge(v, v′) ∈ E of Π to a

principal rule`(v, v′).
A principal is a tuple consisting of a rule treeΠ = (V,E, r, `) and a finite set of plain messages, theinitial

knowledge of the principal. We require that every variable occurring on the right-handside of a principal rule
`(v, v′) in Π also occurs on the left-hand side of`(v, v′) or on the left-hand side of a principal rule on the path
from r to v. In addition, and unlike [11], we require a condition necessary for the principal to perform a feasi-
ble computation: The decryption and signature verificationoperations performed when receiving a message can
actually be carried out, i.e., terms in key positions (t′ in {t}s

t′ , k−1 in {t}a
k, andk in sigk(t)) on the left-hand

side of principal rules can be derived from the set consisting of the left-hand side of the current principal rule, the
left-hand sides of preceeding rules, and the initial knowledge of the principal. Obviously, the above condition is
satisfied for all realistic principals. Moreover, it allowsto simplify the constraint-based algorithm (Section 5).

For v ∈ V , we writeΠ↓v to denote the subtree ofΠ rooted atv. For a substitutionσ, we writeΠσ for the
principal obtained fromΠ by substituting all variablesx occurring in the principal rules ofΠ by σ(x).

A protocolP = ((Π1, . . . ,Πn),I) consists of a finite sequence of principalsΠi and a finite setI of messages,
theinitial intruder knowledge. We require that each variable occurs in the rules of only oneprincipal, i.e., different
principals must have disjoint sets of variables. We assume that intruder atoms, i.e., elements ofAI , do not occur
in P .

As an example protocol, let us considerPex as depicted in Figure 1. This protocols consists of two principals
Π1 andΠ2 and the initial knowledgeI0 = {{a}s

k, {b}s
k} of the intruder. The principals are described by the two

trees on the left-hand side of the figure; the tree on the right-hand side is used later. Informally speaking,Π2 can,
without waiting for input from the secure channel or the intruder, decide whether to write〈a, b〉 or 〈b, b〉 into the
secure channel fromΠ2 to Π1. While the intruder can read the message written into this channel, he cannot modify
or delay this message. Also, he cannot insert his own messageinto this channel as he does not have the principal
address 2 in his intruder knowledge, and hence, cannot generate messages of the formsc(2, ·, t). Consequently,
such messages must come fromΠ2. PrincipalΠ1 first waits for a message of the form〈x, b〉 in the secure channel
from Π2 to Π1. In caseΠ2 wrote, say,〈a, b〉 into this channel,x is substituted bya, and this message is written
into the network, and hence, given to the intruder. Next,Π1 waits for input of the form{y}s

k. This is not a secure
channel term, and thus, comes from the intruder. In case the intruder sends{b}s

k, say, theny is substituted byb.
Finally, Π1 waits for input of the forma (in the edges fromf3 to f4 andf3 to f5) or b (in the edge fromf3 to
f6). Recall thatx was substituted bya andy by b. If the intruder sendsb, say, thenΠ2 takes the edge fromf3 to
f6 and outputsc2 into the network. If the intruder had senta, Π1 could have chosen between the first two edges.
We note that this protocol is not meant to perform a useful task. It is rather used to illustrate different aspects of
our constraint-based algorithm ([11] contains a formal specification of the contract-signing protocol by Asokan,
Shoup, and Waidner [3] in our model).

2.1 Transition Graph Induced by a Protocol

A transition graphGP induced by a protocolP comprises all runs of a protocol. To define this graph, we first
introduce states and transitions between these states.

A stateis of the form((Π1, . . . ,Πn), σ,I,S) whereσ is a ground substitution, for eachi, Πi is a rule tree such
thatΠiσ is a principal,I is a finite set of messages, theintruder knowledge, andS is a finite multi-set of secure
channel messages, thesecure channel. The idea is that when the transition system gets to such a state, then the

112

h2

h3

h4

h5

((f1, g2), ∅, I1, {sc(2, 1, 〈a, b〉)})

1, sc(2, 1, 〈a, b〉), sc

1, {b}s

k, I

((f3, g2), σ2, I1 ∪ {a, b}, ∅)

1, b, I

((f6, g2), σ2, I1 ∪ {a, b, c2}, ∅)

((f2, g2), σ1, I1 ∪ {a}, ∅)

h6

h7

h8

h9 h10

((f1, g3), ∅, I2, {sc(2, 1, 〈b, b〉)})

1, sc(2, 1, 〈b, b〉), sc

1, {b}s

k, I

((f3, g3), σ4, I2 ∪ {b}, ∅)

1, b, I

((f5, g3), σ4, I2 ∪ {b, c2}, ∅)

1, b, I

((f6, g3), σ4, I2 ∪ {b, c2}, ∅)

((f2, g3), σ3, I2 ∪ {b}, ∅)

g1

g2 g3

ε ⇒ sc(2, 1, 〈a, b〉) ε ⇒ sc(2, 1, 〈b, b〉)

f1

f4 f5 f6

f2

f3

sc(2, 1, 〈x, b〉) ⇒ x

a ⇒ c1 y ⇒ c2x ⇒ c2

{y}s

k ⇒ y

((f1, g1), ∅, I0, ∅)h1

2 2

Tex:Π1:

Π2:

Figure 1: ProtocolPex = ({Π1, Π2}, I0) with I0 = {{a}s

k
, {b}s

k
}, initial knowledge{1, a, b, k, c1, c2} of Π1 and initial

knowledge{2, a, b} of Π2. Strategy treeTex for Pex with I1 = I0 ∪ {〈a, b〉}, I2 = I0 ∪ {〈b, b〉}, σ1 = {x 7→ a},
σ2 = σ1 ∪ {y 7→ b}, σ3 = {x 7→ b}, andσ4 = σ3 ∪ {y 7→ b}. Also, for brevity of notation, in the first component of the
states we write, for instance,f1 instead ofΠ1↓f1. The strategy property we consider is((Cex, C′

ex)) = (({c2}, {c1})).

substitutionσ has been performed, the accumulated intruder knowledge is what can be derived fromI, the secure
channels hold the messages inS, and for eachi, Πi is the “remaining protocol” to be carried out by principali.
This also explains whyS is a multi-set: messages sent several times should be delivered several times. Given a
protocolP = ((Π1, . . . ,Πn),I) the initial state of Pis ((Π1, . . . ,Πn), σ,I, ∅) whereσ is the substitution with
empty domain.

We have three kinds of transitions: intruder, secure channel, and ε-transitions. In what follows, letΠi =
(Vi, Ei, ri, `i) andΠ′

i = (V ′
i , E′

i, r
′
i, `

′
i) denote rule trees. We define under which circumstances thereis a transition

((Π1, . . . ,Πn), σ,I,S)
τ
−→ ((Π′

1, . . . ,Π
′
n), σ′,I ′,S ′) (1)

with τ an appropriate label.

1. Intruder transitions:The transition (1) with labeli,m, I exists if there existsv ∈ Vi with (ri, v) ∈ Ei and
`i(ri, v) = R ⇒ S, and a substitutionσ′′ of the variables inRσ such that (a)m ∈ d(I), (b) σ′ = σ∪σ′′, (c)
Rσ′ = m, (d)Π′

j = Πj for everyj 6= i, Π′
i = Πi↓v, (e)I ′ = I∪{Sσ′} if S 6= sc(·, ·, ·), andI ′ = I∪{tσ′}

if S = sc(·, ·, t) for somet, (f) S ′ = S if S 6= sc(·, ·, ·), andS ′ = S ∪ {Sσ′} otherwise. This transition
models that principali reads the messagem from the intruder (i.e., the public network).

2. Secure channel transitions:The transition (1) with labeli,m, sc exists if there existsv ∈ Vi with (ri, v) ∈
Ei and`i(ri, v) = R ⇒ S, and a substitutionσ′′ of the variables inRσ such thatm ∈ S, (b)–(e) from 1.,
andS ′ = S \ {m} if S 6= sc(·, ·, ·), andS ′ = (S \ {m}) ∪ {Sσ′} otherwise. This transition models that
principal i reads messagem from the secure channel.

3. ε-transitions: The transition (1) with labeli exists if there existsv ∈ Vi with (ri, v) ∈ Ei and`i(ri, v) =
ε ⇒ S such thatσ′ = σ and (d), (e), (f) from above. This transition models thati performs a step where
neither a message is read from the intruder nor from the secure channel.

Given a protocolP , the transition graphGP induced byP is the tuple(SP , EP , qP) whereqP is the initial state
of P , SP is the set of states reachable fromqP by a sequence of transitions, andEP is the set of all transitions
among states inSP . We writeq ∈ GP if q is a state inGP andq

τ
→ q′ ∈ GP if q

τ
→ q′ is a transition inGP .

113

We note thatGP is a DAG since by performing a transition, the size of the firstcomponent of a state decreases.
While the graph may be infinite branching, the maximal lengthof a path in this graph is bounded by the total
number of edges in the principalsΠi of P .

3 Intruder Strategies and Strategy Properties

We now define intruder strategies on transition graphs and the goal the intruder tries to achieve following his
strategy. As mentioned in the introduction, while in [11] positional intruder strategies have been considered
where the strategy of the intruder at a global state of the protocol run may only depend on the current state,
here we allow the intruder to take the whole path leading to this state (i.e., the history) into account. While this
potentially provides the intruder with more power, these notions are in fact equivalent (see Proposition 2). The
main motivation for the new notion of strategy is that it is much better suited for the constraint solving approach
(Section 5).

To define intruder strategies, we introduce the notion of a strategy tree, which captures that the intruder has a
way of acting such that regardless of how the other principals act he achieves a certain goal, where goal in our
context means that a state will be reached where the intrudercan derive certain constants and cannot derive others
(e.g., for balance, the intruder tries to obtainIntruderHasContract but tries to preventHonestPartyHasContract
from occurring).

More concretely, let us consider the protocolPex depicted in Figure 1. We want to know if the intruder has a
strategy to get to a state where he can derive atomc2 but not atomc1 (no matter what the principalsΠ1 andΠ2

do). Such a strategy of the intruder has to deal with both decisions principalΠ2 may make in the first step because
the intruder cannot control which edge is taken byΠ2. It turns out that regardless of which message is sent by
principalΠ2 in its first step, the following simple strategy allows the intruder to achieve his goal: The intruder can
send{b}s

k to principalΠ1 in the second step ofΠ1 and in the last step ofΠ1, the intruder sendsb to principalΠ1.
This guarantees that in the last step ofΠ1, the left-most edge is never taken, and thus,c1 is not returned, but at
least one of the other two edges can be taken, which in any caseyields c2. Formally, such strategies are defined
as trees. In our example, the strategy tree corresponding tothe strategy informally explained above is depicted on
the right-hand side of Figure 1.

Definition 1 For q ∈ GP a q-strategy treeTq = (V,E, r, `V , `E) is an unordered tree where every vertexv ∈ V
is mapped to a statèV (v) ∈ GP and every edge(v, v′) ∈ E is mapped to a label of a transition such that the
following conditions are satisfied for allv, v′ ∈ V , principalsj, messagesm, and statesq′, q′′:

1. `V (r) = q.

2. `V (v)
`E(v,v′)
−→ `V (v′) ∈ GP for all (v, v′) ∈ E. (Edges correspond to transitions.)

3. If `V (v) = q′ and q′
j

−→ q′′ ∈ GP , then there existsv′′ ∈ V such that(v, v′′) ∈ E, `V (v′′) = q′′, and
`E(v, v′′) = j. (All ε-transitions originating inq′ must be present inTq.)

4. If `V (v) = q′ and q′
j,m,sc
−→ q′′ ∈ GP , then there existsv′′ ∈ V such that(v, v′′) ∈ E, `V (v′′) = q′′, and

`E(v, v′′) = j,m, sc. (The same as 3. for secure channel transitions.)

5. If (v, v′) ∈ E, `E(v, v′) = j,m, I, and there existsq′′ 6= `V (v′) with `V (v)
j,m,I
−→ q′′ ∈ GP , then there exists

v′′ with (v, v′′) ∈ E, `E(v, v′′) = j,m, I and `V (v′′) = q′′. (The intruder cannot choose which principal
rule is taken byj if several are possible given the input provided by the intruder.)

A strategy property, i.e., the goal the intruder tries to achieve, is a tuple((C1, C
′
1), . . . , (Cl, C

′
l)) whereCi, C

′
i ⊆

A ∪ K ∪ N . A stateq ∈ GP satisfies((C1, C
′
1), . . . , (Cl, C

′
l)) if there existq-strategy treesT1, . . . ,Tl such that

114

everyTi satisfies(Ci, C
′
i) whereTi satisfies(Ci, C

′
i) if for all leavesv of Ti all elements fromCi can be derived

by the intruder and all elements fromC ′
i cannot, i.e.,Ci ⊆ d(I) andC ′

i ∩ d(I) = ∅ whereI denotes the intruder
knowledge in statèV (v).

