A Modal Foundation for Secure Information Flow

Kenji Miyamoto and Atsushi Igarashi Graduate School of Informatics, Kyoto University, JAPAN

Background

- Many type-based techniques for information flow analysis(IFA) (e.g. SLam [Heintze and Riecke POPL98])
- However, the essence of the type systems is not very clear
 - Subtle differences among their cores
 - It is not clear whether the differences are essential or not

Our goal

- Clarification of the essence of typebased IFA
- Uniform framework which can represent various type systems for IFA

Approach

- To show a relationship between
 - type-based IFA
 - modal logic
- Development of a typed calculus based on the modal logic

Via Curry-Howard isomorphism

- Encoding existing calculi for IFA to λ_{S}^{\Box}

Contribution

- We show modal logic of local validity corresponds to type-based IFA
- Formalization of λ_{S}^{\Box} based on the modal logic
 - Simple proof of noninterference
- Encoding of a core of the SLam calculus to λ_s

Contents

- Information flow analysis
- Modal logic
- λ_S[□]
- Encoding the SLam calculus
- Related work
- Conclusion and future work

Information flow analysis

Program analysis to ensure

- The absence of data leakage
 - e.g. private data(your salary) does not leak to public
- a.k.a. the noninterference property

Security level

- Level of secrecy of data
- We assign security level to each datum
- Some data have high security level
- Some data have low security level
 - For example, private data(your salary) has higher security level than public data(everybody can read)

Leakage of data

- Two kinds of leakage
 - Direct leakage of data
 - Indirect leakage of data
- IFA detects both kinds of leakage

Direct leakage of data

int pub:=0^L; //L means public int salary:=400^H; //H means private

pub:=salary;
print(pub);

By printing the value of pub, we can know the value of salary

Indirect leakage of data

int pub:=0^L; //L means public int salary:=400^H; //H means private

if salary>300 then pub:=1 else pub:=2;

By reading a value of pub, we can know whether salary is over 300 or not

Contents

- Information flow analysis
- Modal logic
- λ_S[□]
- Encoding the SLam calculus
- Related work
- Conclusion and future work

Relationship between IFA and modal logic

We can consider

- Security levels as possible worlds
- Order of security as reachability relation
 - High security world is reachable from low security world

What kind of modality is appropriate?

Local validity as modality

- "A holds at all worlds reachable from a certain world S"
 - We write it $\Box_{S}A$
- It is appropriate because, in IFA, low security level data can be read at high security level

Contents

- Information flow analysis
- Modal logic
- ▲ <u>λ</u> S[□]
- Encoding the SLam calculus
- Related work
- Conclusion and future work

Term calculus for logic of local validity

- Extension of simply typed lambda calculus with modal types
- Type system for IFA

 λ_{S}^{-}

Syntax

S: element of poset of security levels Type A ::= K | $A \rightarrow A$ | $\Box_{c}A$ Base type K ::= unit | int | string | … Term M ::= c | x | u $|(\lambda x:A.M)|(MM)$ $I(box_{S}M)$ I (let box $_{S}$ u=M in M)

box and let box

- box_SM
 - Seals M at security level S
- Iet box_s u=M in N
 - Unseals M, binds u to the unsealed value, and executes N

Main reduction rules

(λ x:A.M)N→[N/x]M
let box_s u= box_s M in N→[M/u]N

Judgment

- Context consists of two parts:
 - Modal context Δ containing locally valid assumptions u₁::^{L1}A₁, u₂::^{L2}A₂, ...
 - Ordinary context Γ containing truth assumptions x₁:B₁, x₂:B₂,
 - c.f. Davies and Pfenning's formalization of modal logic [Davies and Pfenning POPL96]
- Judgments are of the form:

∆; Г **⊢**^S M:A

- M has type A at level S, under Δ and Γ

Rule for modal variables

$$\begin{array}{ccc} u::^{S_1} A \in \Delta & S_1 \leq S_2 \\ & & & \Delta; \Gamma \vdash^{S_2} u:A \end{array} \quad (T-Mvar) \end{array}$$

- Current level S₂ must be reachable from u's level
 - Data readable at low security level S₁ also readable at high security level S₂

Main typing rules(2/3)

