
ASK-ELLE: a Haskell Tutor

Proefschrift

ter verkrijging van de graad van doctor
aan de Open Universiteit

op gezag van de rector magnificus
prof. mr. A. Oskamp

ten overstaan van een door het
College voor promoties ingestelde commissie

in het openbaar te verdedigen

op vrijdag 23 november 2012 te Heerlen
om 13:30 uur precies

door

Alex Gerdes

geboren op 10 juli 1978 te Emmen

Promotor
Prof. dr. J.Th. Jeuring Open Universiteit

Universiteit Utrecht

Overige leden beoordelingscommissie
Prof. dr. dr.h.c. ir. M.J. Plasmeijer Radboud Universiteit
Prof. dr. S.D. Swierstra Universiteit Utrecht
Prof. dr. S.J. Thompson University of Kent
Prof. dr. M.C.J.D. van Eekelen Open Universiteit

Radboud Universiteit
Prof. dr. ir. S.M.M. Joosten Open Universiteit

Printed by Gildeprint drukkerijen, Enschede.
Cover by Peter Gerdes.

ISBN 978-94-6108-371-5

© Alex Gerdes, 2012

CONTENTS

1 Introduction 1
1.1 ASK-ELLE . 5
1.2 Related work on programming tutors 7
1.3 Structure of this thesis . 10
1.4 Origin of chapters . 11

I Domain reasoners 13

2 Strategies 15
2.1 Strategies and feedback . 17
2.2 Example strategies . 20
2.3 A language for strategies for exercises 22
2.4 Strategy functions . 36
2.5 Feedback based on strategies . 41
2.6 Related work on strategies . 43

3 A strategy recogniser 45
3.1 Representing grammars . 46
3.2 Dealing with labels . 50
3.3 Smart constructors . 51

iii

Contents

3.4 Running a strategy . 53
3.5 Tracing a strategy . 54

4 Exercises 57
4.1 Strategy and rules . 59
4.2 Syntactic and semantic checks . 66
4.3 Properties . 70

5 Domain reasoners 73
5.1 Feedback services . 75
5.2 Web services . 81
5.3 Feedback scripts . 83

II Haskell Tutor 87

6 A programming tutor for Haskell 89
6.1 Programming tutor overview . 91
6.2 Domain description . 92
6.3 Testing incomplete programs . 96
6.4 An interactive session . 97
6.5 Experiments . 103

7 Specifying programming exercises 109
7.1 Configuration . 109
7.2 Feedback scripts for programming exercises 111
7.3 Annotating model solutions . 111

8 Constructing programming strategies 115
8.1 Refinement rules . 117
8.2 Focusing refinement rules . 120
8.3 Strategies in functional programming 123
8.4 Deriving programming strategies . 125

9 A canonical form for Haskell programs 129
9.1 Program transformations . 130
9.2 Discussion . 133

10 A programming strategy recogniser 135
10.1 Parallel top-down recogniser . 136
10.2 Search space reduction . 137

iv

Contents

11 Assessing Haskell programs 143
11.1 Using our assessment tool . 145
11.2 Related work on assessment . 148

12 Epilogue and future work 151
12.1 Future work . 153

Samenvatting 157

Curriculum vitae 163

List of acronyms 177

Index 178

v

Acknowledgements

The last five years I participated as a ‘promovendus’ in a ongoing research project
on generating semantically rich feedback. I thoroughly enjoyed this period, and
never regretted the decision of taking this academic job. It involved hard work,
a lot of travelling, many interesting discussions, and much coding. Together this
culminated in this thesis. During my research I received help from many people,
for which I am very grateful.

First of all I would like to thank my promotor Johan Jeuring, whom I owe very
much. You have always been very thorough and precise when reviewing my work,
and guided me into the right direction when needed. You always had time for me,
even when you moved to Sweden for a while. You constantly pushed me to do
better. That was not always easy, but I value it very much. Johan, I am very lucky
to have had you as my supervisor; I could not have wished for a better one!

I would also like to thank the members of the examination committee (Marko van
Eekelen, Stef Joosten, Rinus Plasmeijer, Doaitse Swierstra, and Simon Thompson)
for reading and approving the manuscript, and providing me with several useful
comments.

Also, I would like to thank Bastiaan Heeren for the many discussions we had
about our research and the implementation of our software. I learned a lot from
those discussions; you are a gifted programmer. Furthermore, I would like to thank
Lex Bijlsma for being the perfect line-manager, your response time is legendary. A
big thank you goes to Chrisja Muris, Harrie Passier, Sylvia Stuurman, Josje Lodder,
and the other colleagues at the Open University. You made my time working in
Heerlen very enjoyable.

I am thankful for Doaitse Swierstra and the Utrecht University for having me as
guest during my PhD-study. The Software Technology group is a very inspiring
environment and an excellent place to do research. I would like to thank José
Pedro Magalhães, Sean Leather, Andres Löh, Wouter Swierstra, Stefan Holdermans,
Arie Middelkoop, Jurriaan Hage, Alexey Rodriguez Yakushev, and all the other
colleagues for the really nice time I had in Utrecht. I would also like to thank
my roommate (and ‘lotgenoot’) Thomas van Noort. Another thanks goes to Bram
Schuur and Bram Vaessen for assisting me with the experiments.

I had the pleasure of meeting Mary Sheeran at the Central European Functional
Programming summer school 2011 in Budapest. This meeting eventually led to a
dream job at QuviQ in Göteborg. Mary I can’t thank you enough for that! I would
also like to thank Thomas Arts, John Hughes, Ulf Norell, and Hans Svensson (my
new colleagues at QuviQ) for the warm welcome. You have made the move to
Sweden a lot less difficult. Tack så jätte mycket!

Finally, I would like to thank my parents Rudie and Willy, my sister Marloes, my
brother Peter (who was kind enough to design the beautiful cover of this thesis),

vii

Acknowledgements

my parents in law Hillie and Harm, and the rest of my family and friends for their
support, understanding, and time. John, Jos, and Gosé, I am grateful that you are
my friends. Especially I would like to thank my wife Anita and my children Mats,
Lise, and Sofie – you make it all worthwhile. Anita, thank you for who you are;
you’ll never know the extent of my gratitude!

Alex Gerdes Herrljunga, Autumn 2012

viii

1 INTRODUCTION

Learning to program is challenging. A first course in programming is often a major
stumbling block (Proulx, 2000), and the results of such a course are often disap-
pointing (McCracken et al., 2001). There is no final answer (yet) to the question
how programming is learned best, and what makes programming hard (Fincher
and Petre, 2004). The topic of how students learn to program has been studied
extensively, by computer scientists, educational scientists, and cognitive psycho-
logists. When a student has to write a program that takes a list of integers as
argument, and returns the sum of the integers, one of the first steps is to distinguish
the empty list from the non-empty list case. Distinguishing these two cases can be
viewed as a production rule. Anderson (1993) and his colleagues have developed
the ACT-R theory, which says that the knowledge underlying a skill begins with
an elaborated example, followed by problem solving by analogy. By applying the
skill, the student internalises the production rule used in the exercise. With practice,
production rules acquire strength and become more attuned to the circumstances
in which they apply. Learning complex skills can be decomposed into learning
individual production rules, and strategies for combining them. A similar approach
to learning programming is taken by (Merriënboer et al., 1992). They present a
four-component instructional design model for the training of complex cognitive
skills. For learning computer programming, the design model emphasises the
importance of worked-out examples. In a later stage steps are removed from the
worked-out examples. These missing steps have to be added by a student. Only

1

1 Introduction

after these stages should students work out complete programs themselves.
To support learning programming, many intelligent programming tutors have

been developed. There exist tutors for Prolog (Hong, 2004), Lisp (Anderson et al.,
1986), Pascal (Johnson and Soloway, 1985; Soloway et al., 1981), Java (Holland
et al., 2009; Kölling et al., 2003; Sykes and Franek, 2004), Haskell (López et al., 2002;
Xu and Sarrafzadeh, 2004), and many more programming languages. Some of
these tutors are well-developed and extensively tested in classrooms, but most
haven’t outgrown the research prototype phase, and are not maintained anymore.
Studies show the positive effects of various tutors on learning programming. These
evaluation studies have indicated that

• working with an intelligent tutor supporting the construction of programs is
more effective when learning how to program than doing the same exercise
“on your own” using only a compiler, or just pen-and-paper (Corbett et al.,
1988),

• using intelligent tutors requires less help from a teacher while showing the
same performance on tests (Odekirk-Hash and Zachary, 2001),

• using such tutors increases the self-confidence of female students (Kumar,
2008),

• the immediate feedback given by many of the tutors is to be preferred over
the delayed feedback common in classroom settings (Mory, 2003; Hattie and
Timperley, 2007).

Learning through feedback is essential, also for learning programming. In Rules
of the Mind (Anderson, 1993), Anderson discusses the ACT-R principles of tutoring,
and the effectiveness of feedback in intelligent tutoring systems (ITSs). One of the
tutoring principles deals with student errors. If a student made a slip in performing
a step she should be allowed to correct it without further assistance. However, if a
student needs to learn the correct rule, the system should give a series of hints with
increasing detail, or show how to apply the correct rule. Finally, it should also be
possible to give an explanation of an error made by the student. Anderson observed
no positive effects in learning with deferred feedback, but observed a decline in
learning rate instead. Erev et al. (2006) also claim that immediate feedback is often
to be preferred.

Despite the evidence for positive effects of using intelligent programming tutors,
they are not widely used. An important reason is that building an intelligent tutor
for a programming language is difficult and a substantial amount of work (Pillay,
2003). Furthermore, it is often hard for a teacher to deploy an intelligent tutor in a
course (Anderson et al., 1995). It is usually quite difficult for teachers to adapt or
add programming exercises to an intelligent programming tutor, and to adapt the

2

feedback given by the tutor. Adding an exercise to a tutor requires investigating
which strategies can be used to solve the exercise, what the possible solutions
are, and how the tutor should react to behaviour that doesn’t follow the desired
path. All this knowledge then has to be translated into the internals of a tutor,
which implies a lot of work. For example, completely specifying feedback in (much
simpler) mathematical exercises results in exercise files of hundreds of lines (Cohen
et al., 2003). Another important aspect for the acceptance of a programming tutor
is that it should offer sufficient freedom to students: a student should be able to use
her own names, to use her own favourite programming style, her own refinement
step-size, etc.

The functionality and help offered by programming tutors varies. The following
aspects play a role:

• Adaptability: can a teacher add her own exercises to a tutor, and can she adapt
the behaviour so that particular ways for solving an exercise are enforced or
disallowed?

Anderson et al. (1995) mention the lack of adaptability as one of the main
reasons for the slow uptake of their tutors outside their own teaching en-
vironment. Bokhove and Drijvers (Bokhove and Drijvers, 2010) list teacher
adaptability as one of the four fundamental requirements for mathematical
learning environments, and Lowes (Lowes, 2007) found that among a group
of almost a hundred teachers of online courses, almost 70% regularly adapt
their assignments.

• Development process: does the tutor support the incremental development
of programs, where a student can obtain feedback or hints on incomplete
programs, can a student follow his or her preferred way to solve a particular
programming problem, does the tutor support refactoring a program, can a
student submit a complete solution to a problem in the tutor?

The incremental approach to developing programs supports knowledge compil-
ation (Anderson et al., 1995), and is fundamental for learning according to the
ACT-R theory.

• Correctness: does the tutor guarantee that a student solution is correct, can
it check that a student has followed good programming practices, can it
verify that the student solution has the desired efficiency, does it give an
explanation why a program is incorrect, does it give counterexamples for
incorrect programs, and/or does it detect at which point of a program a
particular property is violated?

The possibility to detect property violations and to generate counterexamples
at intermediate steps meets the desire for tutoring flexibility expressed by both

3

1 Introduction

students and teachers (Gerdes et al., 2012b). Furthermore, using properties
it is easier for a teacher to specify a problem for a tutor, and she can specify
more substantial programming problems.

Functional programming. In this thesis we focus on teaching and learning func-
tional programming. Functional programming languages are fundamentally different
from languages from the more widespread imperative programming paradigm,
such as C or Java. Instead of imperative statements, programmers define functions
that are applied to arguments. There are no assignment statements or mutable
state. A program is a (main) function that is defined in terms of other functions. A
functional programming language allows a programmer to define what a program
should accomplish, rather than describing how to accomplish it.

A popular functional programming language is Haskell (Peyton Jones, 2003). It
is a lazy, pure, and statically typed programming language with a relatively small
core based on the λ-calculus. Laziness implies that Haskell defers the evaluation
of expressions until their results are needed. Arguments supplied to a function
are only evaluated if their values are used. Another prominent feature of Haskell
is that it is strongly and statically typed. Haskell’s type system does not allow
implicit type conversions, and type errors are detected at compile time.

Functional programming, and in particular Haskell, is taught at many univer-
sities1 around the world. Haskell is a good language to teach many important
concepts in computer science, because it has advanced means to define abstrac-
tions, types, polymorphism, recursion, etc. There exist many good text books on
Haskell (Bird, 1998; Hudak, 2000; Hutton, 2007; O’Sullivan et al., 2008; Thompson,
1999), which introduce and explain these concepts.

Research questions. In this thesis we investigate the following research ques-
tions:

How can we design and implement a functional programming tutor

• that automatically gives semantically rich feedback to students increment-
ally solving an exercise,

• to which teachers can easily add exercises,

• in which teachers can easily fine-tune feedback?

We have built a functional programming tutor in which we address these research
questions. We have developed ASK-ELLE , a tutor for Haskell that supports the
stepwise development of simple functional programs. The tutor targets beginning
computer science students. This thesis gives a complete overview of ASK-ELLE.

1http://www.haskell.org/haskellwiki/Haskell_in_education

4

http://www.haskell.org/haskellwiki/Haskell_in_education

1.1 ASK-ELLE

We explain all components of ASK-ELLE, along with examples and implementation
details. The next section gives a short introduction to ASK-ELLE. After that,
Section 1.2 discusses other relevant programming tutors and relates our work to
these tutors. In Section 1.3 we present the structure of this thesis, give an overview
of the contents of all chapters, and describe the relations between the chapters. In
the last section of this chapter, Section 1.4, we describe the origin of the chapters.

1.1 ASK-ELLE

VanLehn (2006) proposes a standardisation of the terminology to describe ITSs. He
distinguishes two loops in an ITS: an outer and an inner loop. The main task of
the outer loop is to select an appropriate task for the student. The inner loop is
responsible for giving hints and feedback on student steps.

ASK-ELLE is an interactive system that supports students while solving introduct-
ory functional programming exercises. The tutor is offered as a web application.
See Figure 1.1 for a screenshot. ASK-ELLE has a relatively simple outer loop, which
allows the student to choose an exercise from a subset of the exercises found on the
Haskell-99 list2. The inner loop of ASK-ELLE is our main contribution. Using the
system, students learning functional programming

• develop their programs incrementally,

• receive feedback about whether or not they are on the right track,

• can ask for a hint when they are stuck,

• see how a complete program is stepwise constructed.

All of this functionality is calculated automatically from annotated solutions spe-
cified by a teacher.

ASK-ELLE itself is implemented as a functional program, and uses fundamental
concepts from software technology such as rewriting, parsing, strategies, program
transformations and higher-order combinators such as the fold. The tutor is built
on top of our general software framework for specifying domain reasoners (Heeren
et al., 2010), and uses the Helium compiler for Haskell (Heeren et al., 2003). Helium
gives excellent syntax-error and type-error messages, and reports dependency
analysis problems in a clear way.