The decision problemG-STRATEGY (with general rather than positional intruder strategy)asks, given a pro-
tocol P and a strategy property((C1, C

′
1), . . . , (Cl, C

′

l)), whether there exists a stateq ∈ GP that satisfies the
property. In this case we write(P, (C1, C

′
1), . . . , (Cl, C

′

l)) ∈ G-STRATEGY.
Note that in aq-strategy treeTq there may exist verticesv′ 6= v with `V (v′) = `V (v) such that the subtreesTq↓v

andTq↓v
′ of Tq rooted atv andv′, respectively, are not isomorphic. In other words, the intruder’s strategy may

depend on the path that leads to a state (i.e., the history) rather than on the state alone, as is the case for positional
strategies. As mentioned, the strategies defined in [11] arepositional. LetP-STRATEGY be defined analogously
to G-STRATEGY with positional intruder strategies (see [11] for the precise definition). Using that our strategy
properties only constrain the leaves of strategy trees, thefollowing is not hard to show.

Proposition 2 (P, (C1, C
′
1), . . . , (Cl, C

′

l)) ∈ G-STRATEGY iff (P, (C1, C
′
1), . . . , (Cl, C

′

l)) ∈ P-STRATEGY.

In [11] it was shown thatP-STRATEGY is decidable. As an immediate corollary of Proposition 2 we obtain:

Corollary 3 G-STRATEGY is decidable.

4 Constraint Solving

In this section, we introduce constraint systems and state the well-known fact that procedures for solving these
systems exist (see, e.g., [13] for more details). In Section5, we will then use such a procedure as a black-box for
our constraint-based algorithm.

A constraintis of the formt : T wheret is a plain term andT is a finite non-empty set of plain terms. Since
we will take care of secure channel terms when turning the symbolic branching structure into a constraint system,
we can disallow secure channel terms in constraints.

A constraint systemC is a tuple consisting of a sequences = t1 : T1, . . . , tn : Tn of constraints and a
substitutionτ such that the domain ofτ is disjoint from the set of variables occurring ins and, for allx in the
domain ofτ , τ(x) only contains variables also occurring ins. We callC simpleif ti is a variable for alli. We call
C valid if it satisfies the origination and monotonicity property asdefined in [13]. These are standard restrictions
on constraint systems imposed by constraint solving procedures. Valid constraint systems are all that is needed in
our setting.

A ground substitutionσ where the domain ofσ is the set of variables int1 : T1, . . . , tn : Tn is asolutionof C
(σ ` C) if tiσ ∈ d(Tiσ) for everyi. We callσ ◦ τ (the composition ofσ andτ read from right to left) acomplete
solution ofC (σ ◦ τ `c C) with τ as above.

A simple constraint systemC obviously has a solution. One such solution, which we denoteby σC , replaces all
variables inC by new intruder atomsa ∈ AI where different variables are replaced by different atoms.We call
σC thesolution associated withC andσC ◦ τ thecomplete solution associated withC.

Given a constraint systemC, a finite set{C1, . . . , Cn} of simple constraint systems is called asound and
complete solution set forC if {ν | ν `c C} = {ν | ∃i s.t.ν `c Ci}. Note thatC does not have a solution iffn = 0.

The following fact is well-known (see, e.g., [7, 13, 4] and references therein):

Fact 1 There exists a procedure which given a valid constraint systemC outputs a sound and complete solution
set forC.

While different constraint solving procedures (and implementations thereof) may compute different sound and
complete solution sets, our constraint-based algorithm introduced in Section 5 works with any of these procedures.

115

It is only important that the set computed is sound and complete. As already mentioned in the introduction, to
decide reachability properties it suffices if the procedureonly returns one simple constraint system in the sound
and complete set. However, the constraint solving procedures proposed in the literature are typically capable of
returning a sound and complete solution set.

In what follows, we fix one such procedure and call it theconstraint solver. More precisely, w.l.o.g., we consider
the constraint solver to be a non-deterministic algorithm which non-deterministically chooses a simple constraint
system from the sound and complete solution set and returns this system as output. We require that for every
simple constraint system in the sound and complete solutionset, there is a run of the constraint solver that returns
this system. If the sound and complete set is empty, the constraint solver always returnsno.

We note that while standard constraint solving procedures can deal with the cryptographic primitives considered
here, these procedures might need to be extended when addingfurther cryptographic primitives. For example, this
is the case for private contract signatures, which are used in some contract signing protocols [9] and were taken
into account in [11]. However, constraint solving procedures can easily be extended to deal with these signatures.
We have not considered them here for brevity of presentationand since the main focus of the present work is not
to extend constraint solving procedures but to show how these procedures can be employed to deal with game-
theoretic security properties.

5 The Constraint-Based Algorithm

We now present our constraint-based algorithm, calledSolveStrategy, for decidingG-STRATEGY. As mentioned,
it uses a standard constraint solver (Fact 1) as a subprocedure.

In what follows, we present the main steps performed bySolveStrategy, with more details given in subsequent
sections. The input toSolveStrategy is a protocolP and a strategy property((C1, C

′
1), . . . , (Cl, C

′
l)).

1. Guess a symbolic branching structureB, i.e., guess a symbolic pathπs from the initial state ofP to a sym-
bolic stateqs and a symbolicqs-strategy treeT s

i,qs for every(Ci, C
′
i) starting from this state (see Section 5.1

for more details).

2. Derive fromB = πs,T s
1,qs , . . . ,T s

l,qs and the strategy property((C1, C
′
1), . . . , (Cl, C

′

l)) the induced and
valid (!) constraint systemC = CB (see Section 5.2 for the definition). Then, run the constraint solver onC.
If it returnsno, then halt. Otherwise, letC′ be the simple constraint system returned by the solver. (Recall
thatC′ belongs to the sound and complete solution set and is chosen non-deterministically by the solver.)

3. Letν be the complete solution associated withC′. Check whetherν when applied toB yields a valid path
in GP from the initial state ofP to a stateq andq-strategy treesTi,q satisfying(Ci, C

′
i) for everyi. If so,

outputyes andB with ν applied, and otherwise returnno (see Section 5.3 for more details). In caseyes is
returned,B with ν applied yields a concrete solution of the problem instance(P, (C1, C

′
1), . . . , (Cl, C

′

l)).

We emphasize that, for simplicity of presentation,SolveStrategy is formulated as a non-deterministic algorithm.
Hence, the overall decision ofSolveStrategy is yes if there exists at least one computation path whereyes is
returned. Otherwise, the overall decision isno (i.e.,(P, (C1, C

′
1), . . . , (Cl, C

′

l)) /∈ G-STRATEGY).
In the following three sections, the three steps ofSolveStrategy are further explained. Our main result is the

following theorem:

Theorem 4 SolveStrategy is a decision procedure forG-STRATEGY.

While we know that the problemG-STRATEGY is decidable from Corollary 3, the main point of Theorem 4 is
thatSolveStrategy uses standard constraint solving procedures as a black-box, and as such, is a good basis for
extending existing practical constraint-based algorithms for reachability properties to deal with game-theoretic
security properties.

116

h1

h6h2

h3 h7

h4

h5

h8

2, g2

h9 h10

2, g3

1, f2, sc(2, 1, 〈b, b〉), sc

1, f3, I

1, f6, I

1, f2, sc(2, 1, 〈a, b〉), sc

1, f3, I

1, f6, I
1, f5, I

((f1, g1), I0, ∅)

((f1, g2), I1, {sc(2, 1, 〈a, b〉)})

((f2, g2), I1 ∪ {xh3
}, ∅)

((f3, g2), I1 ∪ {xh3
, yh4

}, ∅)

((f6, g2), I1 ∪ {xh3
, yh4

, c2}, ∅)

((f1, g3), I2, {sc(2, 1, 〈b, b〉)})

((f2, g3), I2 ∪ {xh7
}, ∅)

((f3, g3), I2 ∪ {xh7
, yh8

}, ∅)

((f5, g3), I2 ∪ {xh7
, yh8

, c2}, ∅) ((f6, g3), I2 ∪ {xh7
, yh8

, c2}, ∅)

T s

ex:

Figure 2: Symbolic strategy treeT s
ex for the protocolPex whereI1 = I0 ∪ {〈a, b〉} andI2 = I0 ∪ {〈b, b〉}. For

brevity of notation, in the first component of the symbolic states we write, for instance,f1 instead ofΠ1↓f1.

The proof of Theorem 4 is quite different from the cut-and-paste argument in [11] where, similar to [14], it was
shown that an attack can be turned into a “small” attack. Herewe rather make use of the fact that procedures for
computing sound and complete solution sets exist, which makes our proof (and also our algorithm) more modular
and easier to extend.

We note that if we used positional strategies as in [11],SolveStrategy would have to be extended to guess the
symbolic states of symbolic branching structures that coincide after the substitutionν is applied. To avoid this, we
employ the strategies with history as explained above.

5.1 Guess the Symbolic Branching Structure

To describe the first step ofSolveStrategy in more detail, we first define symbolic branching structures, which
consist of symbolic paths and symbolic strategy trees. To define symbolic paths and strategy trees, we need to
introduce symbolic states, transitions, and trees (see [10] for full details). These notions will be illustrated by the
example in Figure 1

A symbolic stateqs = ((Π1, . . . ,Πn),I,S) is defined just as a concrete state (see Section 2.1) except that the
substitution is omitted and the intruder knowledgeI and the secure channelS may contain terms (with variables)
instead of only messages. Thesymbolic initial stateof a protocolP = ((Π1, . . . ,Πn),I0) is ((Π1, . . . ,Πn),I0, ∅).

A symbolic transition, analogously to concrete transitions, is a transition between symbolic states and is of the
form

((Π1, . . . ,Πn),I,S)
`

−→ ((Π′
1, . . . ,Π

′
n),I ′,S ′) (2)

with ` an appropriate label where again we distinguish between symbolic intruder, secure channel, andε-tran-
sitions. Informally speaking, these transitions are of thefollowing form (see [10] for details and the example
below): Forsymbolic intruder transitionsthe label̀ is of the formi, f, I where nowf is not the message delivered
by the intruder, as was the case for concrete intruder transitions, but a direct successor of the rootri of Πi. The
intuition is that the principal ruleR ⇒ S the edge(ri, f) is labeled with inΠi is applied. The symbolic state
((Π1, . . . ,Πn),I,S) is updated accordingly to((Π′

1, . . . ,Π
′
n),I ′,S ′) (see the example below). We callR ⇒ S

the principal rule associated with the symbolic transition. Similarly, the label of asymbolic secure channel
transition is of the form i, f,R′, sc wheref is interpreted as before andR′ is the term read from the secure
channel. IfR ⇒ S is the principal rule associated with the transition, thenS ′ is obtained by removingR′ from S

117

and addingS if S is a secure channel term. When constructing the constraint system, we will guarantee thatR′

unifies withR. Finally, the label ofsymbolicε-transitionsis of the formi, f with the obvious meaning.
A symbolicqs-tree T s

qs = (V,E, r, `V , `E) is an unordered finite tree where the vertices are labeled with
symbolic states, the root is labeled withqs, and the edges are labeled with labels of symbolic transitions such
that an edge(v, v′) of the tree, more precisely, the labels ofv andv′ and the label of(v, v′) correspond to symbolic
transitions. We call the principal rule associated with such a symbolic transitionthe principal rule associated with
(v, v′). Note that the symbolic transitions of different edges may be associated with the same principal rule. Now,
since the same rule may occur at different positions in the tree, its variables may later be substituted differently.
We therefore need a mechanism to consistently rename variables.

Figure 2 depicts a symbolicqs
0-treeT s

ex for Pex (Figure 1) whereqs
0 = ({Π1,Π2},I0, ∅) is the symbolic initial

state ofPex. For brevity of notation, just as in the case of the strategy tree in Figure 1, the first component of
the symbolic states in this tree does not contain the principals but only their corresponding roots. Note that the
principal rules ofΠ1 are applied at different places in this tree. Therefore, different copies of the variablesx andy
need to be introduced, which we do by indexing the variables by the name of the vertex where the rule is applied.
This yields the variablesxh3

, xh7
, yh4

, yh8
in T s

ex.
A symbolic pathπs of a protocolP is a symbolicqs

0-tree where every vertex has at most one successor andqs
0

is the symbolic initial state ofP .
A symbolicqs-strategy treeT s

qs = (V,E, r, `V , `E) is a symbolicqs-tree which satisfies additional conditions.
Among others, we require that in one node of this tree the intruder may only send a message to one principalΠi;
we show that this is w.l.o.g. Also, allε-transitions applicable in one node are present. Symbolic strategy trees are
defined in such a way that for every symbolic stateqs the number of symbolicqs-strategy trees is finite and all
such trees can effectively be generated. The tree depicted in Figure 2 is a symbolicqs

0-strategy tree.
For a protocolP and strategy property((C1, C

′
1), . . . , (Cl, C

′
l)), asymbolic branching structureis of the form

Bs = πs,T s
1 , . . . ,T s

l whereπs is a symbolic path ofP and theT s
i are symbolicqs-strategy trees whereqs is

the symbolic state the leaf ofπs is labeled with. Given a protocol and a strategy property, there are only a finite
number of symbolic branching structures and these structures can be generated by an algorithm. In particular,
there is a non-deterministic algorithm which can guess one symbolic branching structureBs among all possible
such structures.

For the strategy property((Cex, C ′
ex)) = (({c2}, {c1})), we can considerT s

ex in Figure 2 also as a symbolic
branching structureBs

ex of Pex where the pathπs is empty andl = 1.