Rule for box

$$\frac{\Delta; \cdot \vdash^{S_1} M:A}{\Delta; \Gamma \vdash^{S_2} box_{S_1} M:\Box_{S_1} A} (T-Box)$$

- $\hfill\blacksquare$ The rule corresponds to \Box -introduction
- The premise means ∆; · ⊢^S M:A can be derived for any level S≧S₁
 - Ordinary context is empty
 - The levels of modal variables in M are higher than S₁

Main typing rules(3/3)

Rule for let box

 $\Delta; \Gamma \vdash^{S_1} M: \Box_{S_2} A \quad \Delta, u::^{S_2} A; \Gamma \vdash^{S_1} N:B$ $\Delta; \Gamma \vdash^{S_1} \text{ let box}_{S_2} u = M \text{ in } N:B$ (T-Letbox)

- The rule corresponds to □-elimination
- " $\square_{S2}A$ is true" turns into "A is valid at S_2 "
- We can unseal M :
 Sigma Sigma

Example

The example of indirect leakage print:(□_Lint)→unit salary:□_Hint

print(let box_H u=salary in box (if up 200 then 1 of

 box_{L} (if u>300 then 1 else 2))

 We cannot use u in box_L due to T-Mvar. Thus, this program is not typed.

Properties

- Subject reduction
- Church-Rosser
- Strong Normalization
- Noninterference

Noninterference Theorem

- If
 - u::^Sint; $\vdash^T M$:int
 - S>T
- Then
 - there exists a unique normal form M' such that
 - for any N, if $\vdash^{S} N$:int then $[N/u]M \rightarrow^* M'$

Proof sketch

Lemma

- If u::^Sint ; · ⊢^T M:int and M is a normal form and u∈FMV(M) then S≦T
- ∃!M' s.t. M:int→*M':int and M' is normal form
- [N/u]M→*[N/u]M'=M' (by the contraposition of the lemma)

Contents

- Information flow analysis
- Modal logic
- λ_S[□]
- Encoding the SLam calculus
- Related work
- Conclusion and future work

SLam calculus[Heintze & Riecke 98]

- Type-based IFA for higher-order language i.e. λ -calculus
- Secure types
 - Security level is attached to each type constructor

• T ::= unit^S | int^S | T \rightarrow ^ST | ...

Encoding to λ_S^{\Box}

- Source: SLam recursion and protected
- Overview of encoding
 - $\Delta \vdash e:t^{S} \Rightarrow |\Delta|; \cdot \vdash^{S} |e|:|t|$
 - int^{H} is translated to \Box_{H} int
 - Subsumption translates to coercion
 - (unit, H) \leq (unit, L) to $\lambda x: \Box_L$ unit.let box_L $u_x = x$ in u_x
- Properties
 - Encoding preserves typing
 - Translated programs enjoy noninterference

Contents

- Information flow analysis
- Modal logic
- λ_S
- Encoding the SLam calculus
- Related work
- Conclusion and future work

Related work(1/2)

- Type-based IFA for functional languages
 - Fairly complex proofs of noninterference using
 - denotational semantics[Heintze and Reicke, POPL98]
 - non-standard operational semantics[Pottier and Simonet TOPLAS03]
 - Noninterference of our system is proved in a simple manner
 - Our proof is similar to the proof of noninterference of FOb_{1<}[Barthe and Serpette FLOPS99]

Related work(2/2)

DCC[Abadi et al POPL99]

- A calculus to unify dependency analyses
- SLam is one of the instances of DCC
- DCC is monadic type based
- Monadic types of DCC are similar to modal types in their roles, but
- Typing rules are rather different

Contents

- Information flow analysis
- Modal logic
- λ_S[□]
- Encoding the SLam calculus
- Related work
- Conclusion and future work

Conclusion

- Relationship between IFA and modal logic
- λ_S[□] enjoys subject reduction,
 Church-Rosser, strong normalization, and noninterference
- A translation from SLam to λ_s

Future work

- To compare λ_S^{\Box} with other calculi for IFA
- To figure out how modal types of λ_s^{\Box} and monadic types of DCC correspond to each other
- Adding side effects and recursion

$$\Gamma$$
, x:s₁ \vdash e₀:s₂

$$\Gamma \vdash (\lambda x:s_1.e_0)_L:(s_1 \rightarrow s_2,L)$$