Model solutions. For any programming problem there are many solutions. Some
of these solutions are syntactical variants of each other, but other solutions im-
plement different ideas to solve a problem. A teacher can specify her exercises in

2http://www.haskell.org/haskellwiki/99_Haskell_exercises

5

http://www.haskell.org/haskellwiki/99_Haskell_exercises

1 Introduction

Figure 1.1: ASK-ELLE, a web-based functional programming tutor

ASK-ELLE by giving a set of model solutions for a problem. A model solution is a
program that an expert writes, using good programming practices.

Our tutor supports the incremental construction, in a top-down fashion, of model
solutions. It recognises incomplete versions of these solutions, together with all
kinds of syntactical variants. We support the refinement of programs. Instead of
showing that a program ensures a post-condition by testing the program or proving
the program to be correct, we assume a program to be correct if we can determine
it to be equal to a model solution. The tutor aims to be as flexible as possible for
teachers as well as for students. For example, a student may use her own names for
functions and variables, and may use different, but equivalent, language constructs.

The tutor generates feedback based on a set of model solutions for a particular
programming problem. A teacher can adapt feedback by annotating the model
solutions. This requires translating annotated model solutions to a form which
we can use to track intermediate student steps. We use strategies to track the
intermediate steps taken by a student.

Programming strategies. A procedure to solve an exercise often consists of mul-
tiple steps. For example, developing an explicit recursive function on lists often
consists of introducing a case distinction between the empty list and the non-empty
list, and a recursive call in the non-empty list case, amongst others. A procedure

6

1.2 Related work on programming tutors

may also contain a choice between different (sequences of) steps, such as either
using a higher-order function, or an explicit recursive definition. Sometimes, the or-
der in which the steps are performed is not relevant, as long as they are performed
at some point.

We have developed a strategy language for describing procedures as rewrite
strategies (Heeren et al., 2008). Our strategy language is domain independent,
and has been used to describe strategies for exercises in mathematics, logic, and
biology, in addition to programming. A strategy for a functional program describes
how a student should construct a functional program for a particular problem.
The basic elements of the strategy language are rewrite or refinement rules . We use
these strategies to support students using our intelligent programming tutor to
incrementally develop a program. We can automatically derive a strategy from a set
of model solutions.

Refinement and rewrite rules. A student develops a program by making small,
incremental, changes to a program. Alternatives in teaching programming are to
give a student an incomplete program, and ask her to complete the program, or to
give a student a program, and ask her to change the program at a particular point.
In such assignments, a student refines or rewrites a program. After each refinement,
a student can ask the tutor whether or not the refinement is bringing her closer to a
correct solution, or, if the student doesn’t know how to proceed, ask the tutor for a
hint. Rewriting preserves the semantics of a program; refining makes a program
more defined.

Normalisation. To verify that a program submitted by a student follows a strate-
gy, we apply all refinement rules allowed by the strategy to the previous submission
of the student, normalise the programs thus obtained, and compare each of these
programs against the normalised submitted student program. Normalisation re-
turns a canonical form of a program. Using normalisation, we want to recognise as
many syntactical variants of Haskell programs as possible. For example, sometimes
a student doesn’t explicitly specify all arguments to a function, and for that purpose
we use η-reduction when analysing a student program. Normalisation uses various
program transformations to reach a canonical form of a Haskell program. We are
not interested in the actual canonical form; we are striving to transform as many
equivalent programs as possible to the same form.

1.2 Related work on programming tutors

If ever the computer science education research field (Fincher and Petre, 2004)
finds an answer to the question of what makes programming hard, and how

7

1 Introduction

programming environments can support learning how to program, it is likely to
depend on the age, interests, major subject, motivation, and background knowledge
of a student. Programming environments for novices come in many variants, and
for many programming languages or paradigms (Guzdial, 2004; Kelleher and
Pausch, 2005; Pears et al., 2007). Programming environments like Scratch and
Alice (Utting et al., 2010) target younger students than we do, and emphasise the
importance of constructing software with a strong visual component, with which
students can develop software to which they can relate.

We have not found other tutors that support the stepwise development of pro-
grams, automatically calculating feedback based on teacher-specified annotated
solutions. We compare our approach to a number of examples which we believe
are relevant to the work presented in this thesis, knowing that we leave out several
notable others.

1.2.1 Lisp tutoring

Our tutor resembles the Lisp tutor (Anderson et al., 1986) in that it supports the
stepwise development of programs, and gives hints at intermediate steps. The
Lisp tutor supports the incremental development of programs and can explain
common errors. Adding new material to the tutor is still quite some work, and a
teacher cannot easily adapt the feedback. Using our approach based on strategies,
the interaction style becomes flexible, and adding exercises becomes relatively
easy. By generating strategies from model solutions we think it is easier to add
programming exercises to our tutor. Moreover, teachers can easily fine-tune the
generated feedback.

Soloway (1985) describes programming plans for constructing Lisp programs.
These plans are instances of the higher-order function foldr and its companions.

1.2.2 Prolog tutoring

The Prolog tutor (Hong, 2004) characterises and classifies programs that use the
same programming technique and share a common pattern of code. It defines a set
of grammar rules that capture a programming technique for each class of programs.
These grammar rules can be used for programming technique recognition, program
construction, and program parsing. The system conducts tutoring in two different
modes: guided programming and automated error analysis.

The programming techniques developed by the Prolog tutor are similar to our
strategies. These strategies are matched against complete student solutions, and
feedback is given after solving the exercise. We expect these strategies can be
translated to our strategy language, and can be reused for a programming language
like Haskell.

8

1.2 Related work on programming tutors

1.2.3 Scheme tutoring

DRSCHEME (Findler et al., 2002), continued as DRRACKET, is an interactive pro-
gramming environment targeting introductory level students. It offers a syntax
checker with lexical scope analysis. Students can evaluate an expression in a read-
eval-print loop, to gain insight in the semantics of the language. In addition to
evaluating expressions, students can also step through an evaluation. The envir-
onment comes with a static debugger, which basically is a soft type inferencer. To
teach students the syntax and semantics of Scheme, the programming environment
supports four increasing levels of exposure to the programming language.

In contrast to our approach, the environment does not explicitly offer program-
ming exercises. The programming environment does not provide feedback or hints
with respect to the solution of an exercise.

1.2.4 Java tutoring

J-LATTE (Holland et al., 2009) is an intelligent tutoring system for Java programming
language. It offers two modes: a concept mode, in which a student designs a
program on a high-level without any statements, and a code mode in which a
student completes the code generated based on the result from the concept mode.
J-LATTE verifies complete student Java programs against constraints.

Another Java programming tutor is JITS (Sykes and Franek, 2004). It only sup-
ports a subset of the Java programming language. Similar to our approach, JITS uses
expert model solutions to generate feedback. In addition to these model solutions, a
number of incorrect responses can be specified for an exercise. JITS uses techniques
from the artificial intelligence field to make a decision what feedback the tutor
should give to the student.

Both of the Java tutors require students to submit full programs (which may be
very small), which are then scrutinised to determine the students intent (JITS) or
whether or not properties are violated (J-LATTE). Although small steps may be
supported in these tutors, students cannot submit incomplete programs and get
feedback or hints on how to proceed.

1.2.5 Pascal tutoring

PROUST (Johnson and Soloway, 1985) is a Pascal tutor. PROUST tries to reconstruct
the, possibly erroneous, steps that a student took in the construction of a program.
The system attempts to relate a program to the intentions of the student, bridging
the gap between what is meant and what is actually realised. To do so, the sys-
tem matches programming plans to complete a student program. These plans
are related to our programming strategies in the sense that they capture expert

9

1 Introduction

knowledge about how to solve a particular problem. In contrast to PROUST, we use
strategies to generate semantically rich feedback that we give to students during
the construction of a program.

1.2.6 Haskell tutoring

The Haskell tutors WHAT (López et al., 2002) and Haskell-Tutor (Xu and Sarrafza-
deh, 2004) focus on building a student model, which is used to determine what kind
of exercises should be offered to the student. The feedback these two tutors offer is
limited: López et al. (2002) use unit testing to detect errors in student programs,
and Xu and Sarrafzadeh (2004) displays errors generated by the compiler (Helium).
Both tutors do not support the stepwise development of a program.

1.2.7 Mathematics tutoring

Intelligent tutors for mathematics such as MATHPERT (Beeson, 1990), APLUSIX

(Chaachoua et al., 2004), ACTIVEMATH (Melis et al., 2001), to mention just a few,
are much more widely spread and used than intelligent programming tutors.
Mathematics has a number of advantages compared with programming:

• the mathematical language of expression is much more stable than most
programming languages,

• many mathematical problems are relatively easy compared with program-
ming problems,

• often there is a unique solution to a mathematical problem,

• checking correctness of intermediate steps is much easier because many
mathematical problems are solved by applying meaning-preserving trans-
formations to an expression.

These properties of mathematics make it easier to give feedback to users of an
intelligent tutor, both at intermediate steps as at the end.

1.3 Structure of this thesis

This thesis is divided into two parts. The first part, chapters 2 to 5, describes
our general software framework for specifying domain reasoners, on which our
functional programming tutor is built. We have used this framework to specify
domain reasoners for various mathematical domains (Heeren et al., 2008; Heeren
and Jeuring, 2008, 2009, 2010, 2011). Chapter 2 introduces the most prominent

10

1.4 Origin of chapters

component of our domain reasoners: strategies. We have developed a language
in which we can specify strategies. We introduce rewrite rules, which are the
symbols of the strategy language, and give the semantics of the language. The
following chapter in this part, Chapter 3, highlights some implementation details
of a recogniser for our strategy language. In Chapter 4 we explain exercises in the
context of our framework. We describe the different components of an exercise,
such as the set of rewrite rules. We give a formal model of an exercise, and specify
relevant properties. In Chapter 5 we introduce the concept of a domain reasoner,
and explain the various components of it. The communication with a domain
reasoner goes via (web)services. We formalise the available services, and describe
them in detail. To make the explanation of a domain reasoner more concrete, we
show an example domain reasoner for the domain of arithmetic with fractions.

The second part of this thesis, chapters 6 to 11, discusses our Haskell tutor.
Chapter 6 introduces our programming tutor, and shows an example of an interact-
ive session with a hypothetical student, and reports on the results and conclusions
of a series of experiments conducted. Teachers have some control over the feedback
generated by the programming tutor. Chapter 7 shows how teachers can specify
programming exercises and fine-tune the generated feedback by annotating model
solutions. The following chapters detail different aspects of the programming tutor.
Chapter 8 shows how we use our strategy language for the functional program-
ming domain, and how we derive a programming strategy from a set of model
solutions. In Chapter 9 we explain our normalisation procedure. Before the stu-
dent submission is examined, we normalise the submission to ignore insignificant
differences. In addition to the flexibility offered to teachers, the tutor also aims
to be flexible towards students. Chapter 10 highlights an aspect of this flexibility
towards students: we discuss how we recognise an arbitrary number of steps by a
student in one go. The last chapter, Chapter 11, is about an alternative usage of the
techniques behind our programming tutor. In this chapter we explain how we use
the same technology to automatically assess Haskell programming exercises.

1.4 Origin of chapters

This thesis is largely based on a number of reviewed and published articles. Many
parts of the articles have been revised and rewritten. The chapters of this thesis are
based on the following publications:

Chapter 2: Gerdes et al. (2010a); Jeuring et al. (2012); Heeren et al. (2010)

Chapter 3: Heeren and Jeuring (2008). This chapter is a revised version of
the paper written by Heeren and Jeuring. This text is not written but

11

1 Introduction

only revised by the candidate3. It is included to complete the description
of domain reasoners (Part I).

Chapter 4: Gerdes et al. (2010a); Heeren and Jeuring (2009)

Chapter 5: Gerdes et al. (2008, 2010a); Heeren and Jeuring (2010)

Chapter 6: Gerdes et al. (2012b); Jeuring et al. (2012)

Chapter 7: Gerdes et al. (2012b,a)

Chapter 8: Gerdes et al. (2009); Jeuring et al. (2012)

Chapter 9 : Gerdes et al. (2010b); Jeuring et al. (2012)

Chapter 10: Gerdes et al. (2012a)

Chapter 11: Gerdes et al. (2010b)

The contribution of the candidate to the above articles is the following:

Gerdes et al. (2008, 2009, 2010a,b, 2012a,b) The candidate is the main au-
thor of these articles, and responsible for most of the presented
work.

Heeren and Jeuring (2009) The text on views, in Section 4.1.5, originates
from this article. It is not written but only revised by the candidate.
We include this text because views are an important part of an
exercises specification.

Heeren et al. (2010) The candidate merged and extended previous work
into this journal article.

Heeren and Jeuring (2010) The text on feedback scripts, in Section 5.3,
originates from this article. It is not written but only revised by the
thesis author. We include this text to complete the description of
domain reasoners.

Jeuring et al. (2012) The candidate is the author of chapters 4 and 5, and
some parts of chapter 6 of these lecture notes. The candidate is
also responsible for implementing the Haskell tutor, as well as
adapting the general framework where necessary.

3That is the author of this thesis.

12

Part I

Domain reasoners

13

2 STRATEGIES

Tools like APLUSIX (Chaachoua et al., 2004), ACTIVEMATH (Melis et al., 2001),
MATHPERT (Beeson, 1998), the Freudenthal digital math environment (DME) (Freu-
denthal Institute, 2004; Boon and Drijvers, 2005), our tool for rewriting logic ex-
pressions (Lodder et al., 2006), and our programming tutor ASK-ELLE (Gerdes
et al., 2012b) support solving exercises incrementally. Ideally such a tool gives
detailed feedback on several levels. For example, when a student rewrites 1

2 + 2
3

into 6 + 2
3 , the tool should tell the student that there is a missing numerator. If

the same expression is rewritten into 3
5 , it should tell the student that a common

error has been made when adding the two fractions: the fractions should have the
same denominator before adding them. Finally, if the student rewrites 1

2 + 2
3 into

2
4 + 2

3 , it should tell the student that although this step is not wrong, it is not the
step expected by the strategy. The strategy expects the fractions to have a common
denominator, instead of a common numerator.

The first kind of error is a syntax error, and there exist good error-repairing
parsers that suggest corrections to formulas with syntax errors (Swierstra and
Duponcheel, 1996). The second kind of error is a rewriting error: the student
rewrites an expression using a non-existing or buggy rule (Brown and Burton, 1978;
Hennecke, 1999). There already exist some interesting techniques for finding the
most likely error when a student incorrectly rewrites an expression. The third kind
of error is an error on the level of the procedural skill or strategy for solving this
kind of exercises. This chapter discusses how we can formulate and use strategies

15

2 Strategies

to construct the third kind of feedback.

Strategies specify how a wide range of exercises can be solved incrementally,
such as bringing a logic proposition to disjunctive normal form, calculating with
fractions, or defining a functional program. A strategy captures expert knowledge
about how to solve a particular problem. It describes which steps a student can
take to solve an exercise, and in what order. When a student solves an exercise
stepwise, we can check whether or not a step follows the strategy. In this chapter we
introduce a language for specifying strategies for solving exercises. This language
makes it easier to automatically calculate feedback, for example when a user makes
an erroneous step in a calculation. We use strategies to derive semantically rich
feedback for exercises (Heeren et al., 2010). We can automatically generate worked-
out examples, give hints, track the progress of a student by inspecting submitted
intermediate answers, and give suggestions in case the student deviates from the
strategy.