5.2 Construct and Solve the Induced Constraint System

We now show how the constraint systemC = CB is derived from the symbolic branching structureB = πs,T s
1 ,

. . . ,T s
l (guessed in the first step ofSolveStrategy) and the given strategy property((C1, C

′
1), . . . , (Cl, C

′

l)). This
constraint system can be shown to be valid, and hence, by Fact1, a constraint solver can be used to solve it. In this
extended abstract, we only illustrate howC is derived fromB and the strategy property by the example in Figure 1
(see [10] for full definitions).

Before turning to the example, we informally explain how to encode in a constraint system communication
involving the secure channel. (Another, somewhat less interesting issue is how to deal with secure channel terms
generated by the intruder. This is explained in our technical report [10].) The basic idea is that we write messages
intended for the secure channel into the intruder’s knowledge and let the intruder deliver these messages. The
problem is that while every message in the secure channel canonly be read once, the intruder could try to deliver
the same message several times. To prevent this, every such message when written into the intruder’s knowledge
is encrypted with anewkey not known to the intruder and this key is also (and only) used in the principal rule
which according to the symbolic branching structure is supposed to read the message. This guarantees that the
intruder cannot abusively deliver the same message severaltimes to unintended recipients or make use of these

118

encrypted messages in other contexts. Here we use the restriction on principals introduced in Section 2, namely
that decryption keys can be derived by a principal. Without this condition, a principal rule of the form{y}s

x ⇒ x
would be allowed even if the principal does not know (i.e., cannot derive)x. Such a rule would equip a principal
with the unrealistic ability to derive any secret key from a ciphertext. Hence, the intruder, using this principal as
an oracle, could achieve this as well and could potentially obtain the new keys used to encrypt messages intended
for the secure channel.

We now turn to our example and explain how the (valid) constraint system, calledCex, derived fromBs
ex

and((Cex, C ′
ex)) looks like and how it is derived fromBs

ex, whereBs
ex, as explained above, is simply the sym-

bolic strategy treeT s
ex (Figure 2):Cex is the following sequence of constraints with an empty substitution where

k1, k2, k3 ∈ A are new atoms and we writet1, . . . , tn instead of{t1, . . . , tn}.

1. {〈xh3
, b〉}s

k1
: I1, {〈a, b〉}s

k1
6. xh7

: I2, {〈b, b〉}s

k2
, xh7

, yh8

2. {〈xh7
, b〉}s

k2
: I2, {〈b, b〉}s

k2
7. yh8

: I2, {〈b, b〉}s

k2
, xh7

, yh8

3. {yh4
}s

k
: I1, {〈a, b〉}s

k1
, xh3

8. c2 : I1, {〈a, b〉}s

k1
, xh3

, yh4
, c2

4. {yh8
}s

k
: I2, {〈b, b〉}s

k2
, xh7

9. c2 : I2, {〈b, b〉}s

k2
, xh7

, yh8
, c2

5. yh4
: I1, {〈a, b〉}s

k1
, xh3

, yh4
10. c2 : I2, {〈b, b〉}s

k2
, xh7

, yh8
, c2

This constraint system is obtained fromBs
ex as follows: We traverse the vertices ofBs

ex in a top-down breadth first
manner. Every edge induces a constraint except those edges which correspond to symbolicε-transitions. This is
how the constraints 1.–7. come about where 1., 3., and 5. are derived from the left branch ofBs

ex and 2., 4., 6.,
and 7. from the right branch. Note that in 1. and 2. we encode the communication with the secure channel by
encrypting the terms with new keysk1 andk2. The terms{〈a, b〉}s

k1
and{〈b, b〉}s

k2
are not removed anymore from

the right-hand side of the constraints, i.e., from the intruder knowledge, in order forCex to satisfy the monotonicity
property of constraint systems (recall that monotonicity is necessary for the validity of constraint systems). As
explained above, since we usenewkeys and due to the restriction on principals, this does not cause problems. The
constraints 8.–10. are used to ensure thatc2 can be derived at every leaf ofT s

ex, a requirement that comes from our
example security property((Cex, C ′

ex)) whereCex = {c2}. In vertexh8 of T s
ex, two symbolic intruder transitions

leave the vertex, which, as explained above, means that the associated principal rules should both be able to read
the message delivered by the intruder.

Let C1 andC2 be constraint systems with empty sequences of constraints and the substitutionν1 = {xh3
7→

a, xh7
7→ b, yh4

7→ a, yh8
7→ b} andν2 = {xh3

7→ a, xh7
7→ b, yh4

7→ b, yh8
7→ b}, respectively. It is easy to see

that{C1, C2} is a sound and complete solution set forCex. SinceCex is valid, such a set can be computed by the
constraint solver (Fact 1).

5.3 Check the Induced Substitutions

Let Bs = πs,T s
1 , . . . ,T s

l be the symbolic branching structure obtained in the first step of SolveStrategy and let
C′ be the simple constraint system returned by the constraint solver when applied toC = CBs in the second step
of SolveStrategy. Let ν be the complete solution associated withC′ (see Section 5.2). We emphasize that for our
algorithm to work, it is important thatν replaces the variables inC′ by newintruder atoms fromAI not occurring
in Bs.

Basically, we want to check that when applyingν to Bs, which yieldsBsν = πsν,T s
1 ν, . . . ,T s

l ν, we obtain a
solution of the problem instance(P, (C1, C

′
1), . . . , (Cl, C

′

l)). Hence, we need to check whether i)πsν corresponds
to a path inGP from the initial state ofGP to a stateq ∈ GP and ii)T s

i ν corresponds to aq-strategy tree for(Ci, C
′
i)

for everyi. However, sinceν is a complete solution ofC, some of these conditions are satisfied by construction. In
particular,πsν is guaranteed to be a path inGP starting from the initial state. Also, the conditions 1.–3.of strategy
trees (Definition 1) do not need to be checked and we know thatT s

i ν satisfies(Ci, ∅). Hence,SolveStrategy only
needs to make sure that 4. and 5. of Definition 1 are satisfied for everyT s

i ν and thatT s
i ν fulfills (∅, C ′

i). Using

119

that the derivation problem is decidable in polynomial time[6] (given a messagem and a finite set of messagesI,
decide whetherm ∈ d(I)), all of these remaining conditions can easily be checked (see [10] for details).

In our example, the induced substitution forCi is νi asCi does not contain any variables. It can easily be
verified that withC′ = C2 and the induced substitutionν2, the above checks are all successful. However, they
fail for C′ = C1 andν1 because inh4 the rulea ⇒ c1 could also be applied but it is not present inBs

ex. This
violates Definition 1, 5. In fact,Bs

exν1 would not yield a solution of the instance(Pex, ((Cex, C ′
ex))). This example

illustrates that inSolveStrategy one cannot dispense with the last step, namely checking the substitutions, and
that one has to try the different constraint systems in the sound and complete solution set forC.

References

[1] R.M. Amadio, D. Lugiez, and V. Vanackere. On the symbolicreduction of processes with cryptographic
functions.Theoretical Computer Science, 290(1):695–740, 2002.

[2] A. Armando, D. Basin, M. Bouallagui, Y. Chevalier, L. Compagna, S. Mödersheim, M. Rusinowitch, M. Tu-
ruani, L. Viganò, and L. Vigneron. The AVISS Security Protocol Analysis Tool. InCAV 2002, LNCS 2404,
pages 349–353. Springer, 2002.

[3] N. Asokan, V. Shoup, and M. Waidner. Asynchronous protocols for optimistic fair exchange. InSecu-
rity&Privacy 2002, pages 86–99, 1998.

[4] D. Basin, S. Mödersheim, and L. Viganò. An On-The-Fly Model-Checker for Security Protocol Analysis. In
ESORICS 2003, LNCS 2808, pages 253–270. Springer, 2003.

[5] R. Chadha, M.I. Kanovich, and A.Scedrov. Inductive methods and contract-signing protocols. InCCS 2001,
pages 176–185. ACM Press, 2001.

[6] Y. Chevalier, R. Küsters, M. Rusinowitch, and M. Turuani. An NP Decision Procedure for Protocol Insecurity
with XOR. In LICS 2003, pages 261–270. IEEE, Computer Society Press, 2003.

[7] Y. Chevalier and L. Vigneron. A Tool for Lazy Verificationof Security Protocols. InASE 2001, pages
373–376. IEEE CS Press, 2001.

[8] P. H. Drielsma and S. Mödersheim. The ASW Protocol Revisited: A Unified View. InARSPA, 2004.
[9] J.A. Garay, M. Jakobsson, and P. MacKenzie. Abuse-free optimistic contract signing. InCRYPTO’99, LNCS

1666, pages 449–466. Springer-Verlag, 1999.
[10] D. Kähler and R. Küsters. A Constraint-Based Algorithm for Contract-Signing Protocols. Tech-

nical report, IFI 0503, CAU Kiel, Germany, 2005. Available from http://www.informatik.uni-
kiel.de/reports/2005/0503.html

[11] D. Kähler, R. Küsters, and Th. Wilke. Deciding Properties of Contract-Signing Protocols. InSTACS 2005,
LNCS 3404, pages 158–169. Springer, 2005.

[12] S. Kremer and J.-F. Raskin. Game analysis of abuse-freecontract signing. InCSFW 2002, pages 206–220.
IEEE Computer Society, 2002.

[13] J. K. Millen and V. Shmatikov. Constraint solving for bounded-process cryptographic protocol analysis. In
CCS 2001, pages 166–175. ACM Press, 2001.

[14] M. Rusinowitch and M. Turuani. Protocol insecurity with a finite number of sessions, composed keys is
NP-complete.Theoretical Computer Science, 299(1–3):451–475, 2003.

[15] V. Shmatikov and J.C. Mitchell. Finite-state analysisof two contract signing protocols.Theoretical Computer
Science, 283(2):419–450, 2002.

120

Logical Omniscience in the Semantics of BAN Logic∗

Mika Cohen Mads Dam

School of Information and Communication Technology, KTH, Stockholm, Sweden

{mikac,mfd}@imit.kth.se

Abstract

BAN logic is an epistemic logic for verification of cryptographic protocols. A number of semantics have
been proposed for BAN logic, but none of them capture the intended meaning of the epistemic modality in
a satisfactory way. This is due to the so-calledlogical omniscience problem: Agents are ”ideal reasoners”
in existing semantics, while agents in BAN logic have only limited cryptographic reasoning powers. Logical
omniscience is unavoidable in Kripke semantics, the standard semantical framework in epistemic logic. Our
proposal is to generalize the epistemic accessibility relation of Kripke semantics so that it changes not only the
current execution point, but also the currently predicatedmessage. When instantiated on message passing sys-
tems, the semantics validates BAN logic. It makes agents introspective (”self-aware”) of their own knowledge
and of their own actions of sending, receiving and extracting.

Keywords: BAN logic; Epistemic logic; Kripke semantics; Security protocols; Logical omniscience problem

1 Introduction

BAN logic, proposed by Burrows, Abadi and Needham in the lateeighties, is an epistemic logic for verification
of cryptographic protocols ([4]). From a practical point ofview, BAN logic has turned out to be quite successful:
It produces short, informative derivations that can revealsubtle protocol errors. However, despite a number of
semantics proposed for BAN and BAN-like logic (cf. [1, 5, 8, 10, 11, 12, 14]), the semantics of the epistemic
(knowledge) modality in BAN logic remains problematic. This is a serious problem, since it makes it unclear what
a proof in BAN logic establishes, and it makes an analysis of BAN logic in semantical terms, for instance using
model checking, of limited value.

The basic problem when interpreting BAN’s knowledge modality is the well-knownlogical omniscience prob-
lem. As an example, under BAN’s idealized treatment of cryptography it is reasonable to assume the entailment
M fresh |= {M}k fresh. However, the entailmenta knows M fresh|= a knows{M}k freshshould not be val-
idated since in BAN logic agenta knows M is inside{M}k only whena knows k. From the point of view
of modal logic, the example shows the failure of therule of normality that allows inference of an entailment
a knowsF1 |= a knowsF2 from the entailmentF1 |= F2. As another example, in the context of the NSSK proto-
col it is reasonable to assume the entailments saidn, b, k, {k, a}kb

|= kb good forb · s since the former message
is only ever uttered bys when it so happens thatkb is b:s server key (and therefore is good for communication
betweenb ands). Yet, the entailment

a knowss saidn, b, k, {k, a}kb
|= a knowskb good forb · s (1)

∗Work supported by the Swedish Research Council grants 621-2003-2597 and 622-2003-6108

121

should not be validated, since in BAN logic agenta can deduce what key{k, a}kb
is locked with only ifa already

knowskb. In fact, from (1) together with BAN’s message meaning rule,we would get the entailment

a sees{from s: n, b, k, {k, a}kb
}ka

, a knowska good fora · s |= a knowskb good forb · c

which diverges even more strongly from the intended meaningin BAN logic.
Logical omniscience (the rule of normality) is intimately tied to the use of Kripke semantics. In this type of

semantics the modalitya knowsis interpreted through an epistemic accessibility relation∼a connecting execution
points that are equivalent up toa’s restricted power of observation: At execution points, a knowsF just in case
F holds at every accessible execution points′, s ∼a s′.

