
A Modal Foundation for
Secure Information Flow

Kenji Miyamoto and Atsushi Igarashi
Graduate School of Informatics,

Kyoto University, JAPAN

Background
 Many type-based techniques for
information flow analysis(IFA) (e.g.
SLam [Heintze and Riecke POPL98])

 However, the essence of the type
systems is not very clear
 Subtle differences among their cores
 It is not clear whether the differences
are essential or not

Our goal

 Clarification of the essence of type-
based IFA

↓
 Uniform framework which can
represent various type systems for
IFA

Approach
 To show a relationship between

 type-based IFA
 modal logic

 Development of a typed calculus
based on the modal logic
 Via Curry-Howard isomorphism

 Encoding existing calculi for IFA to
λS

□

Contribution

 We show modal logic of local validity
corresponds to type-based IFA

 Formalization of λS
□ based on the

modal logic
 Simple proof of noninterference

 Encoding of a core of the SLam
calculus to λS

□

Contents

 Information flow analysis
 Modal logic
 λS

□

 Encoding the SLam calculus
 Related work
 Conclusion and future work

Information flow analysis

 Program analysis to ensure
 The absence of data leakage

 e.g. private data(your salary) does not leak
to public

 a.k.a. the noninterference property

Security level
 Level of secrecy of data
 We assign security level to each
datum

 Some data have high security level
 Some data have low security level

 For example, private data(your salary)
has higher security level than public
data(everybody can read)

Leakage of data

 Two kinds of leakage
 Direct leakage of data
 Indirect leakage of data

 IFA detects both kinds of leakage

Direct leakage of data
int pub:=0L; //L means public
int salary:=400H; //H means private
…
pub:=salary;
print(pub);

By printing the value of pub, we can
know the value of salary

Indirect leakage of data
int pub:=0L; //L means public
int salary:=400H; //H means private
…
if salary>300 then pub:=1 else pub:=2;

By reading a value of pub, we can know
whether salary is over 300 or not

Noninterference

 Correctness property of IFA

Whatever high security input is given,
low security output is unchanged

program

L

Salary 100Salary 200Salary 300

L

H H

0

150300450

00

Contents

 Information flow analysis
 Modal logic
 λS

□

 Encoding the SLam calculus
 Related work
 Conclusion and future work

Relationship between IFA
and modal logic

 We can consider
 Security levels as possible worlds
 Order of security as reachability relation

 High security world is reachable from low
security world

↓
What kind of modality is appropriate?

Local validity as modality

 “A holds at all worlds reachable
from a certain world S”
 We write it □SA

 It is appropriate because, in IFA,
low security level data can be
read at high security level
 We represent low security data type as
□lowint

Contents

 Information flow analysis
 Modal logic
 λS

□

 Encoding the SLam calculus
 Related work
 Conclusion and future work

λS
□

 Term calculus for logic of local
validity

 Extension of simply typed lambda
calculus with modal types

 Type system for IFA

Syntax
S: element of poset of security levels
 Type A ::= K ¦ A→A ¦ □SA
Base type K ::= unit ¦ int ¦ string ¦ …
 Term M ::= c ¦ x ¦ u
 ¦ (λx:A.M) ¦ (MM)
 ¦ (box S M)
 ¦ (let box S u=M in M)

box and let box

 boxSM
 Seals M at security level S

 let boxS u=M in N
 Unseals M, binds u to the unsealed value,
and executes N

Main reduction rules

 (λx:A.M)N→[N/x]M
 let boxS u= boxS M in N→[M/u]N

Judgment
 Context consists of two parts:

 Modal context Δ containing locally valid
assumptions u1::L1A1, u2::L2A2, ...