The strategy language is implemented as an embedded domain-specific lan-
guage (EDSL) (Hudak, 1996). A strategy describes valid sequences of rewrite rules,
which turns tracking intermediate steps into a parsing problem. Computer Science
has almost 50 years of experience in parsing sentences of context-free languages,
including error-repairing parsers. This view on interactive exercises allows us to
take advantage of the experience in parsing sentences of context-free languages,
and transfer this knowledge and technology to the domain of stepwise solving
exercises. We can use this knowledge to give feedback on the level of strategies. In
this chapter we work out the similarities between parsing and solving exercises
incrementally, and we discuss generating feedback using strategies. The strategy
language can be used for many domains, and can be used to automatically calculate
feedback on the level of strategies, given an exercise, the strategy for solving the
exercise, and student input. The specification of a strategy and the calculation
of feedback is separated: we can use the same strategy specification to calculate
different kinds of feedback.

This chapter is organised as follows. Section 2.1 introduces strategies, and
discusses how they can help to improve feedback in intelligent tutoring systems. We
continue with some example strategies from the domain of arithmetic (Section 2.2).
Then we present our language for specifying strategies in Section 2.3. We do so by
defining a number of strategy combinators, by showing how the various example
strategies can be specified in our language, and by defining the semantics of these
strategy combinators. Section 2.4 defines a number of strategy functions, which
we use to extend the semantics. We explain how we use strategies to rewrite
expressions. In Section 2.5 we discuss several kinds of feedback and hints that
can be generated using our strategy language. Finally, we discuss related work in
Section 2.6.

16

2.1 Strategies and feedback

2.1 Strategies and feedback

Whatever aspect of intelligence you attempt to model in a computer program, the
same needs arise over and over again (Bundy, 1983):

• The need to have knowledge about the domain.

• The need to reason with that knowledge.

• The need for knowledge about how to direct or guide that reasoning.

In the case of exercises, the knowledge about how to guide reasoning is often
captured by a so-called procedure or procedural skill. A procedure describes
how basic steps may be combined to solve a particular problem. A procedure is
often called a strategy (or meta-level reasoning, meta-level inference (Bundy, 1983),
procedural nets (Brown and Burton, 1978), plans, tactics, etc.), and we will use this
term in this thesis.

Many subjects require a student to learn strategies. At elementary school, stu-
dents have to learn how to calculate a value of an expression, which may include
fractions. At high school, students learn how to solve a system of linear equations,
and at university, students learn how to apply Gaussian elimination to a matrix, or
how to rewrite a logical expression to disjunctive normal form. Strategies are not
only important for mathematics, logic, and computer science, but also for physics,
biology (Mendel’s laws), and many other subjects. Strategies are taught at any
level, in almost any subject, and range from simple – for example the simplification
of arithmetic expressions – to very complex – for example a complicated linear
algebra procedure.

Intelligent tutoring systems for learning strategies. Strategic skills are almost
always acquired by practising exercises, and indeed, students usually equate math-
ematics with solving exercises. In schools, the dominant practice still is a student
performing a calculation using pen-and-paper, and the teacher correcting the calcu-
lation (the same day, in a couple of days, after a couple of weeks). There exist many
software solutions that support practising exercises on a computer. The simplest
kinds of tools offer multiple-choice questions, possibly with an explanation of the
error if a wrong choice is submitted. A second class of tools asks for an answer to
a question, again, possibly with an analysis of the answer to give feedback when
an error has been made. The class of tools we consider are tools that support the
incremental, stepwise calculation of a solution to an exercise, thus mimicking the
pen-and-paper approach more or less faithfully. Since intelligent tutoring systems
(e-learning systems, interactive learning environments, etc.) for practising proced-
ural skills seem to offer many advantages, hundreds of tools that support practising

17

2 Strategies

strategies in mathematics, logic (see (Ditmarsch, 2009) for a list of almost 50 tools
for teaching logic), physics, etc. have been developed.

Feedback in intelligent tutoring systems. Of the intelligent tutoring systems
that support incrementally solving exercises there are only very few that mimic
the incremental pen-and-paper approach and that give detailed feedback at in-
termediate steps based on student input. The DME (Freudenthal Institute, 2004)
labels intermediate steps with a green (correct) or red (wrong) symbol. MATH-
DOX (Cohen et al., 2003) can provide more detailed feedback, which has to be
specified together with the exercise, leading to exercise files of hundreds of lines.
ACTIVEMATH (Goguadze et al., 2005) gives feedback for classes of exercises, but
doesn’t take student input into account when providing feedback.

Although all these kinds of feedback at intermediate steps are valuable, it is
unfortunate that the full possibilities of e-learning tools are not used. There are
several reasons why the given feedback is limited. The main reasons probably are
that supporting detailed feedback for each exercise is very laborious, providing a
comprehensive set of possible bugs for a particular domain requires a lot of research
(see for example Hennecke’s work (Hennecke, 1999) on student bugs in calculating
fractions), and automatically calculating feedback for a given exercise, strategy, and
student input is very difficult.

Representing strategies. Representing a domain and the rules for manipulating
an expression in the domain is often relatively straightforward. Specifying a
strategy for an exercise is more challenging in many cases. To specify a strategy,
we need the power of a full programming language: many strategies require
computations of values. However, to calculate feedback based on a strategy, we
need to know more than that it is a program. We need to know its structure and
basic components, which we can use to report errors.

An embedded domain-specific language for specifying strategies. This chapter
discusses the design of a language for specifying strategies for exercises. The
domains and rules vary for the different subjects, but the basic constructs for
describing strategies are the same for different subjects (‘first do this, then do that’,
‘either do this or that’). So, the strategy language can be used for any domain
(mathematics, logic, physics, functional programming, etc.). It consists of several
basic constructs from which strategies can be built. These basic constructs are
combined with program code in a programming language to be able to specify
any strategy. The strategy language is formulated as an EDSL in a programming
language to easily facilitate the combination of program code with a strategy. Here
‘domain-specific’ means specific for the domain of strategies, not specific for the

18

2.1 Strategies and feedback

domain of exercises. The separation into basic strategy constructs and program
code offers us the possibility to analyse the basic constructs, from which we can
derive several kinds of feedback.

What kind of feedback? We can automatically calculate the following kinds of
feedback, many of which are part of the tutoring principles of Anderson.

• Is the student still on the right path towards a solution? Does the step made
by the student follow the strategy for the exercise? What is the next step the
student should take?

• We produce hints based on the strategy.

• We can give an indication of the progress, based on the position on the path
from the starting point to the solution of an exercise.

• If a student enters a wrong final answer, we can ask the student to solve
subproblems of the original problem.

We do not build a model of the student to try to explain the error made by the
student. According to Anderson, an informative error message is better than bug
diagnosis. However, we do intend to include facilities for building a student model
in the future, to offer the possibility to select tasks that are suitable for a student.

How do we calculate feedback using strategies? The strategy language is de-
fined as an EDSL in Haskell (Peyton Jones, 2003). Using the basic constructs from the
strategy language, we can create something that resembles a context-free grammar
(CFG). The sentences of this grammar are sequences of rewrite steps (applications
of rules). We can thus check whether or not a student follows a strategy by parsing
the sequence of rewrite steps, and checking that the sequence of rewrite steps is
a prefix of a sentence from the context-free grammar. We use top-down recursive
parsing to track student behaviour and give feedback, because we want to support
the top-down, incremental construction of derivations.

Many steps require student input, for example when a student wants to multiply
the numerator and denominator of a fraction by a number. This part of the trans-
formation cannot be checked by means of a CFG, and here we make use of the fact
that our language is embedded into a full programming language, to check input
values supplied by the student. The separation of the strategy into a context-free
part, using the basic strategy combinators, and a non-context-free part, using the
power of the programming language, offers us the possibility to give the kinds of
feedback mentioned above.

19

2 Strategies

2.2 Example strategies

In this section we present two strategies for rewriting simple arithmetic expressions.
The first strategy expresses how to simplify arithmetic expressions with powers,
and the second strategy describes a procedure for calculating a simpler form of a
fraction. Although the example strategies are relatively simple, they are sufficiently
rich to demonstrate the main components of our strategy language.

The domain. Before we can define a strategy, we first have to introduce the
domain of arithmetic expressions and a collection of available rules. An arithmetic
expression is a variable, a constant (a natural number), or one of the following
operations: the addition of two expressions, the subtraction of two expressions,
the division of two expressions (a fraction), the multiplication of two expressions,
the negation of an expression, or the power of an expression to another expression.
This results in the following grammar:

Expr ::= Var | N | Ops
Var ::= a | b | . . . | x | y | . . .

Ops ::= Expr + Expr | Expr− Expr | Expr
Expr

| Expr · Expr

| ExprExpr | −Expr

If necessary, we write parentheses to resolve ambiguities. Examples of valid expres-
sions are 1

3 · (
2
3 + 3

4) and ax · ay.

The rules. Figure 2.1 presents, amongst others, a small collection of basic rules.
All variables in these rules are meta-variables and range over arbitrary arithmetic
expressions. The rules are expressed as equivalences, but are only applied from
left to right. For some rules we assume we have a commutative variant, for
instance, 0 + a = a for rule UNITADD. Using these rules, we can simplify arithmetic
expressions.

Every real-life learning environment for this domain has to be aware of a much
richer set of rules. In particular, we have not given rules for commutativity and
associativity of some of the operations, and many rules for other operations are
omitted, such as taking the logarithm.

Strategy 1: simplifying expressions with powers. The first strategy applies the
basic rules for powers from Figure 2.1 exhaustively in a bottom-up manner. We
proceed with applying rules as long as a rule can be applied somewhere. If no rule
can be applied anymore, we have a simplified arithmetic expression. The strategy is

20

2.2 Example strategies

Units and zeroes: UNITADD: a + 0 = a
UNITMUL: a · 1 = a
ZEROMUL: a · 0 = 0

UNITSUB: a− 0 = a
UNITPOW: a1 = a
ZEROPOW: a0 = 1

Fraction rules: ADD:
a
c
+

b
c

=
a + b

c

MUL:
a
b
· c

d
=

a · c
b · d

RENAME:
b
c

=
a · b
a · c (a 6= 0)

SIMPL:
a + b

b
= 1 +

a
b

Power rules: ADDPOW: ax · ay = ax+y

MULPOW: (ax)y = ax·y
DISTPOW: (a · b)x = ax · bx

Figure 2.1: Basic rules for simple arithmetic expressions

very liberal, and approves many sequence of rules. Using this strategy to simplify
(a3 · a4)2 results in the following derivation:

(a3 · a4)2 ADDPOW
=⇒ (a7)2 MULPOW

=⇒ a14

In this derivation the addition of integers (i.e., 3 + 4) is performed silently.

Strategy 2: adding fractions. The second strategy captures the procedure for
adding fractions in arithmetic expressions. If the result after adding two fractions
is an improper fraction (the numerator is larger than or equal to the denominator),
then it should be converted to a mixed number. Figure 2.1 displays a number of
basic rewrite rules on fractions. A possible strategy to solve this type of exercise is
the following:

Step 1. Find the least common denominator (LCD) of the fractions: let this be
n

Step 2. rename the fractions such that n is the denominator

Step 3. Add the fractions by adding the numerators

Step 4. Simplify the fraction if it is improper

These steps may be performed somewhere in the expression. In addition to these
four steps the unit and zero rules may be used whenever possible. For example, the
addition of the fractions in 2

3 + 2
5 is performed as follows:

2
3 + 2

5
RENAME
=⇒ 10

15 + 2
5

RENAME
=⇒ 10

15 + 6
15

ADD
=⇒ 16

15
SIMPL
=⇒ 1 + 1

15

21

2 Strategies

2.3 A language for strategies for exercises

The two example strategies for rewriting arithmetic expressions given in the previ-
ous section give an intuition for strategies for exercises. In this section we define
a language for specifying such strategies. We explore a number of combinators
to combine simple strategies into more complex ones. We start with a set of basic
combinators, and gradually move on to more powerful combinators. We define the
semantics of these combinators, and the laws they satisfy. Our strategy language is
very similar to the language for specifying CFGs, and we will describe the equival-
ent concepts when applicable. This strategy language has been used extensively in
domain reasoners for various mathematical domains (Heeren et al., 2010).

We use a collection of standard combinators to combine strategies, resulting in
more complex strategy descriptions. The semantics of the combinators is given in
terms of the language of a strategy. The language of a strategy is a set of sentences,
where each sentence is a sequence of symbols. The symbols in our language
are rewrite or refinement rules. We use a, b, c,... to denote symbols, and x, y, z
for sentences (sequences of such symbols). As usual, we write ε for the empty
sequence, and xy (or ax) for concatenation. Function L generates the language
of a strategy. Note that we also use x and y for variable names. For example in
λ-abstractions, which are given as argument to the fix combinator.

2.3.1 Rules

The basic components of our strategy language are rewrite and refinement rules.
Such a rule is the smallest building block to construct composite strategies, and
corresponds to a terminal symbol in a CFG. A rule rewrites or refines an expression.
A rule is applicable to an expression if the left-hand side of the rule matches,
possibly using unification. If the expression matches, it is replaced by the right-
hand side of the rule, in which the metavariables are substituted by the matched
expressions.

We distinguish two kinds of rules: minor rules and major (normal) rules. Major
rules typically are the rules a student applies, such as the rules for manipulating
arithmetic expressions listed in Figure 2.1. Minor rules are used to perform admin-
istrative tasks, such as moving down into a term, updating an environment, or
automatically simplifying a term, such as replacing x + x by 2 · x. The implementer
of a strategy determines whether or not a rule is major or minor. The predicate
isMinor is used to determine whether or not a rewrite or refinement rule is minor.
The example derivation for simplifying the expression with powers given above
only shows the major rules. The minor rules that move the focus into a term, for
example for moving from (a3 · a4)2 to a3 · a4 to apply rule ADDPOW, are not shown
in the derivation. A major rule may be turned into a minor rule to decrease the

22

2.3 A language for strategies for exercises

granularity of intermediate steps (e.g., rewriting 3+ 4 to 7 in the example derivation
of simplifying an arithmetic expression with powers), or increase the difficulty of
an exercise. It is advisable to make only rules that the user can apply major, since
major rules will be shown to the user in derivations, and be given as hints. For
example, if the focus in the editor cannot be set by the user, it is unwise to make a
rule that changes the focus in a term a major rule.

When tracking a student working on an exercise we maintain an environment, for
example for storing extra information. An environment stores additional informa-
tion at intermediate steps in a derivation, such as auxiliary results. An environment
is defined as follows:

Definition 2.1. An environment is a set of key/value pairs, which can be added, removed,
consulted, and updated.

Recall the strategy for adding fraction from Section 2.2. The first step is to
determine the LCD. The rule LCD, which stores the LCD in the environment, is
implemented as a minor rule. In our approach a rewrite rule does not operate on
just an expression, but on the product of an environment and an expression. A
rewrite rule is defined as follows.

Definition 2.2. A rewrite rule r is a binary relation on the product of an environment
Γ and an expression: (Γ1 × e1)

r
 (Γ2 × e2). A rewrite rule is tagged with a boolean

indicating whether or not it is a minor rule. If the rewrite rule does not change the
environment we use e1

r
 e2 as a short-hand notation for (Γ × e1)

r
 (Γ × e2).