Since all Kripke semantics validate the rule of normality, it follows that we need to look to non-Kripkean
semantics to avoid validities that are unfaithful to the intended meaning in BAN logic. We suggest a generalization
of Kripke semantics that lets the jump from the current execution point to an epistemically accessible execution
point affect the predicated messages. The intuition is as follows. Say an agenta views a cipher textM at the
current execution points. As in Kripke semantics we assume thata may be unsure about what execution point she
is at, becauses and some other execution points′ share the same history up toa’s observation powers. In addition,
a may be unsure about what the cipher text contains, becausea has observed the same properties ofM at s as
she would have observed of some corresponding cipher textM ′ ats′. For instance, ifa extractsM from the third
messagea received ats, thena extractsM ′ from the third messagea received ats′; if a cannot decryptM at s,
thena cannot decryptM ′ ats′, and so on.

To reflect the correspondence between messages at differentexecution points we relativize accessibility to
message renamings. We writes ∼r

a s′ when renamingr carries each messageM at s to a corresponding message
r(M) ats′. With the relativized accessibility relation, a generalization of Kripke semantics is immediate:

s |= a knowsF (M) ⇔ ∀s′ : ∀r : s ∼r
a s′ ⇒ s′ |= F (r(M)) .

For instance, agenta knows thatM is fresh, if all corresponding messages at epistemically accessible execution
points are fresh.

This semantics avoids logical omniscience, since the predicated messageM might change underr as we move
from s to an epistemically accessible points′. There is, however, an interesting weakening of normality which
continues to hold, namely the closure of knowledge under validities that only mention keys used by the agent.

F1 |= F2 ⇒ a uses Keys(F1, F2), a knowsF1 |= a knowsF2

whereKeys(F1, F2) contains all message terms that are applied as keys inF1 and F2. To illustrate, from the
entailmentx fresh |= {x}y fresh we can infer the entailmenta usesy, a knowsx fresh |= a knows{x}y fresh.
By universal substitution of message terms for variables, we can then conclude the entailment

a usesK, a knowsM fresh |= a knows{M}K fresh (2)

for arbitrary (complex) message termsK andM , even when keys other thanK are applied inM .
After instantiating the semantics on message passing systems, we show that agents are introspective of their own

knowledge, i.e. the modal logicS5axioms hold, as is the custom in computer science applications of epistemic
logic. Furthermore we show that agents are introspective oftheir own actions of sending, receiving and extract-
ing (decryption and un-pairing of received messages). For instance, we show introspection of received messages:
a received M|= a knows a received M. While this is immediate from the truth condition for knowledge, it is rather
significant. Firstly, it is the central point when validating BAN logic. The unsoundness of BAN logic in related
Kripke semantics, such as [1, 12, 14], can ultimately be tiedback to the fact that agents are not introspective (in

122

the above sense) of their received messages1. As soon as a Kripke semantics hides part of an agents local state to
the agent herself, as these semantics do, we lose introspection of received messages. Secondly, introspection of re-
ceived messages in combination with the above weakening of normality has an interesting implication: knowledge
of cryptographic structure may at times transcend the discerning power of the keys used.

We complete the model construction by interpreting the atomic BAN predicates on message passing systems
and show soundness of BAN logic. The interpretation we propose involves a fixed point construction to identify
keys used with keys known, a construction which may be of independent interest. Finally the paper is closed by
a discussion of related and future work, in particular the prospects for using the weakened rule of normality to
eliminate BAN’s idealization step.

Our semantical investigations so far cover only the symmetric key part of BAN logic. We expect no difficulties
in extending the semantics to asymmetric cryptography.

2 BAN Logic

Language Assume a set of agentsa, b, ..., a set ofmessage atomsk, n, ..., a set ofmessage variablesx, y, z,,
and a set ofatomic predicatesp. The set ofmessage termsandstatementsare defined by:

StatementsF ::= p(M) | a knowsF
Message termsM,M ′ ::= F | a | k | x | M,M ′ | {M}M ′ | from a : M

A closed message term, ormessage, is a message term with no variables. A message term is open ifit is not
closed. Though the BAN language lacks negation, we prove a result (Theorem 9.2) for a language extended with
negation (¬) of statements.

Intuitively, atomic statementp(M) expresses the proposition that messageM satisfies propertyp, the operator
·, · represents pairing of messages, the operator{·}· represents encryption and the operatorfrom · : · represents
sender field annotation. Message terms include sender field annotations and statements, because as BAN logic
is usually applied, it proves properties of so calledidealizedprotocols, protocols where messages may include a
sender field and messages may contain statements expressingpropositions.

The set of atomic predicates includes, at least, the fouratomic BAN predicates: a sees, a said, fresh, good fora·b
as well as the special atomic predicatea uses. Their intended informal meaning is as follows. The predicate a
seesis true of a message ifa can extract the message from somethinga received. Analogously,a said is true of a
message ifa can extract the message from somethinga sent. A messagefreshif it did not circulate until recently.
A message satisfiesgood fora · b if every circulated message encrypted with this message as key was said bya or
b. Finally, a usesa message ifa uses that message as a key for decryption and encryption.

Proof rules The rules of BAN logic are summarized in Table 1. We useKnowsto represent an arbitrary sequence
of 0 or more epistemic modalities. Table 1 leaves some conditions implicit: We have omitted symmetric variations
and closure under cut and weakening. Note that certain rulesassume that agents do not misuse idealizations. For
instance, ruleR1, themessage meaning rule, assumes that sender fields inside cipher texts are reliable. Also, rule
R7, thenonce verification rule, assumes that agents only say statements known to be true while fresh.

While the original BAN paper ([4]) reads the epistemic modality as ”agenta believes that”, BAN logic is
intuitively consistent with a knowledge interpretation. As in [8, 10], we adopt a knowledge interpretation and add
the axiomT . The atomic BAN predicatejurisdiction thereby becomes superfluous, and is therefore removed.
For a more detailed discussion we refer the reader to [8]. Notice that we generalize the customary modal logic
axiom T (a knows F⊢ F) to arbitrary iterations of epistemic modalities, by adding Knows to antecedent and
consequent.

1Only [1] was intended to validate BAN.

123

R1. a sees{from b : M}M ′ , a knowsM ′ good fora · b ⊢ a knows b said M

R2. a knowsM fresh⊢ a knowsM,M ′ fresh
R3. a knowsM fresh, a knowsM ′ good fora · b ⊢ a knows{M}M ′ fresh
R4. a seesM,M ′ ⊢ a seesM
R5. a sees{M}M ′ , a knowsM ′ good fora · b ⊢ a seesM
R6. a knows b saidM,M ′ ⊢ a knows b saidM
R7. a knowsM1, ..., F, ...,Mn fresh, a knows b saidM1, ..., F, ...,Mn ,⊢ a knows b knowsF
T. Knows a knowsF ⊢ KnowsF

Table 1: BAN proof rules

3 Semantics for the Non-Epistemic Language Fragment

In computer science, epistemic logics are customarily interpreted onmulti-agent systems[6], pairs S = 〈S, |〉,
whereS is a non-empty set of execution points and| is a local state projection assigning a local states|a to each
agenta and execution points. Intuitively, the local state contains all the data currently accessible to that agent. For
instance, when modeling a communication protocol, the local state of an agent might be derived from the initial
condition plus the sequence of send and receive actions she has performed so far. Amulti-agent modelon S is a
triple M = 〈S, |, I〉, whereI is an interpretation of atomic predicates. That is, to each atomic predicatep and each
execution points ∈ S, the interpretationI assigns the setI(p, s) of messages (closed message terms) that satisfy
p ats.

Closed statements are true w.r.t. an execution points in a modelM. The truth condition for atomic closed
statements and negation (of closed statements) are as expected: s |=M p(M) ⇔ M ∈ I(p, s) ands |=M ¬F ⇔
s 2M F . The truth condition for epistemic closed statements is left to section 4. Open statements are true w.r.t. an
assignmentV of messages to message variables, and an execution points in a modelM. Assignments are lifted to
arbitrary message terms in the usual way; write|M |V for the value ofM underV . The truth condition for open
statements is:V, s |=M F (M) ⇔ s |=M F (|M |V).

If ∆ is a set of statements, we writeV, s |=M ∆ if V, s |=M F , for all F ∈ ∆. If C is a class of models:
∆ |=C F , if and only if, for all modelsM in C, for all execution pointss in M and for all assignmentsV , if
V, s |=M ∆ thenV, s |=M F .

4 Semantics for Knowledge

We interpret the epistemic modality through a generalized accessibility relation∼a that relates not only execution
points, but also messages at one execution point to messagesat another. The intuition is that a cipher textM at
the current execution points may correspond, fora, to a different cipher textM ′ at an epistemically accessible
execution points′. That is,M at s could, for alla knows, beM ′ at s′. Let r be arenamingof messages, i.e. a
function in the set of messages, defined for all messages. Ifr maps every message ats to a corresponding message
at s′, we say thatr is acounterpart mappingbetweens ands′ for agenta, and writes ∼r

a s′. Given this ternary
accessibility relation∼a, Kripke semantics can be generalized in an obvious way:

s |=M a knows F(M)⇔ ∀s′ ∈ S : ∀r : s ∼r
a s′ ⇒ s′ |=M F (r(M)) .

Here,F (M) is any statement in the message termM . We do not assume that messageM is somehow accessible to
agenta in s, such as once said, or seen, bya. Agents may well know things about messages that are not accessible
to them. In fact, this is an essential part of BAN logic (as witnessed by, for instance, axiomR2).

Counterpart mappings must be transparent to the set of available keys. A renamingr is transparentto a setΠ
of messages, in symbolsΠ � r, if r respects all cryptographic structure accessible when using Π as keys:Π (used

124

C1. M ′ ∈ Π ⇒ r({M}M ′) = {r(M)}r(M ′) C2. r(M,M ′) = r(M), r(M ′)

C3. r is injective C4. r is surjective
C5. r(F (M)) = F (r(M)) C6. r(from a : M) = from r(a) : r(M)
C7. r(k) = k, k is agent name or message atom

Table 2: Requirements forΠ � r

as keys) cannot distinguish a sequenceM1,M2, ... from r(M1), r(M2), Formally, we stipulate thatΠ � r, if
and only if, each condition in Table 2 above is satisfied. Condition C1 says that encryption structure is plain, or
clear, when the appropriate key is available, condition C2 says that pairing structure is always plain, conditions
C3 and C4 say that distinct messages appear distinct, condition C5 says that atomic predicates and propositional
operators are plain text, condition C6 says that sender fieldstructure is plain, and condition C7, finally, says that
agent names and message atoms are plain text.

Lemma 4.1

1. Π � ι whereι is the identity on messages

2. Π � r, r(Π) � r′ ⇒ Π � (r′ ◦ r)

3. Π � r ⇒ r(Π) � r−1

4. Π � r, Π ⊇ Π′ ⇒ Π′
� r

Proof. (1) and (4) are immediate. We prove (2) here. The proof of (3) is similar. AssumeΠ�r andr(Π)�r′. Only
requirement C1 of Table 2 is non-trivial. AssumeM ′ ∈ Π. By the assumptions,r({M}M ′) = {r(M)}r(M ′) and
r(M ′) ∈ r(Π). Thus,r′({r(M)}r(M ′)) = {r′(r(M))}r′(r(M ′)) = {(r′◦r)(M)}(r′◦r)(M ′), i.e.,(r′◦r)({M}M ′) =
r′({r(M)}r(M ′)) = {r′(r(M))}r′(r(M ′)) = {(r′ ◦ r)(M)}(r′◦r)(M ′). 2

Counterpart mappings must, furthermore, respect the current local state of the agent; we assume a renaming can
be lifted pointwise to a permutation on local states. Forr to be a counterpart mapping betweens and some other
point s′, we require thatr transforms the local state of the agent ats into her local state ats′.

The idea, then, is to relate the statess ands′ under the renamingr for agenta, in symbolss ∼r
a s′, just in case

r transforms the local state ofa at s into the local state ofa ats′ andr respects the keys used by the agent ats:

s ∼r
a s′ ⇔ r(s|a) = s′|a andI(a uses, s) � r . (3)

Each multi-agent model thus determines a unique ternary epistemic accessibility relation∼a. In section 9 below
we address the apparent asymmetry of (3) and show that under the definitions ofuseswhich we consider, whenever
s ∼r

a s′ thens′ ∼r−1

a s.

5 Crypto Normality

The semantics avoids logical omniscience (the rule of normality). To see this, letS = {s}, I(p, s) = {{M}M ′},
I(a uses, s) = ∅ ands|a = ∅. Then there is a renamingr such thatr({M}M ′) 6= {M}M ′ ands ∼r

a s. Thus,2M

a knows p({M}M ′). Yet, |=M p({M}M ′).
There is, however, an interesting weakening of normality which continues to hold. To formulate this, let

Keys(M) be the set of message terms applied as keys inM such thatKeys({M}M ′) = {M ′} ∪ Keys(M) ∪
Keys(M ′), Keys(M,M ′) = Keys(M) ∪ Keys(M ′), Keys(from a : M) = Keys(M), Keys(P (M)) = Keys(M),
Keys(k) = ∅, if k is message atom or agent name, andKeys(x) = ∅, for message variablesx. For example,

125

Keys({w, {x, k}y}z) = {y, z}. Let Keys(Π) = ∪M∈ΠKeys(M), write a usesΠ for the set{a uses M| M ∈ Π},
and writea knows∆ for the set{a knowsF | F ∈ ∆}.

