A Modal Foundation for

! Secure Information Flow

Kenji Miyamoto and Atsushi Igarashi
Graduate School of Informatics,
Kyoto University, JAPAN

i Background

= Many type-based techniques for
information flow analysis(IFA) (e.qg.
SLam [Heintze and Riecke POPL98])

= However, the essence of the type
systems is not very clear
= Subtle differences among their cores

= It is not clear whether the differences
are essential or not

i Our goal

= Clarification of the essence of type-
based IFA

l

= Uniform framework which can

represent various type systems for
IFA

i Approach

= [0 show a relationship between
= type-based IFA
= modal logic

= Development of a typed calculus
based on the modal logic
= Via Curry-Howard isomorphism

= Encoding existing calculi for IFA to
AgH

i Contribution

= We show modal logic of local validity
corresponds to type-based IFA

= Formalization of A ¢~ based on the
modal logic

= Simple proof of noninterference

= Encoding of a core of the SLam
calculus to A -

i Contents

= Information flow analysis

= Modal logic

= A

= Encoding the SLam calculus
= Related work

= Conclusion and future work

i Information flow analysis

= Program analysis to ensure

= The absence of data leakage

= €.g. private data(your salary) does not leak
to public

= a.k.a. the noninterference property

i Security level

= Level of secrecy of data

= We assign security level to each
datum

= Some data have high security level

= Some data have low security level

= For example, private data(your salary)
has higher security level than public
data(everybody can read)

i Leakage of data

= Two kinds of leakage
= Direct leakage of data
= Indirect leakage of data

= [FA detects both kinds of leakage

i Direct leakage of data

int pub:=0L; //L means public
int salary:=400"; //H means private

pub:=salary;
print(pub);

By printing the value of pub, we can
know the value of salary

i Indirect leakage of data

int pub:=0L; //L means public
int salary:=4004; //H means private

If salary>300 then pub:=1 else pub:=2;

By reading a value of pub, we can know
whether salary is over 300 or not

i Noninterference

= Correctness property of IFA

H H
Salary 200 — —> 360
program
—> —> 0
L L

Whatever high security input is given,
low security output is unchanged

i Contents

= Information flow analysis

= Modal logic

= A

= Encoding the SLam calculus
= Related work

= Conclusion and future work

Relationship between IFA

i and modal logic

= We can consider
= Security levels as possible worlds

= Order of security as reachability relation

= High security world is reachable from low
security world

l
What kind of modality is appropriate?

i Local validity as modality

= “A holds at all worlds reachable
from a certain world S”
0 We Write |t SA

= It is appropriate because, in IFA,
low security level data can be
read at high security level

= We represent low security data type as
owlNt

i Contents

= Information flow analysis
= Modal logic

O
AR

= Encoding the SLam calculus
= Related work
= Conclusion and future work

wls”
= Term calculus for logic of local

validity

= Extension of simply typed lambda
calculus with modal types

= Type system for I[FA

i Syntax

S: element of poset of security levels
Type A::=KIA—-A| LA

Base type K ::=unit | int | string | --
TermM:=clxlu

(A XxX:AM) [(MM)

(box ¢ M)

(let box ¢ u=M in M)

i box and let box

= Seals M at security level S
s let box;u=Min N

= Unseals M, binds u to the unsealed value,
and executes N

i Main reduction rules

s (AX:A.M)N—[N/x]M
= let boxc u= box¢ M in N—[M/u]N

i Judgment

= Context consists of two parts:

=« Modal context A containing locally valid
assumptions uq;::HTA) u,nlPA,) L

= Ordinary context I' containing truth
assumptions x;:B,, x,:B,,

= c.f. Davies and Pfenning’s formalization of modal
logic [Davies and Pfenning POPL96]

= Judgments are of the form:
AT FSMA
= M has type A at level S, under A and I

i Main typing rules(1/3)

Rule for modal variables

uSTA € A S1=S,
(T-Mvar)

AT FS2uA
» Current level S, must be reachable

from u’s level

« Data readable at low security level S;
also readable at high security level S,

i Main typing rules(2/3)

Rule for box
A; - FSTM:A

A; T F52 boxgy M:Og, A

(T-Box)

= The rule corresponds to [I-introduction

= The premise means A; - FSM:A can be
derived for any level S=S;
= Ordinary context is empty

= The levels of modal variables in M are higher
than S;

i Main typing rules(3/3)

Rule for let box
A;T FSTM:O,A A,uiS2 A; T FSTNB

(T-Letbox)
A; T F51 let boxs, u=Min N:B

= The rule corresponds to [J-elimination

. soAIs true” turns into “Ais valid at S,”

= We can unseal M :[¢,A at any security

level, but usage of u is limited by the rule
T-Mvar

i Example

The example of indirect leakage
print:(d,int)—unit
salary:[J ,int

print(let box, u=salary in
box, (if u>300 then 1 else 2))

= We cannot use u in box; due to T-Mvar. Thus, this
program is not typed.

i Properties

= Subject reduction

= Church-Rosser

= Strong Normalization
= Noninterference

i Noninterference Theorem

m |f
= USint; - T M:int
= S>T

= [hen

= there exists a unique normal form M’
such that

= for any N, if S N:int then [N/u]M =* M’

i Proof sketch

= Lemma

« If u:sSint ; - FTM:int and M is a normal
form and ue FMV (M) then S=T

« JIM’ s.t. Miint—=*M’:int and M’ is
normal form

= [N/u]M—=*[N/u]M’=M’ (by the
contraposition of the lemma)

i Contents

= Information flow analysis

= Modal logic

= A

= Encoding the SLam calculus
= Related work

= Conclusion and future work

i SLam CHlCUlUS[Heintze & Riecke 98]

= Type-based IFA for higher-order
language i.e. A -calculus

= Secure types

= Security level is attached to each type
constructor

« | =unitSintS | T—=ST ...

i Encoding to A ¢

= Source: SLam — recursion and protected

= Overview of encoding

« A FetS=IAl; - FSlel:ltl

« intHis translated to [int

= Subsumption translates to coercion

= (unit, H)=(unit, L) to A x:J unit.let box, u,=xin u,

= Properties

= Encoding preserves typing

= Translated programs enjoy noninterference

i Contents

= Information flow analysis

= Modal logic

= A

= Encoding the SLam calculus
= Related work

= Conclusion and future work

Related work(1/2)

= Type-based IFA for functional languages

= Fairly complex proofs of noninterference using
= denotational semantics[Heintze and Reicke, POPL98]

= hon-standard operational semanticsPottier and Simonet
TOPLASO3]

= Noninterference of our system is proved in a
simple manner

= Our proof is similar to the proof of noninterference
of FOb;, _.[Barthe and Serpette FLOPS99]

i Related work(2/2)

= DCClAbadi et al POPL99]
= A calculus to unify dependency analyses
= SLam is one of the instances of DCC
= DCC is monadic type based

= Monadic types of DCC are similar to
modal types in their roles, but

= Typing rules are rather different

i Contents

= Information flow analysis

= Modal logic

= A

= Encoding the SLam calculus
= Related work

= Conclusion and future work

i Conclusion

= Relationship between IFA and modal
logic

= A enjoys subject reduction,
Church-Rosser, strong normalization,
and noninterference

= A translation from SLam to A -

i Future work

= To compare A - with other calculi
for IFA

= To figure out how modal types of
A .- and monadic types of DCC
correspond to each other

= Adding side effects and recursion

End

Kiitos

=

[, x:s; Feg:s,

r F(Ax:s,.ep):(s7—s,,L)

