Typing Noninterference

for a Reactive Language

Ana Almeida Matos

joint work with Gérard Boudol and Ilaria Castellani

INRIA Sophia Antipolis

Topics

Noninterference for an imperative language
— Security leaks introduced by concurrency

— Typing rules that prevent them
Reactive Languages
Noninterference for Reactive Languages

Proving Noninterference

Noninterference property

No variable is ever
influenced by
higher or incomparable
level variables.

Simplification to the
lattice model:
H

|
L

Examples — Interference

Direct flow
Yy ‘= TH c

Indirect flow

if vy then yr, :=0 else yr =1 Q

yr, :=1; while xy do (yr :=0; xy := false) g

What is wrong? Low variables are assigned under high tests!

The context matters

Sequential language :

while zg do nil; r;, :=0

Concurrent language :

(al8) @

« :while g donil; r; :=0; zy := false

(G :while mxy donil; r; :=1; xy := true

{xp — true} vs. {xy + false}

Rationale behind the types

Following [BouCas01,02] and [Smith01].

(Pr ;5 P

/ N\
highest-tests(P1) < lowest-writes(Ps)

What a type must tell about programs:
e an upper bound to test-levels

e a lower bound to write-levels

Giving (double) types

Statement Property

Variables ['(x) = o var o = the security level of x

Expressions I'Fe:o o > level of read variables

Commands | I'- P: (7,0) ecmd 7 < level of written variables

o > level of read variables

'-P:(r,0) emd 7>7 o<

Subtyping:
I'-P:(r',o) emd

Typing rules - Imperative primitives

All writes

after a read

must be higher:

Ve

I'Fe:6 T'HFP:(r,o0) emd T'HQ:(1,0) cmd
o< T

['if e then P else Q: (1,0 V o) cmd

I'-Q1:(m,01) emd T'F Qo : (12,02) cmd
I'EQ1; Qa: (1 ANT2,01V 02) cmd

Topics

Noninterference for an imperative language

Reactive Languages
— Motivation and informal semantics

— Examples
Noninterference for Reactive Languages

Proving Noninterference

Reactive languages — Informal semantics

emit s

>
» when ado P
>

do P watching a
» PI9Q
Environment (F) Set of emitted signals.
Suspension (1) Pendency due to absent signals.

Instant Interval in which signals are present or absent.

0,P) —* (E1, P1)t — (0,P]) —" (Ey, Py)T =

\ 7 A\ . 7
Ve N/

Instant 1 Instant 2

10

Example — Instant change (—)

(E, P)t

<E7P> — <(Z)> LPJE>
/ N\

initialize F perform kills

Environment | “pause”

{} | local a:9 in (emit b; do when a do nil watching b)

{b} | do when @’ do nil watching b

~~~

\ . J/

11



Example — Deterministic concurrency 1

Environment | Watch the position of the threads:

{} | (when a do emit b ‘1 when b do emit ¢) ‘1 emit a

Vo

.l_
{} | emit @ 9 (when a do emit b ‘1 when b do emit c)

{a} | when a do emit b T when b do emit ¢
when b do emit ¢

nil

12



Topics

Noninterference for an imperative language
Reactive Languages

Noninterference for Reactive Languages
— Some old and new security leaks

— Typing rules that prevent them

Proving Noninterference

13



Reactive noninterference:

what is the right notion?

Also here we can use double types.

Should we allow ...7
e while xy do ...;
e when ary do ... ;

e when ay do ...

14



Counter-example 1

while g do ...;

because:
(a 70)
« :while xy do pause; r; :=0; xg := false
[ :while -z y do pause; r; :=1; zy := true

{xy — true} vs. {xy — false}

15



Counter-example 1I

when ag do ... ;

because:
(a7 5)
« :when ay do nil; emit ¢y, ; emit by

[ :when by do nil; emit dj, ; emit ay

{CLH} VS. {bH}

16



Counter-example III

when ag do ... 0...r; :=0... g

because:
((a76) 17)
a : (pause; zp :=1)
B :(do (when ay do nil) watching z,; Twhen by do x, :=0)
v :(nil; pause; emit b;)

{CLH, ZH} VS. {ZH}

.. Alternating parallelism requires more conditions

17



Double types for reactive primitives

All writes
after a read

must be higher:

~~

['(a)=08 sig T'FP:(r,0) cmd
['+when ado P: (1,0 Vo) cnd

o<T

I'FQq:(m1,01) emd T'F Qs : (m2,02) cmd

v o1 < T2
I'FQ1;Q2: (1 ANT2,01 V o3) cmd

I'EQ1:(m,01) emd T'F Qo : (12,02) cmd
I'EQ19Q2: (11 ANT2,01V 02) cmd

!

18



Interference at instant changes

Instant changes...
...are reflected in the signal environment (it is set to empty).

...can depend on high tests

emit ay ; if x = 0 then nil else pause

... are not statically predictable

So we must allow some low signal reset after a high test.

19



Topics

Noninterference for an imperative language
Reactive Languages
Noninterference for Reactive Languages

Proving Noninterference
— The language and some properties
— Noninterference using bisimulation

— High programs

20



The language

Imperative
nil |z:=e | let x:=e in P | if e then P else ) | whileedo P | P; QQ

Reactive
emit a | local a:§ in P | do P watching a | whena do P | P 91Q

Configuration C1,Cs,... = (', S, E, P) where:
I' - typing environment S - variable store

E - set of present signals P, () - programs

Step C —— C' ¥ Move C — (' or Instant change C — C".

21



Formalizing Noninterference

Idea: a program should be bisimilar to itself when executed on

low-equal memories (bisimulation preserving low memories):

Definition 1 (Secure Programs).

P is secure in I' if for all set of low security levels L and for all
S1, E1, Sa, Eo such that (S1, B1) =% (Ss, ), we have

(I', S1, Ev, P) =¢ (I, 82, By, P).

22



Reactive bisimulation

Definition 2 (Reactive bisimulation equivalence ( =, )). The

largest symmetric relation R such that C1'RC5, where
Cl = <F1, Sl,El, P1> and C2 = <F2, SQ, EQ,P2>, zmply

<51,E1> FlmFQ <SQ,E2> cmd

e either
— P, e H'* fori=1,2, or
— Cy — C7 implies 3CL such that Cy —* C5 and C1RCY

23



Semantically High programs — H*

Definition: P € H"* implies
o (IS, E,P)— (I'",S" E', P’") implies P’ € HLL
and (S, E) =L (S', E)
o ('S E,P)— (I",S",E', P") implies P’ € HT L
Examples:
e if 7y = 0 then nil else pause

e if true then nil else y; ;=0

24



Main results

Lemma 3. Suppose C; =% Co, C1 — C} and Cy — CY,.

1. If P has only low tests, then C} =% C%.
2. If P has high tests and C}| #1, Ch, then P € HI-~.

Theorem 4 (Noninterference).
If P is typable in I' then P 1is I'-secure.

25



Current and future work

e Investigate alternative semantics for reactive concurrency.

e Extend the result to the distributed reactive language ULM =

call-by-value + side-effects + reactiveness + mobility [Bou03].

26