Consider the derivation of adding two fractions from the previous section. The
full derivation, including minor rules, is as follows:

(∅, 2
3 + 2

5)
LCD
 ({(n, 15)}, 2

3 + 2
5)

RENAME
 ({(n, 15)}, 10

15 + 2
5)

RENAME

({(n, 15)}, 10
15 + 6

15)
ADD
 ({(n, 15)}, 16

15)
SIMPL
 ({(n, 15)}, 1 + 1

15)

The language of a strategy consisting of a single rule is just that rule:

L (r) = {r}

2.3.2 Choice

The choice combinator <|> allows solving a problem in two different ways. In
CFGs, choice is introduced by having multiple production rules for a non-terminal
symbol, which can be combined by means of the |-symbol, which explains our

23

2 Strategies

notation. The language generated by choice is the union of the languages of the
arguments:

L (σ <|> τ) = L (σ) ∪ L (τ)

Where σ and τ are meta-variables that range over strategies. The δ combinator is a
strategy that always fails. Its set of sentences is empty:

L (δ) = ∅

It is a unit element of <|>:

δ <|> σ = σ
σ <|> δ = σ

These properties hold for all strategies σ.

2.3.3 Sequence

Often, an exercise is solved in a particular order: when adding two fractions we
first need to rename the fractions so that they have the same denominator, before
we can add the numerators.

The sequence combinator, denoted by <?>, applies its second argument strategy
after its first, thus allowing programs that require multiple refinement steps to
be applied in some order. The right-hand side of a production rule in a CFG

consists of a sequence of symbols. The sentences in the language of sequence are
concatenations of sentences from the languages of the component strategies:

L (σ <?> τ) = {xy | x ∈ L (σ), y ∈ L (τ)}

The ε combinator is a strategy that always succeeds. Its set of sentences contains
just the empty sentence:

L (ε) = {ε}

The δ combinator is a zero element of <?>, and ε is a unit element. The following
properties hold for all strategies σ:

δ <?> σ = δ
σ <?> δ = δ

ε <?> σ = σ
σ <?> ε = σ

24

2.3 A language for strategies for exercises

2.3.4 Interleave

In the example strategy for adding fractions we state that whenever possible the
rules for units and zeroes may be applied. The steps for adding fractions, and
removing units or zeroes may be taken in any order. In the following example:

2
3 + 3

4 + 0

we may first do the fraction addition and then remove the zero, or vice versa.
To support this behaviour, we introduce the interleave combinator, denoted by
<%>. This combinator expresses that the steps of its argument strategies have
to be applied, but that the steps can be interleaved. For example, the result of
interleaving a strategy abc that recognises the sequence of three symbols a, b, and c,
with the strategy de that recognises the sequence of two symbols d and e (that is,
abc <%> de) results in the following set:

{abcde, abdce, abdec, adbce, adbec, adebc, dabce, dabec, daebc, deabc}

Interleaving sentences. To define the semantics of interleave, we first define an
interleave operator on sentences. The interleaving of two sentences (x <%> y) can
be defined conveniently in terms of left-interleave (denoted by x %> y, and also
known as the left-merge operator (Bergstra and Klop, 1985)), which expresses that
the first symbol should be taken from the left-hand side operand. The algebra of
communicating processes (ACP) field traditionally defines interleave in terms of
left-interleave (and “communication interleave”) to obtain a sound and complete
axiomatisation (Fokkink, 2000).

ε <%> x = {x}
x <%> ε = {x}
x <%> y = x %> y∪ y %> x (x 6= ε ∧ y 6= ε)

ε %> y = ∅
ax %> y = {az | z ∈ x <%> y}

The set abc %> de (where abc and de are now sentences) only contains the six
sentences that start with symbol a. The number of interleavings for two sentences
of lengths n and m equals (n+m)!

n!m! . This number grows quickly with longer sentences.
Hoare (1985) gives an alternative definition for interleaving. The interleaving of
two sequences is defined by these three laws:

ε ∈ (y <%> z) ⇔ y = z = ε
x ∈ (y <%> z) ⇔ x ∈ (z <%> y)

ax ∈ (y <%> z) ⇔ (∃ y′ : y = ay′ ∧ x ∈ (y′ <%> z))
∨ (∃ z′ : z = az′ ∧ x ∈ (y <%> z′))

25

2 Strategies

Interleaving sets. The operations for interleaving sentences can be lifted to work
on sets of sentences by considering all combinations of elements from the two sets.
Let X, Y, and Z be sets of sentences. The lifted operators are defined as follows:

X <%> Y =
⋃ {x <%> y | x ∈ X, y ∈ Y}

X %> Y =
⋃ {x %> y | x ∈ X, y ∈ Y}

For instance, {a, ab} <%> {c, cd} yields a set containing 14 elements:

{abc, abcd, ac, acb, acbd, acd, acdb, ca, cab, cabd, cad, cadb, cda, cdab}

From these definitions, it follows that the lifted operator for interleaving is com-
mutative, associative, and has {ε} as identity element. The left-interleave op-
erator is not commutative nor associative, but has the interesting property that
(X %> Y) %> Z is equal to X %> (Y <%> Z).

Atomicity. Interleaving assumes that there exist atomic steps , and we introduce
a construct to introduce atomic blocks within sentences. In such a block, no in-
terleaving should occur with other sentences. We write 〈x〉 to make sequence x
atomic: if x is a singleton, the angle brackets may be dropped. Atomicity obeys
some simple laws:

〈ε〉 = ε (the empty sequence is atomic)
〈a〉 = a (all primitive symbols are atomic)

〈x〈y〉z〉 = 〈xyz〉 (nesting of atomic blocks has no effect)

In particular, it follows that 〈〈x〉〉 = 〈x〉. Atomic blocks nicely work together with
the definitions given for the interleaving operators, including the lifted operators:
sentences now consist of a sequence of atomic blocks, where each block itself is a
non-empty sequence of symbols. For instance, a〈bc〉 <%> 〈de〉f will return:

{abcdef , adebcf , adef bc, deabcf , deaf bc, defabc}

In the end, when no more interleaving takes place, the blocks have no longer any
meaning, and can be discarded.

The interleaving operators. The semantics of the interleaving operators is de-
fined in terms of the lifted operators:

L (〈σ〉) = {〈x〉 | x ∈ L (σ)}
L (σ <%> τ) = L (σ) <%> L (τ)
L (σ %> τ) = L (σ) %> L (τ)

26

2.3 A language for strategies for exercises

The interleave combinator satisfies several laws: it is commutative and associative,
and has ε as identity element:

σ <%> τ = τ <%> σ
σ <%> (τ <%> υ) = (σ <%> τ) <%> υ
σ <%> ε = σ

Interleaving distributes over choice

σ <%> (τ <|> υ) = (σ <%> τ) <|> (σ <%> υ)

Left-interleave also distributes over choice. The operator that makes a strategy
atomic is idempotent, and distributes over choice 〈σ <|> τ〉 = 〈σ〉 <|> 〈τ〉. Many
more properties can be found in the literature on ACP (Bergstra and Klop, 1985).

2.3.5 Label

When solving an exercise, a student may ask for a hint at any time. A tutor should
take the actions of the student until she asks for a hint into account. The steps that
a student has taken correspond to a particular location in the strategy. We mark
positions in the strategy with a label, which allows us to describe feedback. The
label combinator takes a string (or a value of another type that is used for labelling
purposes) and a strategy as arguments, and offers the possibility to attach a text to
the argument strategy.

L (label ` σ) = {ENTER` x EXIT` | x ∈ L (σ)}

This interpretation introduces the special rules ENTER and EXIT (parameterised by
some label `) that show up in sentences. The ENTER and EXIT rules are minor rules
that are only used for tracing positions in strategies. A label is active in a sentence if
a sentence contains the ENTER rule for a this label, but not the EXIT rule. Except for
tracing, the label combinator is semantically the identity function.

2.3.6 Recursion

One aspect we haven’t discussed yet is recursion. Recursion is used for example to
specify that a user replaces all occurrences of a particular expression in a program by
another expression. Recursion is specified by means of the fixed-point operator fix,
which takes as argument a function that maps a strategy to a new strategy. The
language of fix f is defined by:

L (fix f) = L (f (fix f))

27

2 Strategies

The fix operator is mainly used to express repetition in strategies. It is the re-
sponsibility of the user to specify meaningful fixed-points. Having a fixed-point
combinator implies that we are vulnerable to non-termination. By using the fix
combinator we make recursion explicit. This allows the strategy recogniser to deal
with recursive strategies in a special way. For example, in our recogniser for the
strategy language we specify a cutoff for the fixed-point operator. The recogniser
stops the execution of a strategy when the cutoff is reached, and reports an error
message. The recogniser does so by counting the number of times that the fix
combinator has been unrolled.

2.3.7 Applicability checks

The applicability check symbol (∼σ) in our strategy language allows us to specify
that a certain strategy is not applicable to the current expression.

Definition 2.3. An applicability check takes a strategy as argument and produces a rule
that returns its input expression unchanged if the strategy is not applicable to the expression.
Otherwise, if the strategy is applicable, the rule fails.

Depending on the applicability of a strategy the check either returns a singleton
set containing the expression it is applied to, or the empty set. A more general
variant of this combinator is check, which receives a predicate as argument instead
of a strategy. The language of an applicability check is just that check:

L (∼σ) = {∼σ}

The set of symbols in our language is extended with applicability checks.
Having defined the applicability check, we are now able to specify greedy

strategy combinators. Greedy combinators will apply their argument strategies
whenever possible. The next subsection shows some examples of greedy strategy
combinators, such as repeat.

2.3.8 Derived Combinators

Extended Backus-Naur form (EBNF) extends the notation for grammars, and offers
three new constructions that are often encountered in practice: zero or one occur-
rence (option), zero or more occurrences (closure), and one or more occurrences
(positive closure). We introduce three new strategy combinators: many σ repeats
strategy σ zero or more times, many1 applies σ at least once, and option σ may or
may not apply strategy σ. We define these combinators using the basic combinators:

many σ = fix (λx→ ε <|> (σ <?> x))
many1 σ = σ <?> many σ
option σ = σ <|> ε

28

2.3 A language for strategies for exercises

Observe the use of the fixed-point combinator fix in the definition of many. Unfold-
ing the many σ strategy results in:

many σ
= ε <|> (σ <?> many σ)
= ε <|> (σ <?> (ε <|> (σ <?> many σ)))
= ...

It is quite common for an EDSL to introduce a rich set of combinators on top of a
(small) set of basic combinators. The derived strategy combinators are useful in
formulating rewrite strategies for exercises.

The next combinators we introduce make use of the primitive applicability check
symbol (∼). Using this symbol, we can define the left-biased choice combinator (.)
as follows:

σ1 . σ2 = σ1 <|> (∼σ1 <?> σ2)

The strategy σ2 is only considered when σ1 is not applicable. Other combinators,
such as try and repeat are similar to their EBNF counterparts.

try σ = σ . ε

repeat σ = fix (λx→ try (σ <?> x))

The try combinator applies a strategy when it is applicable. The repeat combinator
applies a strategy as many times as possible.

2.3.9 Navigation

In many domains, terms can be combined to form new terms. For instance, an
arithmetic expression may have several subexpressions. We do not only want to
apply rules and strategies to the top-level term, but also to subterms. We therefore
need some additional combinators to indicate that a strategy or rule should be
applied somewhere inside a term. Besides the derived combinators from the
previous subsection, we add a set of traversal combinators to our strategy language.
Traversal combinators traverse a term, and for example perform rewrite rules or
strategies somewhere or bottomUp. We use a number of administrative rules for
navigating through the abstract syntax tree (AST) of an expression: UP, DOWN, LEFT,
and RIGHT. The minor rule DOWN takes a function as argument, which decides which
child to select based on the environment. Using DOWN we construct the minor rule
DOWNS that selects all children. Recall that a rule is a binary relation, and can return
multiple results.

Navigation is implemented by means of the zipper (Huet, 1997), which is an
efficient data structure to set and move a focus in an expression. The zipper can

29

2 Strategies

be seen as a combination of an expression and its context. An alternative way to
navigate is to use position information of (sub)expressions. An implementation
using the latter approach uses a list of integers denoting a path from the top of the
expression to the subexpression in focus. This approach is not as efficient and type-
safe as a zipper, since the AST needs to be traversed to retrieve the subexpression in
focus, and since it is possible to specify paths that do not correspond to a position
in the tree.

We can lift rewrite rules to work on a zipper. Lifted rewrite rules are defined as
follows:

Definition 2.4. Let Γ be an environment, and φ a zipper, which is an expression in focus
together with its context. A lifted rewrite rule is a binary relation on the product of an
environment and a zipper: (Γ1 × φ1)

r
 (Γ2 × φ2). The rewrite rule r is applied to

expression in focus.

Traversal combinators. Many traversal combinators use the once combinator:

once σ = DOWNS <?> σ <?> UP

The once combinator takes a strategy as argument, and applies it to a direct child
of the expression currently in focus. After applying once the focus is again at the
top-level expression. The once combinator applies a strategy to a direct child of an
expression. If there are multiple children, once returns multiple results. once makes
use of the minor rule DOWNS. So an application of a strategy constructed with the
once combinator may have more than one result, depending on whether or not
strategy σ is applicable to a child.

The traversal combinator somewhere applies a strategy to a single subexpression
(including the expression itself).

somewhere σ = fix (λx→ σ <|> once x)

If we want to be more specific about where to apply a strategy, we can use bottomUp
or topDown:

bottomUp σ = fix (λx→ once x . σ)

topDown σ = fix (λx→ σ . once x)

These combinators search for a suitable location to apply an argument strategy in a
bottom-up or top-down fashion, without imposing an order in which the children
are visited. These combinators do not apply their argument strategy exhaustively,
but just once.

Navigation operators navigate through the abstract syntax of the domain on
which the rewrite rules are specified. Recall the definition of simple arithmetic

30

2.3 A language for strategies for exercises

expressions at the beginning of this chapter (Section 2.2). We define a zipper for
navigation on this domain as follows:

φ ::= JExprK
| φ + Expr | Expr + φ
| φ− Expr | Expr− φ

| φ

Expr
| Expr

φ
| φ · Expr | Expr · φ
| φExpr | Exprφ

| − JExprK

In the grammar for the zipper, the expression between double square brackets is
the expression in focus. The focus can appear in the left-hand or right-hand side
of an operation, in the numerator or denominator of a fraction, or in the base or
exponent of a power. The focus can be moved to a different part of the expression.
The minor rules for navigation, such as UP and LEFT, are defined by analysing the
various forms of the zipper. For example, applying the UP minor rule to JaK7 results
in Ja7K, and moving the focus to the right in J3K+ 4 yields 3 + J4K.

Using generic programming techniques (Hinze et al., 2007; Hinze and Jeuring,
2003), we can define these navigation functions once and for all, and use them on
every domain.

2.3.10 Example strategies revisited

In Section 2.2 we presented two strategies for simplifying arithmetic expressions.
Having defined a set of strategy combinators, we can now give a precise defini-
tion of these strategies in terms of our combinators. We use the rules defined in
Figure 2.1.