Lemma 5.1 |Keys(M)|V � r ⇒ r(|M |V) = |M |r◦V

Proof. By induction over the structure ofM . The base step, whereM is a variable, an agent name or message
atom, is immediate from requirement C7 of Table 2. For the induction step, assume that the property holds for
messagesM1 andM2, i.e. |Keys(M1)|V � r ⇒ |M1|r◦V = r(|M1|V) and |Keys(M2)|V � r ⇒ |M2|r◦V =
r(|M2|V). Assume|Keys({M1}M2

)|V � r. Then,|Keys(M1)|V ∪ |Keys(M2)|V ∪{|M2|V }� r. By the induction
assumption and Lemma 4.1.4,|M1|r◦V = r(|M1|V) and|M2|r◦V = r(|M2|V). Then, by requirement C1 of Table
2, r(|{M1}M2

|V) = r({|M1|V }|M2|V) = {r(|M1|V)}r(|M2|V) = {|M1|r◦V }|M2|r◦V
= |{M1}M2

|r◦V . Showing
that pairing and idealization constructions preserve the property is analogous. 2

From Lemma 5.1 we get the weak normality rule.

Theorem 5.2 (Crypto Normality) If ∆ |=M F then a uses Keys(∆, F), a knows∆ |=M a knowsF .

Crypto normality says that an agents knowledge is closed under logical validities in which all the keys applied are
used by the agent. By itself, crypto normality may appear overly restricted, since all keys used in∆ or F must also
be used bya. Crypto normality becomes more powerful, however, when combined with the rule of substitution.

Theorem 5.3 (Rule of Substitution) Letσ be any substition of (possibly open) message terms for message vari-
ables. If∆ |=M F thenσ(∆) |=M σ(F).

In conjunction, the two rules allow interesting inferencesto be made, such as (2) in section 1.

6 Message Passing Systems

We instantiate models in message passing systems (cf. [6]),as in the BAN literature. Since the definitions are
standard and well-known, we will only briefly hint at them. Ina message passing system execution proceeds
in rounds. During the first round, initial shared and privatepossessions are established. From then on, at each
round, every agent either sends a message, receives a message or performs some unspecified internal action. By a
message passing modelwe mean a multi-agent systemM = 〈S, |, I〉 based on a message passing systemS. We
require that the local states|a of an agenta consists of a first round of initializations followed bya’s local history
of send and receive actions. As an immediate consequence, agents know which messages they send and receive.
Assume predicatesa receivedanda sent, with I(a received, s)= {M | a has receivedM ats}, and I(a sent, s)
interpreted analogously. The following introspection principle is easily seen to be valid:

Proposition 6.1 (Receive and send introspection) For message passing models:

1. a receivedM |= a knows a receivedM

2. a sentM |= a knows a sentM

To see this, assumes ∼r
a s′. Then,r(s|a) = s′|a, i.e. if a receivedM at s thena receivedr(M) at s′, and

correspondingly for messages sent bya. While easily proved, Proposition 6.1 is nonetheless of some consequence.
To begin with, the unsoundness of BAN logic in related Kripkesemantics, such as [1, 12, 14], ultimately ties back
to the failure of Proposition 6.1. When a Kripke semantics hides part of an agents local state from the agent,
as these semantics do, we lose receiving and sending introspection: Saya received a cipher textM at s. Then
there might be some points′ which is indistinguishable fora from the current points, but wherea received a
different cipher textM ′, notM . Moreover, Proposition 6.1 in combination with crypto normality (Theorem 5.2)
has some interesting, and perhaps surprising, implications for knowledge of cryptographic structure. We explore
these implications in the section 7.

126

7 Knowledge of the Unseen

Prima facie it might be thought that an agents knowledge of cryptographic structure depends solely on what
keys she uses. However, the mere finding of a cipher text at a certain place might alone indicate something
about its contents. For instance, after the second protocolstep in the Needham Shröder shared key protocol
(NSSK) between principalsa and b and with key servers, agenta knows the contents of the ticket she is to
forward to b, despite the fact that she cannot decrypt it. The semantics respects such intuitions. To illustrate,
assume that message passing modelM implements NSSK betweena, b ands. We may expect the following:
a received{n, b, k, x}ka

, ka good fora · s |=M x containsk, a. (The meaning ofcontainsshould be clear from
the context, while the precise semantics ofgood is not an issue in this example.) By crypto normality (Theorem
5.2) and universal substitution (Theorem 5.3),a knows a received{n, b, k, {k, a}kb

}ka
, a knowska good fora ·

s, a useska |=M a knows{k, a}kb
containsk, a. By receiving introspection (Proposition 6.1),a received{n, b, k,

{k, a}kb
}ka

, a knowska good fora ·s, a useska |=M a knows{k, a}kb
containsk, a. Thus, ifka is a’s server key

anda receives{n, b, k, {k, a}kb
}ka

, thena knows the contents of{k, a}kb
even thougha is not usingkb as a key.

The reason why the semantics supports deductions such as theabove is that the set of counterpart mappings is
limited not only by the current keys, but also by the current local state. Say renamingr is transparent to the keys
used at the current points, in symbolsI(a uses, s) � r. This does not guarantee, however, thatr is a counterpart
mapping froms to any execution points′: There might be nos′ in the given system such thatr(s|a) = s′|a. In
this case the agent can rule outr even thoughr is transparent to her current keys.

8 Interpreting BAN’s Atomic Predicates

To complete the semantics for BAN logic, only the atomic predicates remain. This is a subject of subtle and
somewhat bewildering variability (cf. [1, 8, 10]). We do notclaim our definitions are canonical. Our goal is to
show that the renaming semantics can be completed to a meaningful interpretation which validates BAN.

The way the predicates are explained informally in section 2, once the interpretation ofusesis fixed, the inter-
pretation ofsees, said andgood follow in a fairly straightforward fashion. Specifically, for seeswe require that
I(a sees, s) is the smallest setΠ that includesa’s initial possessions, the messagesa has received ats and such
thatΠ is closed under decryption with keys used ({M}M ′ ∈ Π andM ′ ∈ I(a uses, s) ⇒ M ∈ Π) and un-pairing
(M,M ′ ∈ Π ⇒ M ∈ Π andM ′ ∈ Π) and sender-field removal (from b:M ∈ Π ⇒ M ∈ Π). The predicatesaid
is defined analogously for sent messages, except thata’s initial possessions are not included. Forgoodwe require
thatM ∈ I(good fora · b, s), if and only if, whenever{M ′}M is a sub term of some message inI(c received, s),
then bothM ′ and{M ′}M are inI(a said, s) or bothM ′ and{M ′}M are inI(b said, s), for any agentc and any
messageM ′. We leave the interpretation of the predicatefreshopen, merely requiring that it is independent of the
interpretation ofusesand that it is closed under the sub-term relation (M ∈ I(fresh, s) ⇒ M,M ′ ∈ I(fresh, s),
M ′,M ∈ I(fresh, s), {M}M ′ ∈ I(fresh, s), and{M ′}M ∈ I(fresh, s)). One could satisfy these requirements
by defining, similarly to [8], a message as fresh if it is not a subterm of any message said by anyone more thand

rounds back, for some fixedd. Interpreting the predicatefreshis somewhat problematic, but it is peripheral to the
issues addressed in this paper. We refer the reader to [8, 10]for more detailed discussions.

We then turn to the predicateuses. An immediate observation is that the interpretation ofusesmust validate the
entailment

aknowsM good fora · b |= a usesM . (4)

This requirement is fundamental, since otherwise rulesR1, R3, andR5(Table 1) will not be validated.
A possible approach to the definition ofusesis to view usesand seesas synonyms, so that a key is used

by an agent just in case it is possessed initially or it is received, or it can be obtained by decryption and un-
pairing from used messages. This kind of “operational” viewis taken, with variations, in most papers on se-

127

mantics for BAN like logics. The problem with this definitionis that it does not validate (4), unless the class
of message passing systems is restricted in some way. For instance a modelM may satisfy an entailment such
as: a receivesk, a, b |=M k, x good fora · b. Then, by crypto normality (Theorem 5.2) and receive introspec-
tion (prop. 6.1.1),a receivesk, a, b |=M a knowsk, x good fora · b, but it might well be thata has not seen
k, x, contradicting (4). This counterexample can be fixed, of course, by disallowing complex terms as keys.
But other, similar counterexamples would still require restricting the class of allowed message passing systems.
For instance, if we allowed a model specific dependency between properties of different message atoms, say
a receivesk, a, b |=M k′ good fora · b, thena might be able to conclude thatk′ is good without actually seeing it,
again contradicting (4).

We propose an alternative definition ofuseswhich we believe is of independent interest. The idea is to consider
a key to be used by an agent just in case the agent knows some property p of that key. Since properties (sees,
said, etc.) are defined by means ofusesitself, a recursive definition is called for. An inductive, rather than
a coinductive, definition seems appropriate, sincea usesshould contain the set of keys thata has gathered some
positive information about. Adopting this approach we thusdefine the interpretation function on a message passing
systemS as a least interpretation functionI (in an order extended point wise from set containment) such that
s |=〈S,I〉 a uses M, if and only if, s |=〈S,I〉 knowsp(M) for some atomic BAN predicatep. (We leave the local
state projection| implicit.) If we call models that use this definition of the interpretation functioninductive, we
obtain:

Theorem 8.1 Every message passing system determines a unique inductivemodel.

Proof. Assume a message passing systemS. The interpretation function in an inductive model onS is, by
definition, the least fixed point of the following functionf that assigns an interpretation functionf(I) to every
possible interpretation functionI on S. For predicateuses, f(I)(a uses, s) = {M | ∃ atomic BAN predicatep :
s |=〈S,I〉 a knowsp(M)} and, for atomic BAN predicatesp, f(I)(p, s) is defined withf(I)(a uses, s′) as the keys
used for any agenta at any points′. From lemma 4.1.4,f is monotone. Therefore,f has a least fixed point. 2

Inductive models obviously satisfy the requirement (4) above. In fact, as far as requirement (4) is concerned,
we could have definedusesin terms of predicatesgood alone, so thats |= a uses M, if and only if, s |=
a knows M good fora · b for some agentb. Perhaps, such a solution would be even more faithful to intuitions
in BAN logic, but it would not be quite satisfactory for some protocols (Yahalom is an example) where keys
need to be used before they are known to be good. Inductive models offer, in our opinion, an interesting, more
extensional, alternative to the more traditional operational models.

9 Introspection Properties

We have already seen (Proposition 6.1) that agents in message passing models are introspective of their received
and sent messages. In this section, we observe some further introspection properties in inductive models. We
emphasize that these results also hold for models based on anoperational interpretation ofuses.

Lemma 9.1 For inductive modelsM:

1. s ∼ι
a s

2. s ∼r
a s′, s′ ∼r′

a s′′ ⇒ s ∼r′◦r
a s′′

3. s ∼r
a s′ ⇒ s′ ∼r−1

a s

128

Proof. (1) Immediate from Lemma 4.1.1. The proof of (2) is similar to(3) and left out. For (3) we first prove,
using fixed point induction, thats ∼r

a s′ ⇒ I(a uses, s′) ⊆ r(I(a uses, s)) whereI is the interpretation function
in M. Let Ij be the interpretation function at stepj in the fixed point construction of the proof of Theorem 8.1,
such thatI0 = ∅, Ij+1 = f(Ij), andIδ = ∪j<δIj, if δ is a limit ordinal. LetMIj

beM with the interpretationI
replaced byIj. We show for allj that

Ij(a uses, s) � r ∧ r(s|a) = s′|a ⇒ Ij(a uses, s′) ⊆ r(Ij(a uses, s)) (5)

The property holds forI0, sinceI0(a uses, s′) = ∅. For successor ordinals, assume (5) holds forj. Assume
Ij+1(a uses, s) � r andr(s|a) = s′|a. Pick any messageM ′ such thatM ′ ∈ Ij+1(a uses, s′). By C4 in Table
2, M ′ = r(M) for some messageM . Thens′ |=MIj+1

a uses(r(M)). By the definition ofIj+1, there is an

atomic predicatep such thats′ |=MIj
a knowsp(r(M)). SinceIj ⊆ Ij+1, by Lemma 4.1.4,Ij(a uses, s) � r.

By Lemma 4.1.3,r(Ij(a uses, s)) � r−1, so by the induction hypothesis and Lemma 4.1.4,Ij(a uses, s′) � r−1.
SinceM ′ = r(M), we want to show thatM ∈ Ij+1(a uses, s). By definition ofIj+1, it suffices to show that
s |=MIj

a knowsp(M). So pick any renamingr′ and any execution points′′ ∈ S such thatIj(a uses, s) � r′

andr′(s|a) = s′′|a. SinceIj(a uses, s) � r, by the induction hypothesis, and conditions C3 and C4 of Table 2,
r−1(Ij(a uses, s′)) ⊆ Ij(a uses, s). By Lemma 4.1.4,r−1(Ij(a uses, s′)) � r′. By Lemma 4.1.2 it follows that
Ij(a uses, s′) � r′ ◦ r−1. By the assumptions onr′ we get thatr′ ◦ r−1(s′|a) = r′(r−1(s′|a)) = r′(s|a) = s′′|a.
Since we showeds′ |=MIj

a knowsp(r(M)) we obtain thats′′ |=MIj
p(r′ ◦ r−1 ◦ r(M)). Sincer′ ands′′ are

arbitrary, it follows thats |=MIj
a knowsp(M) which completes the successor part of the induction argument.