 Ordinary context Γ containing truth
assumptions x1:B1, x2:B2,

 c.f. Davies and Pfenning’s formalization of modal
logic [Davies and Pfenning POPL96]

 Judgments are of the form:
Δ ; Γ┣S M:A

 M has type A at level S, under Δ and Γ

Main typing rules(1/3)

 Current level S2 must be reachable
from u’s level
 Data readable at low security level S1
also readable at high security level S2

u::S1 A ∈ Δ　　　S1≦S2

Δ;Γ┣S2 u:A

Rule for modal variables

(T-Mvar)

Main typing rules(2/3)

 The rule corresponds to □-introduction
 The premise means Δ;・┣S M:A can be
derived for any level S≧S1
 Ordinary context is empty
 The levels of modal variables in M are higher
than S1

Δ;・┣S1 M:A

Δ;Γ┣S2 boxS1 M:□S1A

Rule for box

(T-Box)

Main typing rules(3/3)

 The rule corresponds to □-elimination
 “□S2A is true” turns into “A is valid at S2”
 We can unseal M :□S2A at any security
level, but usage of u is limited by the rule
T-Mvar

Δ;Γ┣S1 M:□S2A Δ,u::S2 A;Γ┣S1 N:B

Δ;Γ┣S1 let boxS2 u= M in N:B

Rule for let box

(T-Letbox)

Example

The example of indirect leakage
print:(□Lint)→unit
salary:□ H int

print(let boxH u=salary in
boxL (if u>300 then 1 else 2))

 We cannot use u in boxL due to T-Mvar. Thus, this
program is not typed.

Properties

 Subject reduction
 Church-Rosser
 Strong Normalization
 Noninterference

Noninterference Theorem

 If
 u::Sint;・┣T M:int
 S>T

 Then
 there exists a unique normal form M’
such that

 for any N, if ┣S N:int then [N/u]M →* M’

Proof sketch

 Lemma
 If u::Sint ;・┣T M:int and M is a normal
form and u∈FMV(M) then S≦T

 ∃!M’ s.t. M:int→*M’:int and M’ is
normal form

 [N/u]M→*[N/u]M’=M’ (by the
contraposition of the lemma)

Contents

 Information flow analysis
 Modal logic
 λS

□

 Encoding the SLam calculus
 Related work
 Conclusion and future work

SLam calculus[Heintze & Riecke 98]

 Type-based IFA for higher-order
language i.e. λ-calculus

 Secure types
 Security level is attached to each type
constructor

 T ::= unitS ¦ intS ¦ T→ST ¦ ...

Encoding to λS
□

 Source: SLam ー recursion and protected
 Overview of encoding

 Δ┣ e:tS ⇒ ¦Δ¦ ; ・┣S ¦ e ¦ : ¦ t ¦
 intH is translated to □Hint
 Subsumption translates to coercion

 (unit, H)≦(unit, L) to λx:□Lunit.let boxL ux=x in ux

 Properties
 Encoding preserves typing
 Translated programs enjoy noninterference

Contents

 Information flow analysis
 Modal logic
 λS

□

 Encoding the SLam calculus
 Related work
 Conclusion and future work

Related work(1/2)
 Type-based IFA for functional languages

 Fairly complex proofs of noninterference using
 denotational semantics[Heintze and Reicke, POPL98]
 non-standard operational semantics[Pottier and Simonet

TOPLAS03]

 Noninterference of our system is proved in a
simple manner

 Our proof is similar to the proof of noninterference
of FOb1<:[Barthe and Serpette FLOPS99]

Related work(2/2)
 DCC[Abadi et al POPL99]

 A calculus to unify dependency analyses
 SLam is one of the instances of DCC
 DCC is monadic type based

 Monadic types of DCC are similar to
modal types in their roles, but

 Typing rules are rather different

Contents

 Information flow analysis
 Modal logic
 λS

□

 Encoding the SLam calculus
 Related work
 Conclusion and future work

Conclusion

 Relationship between IFA and modal
logic

 λS
□ enjoys subject reduction,

Church-Rosser, strong normalization,
and noninterference

 A translation from SLam to λs
□

Future work

 To compare λS
□ with other calculi

for IFA
 To figure out how modal types of
λs

□ and monadic types of DCC
correspond to each other

 Adding side effects and recursion

End

Kiitos

Γ, x:s1┣ e0:s2

Γ┣ (λx:s1.e0)L:(s1→s2,L)