Strategy 1: simplifying expressions with powers. The informal description of
the procedure to simplify expression with powers can be translated straightfor-
wardly in terms of our strategy combinators as follows:

simplifyPower =
label ` (repeat (bottomUp (ADDPOW <|> MULPOW <|> DISTPOW)))

where ` = "simplifyPower"

Applying the simplifyPower strategy to the expression (a3 · a4)2 gives the follow-
ing derivation:

31

2 Strategies

J(a3 · a4)2K
ENTER` J(a3 · a4)2K DOWN

 Ja3 · a4K2 APPCHECK

Ja3 · a4K2 ADDPOW
 Ja7K2 UP

 J(a7)2K APPCHECK
 J(a7)2K MULPOW

Ja14K APPCHECK
 Ja14K

EXIT` Ja14K

The APPCHECK (applicability check) is introduced by the repeat and bottomUp com-
binator. The navigation rules do not work directly on an expression, but on the
zipper containing the expression. As a consequence, if a strategy uses a traversal
combinator it is only applicable to an expression in a context.

Strategy 2: adding fractions. The description of the procedure to add fractions in
an arithmetic expression can be translated into a strategy specification as follows:

addFractions = label "addFractions"
$ repeat (somewhere addTwoFractions)

<%> repeat 〈somewhere unitAndZeroes〉
addTwoFractions = label "addTwoFractions"

$ LCD

<?> repeat (somewhere RENAME)
<?> ADD

<?> try SIMPL

unitAndZeroes = label "unitAndZeroes"
$ UNITADD

<|> UNITSUB

<|> UNITMUL

<|> ZEROMUL

The strategy addFractions consists of two substrategies: addTwoFractions, which
expresses how to add two fractions in an expression, and unitAndZeroes, which
cleans up an expression. These two substrategies are combined with the inter-
leave operator. Furthermore, the strategy contains the labels "addFractions",
"addTwoFractions" and "unitsAndZeroes", and uses the rules for fractions, units,
and zeroes given in Figure 2.1. The LCD rule is somewhat different: it is a minor
rule that does not change the term, but calculates the LCD and stores this in an
environment. The rule RENAME for renaming a fraction uses the computed least
common denominator, which is retrieved from the context, to determine the value
of a in its right-hand side. Note that we have put the somewhere unitAndZeroes
substrategy in an atomic block. This way we prevent interleaving of navigation
rules, which might lead to unexpected behaviour.

32

2.3 A language for strategies for exercises

2.3.11 Overview

The different components of our strategy language have been introduced in the
previous subsections. We summarise the definitions of the various strategy com-
binators in the following definition.

Definition 2.5. Let fix be the fixed-point combinator fix f = f (fix f), and ` a label. A
strategy is an element of the language of the following grammar:

σ ::= a
| σ <|> σ | δ
| σ <?> σ | ε
| label ` σ
| fix f
| 〈σ〉 | σ <%> σ | σ %> σ

a ::= r
| ∼σ

The components of the grammar for σ are called strategy combinators. Two (sub)strategies
can be combined into a strategy using the sequence (<?>) or choice (<|>) combinator, with
ε (always succeeds) and δ (always fails) as unit elements, respectively. A strategy can be
tagged with a label (label). The fix combinator returns the fixed-point of a function (f)
that takes a strategy as argument and returns a strategy. Steps from two (sub)strategies
may be interleaved using the interleave combinator (<%>). Strategies that are marked
atomic (〈σ〉) cannot be interleaved. The left-interleave combinator (%>) makes certain that
the first step is taken from the left strategy, the remaining steps may be interleaved. The
non-terminal symbol a is either a rewrite or refinement rule r, or an applicability check ∼σ
that takes a strategy as argument and returns a rule that checks if σ is not applicable.

This definition corresponds to the definition of a context-free grammar, extended
with interleaving, fixed-points, with an alphabet consisting of rewrite or refinement
rules and applicability checks.

The following definition gives the semantics for our strategy combinators:

L (a) = {a}
L (σ <|> τ) = L (σ) ∪ L (τ)
L (δ) = ∅
L (σ <?> τ) = {xy | x ∈ L (σ), y ∈ L (τ)}
L (ε) = {ε}
L (label ` σ) = {ENTER` x EXIT` | x ∈ L (σ)}
L (fix f) = L (f (fix f))
L (〈σ〉) = {〈x〉 | x ∈ L (σ)}
L (σ1 <%> σ2) = L (σ1) <%> L (σ2)
L (σ1 %> σ2) = L (σ1) %> L (σ2)

33

2 Strategies

This definition can be used to tell whether a sequence of rewrite or refinement rules
and applicability checks follows a strategy or not: the sequence of rules and checks
should be a sentence in the language generated by the strategy, or a prefix of a
sentence, since we solve exercises incrementally.

2.3.12 Left-recursion

To use strategies for tracking student behaviour and giving feedback, we impose
a restriction on the form of strategies. We do not allow left-recursive strategies.
This is a common restriction, which is imposed by many parsing algorithms on
context-free grammars.

A context-free grammar is left-recursive if it contains a nonterminal that can be
rewritten in one or more steps using the productions of the grammar to a sequence
of symbols that starts with the same nonterminal. The same definition applies to
strategies. For example, the following strategy is left-recursive:

leftRecursive = fix (λx→ x <?> ADD)

The left-recursion is obvious in this strategy, since x is in the leftmost position in
the body of the abstraction. However, in our semantics non-left-recursive strategies
sometimes display left-recursive behaviour. Strategies with leading minor rules
may or may not display left-recursive behaviour. Strictly speaking, these strategies
are not left-recursive because the strategy grammar does not differentiate between
minor and major rules. Left-recursive behaviour is not always easy to spot. For
example, if we use a minor rule that increases a counter in the environment, which
is an action that always succeeds, the strategy displays left-recursive behaviour.
On the other hand, in leftRecursive′:

leftRecursive′ = fix (λx→ DOWN <?> x <?> ADD)

the minor rule DOWN is applied repeatedly until we reach the leaf of an expression
tree, and stop. This strategy does not behave like a left-recursive strategy.

Top-down recursive parsing using a left-recursive context-free grammar is diffi-
cult. A grammar expressed in parser combinators (Hutton, 1992) is not allowed to
be left-recursive. Trying to determine the next possible symbol(s) of a left-recursive
strategy will loop. This problem would probably disappear if we would use a
bottom-up parsing algorithm, but that would lead to other restrictions, which
sometimes are harder to spot and repair (compare determining whether or not a
grammar is LR(1) with determining whether or not a grammar is left-recursive).
Left-recursion can sometimes be solved by using so-called chain combinators (Fok-
ker, 1995).

34

2.3 A language for strategies for exercises

Combinator Description
σ <?> τ first σ, then τ

σ <|> τ either σ or τ

ε always succeeding strategy
δ always failing strategy
fix f fixed point combinator
label ` σ attach label ` to σ

〈σ〉 σ cannot be interleaved
σ <%> τ interleave σ and τ

σ %> τ as interleave, but start with
a step from σ

Combinator Description
∼σ succeed if σ is not applic-

able
many σ apply σ zero or more times
many1 σ apply σ one or more times
option σ either apply σ or not
repeat σ apply σ as long as possible
try σ apply σ once if possible
σ . τ apply σ, or else τ

somewhere σ apply σ at some location
topDown σ apply σ top-down
bottomUp σ apply σ bottom-up

Figure 2.2: Summary table of strategy combinators

2.3.13 Reflections

Figure 2.2 presents an overview of the strategy combinators introduced so far. Is
this set of strategy combinators rich enough to describe many of the strategies
that are used in exercises? We are not sure; other strategy implementers may
want to use different abstractions. However, the language can be easily extended
with more combinators. In fact, this is probably the greatest advantage of using
an EDSL instead of defining a new, stand-alone language. We have implemented
about 70 strategies for various mathematical domains. We believe that the set of
combinators is sufficient for specifying the kind of strategies that are needed in
interactive exercise assistants for mathematics and functional programming, which
aim at providing advanced feedback.

Producing a strategy is like programming, and might require quite some effort.
However, due to compositionality of the strategy combinators, strategies are re-
usable. For example, the strategies for adding fractions and working with powers
can easily be integrated into a strategy that allows to apply both.

Our strategy language is particularly suited for describing procedures for solving
exercises in well-structured domains. In such domains it is easy to formally describe
the rewrite rules that can be applied to expressions within the domain. It is much
harder to use strategies in domains with less structure. For example, we do not
know how to write a strategy for constructing a unified modelling language-model
(UML) for a piece of software, giving a textual description of the purposes of the
software.

Our strategies should not be confused with tutorial strategies, which describe
how to teach particular content. For example, a tutorial strategy may describe that
it is better to first give a worked-out example, and only then require students to

35

2 Strategies

take some intermediate steps themselves, as in the 4C/ID-model (Van Merriënboer
and Kirschner, 2007). Or it may describe that before giving exercises, the complete
procedure should be explained and the underlying theorems be proved. We think
our strategies can be used in any of such tutorial strategies.

2.4 Strategy functions

The semantics for the different components of our strategy language has been
introduced in the previous section. The language definition (L) can be used to
determine whether a sequence of rewrite or refinement rules and applicability
checks is a sentence in the language generated by the strategy, or a prefix of a
sentence. Not all sequences make sense, however. An exercise gives us an initial
expression, and we are only interested in sequences of rules that can be applied
successively to this expression. In the remainder of this section we complete the
semantics by explaining how we use a strategy to transform an expression. We do
so by defining a number of strategy functions that resemble functions on CFGs, such
as firsts.

We start by defining a state, which we use to capture (intermediate) answers:

Definition 2.6. A state is the product of an environment, an expression in focus (a zipper),
and a strategy.

2.4.1 Empty

To check if an expression can be accepted as a final answer (i.e., the last element of a
derivation), we need to determine whether or not the empty sentence is a member
of the language of a strategy. For this purpose we define a function empty, similar to
the grammar function empty defined for CFGs. We first define an auxiliary function
that returns all sentences that consist of minor rules only:

Definition 2.7. Function minorSentences returns all sentences in the language of a
strategy that consist of minor rules only:

minorSentences (σ) = {r1 ... rn | r1 ... rn ∈ L (σ), ∀ i ∈ 1 ... n . isMinor (ri)}

Note that the set given by minorSentences includes the empty sentence ε if the
language of σ contains the empty sentence ε. We need this function to determine if
there are any trailing minor rules after the last major rewrite rule. The last major
rewrite rule is the last action that a student needs to perform. In a sequence of
rewrite rules the last major rule is not necessarily the last rule. There may be trailing
minor rules after the last major rule. We define the empty function in terms of the
minorSentences function:

36

2.4 Strategy functions

Definition 2.8. Function empty checks whether or not the language of a strategy contains
the empty sentence ε, or a sentence consisting of minor rules only:

empty (σ) = minorSentences (σ) 6= ∅

Both functions are easily lifted to take a state as argument. The lifted functions
operate on the strategy in a state. For example, the lifted version of empty is defined
as follows:

empty (Γ × φ × σ) = empty (σ)

where Γ is an environment, and φ a zipper.

2.4.2 Firsts

The smallest action that can be performed with a strategy is a step: the application
of a rewrite rule. Before we define that, we define a relation that splits a strategy
into its first rule or applicability check and the remaining strategy. This function
resembles the firsts grammar function.

Definition 2.9. The relation 7→ splits a strategy into a rule or an applicability check and
the remaining strategy: σ1 7→ a <?> σ2.

a 7→ a <?> ε
σ1 7→ a <?> σ3

σ1 <?> σ2 7→ a <?> (σ3 <?> σ2)

ε ∈ L (σ1) σ2 7→ a <?> σ3

σ1 <?> σ2 7→ a <?> σ3

σ1 7→ a <?> σ3

σ1 <|> σ2 7→ a <?> σ3

σ2 7→ a <?> σ3

σ1 <|> σ2 7→ a <?> σ3

σ1 7→ a <?> σ3

σ1 <%> σ2 7→ a <?> (σ3 <%> σ2)

σ2 7→ a <?> σ3

σ1 <%> σ2 7→ a <?> (σ1 <%> σ3)

σ1 7→ a <?> σ3

σ1 %> σ2 7→ a <?> (σ3 <%> σ2)

f (fix f) 7→ a <?> σ

fix f 7→ a <?> σ
label ` σ 7→ ENTER` <?> (σ <?> EXIT`)

37

2 Strategies

Definition 2.10. The step operator r→ denotes the relation between the current state S1
and a new state S2 (obtained by applying the rewrite rule r).

σ1 7→ r <?> σ2 (Γ1 × φ1)
r
 (Γ2 × φ2)

(Γ1 × φ1 × σ1)
r→ (Γ2 × φ2 × σ2)

σ1 7→∼σ2 <?> σ3

run (Γ1 × φ1 × σ2) = ∅ (Γ1 × φ1 × σ3)
r→ (Γ2 × φ2 × σ4)

(Γ1 × φ1 × σ1)
r→ (Γ2 × φ2 × σ4)

The run function used in the last deduction rule of the definition applies a strategy
to a term in a context; its definition is given below in definition 2.12. If strategy σ2
is not applicable to φ1 then the run function returns the empty set.

The step relation r→ ignores whether or not a rule is minor, and it deals with minor
and major rewrite rules in the same way. On many occasions when generating
feedback we want to ignore minor rewrite rules, since we do not want to show such
administrative steps to a user. We define a relation similar to step, which ignores
minor rewrite rules.

Definition 2.11. The big step operator
r
� denotes the relation between a state S1 and a

new state S2. The new state is obtained by possibly applying minor rules, followed by the
application of a single major rewrite rule r. If r is the last major rule then trailing minor
rules, if any, are applied as well.

S1
r1→ S2 isMinor (r1) S2

r2
� S3

S1
r2
� S3

S1
r→ S2 ¬ isMinor (r) minorSentences (S2) = ∅

S1
r
� S2

S1
r→ S2 ¬ isMinor (r) ~m ∈ minorSentences (S2) S2

~m→ S3

S1
r
� S3

where ~m is a sequence of minor rules and ~m→ is the sequential application thereof.

It is important that trailing minor rules are applied when performing a big step.
The application of trailing minor rules ensures that exhaustively applying the step
or big step operator on a term, will end up in the same end state(s).

38

2.4 Strategy functions

Definition 2.12. The run function is the closure of
r
�, and generates all possible end

states from a begin state S. An end state contains the empty strategy: ε.

run (S) = {(Γ × φ × ε) | S
?
� (Γ × φ × ε)}

where
?
� is the transitive closure of�.

The run function is defined in terms of
r
�, which is in turn defined in terms of

the step relation (r→). This step relation uses the run function again to determine
whether or not a strategy is applicable to an expression. The step definition (2.10)
and the definition of run given above are therefore mutually recursive. This is not
a problem, because the run function is only applied to strategies that appear in
applicability checks.

The above definitions are used in the specification of the services, which are the
interface to our domain reasoners, for generating feedback. Chapter 5 will explain
the services that we offer to intelligent tutoring systems.

We conclude with a soundness result. We give a theorem connecting the language
concept, the function L, to the strategy functions defined in this section. We start
with the introduction of two lemmas that simplify the proof of the theorem.

Lemma 2.13. A major language Lm is the language of a strategy without occurrences of
minor rules:

Lm (σ) = { [a | a← as,¬ isMinor (a)] | as ∈ L (σ)}

Let F be the set of all splits given by the split relation for σ:

F (σ) = {σi | σ 7→ σi }

Then the major language of σ without the empty sentence is equal to the union of major
languages of the elements in F:

Lm (σ) \ {ε} ≡ ⋃
σf∈F(σ)

Lm (σf)

Proof. By case analysis on the structure of σ.

