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Noninterference property

No variable is ever
influenced by
higher or incomparable
level variables.

Simplification to the
lattice model:
H

|
L




Examples — Interference

Direct flow
Yy ‘= TH c

Indirect flow

if vy then yr, :=0 else yr =1 Q

yr, :=1; while xy do (yr :=0; xy := false) g

What is wrong? Low variables are assigned under high tests!




The context matters

Sequential language :

while zg do nil; r;, :=0

Concurrent language :

(al8) @

« :while g donil; r; :=0; zy := false

(G :while mxy donil; r; :=1; xy := true

{xp — true} vs. {xy + false}




Rationale behind the types

Following [BouCas01,02] and [Smith01].

(Pr ;5 P

/ N\
highest-tests(P1) < lowest-writes(Ps)

What a type must tell about programs:
e an upper bound to test-levels

e a lower bound to write-levels




Giving (double) types

Statement Property

Variables ['(x) = o var o = the security level of x

Expressions I'Fe:o o > level of read variables

Commands | I'- P: (7,0) ecmd 7 < level of written variables

o > level of read variables

'-P:(r,0) emd 7>7 o<

Subtyping:
I'-P:(r',o) emd




Typing rules - Imperative primitives

All writes

after a read

must be higher:

Ve

I'Fe:6 T'HFP:(r,o0) emd T'HQ:(1,0) cmd
o< T

['if e then P else Q: (1,0 V o) cmd

I'-Q1:(m,01) emd T'F Qo : (12,02) cmd
I'EQ1; Qa: (1 ANT2,01V 02) cmd
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Reactive languages — Informal semantics

emit s

>
» when ado P
>

do P watching a
» PI9Q
Environment (F) Set of emitted signals.
Suspension (1) Pendency due to absent signals.

Instant Interval in which signals are present or absent.

0,P) —* (E1, P1)t  — (0,P]) —" (Ey, Py)T =

\ 7 A\ . 7
Ve N/

Instant 1 Instant 2
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Example — Instant change ( — )

(E, P)t

<E7P> — <(Z)> LPJE>
/ N\

initialize F perform kills

Environment | “pause”

{} | local a:9 in (emit b; do when a do nil watching b)

{b} | do when @’ do nil watching b

~~~

\ . J/
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Example — Deterministic concurrency 1

Environment | Watch the position of the threads:

{} | (when a do emit b ‘1 when b do emit ¢) ‘1 emit a

Vo

.l_
{} | emit @ 9 (when a do emit b ‘1 when b do emit c)

{a} | when a do emit b T when b do emit ¢
when b do emit ¢

nil
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Topics
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Reactive Languages

Noninterference for Reactive Languages
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Reactive noninterference:

what is the right notion?

Also here we can use double types.

Should we allow ...7
e while xy do ...;
e when ary do ... ;

e when ay do ...
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Counter-example 1

while g do ...;

because:
(a 70)
« :while xy do pause; r; :=0; xg := false
[ :while -z y do pause; r; :=1; zy := true

{xy — true} vs. {xy — false}
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Counter-example 1I

when ag do ... ;

because:
(a7 5)
« :when ay do nil; emit ¢y, ; emit by

[ :when by do nil; emit dj, ; emit ay

{CLH} VS. {bH}
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Counter-example III

when ag do ... 0...r; :=0... g

because:
((a76) 17)
a : (pause; zp :=1)
B :(do (when ay do nil) watching z,; Twhen by do x, :=0)
v :(nil; pause; emit b;)

{CLH, ZH} VS. {ZH}

.. Alternating parallelism requires more conditions
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Double types for reactive primitives

All writes
after a read

must be higher:

~~

['(a)=08 sig T'FP:(r,0) cmd
['+when ado P: (1,0 Vo) cnd

o<T

I'FQq:(m1,01) emd T'F Qs : (m2,02) cmd

v o1 < T2
I'FQ1;Q2: (1 ANT2,01 V o3) cmd

I'EQ1:(m,01) emd T'F Qo : (12,02) cmd
I'EQ19Q2: (11 ANT2,01V 02) cmd

!
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Interference at instant changes

Instant changes...
...are reflected in the signal environment (it is set to empty).

...can depend on high tests

emit ay ; if x = 0 then nil else pause

... are not statically predictable

So we must allow some low signal reset after a high test.
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Reactive Languages
Noninterference for Reactive Languages
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— Noninterference using bisimulation

— High programs
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The language

Imperative
nil |z:=e | let x:=e in P | if e then P else ) | whileedo P | P; QQ

Reactive
emit a | local a:§ in P | do P watching a | whena do P | P 91Q

Configuration C1,Cs,... = (', S, E, P) where:
I' - typing environment S - variable store

E - set of present signals P, () - programs

Step C —— C' ¥ Move C — (' or Instant change C — C".
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Formalizing Noninterference

Idea: a program should be bisimilar to itself when executed on

low-equal memories (bisimulation preserving low memories):

Definition 1 (Secure Programs).

P is secure in I' if for all set of low security levels L and for all
S1, E1, Sa, Eo such that (S1, B1) =% (Ss, ), we have

(I', S1, Ev, P) =¢ (I, 82, By, P).
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Reactive bisimulation

Definition 2 (Reactive bisimulation equivalence ( =, )). The

largest symmetric relation R such that C1'RC5, where
Cl = <F1, Sl,El, P1> and C2 = <F2, SQ, EQ,P2>, zmply

<51,E1> FlmFQ <SQ,E2> cmd

e either
— P, e H'* fori=1,2, or
— Cy — C7 implies 3CL such that Cy —* C5 and C1RCY
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Semantically High programs — H*

Definition: P € H"* implies
o (IS, E,P)— (I'",S" E', P’") implies P’ € HLL
and (S, E) =L (S', E)
o ('S E,P)— (I",S",E', P") implies P’ € HT L
Examples:
e if 7y = 0 then nil else pause

e if true then nil else y; ;=0
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Main results

Lemma 3. Suppose C; =% Co, C1 — C} and Cy — CY,.

1. If P has only low tests, then C} =% C%.
2. If P has high tests and C}| #1, Ch, then P € HI-~.

Theorem 4 (Noninterference).
If P is typable in I' then P 1is I'-secure.
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Current and future work

e Investigate alternative semantics for reactive concurrency.

e Extend the result to the distributed reactive language ULM =

call-by-value + side-effects + reactiveness + mobility [Bou03].
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