The limit case is routine.
For the proof of the main statement (3), assume then thats ∼r

a s′, i.e. I(a uses, s) � r andr(s|a) = s′|a. By
Lemma 4.1.3,r(I(a uses, s))�r−1. We also obtain, from the above induction, thatI(a uses, s′) ⊆ r(I(a uses, s)).
By Lemma 4.1.4,I(a uses, s′) � r−1, sos′ ∼r−1

a s, which completes the proof. 2

Using Lemma 9.1 the modal logic S5 properties follow directly.

Theorem 9.2 (Knowledge introspection) For inductive models:

1. a knows F|= F

2. a knowsF |= a knows a knowsF

3. ¬ a knowsF |= a knows¬ a knows F

Validity (1) in Theorem 9.2 is, of course, not an introspection property. Rather, it can be seen as the distinguishing
line between knowledge and belief. In fact, (1) holds in all models, not only inductive models. From Theorem 9.2,
it follows that agents are also introspective of used and seen messages:

Corollary 9.3 (Use and sees introspection) For inductive models:

1. a usesM |= a knows a usesM

2. a seesM |= a knows a seesM

Proof. (1) is immediate from Theorem 9.2. (2) follows from crypto normality (Theorem 5.2), rule of substitution
(Theorem 5.3), receive introspection (Proposition 6.1.1), and use introspection (1). 2

Loosely speaking, sees introspection implies that agents are introspective of extracted messages. Since sees intro-
spection depends on receive introspection (Proposition 6.1) it fails in the related Kripke semantics of [1, 12, 14].
For similar reasons (see section 6), use introspection alsofails in these semantics, when cipher texts are allowed
as keys.

129

10 Soundness of BAN logic

As observed in section 2, some BAN rules assume that agents donot misuse idealizations. Accordingly, in our
soundness result we restrict attention tohonestmodels, models wherefrom b:M ∈ I(a said, s) ⇒ a = b and
whereM1, ..., F, ...,Mn fresh, a saidM1, ..., F, ...,Mn |= a knows F. Again, we refer the reader to [8] for details.

Soundness for each BAN rule (Table 1) is now a rather immediate application of the following corollary, where
a knows{M1, ...,Mn} good is short fora knowsM1 good fora · b1, ...,a knowsMn good fora · bn.

Corollary 10.1 Let σ be any substitution of message terms for variables. For inductive modelsM: If ∆ |=M F

then a knowsσ(Keys(∆, F)) good, a knowsσ(∆) |=M a knowsσ(F).

Proof. Immediate from crypto normality (Theorem 5.2), rule of substitution (Theorem 5.3) and requirement (4)
in section 8. 2

Theorem 10.2 BAN logic is sound w.r.t. honest inductive models.

Proof. Rule R4 (Table 1) is immediate. Rule R5 is immediate from requirement (4) in section 8. Each remaining
rule is a direct application of Corollary 10.1 on some trivial validity. For instance, rule R3 follows from the fact
that y fresh |= {y}z fresh. Rule R1 needs, in addition, sees introspection (Corollary9.3.2), while ruleT needs
Theorem 9.2.1. 2

11 Related Work

Our use of a ternary accessibility relation is most closely related to possibility relations in counterpart semantics
[9]. It is, as far as we know, the first computationally grounded such semantics in epistemic logic.

In the BAN logic literature the semantics most closely related to ours are the Kripke semantics of [1, 12, 14]
where the local state of an agent is partly hidden from the agent. In our framework we can recover a binary
accessibility relation similar to those used in [1, 12, 14] by letting s ∼a s′ iff s ∼r

a s′ for some renamingr. In
fact, our notion of transparent renaming can be seen as related to the message congruences of [1], and to the states
of knowledge and belief of [3, 13]. As we have pointed out, however, a Kripke semantics resulting from such a
binary accessibility relation∼a is both too strong and too weak for BAN: It makes agents logically omniscient,
yet fails essential introspection principles2.

There are, of course, semantics in the literature that do in fact avoid logical omniscience (cf. [6]). But no
such semantics has been shown to work for BAN-like logics. Furthermore, these semantics tend to break rather
more radically than ours with Kripke semantics. One possible approach is to subdivide knowledge into an implicit
and an explicit part. Implicit knowledge would be “ideal” knowledge to which logical omniscience applies, and
explicit knowledge would be somehow circumscribed to reflect agents limited reasoning abilities. For instance, [7]
specifies adversary capabilities in terms of abstract knowledge extraction algorithms, and [2] uses an awareness
predicate to constrain, at each state, the predicates whichof which an agent is aware, related to the comprehended
messages of [12].

12 Conclusion

We have introduced a semantics that validates BAN logic, yetavoids the rule of normality (logical omniscience).
The semantics satisfies crypto normality, a weak version of normality that filters out infeasible cryptographic
reasoning powers. The semantics makes agents introspective of their own knowledge and their own actions of

2But we acknowledge that only [1] was intended as a semantics for BAN.

130

sending, receiving and extracting. We have showed how knowledge of cryptographic structure may at times
transcend the discriminatory power of the keys used. Finally, we found that knowledge and keys used could be
defined as simultaneous fixed points, making the keys used equal to the keys known.

A semantical foundation for BAN logic opens up the possibility of sound model checking of BAN logic spec-
ifications. Also, the semantics might be used to improve various elements of the protocol verification process in
BAN. The crypto normality rule is a case in point. Using this rule we can sidestep the often criticized ”idealization
step” in BAN verifications. To illustrate, say we want to establish the following property of NSSK:

a knowska good fora · s, a knows n fresh, a sees{n, b, k, {k, a}kb
}ka

|= a knowsk good fora · b (6)

As BAN is usually applied, one would instead prove a propertyof an ”idealization” of the protocol where the
message{n, b, k, {k, a}kb

}ka
has been annotated with sender field and the goodness predicate. As an alternative,

we introduce non-epistemic protocol specific validities:

ka good fora · s, n fresh, s said{n, b, k, x}ka
|= k good fora · b (7)

ka good fora · s |= ¬ a said{n, b, k, x}ka
(8)

which arguably express the required properties of the protocol rather more precisely. Starting from a (protocol
independent) triviality,

¬ a said{x}y, a sees{x}y , y good fora · s |= s said{x}y, (9)

we get specification (6) by lifting (7), (8) and (9) to epistemic validities using crypto normality (Corollary 10.1),
then applying sees introspection (Corollary 9.3) and knowledge introspection (Theorem 9.2)

We have focused on BAN logic, not in particular deference to BAN, but simply because BAN is the standard
logic in its family. A first question to answer is whether our semantics really captures the intended meaning of
BAN formulas. A completeness result for a collection of rules which stays acceptably close to BAN’s original
set-up would help answer this question affirmatively, and weare currently working to address this issue.

It would be of interest also to use our semantics to support epistemic security protocol logics beyond the propo-
sitional level. An extension to first-orderµ-calculus with rudimentary temporal operators would allowthe BAN
primitives to be defined, and thus eliminate much of the apparent arbitrariness in the choice of basic vocabulary in
the BAN literature. Furthermore, a first-order extension would allow reasoning that exploits partial knowledge of
complex data structures; this may be useful in the context ofe.g. payment protocols, where different parts of the
negotiated data structure remain hidden from different principals.

References

[1] Martı́n Abadi and Mark Tuttle. A semantics for a logic of authentication. InProceedings of the Tenth Annual
ACM Symposium on Principles of Distributed Computing, pages 201–216. ACM Press, August 1991.

[2] Rafael Accorsi, David A. Basin, and Luca Viganò. Towards an awareness-based semantics for security
protocol analysis.Electr. Notes Theor. Comput. Sci., 55(1), 2001.

[3] Pierre Bieber. A logic of communication in hostile environments. InProceedings of the Computer Security
Foundation Workshop III, pages 14–22. IEEE Computer Society Press, 1990.

[4] Michael Burrows, Martı́n Abadi, and Roger M. Needham. A logic of authentication.ACM Trans. Comput.
Syst., 8(1):18–36, 1990.

131

[5] Anthony H. Dekker. C3po: A tool for automatic sound cryptographic protocol analysis. InPCSFW: Pro-
ceedings of The 13th Computer Security Foundations Workshop, pages 77–87. IEEE Computer Society Press,
2000.

[6] Ronald Fagin, Joseph Y. Halpern, Yoram Moses, and Moshe Y. Vardi. Reasoning About Knowledge. MIT
Press, 1995.

[7] Joseph Y. Halpern and Riccardo Pucella. Modeling adversaries in a logic for security protocol analysis. In
FASec, pages 115–132, 2002.

[8] Joseph Y. Halpern, Riccardo Pucella, and Ron van der Meyden. Revisiting the foundations of authentication
logics. Manuscript, 2003.

[9] David Lewis. Counterpart theory and quantified modal logic. Journal of Philosophy, 65:113–126, 1968.

[10] Paul F. Syverson. Towards a strand semantics for authentication logics. InElectronic Notes in Theoretical
Computer Science, 20,2000.

[11] Paul F. Syverson and Paul C. van Oorschot. On unifying some cryptographic protocol logics. InProc. IEEE
Symposium on Research in Security and Privacy, pages 14–28. IEEE CS Press, May 1994.

[12] Paul F. Syverson and Paul C. van Oorschot. A unified cryptographic protocol logic. NRL Publication 5540-
227, Naval Research Lab, 1996.

[13] M.-J. Toussaint and P. Wolper. Reasoning about cryptographic protocols. In J. Feigenbaum and M. Merritt,
editors,Distributed Computing and Cryptography, volume 2 ofDIMACS Series in Discrete Mathematics
and Theoretical Computer Science, pages 245–262. American Mathematical Society, 1989.

[14] Gabriele Wedel and Volker Kessler. Formal semantics for authentication logics. In E. Bertino, H. Kurth, and
G. Martella, editors,ESORICS’96, LNCS 1146, pages 219–241. Springer-Verlag, 1996.

132

Partial model checking, process algebra operators and satisfiability
procedures for (automatically) enforcing security properties ∗

Fabio Martinelli1, Ilaria Matteucci1,2

Istituto di Informatica e Telematica - C.N.R., Pisa, Italy1

{Fabio.Martinelli, Ilaria.Matteucci}@iit.cnr.it
Dipartimento di Matematica, Università degli Studi di Siena2

Abstract

In this paper we show how the partial model checking approach for the analysis of secure systems may
also be useful for enforcing security properties. We define a set of process algebra operators that act as pro-
grammable controllers of possibly insecure components. The program of these controllers may be automatically
obtained through the usage of satisfiability procedures for a variant of µ-calculus.

1 Overview

Many approaches for the analysis of security properties have been successfully developed in the last two decades.
An interesting one is based on the idea that potential attackers should be analyzed as if they were un-specified
components of a system; thus reducing security analysis to the analysis of open systems [11, 12, 14].

More recently there has been also interest on mechanisms and techniques to enforce security properties. A
notable example is the security automata in [19] and some extensions proposed in [9].

The paradigm of analysis of security as analysis of open systems has been extended to cope with security
protocols [14], fault tolerance [7] and recently access control based on trust management [15]. In this paper we
enrich this theory with a method for (automatically) enforcing several security properties.

Basically, we define a set of process algebra operators. They act as programmable controllers of a component
that must be managed in order to guarantee that the overall system satisfies a given security policy. Also, we de-
velop a technique to automatically synthesize the appropriate controllers. This represent a significant contribution
w.r.t. to the previous work in [9, 19], where this issue was not addressed. The synthesis is based on a satisfiability
procedure for the µ-calculus.

Moreover, under certain hypothesis on the observation power of the enforcing controllers, we are able to enforce
some non-interference properties (for finite-state systems) that were not intentionally addressed in [19], due to the
specific assumptions they had on the enforcing mechanisms.

Our logical approach is also able to cope with composition problems, that have been considered as an interesting
and challenging issue in [3].

This paper is organized as follows. Section 2 recalls the basic theory about the analysis of security properties,
especially non-interference as properties of open systems. Section 3 explains our approach and Section 4 extends
it to manage several kinds of enforcement mechanisms. Section 5 illustrates an example. Section 6 presents a
discussion on related work and eventually Section 7 concludes the paper.

∗Work partially supported by CNR project “Trusted e-services for dynamic coalitions” and by a CREATE-NET grant for the project
“Quality of Protection (QoP)”. A full version of this paper with the proofs appears as Technical report of IIT-CNR [16].

133

2 Background

In this section we briefly recall some technical machinery used in our approach and also a logical approach for
dealing with information flow properties (and security properties in general).

2.1 A language for describing concurrent and distributed systems

The Security Process Algebra (SPA) [6] is used to describe concurrent and distributed systems and is derived
from CCS process algebra of R. Milner [17]. The syntax of SPA is the following:

E ::= 0 | α.E | E1 + E2 | E1‖E2 | E\L | Z

where α is an action in Act, L ⊆ L and Z is a process constant that must be associated with a definition Z
.= E.