Definition 2.14. Let S be a state. Then derivations (S) is the set of all possible sequences
of states, together with the applied rule, that are generated with the big step operator:

derivations (S) = if empty (S)
then { []}
else { [(r, S′)] ++ D | S

r
� S′, D ∈ derivations (S′)}

39

2 Strategies

Theorem 2.15. Let (Γ × φ × σ) be a state, and~r be a sequence of rules [r1 ... rn] such
that (r1, S1) ... (rn, Sn) ∈ derivations (Γ × φ × σ). Then~r ∈ Lm (σ).

Proof. We sketch a proof. Let σ be a strategy. We distinguish two cases in our
hypothesis [r1 ... rn] ∈ Lm (σ):

n = 0 : Based on Definition 2.14 we know that for every element in the derivation
sequence [r1 ... rn] a big step has to be performed. This means that the
strategy σ is either ε or consists of a strategy with minor rules only. Based on
Lemma 2.13 we know ε ∈ Lm (σ).

n > 0 : This case is proven by induction on the length n of the sequence [r1 ... rn]
using Lemma 2.13.

2.4.3 Non-determinism

Almost all exercises can be solved in several, correct ways. For example, consider
the expression (a3 · a4)2 again, and suppose it should be solved with the strategy
simplifyPower′ which is obtained by replacing bottomUp by somewhere in the strategy
simplifyPower.

simplifyPower′ = label "simplifyPower" $
repeat (somewhere (ADDPOW <|> MULPOW <|> DISTPOW))

One of the questions we want to be able to answer is: what is the next step to
solve the exercise? This type of feedback is given by one of our feedback services.
In the above example there are two possibilities: DISTPOW can be applied to the
entire expression, and ADDPOW is applicable to the subexpression a3 · a4. Both steps
are correct, but which do we choose? Making a random choice would make our
feedback framework non-deterministic. This problem may show up whenever we
use the choice combinator, which may also be introduced by other combinators
(such as DOWNS), to combine various solution strategies. Applying a strategy that
uses the choice combinator to an expression may result in multiple answers.

To prevent non-deterministic behaviour we introduce a rule ordering: a total
order, denoted by <, on rules. For now, the ordering is only on the rules themselves,
but one can imagine taking the environment into account in the rule ordering.
We use the name of a rule, which is unique, to compare rewrite rules. If we
need to make a choice between the same rules, that are applicable to different
subexpressions, we choose the one that is applicable to the subexpression that is
nearest to the root of the expression. The nearest subexpression is the one that can
be reached with the fewest navigation steps in a pre-order (left-to-right) traversal.

40

2.5 Feedback based on strategies

An example rule ordering for the power domain is: ADDPOW < MULPOW < DISTPOW. A
strategy implementer can define precedence among the rules using a rule ordering.
When we need to make a choice between rules, we use the ordering to choose the
smallest rule. In the example case, the first step in our example is ADDPOW.

We could have decided to always choose the left operand of a choice combin-
ator to prevent non-determinism. However, we treat the choice combinator as a
commutative operator, i.e., there is no semantic difference between a <|> b and
b <|> a. Always choosing the left operand of a choice would mean that for two
semantically equivalent strategies we could get different results when asking for
the next step. We prevent this undesired behaviour by making the choice explicit
using rule ordering.

2.5 Feedback based on strategies

This section briefly sketches how we use the strategy language, as introduced
in the previous sections, to give feedback to users of our tutors, or to users of
other learning environments that make use of our domain reasoners. We have
implemented several kinds of feedback. Most of these categories of feedback
appear in the tutoring principles of Anderson (Anderson, 1993), or in existing tools
supporting the stepwise construction of a solution to an exercise.

We do not try to tackle the problem of how feedback should be presented to a
student. We look at the first step needed to provide feedback, namely to diagnose
the problem, and relate the problem to the rules and the strategy for the exercise. We
want users of our domain reasoners to determine how these findings are presented
to the user. For example, we could generate a table from a strategy with the possible
problems, and let teachers fill this table with the desired feedback messages.

We discuss a number of possible ways in which our strategies can be used for
generating feedback automatically. This discussion is quite informal: in Chapter 5
we explain how these feedback categories relate to our services.

2.5.1 Feedback after a step

After each step performed by a student, we check whether or not this step is
valid according to the strategy. For steps involving argument- and variable-value
computations we have to calculate the correct values of these components, and
check these values against the values supplied by the student. Such calculations
are easily and naturally expressed in our framework.

Checking whether or not a step is valid amounts to checking whether or not
the sequence of steps supplied by the student is a valid prefix of a sentence of
the language specified by the context-free grammar corresponding to the strategy.

41

2 Strategies

Hence, this is essentially a recognition problem. As soon as we detect that a
student no longer follows the strategy, we have several ways to react. We can force
the student to undo the last step, and let the student strictly follow the strategy.
Alternatively, we can warn the student that she has made a step that is invalid
according to the strategy, but let the student proceed on her own path. For instance,
a student has to simplify 1

2 + 3
4 using the addFractions strategy. When rewriting

the term to 3
6 + 3

4 , the student can be warned that although the step is correct, it
is better to do something else (namely rename the fractions such that they share a
common denominator).

2.5.2 Hint

A student can ask for a hint. Given an exercise and a strategy for solving the
exercise, we calculate the ‘best’ next step. The best next step is an element of the
first set of the context-free grammar specified by the strategy. For example, suppose
a student has no clue how to perform the addition in 1

2 + 2
5 , and he presses the

hint button. The system gives the hint: “rename both fractions so that they have a
common denominator”. The fact that the fractions need a common denominator
can be calculated from the strategy. If this does not help the student, the system
can give a more specific message that suggests a specific rewrite rule, or the result
of applying that rule.

2.5.3 Ready

After having performed one or more steps, a student can indicate to have finished
the exercise. For example, a student submits 3

2 as the final answer. Based on the
strategy, a tutor can tell the student that the exercise is not yet finished. In this
example, a tutor can tell exactly, based on the strategy for adding fractions, which
step still needs to be performed: the improper fraction should be simplified.

2.5.4 Completion problems

A worked-out solution can be generated from a strategy, showing all the steps from
the initial term to the expected answer. A worked-out solution is a presentation of
a sentence that is generated by the strategy. The derivations given in Section 2.2 are
examples of a worked-out solutions.

Sweller et al. (1998), based on their cognitive load theory, describe a series of
guidelines to create learning materials. The basic idea is that a student profits from
having example solutions played for him or her, followed by an exercise in which
the student fills out some missing steps in a solution (Merriënboer et al., 1992).
We can use the strategy to play a solution for a student, and we can play all but

42

2.6 Related work on strategies

the middle two (three, last two, etc.) steps, and ask the student to complete the
exercise.

2.5.5 Progress

Given an exercise and a strategy for solving the exercise, we can determine the min-
imum number of steps necessary to solve the exercise, and show this information
in a progress bar. Each time a student performs a correct step, the progress bar is
updated.

2.6 Related work on strategies

There are other approaches (Self, 1991; Kautz and Allen, 1986) for expressing
procedural skills, which also transform the recognition of student steps into a
parsing problem. They too use grammars to specify how a procedure can be
decomposed into steps, and regard a particular sequence of steps as a sentence that
has to be parsed with respect to this grammar. However, providing feedback to
students about several aspects of an exercise has been and still is an active area of
research.

Explaining syntax errors has been studied in several contexts, most notably in
compiler construction (Swierstra and Duponcheel, 1996), but also for intelligent
tutoring systems (Horacek and Wolska, 2006). Some work has been done on trying
to explain errors made by students on the level of rewrite rules (Bouwers, 2007;
Hennecke, 1999; Issakova, 2007; Passier and Jeuring, 2006).

Our language is very similar to strategic programming languages such as STRAT-
EGO (Lämmel et al., 2002; Visser et al., 1998) and ELAN (Borovanský et al., 2001).
Our strategy language differs from Stratego in the sense that we, in addition to the
final term, also focus on the intermediate rewrite steps. Other similar languages
are used in parser combinator libraries (Hutton, 1992; Swierstra and Duponcheel,
1996), boiler-plate libraries (Lämmel and Jones, 2003), workflow applications (Plas-
meijer et al., 2007), theorem proving (tacticals (Paulson, 1996)) and data-conversion
libraries (Cunha and Visser, 2007).

Already around 1980, but also later, VanLehn et al. (VanLehn, 1990), and Ander-
son and others from the Advanced Computer Tutoring research group at Carnegie
Mellon university (CMU) (Anderson, 1993; Anderson et al., 1995) worked on repres-
enting procedures or procedural networks. VanLehn et al. already noticed that ‘The
representation of procedures has an impact on all parts of the theory.’ Anderson et
al. report that the technical accomplishment was ‘no mean feat’. Both VanLehn et
al. and Anderson et al. deploy collections of condition-action rules, or production
systems. In Mind Bugs (VanLehn, 1990), VanLehn states several assumptions about

43

2 Strategies

languages for representing procedures. In Rules of the Mind (Anderson, 1993),
Anderson formulates similar assumptions. Their leading argument for selecting a
language for representing procedures is that it should be psychologically plausible.
We think our strategy language can be viewed as a production system. But our lead-
ing argument is that it should be easy to calculate feedback based on the strategy.
Moreover, it should be easy to specify, reuse, and adapt strategies. Using an EDSL

similar to a language for context-free grammars for specifying a strategy simplifies
calculating feedback. Furthermore, our language satisfies the assumptions about
representation languages given by VanLehn, such as the presence of variables in
procedures, and the possibility to define recursive procedures.

Tacticals (Paulson, 1996) and proof plans and methods (Bundy, 1988) are used to
automatically prove theorems. On an abstract level, these plans and methods play
the same role as strategies: we can view a strategy as a proof plan for proving that
an answer is the solution to an exercise. Bundy (Bundy, 2002) discusses how proof
plans are used to support interactive proving, by letting the user help the theorem
prover whenever the theorem prover cannot make progress anymore, or by letting
the prover explain why a particular method can or cannot be applied. As far as we
found, proof plans are not used to teach theorem proving, or to recognise proving
steps made by a student. Aspinall et al. (2008) introduce the tactic language Hitac
that can be used to construct hierarchical proofs, so called hiproofs. To evaluate
Hitac programs two semantics are given: a big step semantic that captures the
intended meaning and a small step semantic that covers the details of the proof.
As far as we found, the tactic language is not used to generate feedback, or to
recognise proving steps made by a student. Moreover, we provide our functionality
to external learning environments.

Zinn (2006) writes strategies as Prolog programs, in which rules and strategies
(‘task models’) are intertwined. His system gives detailed feedback and supports
buggy rules, with results similar to those we obtain. We believe that explicitly
modelling the strategy language makes it easier to specify strategies, which in
Zinn’s approach have to be programmed directly in Prolog. Furthermore, the
implementation of our strategy language provides us with many possibilities for
giving feedback that can be reused for all other domains.

44

3 A STRATEGY RECOGNISER

In this chapter we discuss the design and implementation of a strategy recogniser.
With this implementation we precisely describe how the different types of feedback
(listed in Section 2.5) can be realised. We highlight the most important components
and some design choices.

Instead of designing our own recogniser, we could reuse existing parsing libraries
and tools. There are many excellent parser generators and various parser combin-
ator libraries (Swierstra and Duponcheel, 1996; Hutton, 1992), and these are often
highly optimised and efficient in both their time and space behaviour. However,
the problem we are facing is quite different from other parsing applications. To
start with, efficiency is not a key concern as long as we do not have to enumerate
all sentences. Because we are recognising applications of rewrite or refinement
rules applied by a student, the length of the input is very limited. Our experience
until now is that speed poses no serious constraints on the design of the library. A
second difference is that we are not building an abstract syntax tree.

The following issues are important for a strategy recogniser, but are not (suffi-
ciently) addressed in traditional parsing libraries:

1. We are only interested in sequences of transformation rules that can be applied
successively to some initial term, and this is hard to express in most libraries.
Parsing approaches that start by analysing the grammar for constructing a
parsing table will not work in our setting because they cannot take the current
term into account. Moreover, it is often unclear how to transform strategies

45

3 A strategy recogniser

with labels.

2. The ability to diagnose errors in the input highly influences the quality of the
feedback services. It is not enough to detect that the input is incorrect, but we
also want to know at which point the input deviates from the strategy, and
what is expected at this point. Some of the more advanced parser tools have
error correcting facilities, which helps diagnosing an error to some extent.

3. Exercises are solved incrementally, and therefore we do not only have to
recognise full sentences, but also prefixes. We cannot use backtracking and
look-ahead because we want to recognise strategies at each intermediate step.
If we would use backtracking, we might give a hint that does not lead to a
solution, which is undesirable in a learning environment.

4. Labels help to describe the structure of a strategy in the same way as non-
terminals do in a grammar. For a good diagnosis it is vital that a recogniser
knows at each intermediate step where it is in the strategy.

5. A strategy should be serialisable, for instance because we want to communic-
ate with other online tools and environments.

In earlier attempts to design a recogniser library for strategies, we tried to reuse
an existing error-correcting parser combinator library (Swierstra and Duponcheel,
1996), but failed because (some) of the reasons listed above.

3.1 Representing grammars

Because strategies are a special kind of grammars, we start by exploring a suitable
representation for grammars. The datatype for grammars is based on the altern-
atives of the strategy language discussed in Section 2.3, except that there is no
constructor for labels.

data Grammar a = Symbol a
| Succeed
| Fail
| Grammar a :|: Grammar a
| Grammar a :?: Grammar a
| Grammar a :%: Grammar a
| Grammar a :%>: Grammar a
| Atomic (Grammar a)
| Rec Int (Grammar a) -- recursion point
| Var Int -- bound by corresponding Rec

46

3.1 Representing grammars

The type variable a in this definition is an abstraction for the type of symbols: for
strategies, the symbols are rules, but also ENTER and EXIT steps that are associated
with a label. For now we will postpone the discussion on labels in grammars.

Another design choice is how to represent recursive grammars, for which we
use the constructors Rec and Var. A Rec binds all the Vars in its scope that have the
same integer. We assume that all our grammars are closed, i.e., there are no free
occurrences of variables. This datatype makes it easy to manipulate and analyse
grammars. Alternative representations for recursion are higher-order fixed point
functions, or nameless terms using De Bruijn indices.

We use constructors such as :?: and :|: for sequence and choice, respectively, in-
stead of the combinators <?> and <|> introduced earlier. Haskell infix constructors
have to start with a colon, but the real motivation is that we use <?> and <|> as
smart constructors later.

The repetition combinator many, which we defined in Section 2.3.8, can be en-
coded with the Grammar datatype in the following way:

many :: Grammar a→ Grammar a
many σ = Rec 0 (Succeed :|: (σ :?: Var 0))

Later we will see that smart constructors are more convenient for writing such a
combinator.

3.1.1 Empty and firsts

We use the functions empty and firsts to recognise sentences. The function empty
tests whether the empty sentence is part of the language: empty (σ) = ε ∈ L (σ).
The function empty that we defined earlier in Section 2.4 distinguishes between
major and minor rules, whereas the definition used here does not.

