
A Modal Foundation for
Secure Information Flow

Kenji Miyamoto and Atsushi Igarashi
Graduate School of Informatics,

Kyoto University, JAPAN

Background
 Many type-based techniques for
information flow analysis(IFA) (e.g.
SLam [Heintze and Riecke POPL98])

 However, the essence of the type
systems is not very clear
 Subtle differences among their cores
 It is not clear whether the differences
are essential or not

Our goal

 Clarification of the essence of type-
based IFA

↓
 Uniform framework which can
represent various type systems for
IFA

Approach
 To show a relationship between

 type-based IFA
 modal logic

 Development of a typed calculus
based on the modal logic
 Via Curry-Howard isomorphism

 Encoding existing calculi for IFA to
λS

□

Contribution

 We show modal logic of local validity
corresponds to type-based IFA

 Formalization of λS
□ based on the

modal logic
 Simple proof of noninterference

 Encoding of a core of the SLam
calculus to λS

□

Contents

 Information flow analysis
 Modal logic
 λS

□

 Encoding the SLam calculus
 Related work
 Conclusion and future work

Information flow analysis

 Program analysis to ensure
 The absence of data leakage

 e.g. private data(your salary) does not leak
to public

 a.k.a. the noninterference property

Security level
 Level of secrecy of data
 We assign security level to each
datum

 Some data have high security level
 Some data have low security level

 For example, private data(your salary)
has higher security level than public
data(everybody can read)

Leakage of data

 Two kinds of leakage
 Direct leakage of data
 Indirect leakage of data

 IFA detects both kinds of leakage

Direct leakage of data
int pub:=0L; //L means public
int salary:=400H; //H means private
…
pub:=salary;
print(pub);

By printing the value of pub, we can
know the value of salary

Indirect leakage of data
int pub:=0L; //L means public
int salary:=400H; //H means private
…
if salary>300 then pub:=1 else pub:=2;

By reading a value of pub, we can know
whether salary is over 300 or not

Noninterference

 Correctness property of IFA

Whatever high security input is given,
low security output is unchanged

program

L

Salary 100Salary 200Salary 300

L

H H

0

150300450

00

Contents

 Information flow analysis
 Modal logic
 λS

□

 Encoding the SLam calculus
 Related work
 Conclusion and future work

Relationship between IFA
and modal logic

 We can consider
 Security levels as possible worlds
 Order of security as reachability relation

 High security world is reachable from low
security world

↓
What kind of modality is appropriate?

Local validity as modality

 “A holds at all worlds reachable
from a certain world S”
 We write it □SA

 It is appropriate because, in IFA,
low security level data can be
read at high security level
 We represent low security data type as
□lowint

Contents

 Information flow analysis
 Modal logic
 λS

□

 Encoding the SLam calculus
 Related work
 Conclusion and future work

λS
□

 Term calculus for logic of local
validity

 Extension of simply typed lambda
calculus with modal types

 Type system for IFA

Syntax
S: element of poset of security levels
 Type A ::= K ¦ A→A ¦ □SA
Base type K ::= unit ¦ int ¦ string ¦ …
 Term M ::= c ¦ x ¦ u
 ¦ (λx:A.M) ¦ (MM)
 ¦ (box S M)
 ¦ (let box S u=M in M)

box and let box

 boxSM
 Seals M at security level S

 let boxS u=M in N
 Unseals M, binds u to the unsealed value,
and executes N

Main reduction rules

 (λx:A.M)N→[N/x]M
 let boxS u= boxS M in N→[M/u]N

Judgment
 Context consists of two parts:

 Modal context Δ containing locally valid
assumptions u1::L1A1, u2::L2A2, ...