As usual, constants are assumed to be guarded [17], i.e. they must be in the scope of some prefix operator α.E′.
The set of SPA processes (i.e., terms with guarded constants), is denoted with E , ranged over by E,F, P, Q
We will often use some common syntactic simplifications, e.g., omission of trailing 0’s as well as omission of
brackets on restriction on a single action. Sort(E) is used to denote the set of actions that occurs in the term E.

SPA operators have the following informal meaning:

• 0 is a process that does nothing;

• α.E is a process that can perform an α action and then behaves as E;

• E1 + E2 (choice) represents the nondeterministic choice between the two processes E1 and E2;

• E1‖E2 (parallel) is the parallel composition of two processes that can proceed in an asynchronous way ,
synchronizing on complementary actions, represented by an internal action τ , to perform a communication.

• E\L (restriction) is the process E when actions in L ∪ L are prevented.

The operational semantics of SPA terms is given in terms of Labeled Transitions Systems (LTS).

Definition 2.1 A labeled transition system (E , T) (LTS) of concurrent processes over Act has the process ex-
pressions E as its states, and its transitions T are exactly which can be inferred from the transition rules for
processes.

The interested reader may find the formal definition of the semantics below:

α.E
α−→ E

E1
a−→ E′

1

E1 + E2
a−→ E′

1

E2
a−→ E′

2

E1 + E2
a−→ E′

2

E1
a−→ E′

1

E1‖E2
a−→ E′

1‖E2

E2
a−→ E′

2

E1‖E2
a−→ E1‖E′

2

E1
l→ E′

1 E2
l→ E′

2

E1‖E2
τ→ E′

1‖E′
2

Z
.= E E

α−→ E′

Z
α−→ E′

E1
α−→ E′

1

E1\L
α−→ E′

1\L
(α 6∈L∪L)

134

2.2 Strong and weak bisimulations

It is often necessary to compare processes that are expressed using different terms but have the same behavior. We
recall some useful relations on processes.

Definition 2.2 Let (E , T) be an LTS of concurrent processes, and let R be a binary relation over E . Then R is
called strong simulation (denoted by ≺) over (E , T) if and only if, whenever (E,F) ∈ R we have:

if E
a→ E′ then there exists F ′ ∈ E s. t. F

a→ F ′ and (E′, F ′) ∈ R

Now, we can define strong bisimulation:

Definition 2.3 A binary relation R over E is said a strong bisimulation (denoted by ∼) over the LTS of concurrent
processes (E , T) if both R and its converse are strong simulation.

Another kind of bisimulation is the weak bisimulation. This relation is used when there is the necessity of un-
derstanding if systems with different internal structure - and hence different internal behavior - have the same
external behavior and may thus be considered observationally equivalent. The notion of observational relations is
the follow: E

τ⇒ E′ (or E ⇒ E′) if E
τ→
∗

E′ (where τ→
∗

is the reflexive and transitive closure of the τ→ relation);
for a 6= τ , E

a⇒ E′ if E
τ⇒ a→ τ⇒ E′. Let DerE be the set of derivatives of E, i.e., the set of process that can be

reached through the transition relations. Now we are able to give the two following definitions.

Definition 2.4 LetR be a binary relation over a set of process E . ThenR is said to be a weak simulation (denoted
by -) if, whenever (E,F) ∈ R,

if E
a→ E′ then there exists F ′ ∈ E s. t. F

a⇒ F ′ and (E′, F ′) ∈ R.

Definition 2.5 A binary relation R over E is said a weak bisimulation (≈) over the LTS of concurrent processes
(E , T) if both R and its converse are weak simulation.

Every strong simulation is also a weak one (see [17]).

2.3 Equational µ-calculus

Modal µ-calculus is a process logic well suited for specification and verification of systems whose behavior is
naturally described using state changes by means of actions. It is a normal modal logic K augmented with
recursion operators. It permits to express a lot of interesting properties like safety and liveness properties, as well
as allowing us to express equivalence conditions over LTS.

In equational µ-calculus recursion operators are replaced by fixpoint equations. This permits to recursively
define the properties of a given systems.

We use the equational µ-calculus instead of modal µ-calculus because the former is very suitable for partial
model checking, that is described later (see [1], [2]).

Let a be in Act and X be a variable ranging over a finite set of variables V ars.
Given the grammar:

A ::= X | T | F | X1 ∧X2 | X1 ∨X2 | 〈a〉X | [a]X
D ::= X =ν AD | X =µ AD | ε

where the meaning of 〈a〉X is ’it is possible to do an a-action to a state where X holds’ and the meaning of [a]X
is ’for all a-actions that are performed then X holds’. X =ν A is a minimal fixpoint equation, where A is an
assertion (i.e. a simple modal formula without recursion operator), and X =µ A is a maximal fixpoint equation.
Roughly, the semantic JDK of the list of equations D is the solution of the system of equations corresponding to

135

D. According to this notation, JDK(X) is the value of the variable X , and E |= D ↓ X can be used as a short
notation for E ∈ JDK(X). The following result can be proved by putting together standard results for decision
procedures for µ-calculus (see [20]).

Theorem 2.1 Given a formula γ it is possible to decide in exponential time in the length of γ if there exists a
model of γ and it is also possible to give an example of it.

2.4 Partial model checking

Partial model checking (pmc) is a technique that was originally developed for compositional analysis of concurrent
systems (processes) (see [2]). The intuitive idea underlying the pmc is the following: proving that E‖F satisfies a
formula φ is equivalent to prove that F satisfies a modified specification φ//E

, where //E is the partial evaluation
function for the parallel composition operator(see [2]).In formula:

E‖F |= φ (1)

In order to describe how pmc function acts, we discuss, for instance, the partial evaluation rules for the formula
〈τ〉A w.r.t. the ‖ operator. By inspecting the inference rules, we can note that the process E‖F (with F unspecified
component) can perform a τ action by exploiting one of the three possibilities:

• the process F performs an action τ going in a state F ′ and E‖F ′ satisfies A; this is taken into account by
the formula 〈τ〉(A//E

);

• the process E performs an action τ going in a state E′ and E′‖F satisfies A and this is considered by the
disjunctions

∨
E

τ→E′ A//E′ , where every formula A//E′ takes into account the behavior of F in composition
with a τ successor of E;

• the last possibility is that the τ action is due to the performing of two complementary actions by the two
processes. So for every a-successor E′ of E there is a formula 〈ā〉(A//E′).

With partial model checking we can reduce the previous property to:

F |= φ//E (2)

Lemma 2.1 Given a process E‖F and a formula φ we have:

E‖F |= φ iff F |= φ//E

A similar lemma holds for every operator of SPA (see [1]).
In this way, it can be noticed that the reduced formula φ//E depends only on the formula φ and on process E.

No information is required on the process F which can represent a possible enemy. Thus, given a certain system
E, it is possible to find the property that the enemy must satisfy in order to make a successful attack on the system.
It is worth noticing that partial model checking functions may be automatically derived from the semantics rules
used to define a language semantics (Structured Operational Semantics). Thus, the proposed technique is very

136

flexible. Here, we give the pmc function for parallel operator (that can be also found in [1, 2]).

(D↓X)//t = (D//t)↓Xt

ε//t = ε

(X =σ AD)//t = ((Xs =σ A//s)s∈Der(t))(D)//t

X//t = Xt

[a]A//s = [a](A//s)∧
∧

s
a→s′

A//s′ if a6=τ

[τ]A//s = [τ](A//s)∧
∧

s
τ→s′

A//s′∧
∧

s
a→s′

[ā](A//s′)

(A1∧A2)//s = ((A1)//s)∧((A2)//s)
T//s = T

2.5 Characteristic formulae

A characteristic formula is a formula in equational µ-calculus that completely characterizes the behavior of a
(state in a) state-transition graph modulo a chosen notion of behavioral relation. It is possible to define the notion
of characteristic formula for a given finite state process E w.r.t. weak bisimulation as follows (see [18]).

Definition 2.6 Given a finite state process E, its characteristic formula (w.r.t. weak bisimulation) DE ↓ XE is
defined by the following equations for every E′ ∈ Der(E), a ∈ Act:

XE′ =ν (
∧

a;E′′:E′ a→E′′

〈〈a〉〉XE′′) ∧ (
∧
a

([a](
∨

E′′:E′ a⇒E′′

XE′′)))

where 〈〈a〉〉 of the modality 〈a〉 which can be introduce as abbreviation (see [18]):

〈〈ε〉〉φ def
= µX.φ ∨ 〈τ〉X 〈〈a〉〉φ def

= 〈〈ε〉〉〈a〉〈〈ε〉〉φ

The following lemma characterizes the power of these formulae.

Lemma 2.2 Let E1 and E2 be two different finite-state processes. If φE2 is characteristic for E2 then:

1. If E1 ≈ E2 then E1 |= φE2

2. If E1 |= φE2 and E1 is finite-state then E1 ≈ E2.

2.6 A logical approach for specifying and analyzing information flow properties

Information flow is a main topic in the theoretical study of computer security. We can find several formal definitions
in the literature (see [10]). To describe this problem, we can consider two users, High and Low interacting with
the same computer system. We ask if there is any flow of information from High to Low. The central property is
the Non Deducibility on composition (NDC, see [6]): the low level users cannot infer the behavior of the high level
user from the system because for the low level users the system is always the same. This idea can be represented
as follow:

∀Π ∈ High users E | Π ≡ E w.r.t. Low users

(where | represents a suitable composition operator.) We study this property in term of SPA parallel composition
operator and bisimulation equivalence.

We denote with BNDC a security property called Bisimulation Non Deducibility on Compositions (see [6]).

137

Definition 2.7 Let EH = {Π | Sort(Π) ⊆ H ∪ {τ}} be the set of High users. E ∈ BNDC if and only if
∀Π ∈ EH we have (E‖Π)\H ≈ E\H .

By using the characteristic formula φ of the process E\H , we may express information flow property in a logical
way.

E ∈ BNDC iff ∀Π ∈ S : (E‖Π)\H |= φ (3)

Partial model checking function gives we have a method for reducing the verification of the previous property to a
validity checking problem in µ-calculus (see [11]). As a matter of fact, the property 4 turns out to be equivalent to

E ∈ BNDC iff ∀Π ∈ S : Π |= φ′ (4)

where φ′ is the formula obtained from φ after pmc w.r.t the process E (and the restriction operator). Thus, due the
decidability of the validity problem for µ-calculus we have.

Proposition 2.1 BNDC is decidable for all finite state processes E.

Our logical approach has been extended to cope with several security properties. Thus the approach we are
going to introduce is applicable to a wide set of security properties.

3 Our approach for enforcing security properties

Let S be a system, and let X be one component that may be dynamically changed (e.g., a downloaded mobile
agent). We say that the system S‖X enjoys a security property expressed by a logical formula φ if and only if for
every behavior of the component X , the behavior of the system S enjoys that security property:

∀X(S‖X)\H |= φ (5)

where H = Sort(X).
By using the partial model checking approach proposed in [12], we can focus on the properties of the possibly

un-trusted component X , i.e.:
∀X X |= φS,\H (6)

Thus, we may study whether a potential enemy could exists and, in particular, which are necessary and sufficient
conditions that an enemy should satisfy for the purpose to alter the correct behavior of the system.

In order to protect the system we may simply check each process X before executing it or, if we do not have
this possibility, we may define a controller that in any case forces it to behave correctly.

We may distinguish several situations1 depending on the control one may have on the process X:

1. if X performs an action we may detect and intercept it;

2. in addition to 1), it is possible to know which are the possible next steps of X;

3. X whole code is known and we are able to model check it2.

In the scenarios 1) and 2) we may imagine to develop some controllers that force the intruder to behave correctly,
i.e. as prescribed by the formula φS,\H .

1The last two pose several decidability issues.
2We do not consider here the possibility of manipulate the code.

138

3.1 Enforcing security properties with programmable controllers

We wish to provide a framework where we are able to enforce specific security properties defining a new operator,
say Y .∗ X , that can permit to control the behavior of the component X , given the behavior of a control program
Y .

Example 3.1 Let E and F be two processes, and let a ∈ Act be an action. We define a new operator .′ (controller
operator) by these two rules:

E
a→ E′ F

a→ F ′

E .′ F
a→ E′ .′ F ′

(7)

E
a→ E′

E .′ F
a→ E′ .′ F

(8)

This operator forces the system to make always the right action also if we do not know what action the agent X
is going to perform.

Eventually, we would like that the overall system S‖(Y .∗ X) always enjoys the desired security properties
regardless of the behavior of the component X . Thus, we want to find a control program Y such that:

∀X(S‖Y .∗ X)\H |= φ (9)

Equivalently, by pmc, we get:
∃Y ∀X (Y .∗ X) |= φ′ (10)

where φ′ = φ//(S,\H).
Note that differently from other approaches the control target and the controller are expressed in a similar

formalism.
While the equation 10 should be the property to manage, it might not be easy. However, we note that if the

controller operator satisfies the following additional property

Assumption 3.1 For every X and Y , we have:

Y .∗ X ∼ Y

then the property 10 is equivalent to:
∃Y Y |= φ′ (11)

As a matter of fact, the previous assumption permits us to conclude that Y .∗ X and Y are strongly equivalent on
so they satisfy the same formulas. The formulation 11 is easier to be managed.

Refer to example 3.1, we are able to prove that the operator .′ enjoys Assumption 3.1.