The direct translation of this specification of empty to a functional program, using
the definition of language L, gives a very inefficient program. Instead, we derive
the following recursive function from this characterisation, by performing case
analysis on strategies:

empty :: Grammar a→ Bool
empty (Symbol a) = False
empty Succeed = True
empty Fail = False
empty (σ :|: τ) = empty σ ∨ empty τ
empty (σ :?: τ) = empty σ ∧ empty τ
empty (σ :%: τ) = empty σ ∧ empty τ
empty (σ :%>: τ) = False
empty (Atomic σ) = empty σ

47

3 A strategy recogniser

empty (Rec i σ) = empty σ
empty (Var i) = False

The left-interleave operator requires the language of its left-hand strategy argument
to not contain the empty string. Hence, such a strategy cannot recognise the empty
sentence. The definition for the pattern Rec i σ may come as a surprise: it calls empty
recursively on σ without changing the Vars that are bound by this Rec. Because
there is no need to inspect recursive occurrences to determine the empty property,
we define empty (Var i) to be False.

Given some strategy σ, the function firsts returns every symbol that can start a
sentence for σ, paired with a strategy that represents the remainder of that sentence,
see Section 2.4.2. As for the function empty, the direct translation of this specification
into a functional program is infeasible. We again derive an efficient implementation
for firsts by performing a case analysis on strategies.

Defining firsts for the two interleaving cases is somewhat challenging: this is
exactly where we must deal with interleaving and atomicity. More specifically,
we cannot easily determine the firsts for strategy σ %> τ based on the firsts for
σ and τ since that would require more information about the atomic blocks in σ
and τ. For a strategy σ %> τ, we split σ into an atomic part and a remainder, say
Atomic σ′ <?> σ′′. After σ′ we can continue with σ′′ <%> τ. Note that σ′ cannot
be the empty sentence. This approach is summarised by the following property,
where the use of symbol a takes care of the non-empty condition:

(〈a <?> σ〉 <?> τ) %> υ = 〈a <?> σ〉 <?> (τ <%> υ)

The function split transforms a strategy into triples of the form (a, x, y), which
should be interpreted as 〈a <?> x〉 <?> y. We define split for each case of the
Grammar datatype.

split :: Grammar a→ [(a, Grammar a, Grammar a)]
split (Symbol a) = [(a, Succeed, Succeed)]
split Succeed = []
split Fail = []
split (σ :|: τ) = split σ ++ split τ
split (σ :?: τ) = [(a, x, y :?: τ) | (a, x, y)← split σ] ++

if empty σ then split τ else []
split (σ :%: τ) = split (σ :%>: τ) ++ split (τ :%>: σ)
split (σ :%>: τ) = [(a, x, y :%: τ) | (a, x, y)← split σ]
split (Atomic σ) = [(a, x :?: y, Succeed) | (a, x, y)← split σ]
split (Rec i σ) = split (replaceVar i (Rec i σ) σ)
split (Var i) = error "unbound Var"

For a sequence σ :?: τ, we determine which symbols can appear first for σ, and we
change the results to reflect that τ is part of the remaining grammar. Furthermore,

48

3.1 Representing grammars

if σ can be empty, then we also have to look at the symbols that can appear first for
τ. For choices, we simply combine the results for both operands. If the grammar
is a single symbol, then this symbol appears first, and the remaining parts are
Succeed (we are done). To find the symbols that can appear first for Rec i σ, we
have to look inside the body σ. All occurrences of this recursion point are replaced
by the grammar itself before we call split again. The replacement is performed
by a helper-function: replaceVar i σ τ replaces all free occurrences of Var i in τ by
σ. Hence, if we encounter a Var, it is unbound, which we do not allow, since we
assume our grammars are closed.

We briefly discuss the definitions for the constructs related to interleaving, and
argue why they are correct:

• Case (Atomic σ). Because atomicity distributes over choice, we can consider
the elements of split σ (the recursive call) one by one. The transformation

〈〈a <?> x〉 <?> y〉 = 〈a <?> (x <?> y)〉 <?> ε

is proven by first removing the inner atomic block, and basic properties of
sequence.

• Case (σ1 :%: σ2). Expressing this strategy in terms of left-interleave is justi-
fied by the definition of L (σ1 <%> σ2).

• Case (σ1 :%>: σ2). Left-interleave can be distributed over the alternatives.
Furthermore, (〈a <?> x〉 <?> y) %> τ = 〈a <?> x〉 <?> (y <%> τ) follows
from the definition of left-interleave on sentences (with atomic blocks).

With the function split, we can now define the function firsts, which is needed for
the generation of most of the feedback types:

firsts :: Grammar a→ [(a, Grammar a)]
firsts σ = [(a, x :?: y) | (a, x, y)← split σ]

In Section 2.3.12 we discuss restrictions imposed on strategies. It should now be
clear from the definition of firsts why left-recursion is problematic. Applying the
split function to a left-recursive strategy will cause the split function to loop without
returning any values, hence the firsts function will loop as well. For example,
consider the many combinator. A strategy writer has to use this combinator with
great care to avoid constructing a left-recursive grammar: if grammar σ accepts the
empty sentence, then running the grammar many σ can result in non-termination.
The problem with left recursion can be partially circumvented by limiting the
number of recursion points (Recs and Vars) that are unfolded in the definition of
split (Rec i σ). When is the limit reached, the case for the Rec constructor in the split
function stops unfolding and returns the empty list.

49

3 A strategy recogniser

3.2 Dealing with labels

We use label information to trace where we are in a strategy, by inserting ENTER and
EXIT steps for each labelled substrategy. These labels enable us to attach specialised
feedback messages to certain locations in the strategy.

Labels are not added to the Grammar datatype, but on the level of rules, for which
we introduce the following datatype:

type Rule a = a→ [a]
data Step l a = ENTER l | Step (Rule a) | EXIT l

The type argument l represents the type of information associated with each label.
For our strategies we assume that this information is a string. The type Rule is
parametrised by the type of values to which the rule can be applied. The type de-
claration for Rule is a simplification of the implementation, which is more involved.
In the implementation we maintain meta information about the rule, such as an
identifier and whether or not the rule is minor. With the Step datatype, we can now
specify a type for strategies:

type LabelInfo = String
data Strategy a = S {unS :: Grammar (Step LabelInfo a)}

The Strategy datatype wraps a grammar, where the symbols of this grammar are
steps. The following function helps to construct a strategy out of a single step:

fromStep :: Step LabelInfo a→ Strategy a
fromStep = S ◦ Symbol

Wrapping strategies quickly becomes cumbersome when defining functions over
strategies. We therefore introduce a type class for type constructors that can be
converted into a Strategy:

class IsStrategy f where
toStrategy :: f a→ Strategy a

instance IsStrategy Rule where
toStrategy = fromStep ◦ Step

instance IsStrategy Strategy where
toStrategy = id

In addition to the Strategy datatype, we define the LabeledStrategy type for strategies
that have a label. A labelled strategy can be turned into a (normal) strategy by
surrounding its strategy with ENTER and EXIT steps.

50

3.3 Smart constructors

data LabeledStrategy a = Label { labelInfo :: LabelInfo, unlabel :: Strategy a}
instance IsStrategy LabeledStrategy where

toStrategy (Label a σ) = fromStep (ENTER a) <?> σ <?> fromStep (EXIT a)

In the next section we present smart constructors for strategies, including the
strategy combinator <?> for sequences, which is used twice in the instance declara-
tion for LabeledStrategy.

3.3 Smart constructors

A smart constructor is a function that in addition to constructing a value performs
some checks, simplifications, or conversions. We use smart constructors for sim-
plifying strategies. We introduce a smart constructor for every alternative of the
strategy language given in Section 2.3. Definitions for ε and δ are straightforward,
and are given for consistency:

ε, δ :: Strategy a
ε = S Succeed
δ = S Fail

The general approach is that we use the IsStrategy type class to automatically
turn the subcomponents of a combinator into a strategy. As a result, we do not need
a strategy constructor for rules, because Rule was made an instance of the IsStrategy
type class. The context will turn a rule into a strategy, if required. This approach
is illustrated by the definition of the label constructor, which is overloaded in its
second argument:

label :: IsStrategy f ⇒ LabelInfo→ f a→ LabeledStrategy a
label σ = Label σ ◦ toStrategy

All other constructors return a value of type Strategy, and overload their strategy
arguments. We define helper-functions for lifting unary and binary constructors
(lift1 and lift2, respectively). These lift functions turn a function that works on the
Grammar datatype into an overloaded function that returns a strategy.

lift1 :: IsStrategy f
⇒ (Grammar a→ Grammar a)→ f a→ Strategy a

lift1 op = S ◦ op ◦ unS ◦ toStrategy
lift2 :: (IsStrategy f , IsStrategy g)

⇒ (Grammar a→ Grammar a→ Grammar a)→ f a→ g a→ Strategy a
lift2 op = lift1 ◦ op ◦ unS ◦ toStrategy

51

3 A strategy recogniser

For choices, we remove occurrences of Fail, and we associate the alternatives to
the right.

(<|>) :: (IsStrategy f , IsStrategy g)⇒ f a→ g a→ Strategy a
(<|>) = lift2 op

where
op :: Grammar a→ Grammar a→ Grammar a
op Fail τ = τ
op σ Fail = σ
op (σ :|: τ) υ = σ ‘op‘ (τ ‘op‘ υ)
op σ τ = σ :|: τ

The smart constructor <?> for sequences removes the unit element Succeed, and
propagates the absorbing element Fail.

(<?>) :: (IsStrategy f , IsStrategy g)⇒ f a→ g a→ Strategy a
(<?>) = lift2 op

where
op :: Grammar a→ Grammar a→ Grammar a
op Succeed τ = τ
op σ Succeed = σ
op Fail = Fail
op Fail = Fail
op (σ :?: τ) υ = σ ‘op‘ (τ ‘op‘ υ)
op σ τ = σ :?: τ

The binary combinators for interleaving, <%> and %>, are defined in a similar
fashion. The smart constructor atomic, which was denoted by 〈·〉 in Section 2.3,
takes only one argument. It is defined in the following way:

atomic :: IsStrategy f ⇒ f a→ Strategy a
atomic = lift1 op

where
op :: Grammar a→ Grammar a
op (Symbol a) = Symbol a
op Succeed = Succeed
op Fail = Fail
op (Atomic σ) = op σ
op (σ :|: τ) = op σ :|: op τ
op σ = Atomic σ

This definition is based on several properties of atomicity, such as idempotence and
distributivity over choice.

52

3.4 Running a strategy

The last combinator we present is for recursion. Internally we use numbered Recs
and Vars in our Grammar datatype, but for the strategy writer it is more convenient
to write the recursion as a fixed-point, without worrying about numbering variables.
For this reason we do not define direct counterparts for the Rec and Var constructors,
but only the higher-order function fix. This combinator is defined as follows:

fix :: (Strategy a→ Strategy a)→ Strategy a
fix f = lift1 (Rec i) (make i)
where

make = f ◦ S ◦Var
is = usedNumbers (unS (make 0))
i = if null is then 0 else maximum is + 1

The trick is that function f is applied twice. First, we pass f a strategy with the
grammar Var 0, and we inspect which numbers are used, using the function
usedNumbers (variable is of type [Int]). We omit the definition of usedNumbers.
Based on this information, we now determine the next number to use (variable
i). We apply f for the second time using grammar Var i, and bind these Vars to
the top-level Rec. Note that this approach does not work for fixed-point functions
that perform case analysis on their arguments, since the bound variables of f are
replaced by a Var. We have not encountered any problems with this restriction.

We can now define the repetition combinator many in terms of the smart con-
structors. Observe that many’s argument is also overloaded because of the smart
constructors.

many :: IsStrategy f ⇒ f a→ Strategy a
many σ = fix $ λx→ ε <|> (σ <?> x)

3.4 Running a strategy

A strategy is a grammar over rewrite rules and ENTER and EXIT steps for labels. We
can run a strategy, that is, we can apply the rules to an initial term in the order as
specified in the strategy. The result of running a strategy is a term that the strategy
considers to be a solution. We first define a type class to overload the function that
we apply to terms. The type class Apply has a method apply that returns a list of
results, obtained by applying a rule or a strategy to a value. To apply a rule to a
value, we give an instance declaration of Apply for the Step datatype, where the
ENTER and EXIT steps return a singleton list with the current term, i.e., they do not
have an effect.

class Apply f where
apply :: f a→ a→ [a]

53

3 A strategy recogniser

instance Apply Rule where
apply r x = r x

instance Apply (Step l) where
apply (Step r) = apply r
apply = return

We can now give an implementation for running grammars with symbols in the
Apply type class. The implementation uses the functions empty and firsts.

run :: Apply f ⇒ Grammar (f a)→ a→ [a]
run σ a = [a | empty σ] ++ [c | (r, τ)← firsts σ, b← apply r a, c← run τ b]

The list of results returned by run consists of two parts: the first part is the singleton
list containing the term a, provided empty σ holds. The second part takes care
of the alternatives that start with symbols that appear first in σ. Let r be one of
the symbols that can appear first in strategy σ. We apply r to the current term a,
yielding a new term b. We run the remainder of the strategy (that is, τ) on this new
term.

We make Strategy and LabeledStrategy instances of class Apply using the run
function.

instance Apply Strategy where
apply = run ◦ unS

instance Apply LabeledStrategy where
apply = apply ◦ toStrategy

The function run may produce an infinite list. In most cases, however, we are
only interested in a single result, and rely on lazy evaluation to only calculate the
first element of the list. The term obtained for an empty strategy is put at the front
to return terms that are obtained by applying a few rewrite rules early.

3.5 Tracing a strategy

The run function defined in the previous section ignores the labels. However, if we
want to recognise (intermediate) terms submitted by a student, and give feedback
if the answer is incorrect, then labels become important. We extend the definition
of run to keep a trace of the steps that have been applied:

runTrace :: Apply f ⇒ Grammar (f a)→ a→ [(a, [f a])]
runTrace σ a =
[(a, []) | empty σ] ++
[(c, (r : rs)) | (r, τ)← firsts σ, b← apply r a, (c, rs)← runTrace τ b]

54

3.5 Tracing a strategy

In case of a strategy, we can thus obtain the list of ENTER and EXIT steps seen so far.
We illustrate this by means of an example.

We return to the strategy for adding two fractions (addFractions, defined in
Chapter 2). Suppose that we run this strategy on the term 2

5 + 2
3 . This would

give us the following derivation:

2
5
+

2
3

=
6

15
+

2
3

=
6

15
+

10
15

=
16
15

= 1 +
1
15

The final answer, 1 + 1
15 , is indeed what we would expect. This result is returned

twice because the strategy does not specify which of the fractions should be re-
named first, and as a result we get two different derivations. It is informative to see
the intermediate steps returned by function runTrace.

[ENTER`0 , ENTER`1 , Step LCD, EXIT`1 , ENTER`2
, Step DOWN, Step RENAME, Step UP, Step DOWN, Step RIGHT

, Step RENAME, Step UP, Step APPCHECK, EXIT`2 , ENTER`3
, Step ADD, EXIT`3 , ENTER`4 , Step SIMPL, EXIT`4
, EXIT`0]

The list has twenty steps, but only four correspond to actual steps appearing in the
derivation showed to the student: the rules of those steps are underlined. The other
rules are minor: the navigation rules UP, RIGHT and DOWN are introduced by the
somewhere combinator, and APPCHECK comes from the use of repeat. Also observe
that each ENTER step has a matching EXIT step. A label may be visited multiple times
by a strategy.