 Ordinary context Γ containing truth
assumptions x1:B1, x2:B2,

 c.f. Davies and Pfenning’s formalization of modal
logic [Davies and Pfenning POPL96]

 Judgments are of the form:
Δ ; Γ┣S M:A

 M has type A at level S, under Δ and Γ

Main typing rules(1/3)

 Current level S2 must be reachable
from u’s level
 Data readable at low security level S1
also readable at high security level S2

u::S1 A ∈ Δ　　　S1≦S2

Δ;Γ┣S2 u:A

Rule for modal variables

(T-Mvar)

Main typing rules(2/3)

 The rule corresponds to □-introduction
 The premise means Δ;・┣S M:A can be
derived for any level S≧S1
 Ordinary context is empty
 The levels of modal variables in M are higher
than S1

Δ;・┣S1 M:A

Δ;Γ┣S2 boxS1 M:□S1A

Rule for box

(T-Box)

Main typing rules(3/3)

 The rule corresponds to □-elimination
 “□S2A is true” turns into “A is valid at S2”
 We can unseal M :□S2A at any security
level, but usage of u is limited by the rule
T-Mvar

Δ;Γ┣S1 M:□S2A Δ,u::S2 A;Γ┣S1 N:B

Δ;Γ┣S1 let boxS2 u= M in N:B

Rule for let box

(T-Letbox)

Example

The example of indirect leakage
print:(□Lint)→unit
salary:□ H int

print(let boxH u=salary in
boxL (if u>300 then 1 else 2))

 We cannot use u in boxL due to T-Mvar. Thus, this
program is not typed.

Properties

 Subject reduction
 Church-Rosser
 Strong Normalization
 Noninterference

Noninterference Theorem

 If
 u::Sint;・┣T M:int
 S>T

 Then
 there exists a unique normal form M’
such that

 for any N, if ┣S N:int then [N/u]M →* M’

Proof sketch

 Lemma
 If u::Sint ;・┣T M:int and M is a normal
form and u∈FMV(M) then S≦T

 ∃!M’ s.t. M:int→*M’:int and M’ is
normal form

 [N/u]M→*[N/u]M’=M’ (by the
contraposition of the lemma)

Contents

 Information flow analysis
 Modal logic
 λS

□

 Encoding the SLam calculus
 Related work
 Conclusion and future work

SLam calculus[Heintze & Riecke 98]

 Type-based IFA for higher-order
language i.e. λ-calculus

 Secure types
 Security level is attached to each type
constructor

 T ::= unitS ¦ intS ¦ T→ST ¦ ...

Encoding to λS
□

 Source: SLam ー recursion and protected
 Overview of encoding

 Δ┣ e:tS ⇒ ¦Δ¦ ; ・┣S ¦ e ¦ : ¦ t ¦
 intH is translated to □Hint
 Subsumption translates to coercion

 (unit, H)≦(unit, L) to λx:□Lunit.let boxL ux=x in ux

 Properties
 Encoding preserves typing
 Translated programs enjoy noninterference

Contents

 Information flow analysis
 Modal logic
 λS

□

 Encoding the SLam calculus
 Related work
 Conclusion and future work

Related work(1/2)
 Type-based IFA for functional languages

 Fairly complex proofs of noninterference using
 denotational semantics[Heintze and Reicke, POPL98]
 non-standard operational semantics[Pottier and Simonet

TOPLAS03]

 Noninterference of our system is proved in a
simple manner

 Our proof is similar to the proof of noninterference
of FOb1<:[Barthe and Serpette FLOPS99]

Related work(2/2)
 DCC[Abadi et al POPL99]

 A calculus to unify dependency analyses
 SLam is one of the instances of DCC
 DCC is monadic type based

 Monadic types of DCC are similar to
modal types in their roles, but

 Typing rules are rather different

Contents

 Information flow analysis
 Modal logic
 λS

□

 Encoding the SLam calculus
 Related work
 Conclusion and future work

Conclusion

 Relationship between IFA and modal
logic

 λS
□ enjoys subject reduction,

Church-Rosser, strong normalization,
and noninterference

 A translation from SLam to λs
□

Future work

 To compare λS
□ with other calculi

for IFA
 To figure out how modal types of
λs

□ and monadic types of DCC
correspond to each other

 Adding side effects and recursion

End

Kiitos

Γ, x:s1┣ e0:s2

Γ┣ (λx:s1.e0)L:(s1→s2,L)