Proposition 3.1 The operator .′ enjoys Assumption 3.1.

Note that for some properties, e.g. BNDC, it is sufficient that Y .∗ X and Y are weakly bisimilar. According to
definition of weak bisimulation, Y .∗ X ≈ X (since every strong simulation is also a weak one [17]) and thus it
could be applied to enforce information flow properties (although in the scenario 1) it would not be very useful,
since it could often override the high user instructions).

While designing such a process Y could not be difficult in principle, we can take advantage of our logical
approach and obtain an automated procedure as follows.

139

3.2 Automated synthesis of controllers

In this subsection, we discuss how it is possible to find a program controller Y that is a model of φ′, the formula
in 11.

As a matter of fact, our logical approach is very useful.
The formula φ′ is a µ-calculus formula, so, referring to the theorem 2.1, it is possible to decide if there exists a

model of such φ′. The procedure returns also a model that will be our program for our controllers.
Unfortunately, the satisfiability procedure has complexity that is, in the worst case, exponential in the size of

the formula.

3.3 Composition of properties

Our logical approach is able to struggle successfully with composition problems. If we should force many different
security policies, we have only to force the conjunction of this policies. In formulas: let φ1, · · · , φn be n different
security policies, S be our system and X be an external agent, we have:

∀X(S‖X)\H |= φ1 . . . ∀X(S‖X)\H |= φn

The following step to solve is reduce this n proposition to one in the following way:

∀X(S‖X)\H |=
∧

i=1,··· ,n
φi (12)

If we assume
∧

i=1,···n φi = φ, we have the same situation that we have described by the formula 10.

4 Other controllers

We can define other controller operators as follows.
The controller .′′ have two rules:

E
a→ E′ F

a→ F ′

E .′′ F
a→ E′ .′′ F ′

(13)

E
a→ E′ F

a
6→ F ′

E .′′ F
a→ E′ .′′ F

(14)

This controller is the most complete: if the program E and the target F agree on the next action both can do it in a
lock step, if F does not have a correct behavior, the process E issues an action, so the system maintains a correct
behavior. Being able to give priorities to rule applications, definitely the first rule should have higher priority than
the second one.

The following result holds.

Proposition 4.1 The preposition 3.1 holds also for two operator: .′ and .′′.

Another interesting operator is described by the following rule:

E
a→ E′ F

a→ F ′

E .′′′ F
a→ E′ .′′′ F ′

(15)

However, it is useful to note that for this operator a weaker proposition holds.

140

Proposition 4.2 Between Y .′′′ X and Y holds the following relations:

Y .′′′ X ≺ Y

i.e. Y .′′′ X and Y are strong similar but not bisimilar.

As a matter of fact, with this operator, we can ensure that the system is secure only w.r.t. security properties that
are safety properties. Such properties are preserved under weak simulation (e.g. see [7]). Thus, we cannot enforce
liveness properties through this controller.

4.1 Feasibility issues for our controllers

The introduction of a controller operator helps to guarantee a correct behavior of the entire system.
We discuss in this subsection, how and also if, these controllers (.′, .′′ and .′′′) can be effectively implemented.
However, the actual feasibility of these controllers depends on the scenarios we consider. In particular, we focus

on scenarios 1) and 2).
For the first controller operator, .′, we can note that this operator need to check the next action or it can directly

execute one correct action. Thus, it would be easily implementable in all the two scenarios.
The operator .′′ cannot be implemented in the scenario 1): if we cannot decide a priori which are the possible

next steps that the external agent is not able to perform, we cannot implement the second rule (14). In the scenario
2), such an operator would be implementable. It would be also possible in the scenario 2), if we could also know
whether X is forced to make a specific action, to give priority to the first rule in order to allow always the correct
actions of the target. Thus, controller .′′ would be the most appropriate in this scenario.

The last controller operator can be implemented in any scenarios. As a matter of fact, it coincides with the
monitors defined in [19].

5 A simple example

Consider the process E = l.0 + h.h.l.0. The system E where no high level activity is present is weakly bisimilar
to l.0.

Consider the following equational definition (please note that F is a variable here):

F =ν ([τ]F) ∧ [l]T ∧ 〈〈l〉〉T

It asserts that a process may and must perform the visible action l.
As for the study of BNDC-like properties we can apply the partial evaluation for the parallel operator we

obtain after some simplifications:
FE =ν ([τ]FE) ∧ [h]〈〈h〉〉T

which, roughly, expresses that after performing a visible h action, the system reaches a configuration s.t. it must
perform another visible h action.

The information obtained through partial model checking can be used to enforce a security policy which pre-
vents a system from having certain information leaks. In particular, if we use the definition of the controller as .′′,
we simply need to find a process that is a model for the previous formula, say Y = h.h.0.

Then, for any component X , we have (E‖(Y .′′ X)) \ {h} satisfies F .
For instance, consider X = h.0. The system

(E‖(Y .′′ X)) \ {h} τ−→ (h.l.0‖(h .′′ 0)) \ {h}

141

Thus, using the second rule the controller may force to issue another h and thus we eventually get

(h.l.0‖(h .′′ 0)) \ {h} τ−→ (l.0‖(0 .′′ 0)) \ {h} ≈ l.0

and so the system still preserve its security since the actions performed by the component X have been prevented
from being visible outside. On the contrary, if the controller would not be present, there would be a deadlock after
the first internal action.

6 Discussion on related work

In [13], we presented preliminary work based on different techniques for automatically synthesizing systems
enjoying a very strong security property, i.e. SBSNNI (e.g., see [6]). That work did not deal with controllers.

Much of prior work is about the study of enforceable properties and related mechanisms.
In [19], Schneider deals with enforceable security properties in a systematic way. He discusses whether a given

property is enforceable and at what cost. To study those questions, Schneider uses the class of enforceable mech-
anisms (EM) that work by monitoring execution steps of some system, herein called the target, and terminating
the target’s execution if it is about to violate the security property being enforced. The author asserts there isn’t
any EM (Execution Monitoring) that can enforce information flow because it can’t be formalized like a safety
property. The security automata defined in [19] have the follow behavior:

• If the automaton can make a transition on given input symbol, then the target is allowed to perform that step.
The state of the automaton changes according to the transition rules.

• otherwise the target is terminated and we can deduce that security property can be violated.

He explicitly assumes to be in the scenario that we call 1).
We can note that our controller operator, .′′′, have the same behavior of the security automata for enforcement

that Schneider defines in his article.
The operator .′′′ have only the following rule:

E
a→ E′ F

a→ F ′

E .′′′ F
a→ E′ .′′′ F

Roughly speaking, if process F does the correct action then E .′′′ F does a correct transaction else the system
stops.

This fact is very important because, as we say in the proposition 4.2, Y .′′′X and Y are strongly similar but not
bisimilar. So this two processes are not strongly equivalent and they don’t satisfy all the same formulas. So, also
with our formalism, we can not enforce information flow with this operator.

We can however define an operator in scenario 1) that enforces information flow property. The cost of this
operation is that the behavior of the controller component may be completely neglected. Thus, from a practical
point of view, our operator is not very useful.

However, we may notice that our work is a contribution w.r.t. the work of Schneider since it allows the automatic
construction of the correct monitor.

Also in [3, 9] there is the idea that information flow can not be forced by an automaton. In both of these articles,
many types of automata are illustrated. All of them are in the scenario 1). The automata waits for an action of the
target. In particular, in [9] there are four different automata:

truncation automata it can recognize bad sequences of actions and halt program execution before the security
property is violated, but cannot otherwise modify program behavior. These automata are similar to Schnei-
der’s original security monitor;

142

suppression automata in addition to being able to halt program execution, it has the ability to suppress individual
program actions without terminating the program outright;

insertion automata it is able to insert a sequence of actions into the program action stream as well as terminate
the program;

edit automata it combines the powers of suppression and insertion automata. It is able to truncate action se-
quences and insert or suppress security-relevant actions at will.

The interested reader may find in the full version of this paper (see [16]) the description of process algebras
operators that mimic as such automata. (Since that truncation automata is the same automata is described in [19],
we already defined a controller operator which has the same behavior.)

We use controller synthesis in order to force a system to verify security policy. The synthesis of controllers is,
however, studied also in other research areas. We describe here two papers that deal with synthesize of controller
in real-time.

In [4] the author describes an algorithm for synthesize controller from real-time specification. He presents an
algorithm for specified in a subset of the internal temporal logic Duration calculus. The synthesized controllers
are given as PLC-Automata. These are an abstract representation of a machine that periodically polls the input
and has the possibility of measuring time.

In [5] the authors tackles the following problem: given a timed automaton restrict its transition relation in a
systematic way so that all remaining behaviors satisfy certain properties. The problem is formulated using the
notion of real-time game. A strategy for a given game is a rule that tells the controller how to choose between
several possible actions in any game position.A strategy is winning if the controller, by following these rules,
always wins (according to a given definition of winning) no matter what the environment does. There is the
definition of Game automata and the authors gives a relation and using this relation is able to define a winning
strategy for the game.

7 Conclusion and future work

We illustrated some preliminary results towards a uniform theory for enforcing security properties. With this
work, we contribute to extend a framework based on process calculi and logical techniques that have been shown
to be very suitable to model and verify several security properties. With respect to prior work, we also add the
possibility to automatically build enforcing mechanisms.

Much work need to be done in order to make our approach more feasible in practice. We argue that there are
many security properties whose corresponding controller may be built more efficiently. For instance, there are
some cases in which the complexity of satisfiability problem is linear in the size of the formula (e.g., see [8]).

We argue that extending our approach to consider timed security properties should be possible and worth of
investigation.

8 Acknowledgement

We thank the anonymous referees of FCS05 for valuable comments that helped us to improve this paper.

References
[1] H. Andersen. Verification of Temporal Properties of Concurrent Systems. PhD thesis, Department of Computer

Science, Aarhus University, Denmark, June 1993.

143

[2] H. R. Andersen. Partial model checking. In LICS ’95: Proceedings of the 10th Annual IEEE Symposium on Logic in
Computer Science, page 398. IEEE Computer Society, 1995.

[3] L. Bauer, J. Ligatti, and D. Walker. More enforceable security policies. In I. Cervesato, editor, Foundations of Computer
Security: proceedings of the FLoC’02 workshop on Foundations of Computer Security, pages 95–104, Copenhagen,
Denmark, 25–26 July 2002. DIKU Technical Report.

[4] H. Dierks. Synthesising controllers from real-time specifications. In ISSS ’97: Proceedings of the 10th international
symposium on System synthesis, pages 126–133, Washington, DC, USA, 1997. IEEE Computer Society.

[5] A. P. E. Asarin, O. Maler and J. Sifakis. Controller synthesis for timed automata. In Proc. System Structure and Control.
Elsevier, 1998.

[6] R. Focardi and R.Gorrieri. A classification of security properties. Journal of Computer Security, 3(1):5–33, 1997.

[7] S. Gnesi, G. Lenzini, and F. Martinelli. Logical specification and analysis of fault tolerant systems through partial
model checking. International Workshop on Software Verification and Validation (SVV), ENTCS., 2004.

[8] D. Janin and I. Walukiewicz. Automata for the modal µ-calculus and related results. In Proc. of the 20th International
Foundations of Computer Science 1995 (MFCS), pages 552–5662, Prague, 1995.

[9] J. Ligatti, L. Bauer, and D. Walker. Edit automata: Enforcement mechanisms for run-time security policies. Interna-
tional Journal of Information Security, 4(1–2):2–16, Feb. 2005.

[10] G. Lowe. Semantic models for information flow. Theor. Comput. Sci., 315(1):209–256, 2004.

[11] F. Martinelli. Formal Methods for the Analysis of Open Systems with Applications to Security Properties. PhD thesis,
University of Siena, Dec. 1998.

[12] F. Martinelli. Partial model checking and theorem proving for ensuring security properties. In CSFW ’98: Proceedings
of the 11th IEEE Computer Security Foundations Workshop, page 44. IEEE Computer Society, 1998.

[13] F. Martinelli. Towards automatic synthesis of systems without informations leaks. In Proceedings of Workshop in
Issues in Theory of Security (WITS), 2000.

[14] F. Martinelli. Analysis of security protocols as open systems. Theoretical Computer Science, 290(1):1057–1106, 2003.

[15] F. Martinelli. Towards an integrated formal analysis for security and trust. FMOODS 2005, LNCS 3535, 2005.

[16] F. Martinelli and I. Matteucci. Partial model checking, process algebra operators and satisfiability procedures for
(automatically) enforcing security properties. Technical report, IIT-CNR, March 2005.

[17] R. Milner. Communicating and mobile systems: the π-calculus. Cambridge University Press, 1999.

[18] M. Müller-Olm. Derivation of characteristic formulae. In MFCS’98 Workshop on Concurrency, volume 18 of Electronic
Notes in Theoretical Computer Science (ENTCS). Elsevier Science B.V., August 1998. 12 pages, MFCS’98 Workshop
on Concurrency.

[19] F. B. Schneider. Enforceable security policies. ACM Transactions on Information and System Security, 3(1):30–50,
2000.

[20] R. S. Street and E. A. Emerson. An automata theoretic procedure for the propositional µ-calculus. Information and
Computation, 81(3):249–264, 1989.

144