We determine at each point in the derivation where we are in the strategy by
enumerating the ENTER steps for which the corresponding EXIT steps have not been
performed yet. Based on this information we can fine-tune the feedback messages
that are reported when a student submits an incorrect answer, or when she asks for
a hint on how to continue.

55

4 EXERCISES

An exercise can be regarded as a task that a student needs to carry out, possibly
using an ITS. According to VanLehn (2006), a task is a multi-minute action that con-
sists of multiple steps. A student performs these tasks to increase understanding
and improve skills. Our domain reasoners reuse the term exercise for a broader
concept. In addition to a task description, an exercise contains many more com-
ponents, such as the set of allowed rules, the strategy for solving the task, and a
task generator. An exercise groups together all components that are necessary to
present and reason about a task, such as giving guidance and feedback.

Although we can derive many types of feedback from a strategy, as shown in
the previous chapter, there are other components necessary to deliver the feedback
when solving an exercise. For example, when a student makes a syntax error or
takes an unknown step, we would like to give detailed feedback. This feedback
cannot be generated from a strategy alone. We need additional components, such
as a parser to give feedback about syntax errors.

An exercise contains all exercise-specific functionality. The most important
component of an exercise is its strategy. Additional rewrite rules, that is rules that
are not used in the strategy, can be added to an exercise to help detect possible
deviations from the strategy. We not only specify proper rewrite rules, but also
buggy rules. A buggy rule captures a common misconception. If we detect an
application of a buggy rule, we report this to the user. We also need predicates for
checking whether or not an expression is a suitable starting expression that can be

57

4 Exercises

solved by the strategy, and whether or not an expression is in solved form. These
two predicates can be defined as views. A view (Heeren and Jeuring, 2009) defines
an equivalence relation by choosing a canonical form of mathematical expressions.
We use this equivalence relation for diagnosing intermediate answers. We use this
relation to compare a student submission with the preceding expression. We also
need a similarity relation, which checks whether two terms are similar enough
to be considered the same. A similarity relation is possibly more liberal than
syntactic equality. The similarity relation can also be defined as a view, and is used
to transform intermediate terms produced by a strategy to their canonical forms.
What remains to be supplied for an exercise is its metadata, such as an identifier
that can serve as a reference, and a short description. For certain domains it is
convenient to have a dedicated parser and pretty-printer for the terms. Although
not of primary importance, it can be convenient to have a randomised expression
generator for the exercise. The last component of an exercise is a function that
returns an ordering on rules. We define an exercise as follows.

Definition 4.1. An exercise consists of an identification code, a strategy, a rule set, a
buggy rule set, an equivalence relation, a similarity relation, a predicate suitable, a predicate
finished, a parser and pretty-printer, an expression generator, and a rule ordering function.

The following shows a concrete example of an exercise definition for an exercise
in the domain of arithmetic with fractions:

addFractionsExercise =
(addFracEx -- ID code
, addFractions -- Strategy

, {RECIPOW :
a
b
= a · b−1} -- Rule set

, {B1 :
a
b
+

c
d
6= (

a + c
b + d

), B2, B3} -- Buggy rules

, eqExpr, simExpr, suitableExpr, finishedExpr -- Checks
, parseExpr, printExpr -- Parser and pretty printer
, genExpr -- Generator
, ZEROMUL < UNITMUL < UNITADD < UNITSUB) -- Rule ordering

We will describe every component of this example exercise specification in detail in
the remainder of this chapter.

Many of the components specified in an exercise, such as the rewrite rules,
operate on the abstract syntax of the domain of the exercise. In our running example
this is the domain of arithmetic. The following Haskell data type declaration is
used for the abstract syntax of the domain of simple arithmetic expressions:

data Expr = Var String | Nat Integer | Negate Expr
| Expr :+: Expr | Expr :−: Expr | Expr :?: Expr

58

4.1 Strategy and rules

| Expr :̂ : Expr | Expr :/: Expr
deriving Eq

This definition is based on the grammar for arithmetic expressions defined in
Section 2.2. As in the grammar, the constructor for constants (Nat) should only
be used for positive natural numbers. Constructor Negate negates an expression.
Making negation explicit allows to specify rewrite rules more conveniently, e.g.,
using pattern matching. We have made the Expr datatype an instance of the Num
and Fractional classes. We do not show the code for these instances.

We need a parser to convert the concrete syntax, i.e., the text a student writes,
to this abstract syntax. There are many good parser libraries for Haskell, such as
libraries developed by Swierstra and Duponcheel (1996), and Leijen and Meijer
(2001). Our parser has the following type:

parseExpr :: String→ Either String Expr

If the parser can successfully parse the student input it returns the abstract syntax,
otherwise an error message is returned. This error message is reported to the
student. The inverse of parsing is pretty printing (Oppen, 1980; Hughes, 1995),
which converts the abstract syntax to a string. For external tools, however, exchan-
ging messages using an abstract syntax (as opposed to concrete syntax), such as
OpenMath objects (Society, 2006) for mathematical domains, is the preferred way
of communication, avoiding the need for a parser and pretty-printer.

The remainder of this chapter discusses the remaining components that are
collected in an exercise, and describes the details of the addFractionsExercise exercise
example given above.

4.1 Strategy and rules

In the previous chapter we introduce rules and strategies. We now show how rules
and strategies are specified in an exercise.

4.1.1 Specifying rules

Rewrite rules specify how terms can be manipulated, and are often given explicitly
in textbooks. Well-known examples are rewriting 0 · x into 0, associativity of
addition, and the DeMorgan rules for rewriting logic expressions. These rules
are the steps a student can take, and constitute the steps in worked-out solutions.
A rewrite rule is sound if it preserves the semantics of the term, i.e., the original
term is equivalent to the rewritten term, under the condition that the terms are
well-defined. Soundness of rules can be checked with respect to some semantic

59

4 Exercises

interpretation of an expression. A semantic interpretation can be context-specific
(e.g., x2=−3 gives no solutions for x in R). In Section 4.2 we introduce semantic
checks, and we will give an example of a semantic interpretation.

Rewrite rules are atomic actions that are implemented in code. Clearly, this gives
the implementer of a rule the full power of the underlying programming language.
For example, the rewrite rule for adding fractions (ADD) is defined as follows:

ADD :: Rule Expr
ADD = ruleList "add" f

where
f ((a :/: b) :+: (c :/: d)) | b d = [(a + c) :/: b]
f = []

To represent a rewrite rule we use the abstract datatype Rule a, which is poly-
morphic in the type of the abstract syntax of the domain. The definition for the
rewrite rule ADD pattern matches on the construction of an addition of two fractions,
and returns a singleton list with the result of the addition. Recall that we allow re-
write rules to yield multiple results. If an expression is not the sum of two fractions,
or the denominators are different, it cannot be pattern matched, in which case the
ADD rewrite rule returns the empty list. The latter case signals that the rewrite rule
was not applicable. The function ruleList :: String→ (a→ [a])→ Rule a transforms
the function f into a rule.

Alternatively, we can specify rules with a left-hand side and a right-hand side,
and rely on unification and substitution of terms to do the transformation (van
Noort et al., 2010). This corresponds to the definition of rewrite rules in term rewrite
systems (Baader and Nipkow, 1997). An example of this alternative definition is
given in the following code:

ADD′ :: Rule Expr
ADD′ = rewriteRule "add"
(λa b c→ (a :/: b) :+: (c :/: b) :∼> (a + c) :/: b)

This definition is more elegant than the previous one. The infix operator (:∼>)
builds a rule specification based on the left-hand and right-hand side. The function
rewriteRule takes a function that returns a rule specification as argument, and
constructs a rewrite rule that can be used in a strategy. We do not need the guard
that checks whether the denominators are the same. Based on this specification, the
unification procedure makes sure that a rule is only applied to fractions with the
same denominator. This way of defining rewrite rules is, however, less powerful
than using a regular function.

Besides the rules that appear in the strategy for an exercise, we can specify rules
for the purpose of being recognised. When a student deviates from the strategy

60

4.1 Strategy and rules

we use the semantic interpretation to check whether the submitted expression is
equivalent. If so, we try to match one of the additional specified rules, and give a
detailed feedback message. In this message we report that although a correct rule
has been successfully applied, the rule is not accepted by the strategy. The example
exercise contains a rule set with one additional rule, namely RECIPOW.

4.1.2 Buggy rules

In addition to the rules in a strategy and the extra rewrite rules, we can formulate
buggy rules. These rules capture common misconceptions, such as the following
unsound variants of rewriting arithmetic expressions:

B1:
a
b
+

c
d
6= a + c

b + d

B2: a · b
c
6= a · b

a · c

B3: a +
b
c
6= a + b

c

Buggy rules make it possible to detect mistakes that are made often. If the
system detects that such a rule is applied, it will present a specialised feedback
message. For example, suppose a student submits 3

7 as an intermediate solution
to the exercise 1

2 + 2
5 . Because the terms are not equivalent, the buggy rules are

tried, and in this case rule B1 matches. A special message associated with this rule
(for example, “you added the denominators as well as the numerators; you should
rename the fractions so that they have the same denominator and then add only the
numerators”) is reported to the student. In the example specification of an exercise
the buggy rule set consists of buggy rules B1, B2, and B3. Note that these buggy
rules should not appear in a strategy, since that would invalidate the strategy.

4.1.3 Rule ordering

The choice combinator (<|>) introduces a possible source of non-determinism. If
the strategy offers multiple options to solve an exercise, we use the rule ordering to
make a deterministic choice. We have introduced a rule ordering (<) in Section 2.4.3,
which shows how we prevent non-deterministic behaviour when generating feed-
back. We have chosen to specify the following rule ordering in the example exercise
definition: ZEROMUL < UNITMUL < UNITADD < UNITSUB. This means that the rewrite
rule ZEROMUL has precedence over all the other rules, and UNITMUL has precedence
over UNITADD and UNITSUB etc. If the ordering of a rule is not specified, then the rules

61

4 Exercises

are ordered alphabetically by name. The rules that are specified in the ordering
have a higher priority then unspecified rules.

4.1.4 Specifying strategies

Simple problems may be solved by applying a set of rules exhaustively, but this is
generally not the case. A rewrite strategy guides the process of applying rewrite
rules to solve a particular class of problems. For example, the second strategy
from Subsection 2.3.10 describes how to solve the problem of adding fractions in
simple arithmetic expressions. This strategy is included in the example exercise
specification.

Recipes for solving a certain type of problem can be found in textbooks, but
they are often not precise enough for the purpose of building a domain reasoner.
Given a collection of worked-out solutions by an expert, one can try to infer the
strategy that is used. Rewrite strategies are built from rewrite rules, using strategy
combinators. The combinators are described extensively in the previous chapter.
From a strategy description, multiple derivations may be generated or recognised.

Since strategies only structure the order in which rewrite rules are applied,
soundness of a derivation follows directly from the soundness of the rules involved.
A derivation is sound if all intermediate terms in the derivation are equivalent.
Recall that a strategy not only prescribes which rule to apply, but possibly also
where (that is, to which subterm). Also, strategies are designed with a specific
goal in mind. The strategy for arithmetic with fractions, for instance, is expected
to rewrite an expression until we are left with a single fraction (or mixed number).
The solved form that a strategy is supposed to reach is the strategy’s post-condition.
This post-condition is specified in the finished predicate in an exercise. Similarly, a
strategy may have certain assumptions about the starting term (e.g., the expression
must at least contain two fractions, or only a single variable is involved), which is
its pre-condition. The predicate suitable checks this pre-condition.

Buggy strategies. The idea of buggy rules can easily be extended to buggy
strategies. A buggy strategy corresponds to a common procedural mistake. Ap-
plying a buggy rule results in an expression with a different semantics from the
previous expression. Applying a rule from a buggy strategy results in an equivalent
expression, but following a wrong strategy. If a step supplied by a student is invalid
with respect to the strategy specified, but can be explained by a buggy strategy
for the problem, we can give the error message belonging to the buggy strategy.
This amounts to parsing, not just with respect to the correct strategy, but also with
respect to known buggy strategies. Although we have explored the idea of buggy
strategies, they are currently not available in the implementation of our strategy
recogniser.

62

4.1 Strategy and rules

4.1.5 Views

Canonical forms and notational conventions are an integral part of mathematics.
Examples of conventions in writing a polynomial are the order of its terms (sorted
by the degree of the term), and writing the coefficient in front of the variable. Such
conventions also play a role when discussing equations of the form ax2 + bx + c =
0: it is likely that 2x2 + 3x + 2 = 0 is considered an instance of the form, and
the atypical expression −(−3)x + 1 · 2x2 = −2 not. For example, the atypical
expression uses a double negation instead of addition. These conventions allow for
elegant specification of rewrite rules, but limit the applicability. It is very hard, if
not impossible, to check whether a term is of a canonical form.

Canonical forms and notational conventions can be captured in a view (Heeren
and Jeuring, 2009), which consists of a partial function for matching, and a (com-
plete) function for building. Views are based on the views proposed by Wadler
(1987). Matching may result in a value of a different type, such as the pair (−3, 5)
for the expression − 3

5 . In this example, the interpretation of the pair would be a
fraction (or a division) of both parts. This interpretation makes it easy to inspect the
individual parts. Having a value of a different type after matching can be useful
when specifying a rewrite rule: the pair (−3, 5), for instance, witnesses that a frac-
tion was recognised at top-level. Building after matching gives a canonical form,
and this composed operation should therefore be idempotent. The composition of
both components of a view is assumed to preserve a term’s semantics.

Primitive views can be composed into compound views, in two different ways.
Firstly, a views fits the arrow interface (Hughes, 2000; Paterson, 2003), and its
bidirectional variant. The combinators of this interface can be used for combining
views, such as using views in succession. Secondly, a view can be parameterised
with another view. Consider a view for recognising expressions of the form ax + b,
returning a pair of expressions for a and b. Another view can then be used for
these two parts (e.g., a view for rational numbers). Essentially, this pattern of usage
corresponds to having higher-order views.

A view pairs a match and build function. For each view we assume that the
two functions define a canonical form. A canonical form (or normal form) of
an expression is a standard way of (re)presenting that expression. The function
canonical returns the canonical form of an element under a given view:

canonical :: (a→ Maybe b, b→ a)→ a→ Maybe a
canonical (match, build) a = do b← match a

Just (build b)

We apply the match function of the view on an element, and on a successful match,
we use the build function to return to the original domain. For convenience, we also
define a simplification function, which is the identity function when matching fails:

63

4 Exercises

simplify :: (a→ Maybe b, b→ a)→ a→ a
simplify view a = fromMaybe a (canonical view a)

The following properties of the simplify function should hold for all views, estab-
lishing a property for match and build pairs.

Property 1 (Idempotence). For every view v, simplify v is an idempotent function. If
this is not the case, we say that view v is improper.

Property 2 (Soundness). Simplification with a view v should preserve the semantics of a
term. Let a be some element in the domain of view v, and let sem denote the semantics of
that domain. Then sem a = sem (simplify v a).

Because each proper view defines a canonical form, we can use it to define an
equivalence relation. Two elements can be tested for equivalence under a view by
comparing their canonical forms.

We use views in various ways:

• as a rewrite rule, reducing a term to its canonical form (if possible);

• as an equivalence relation, comparing the canonical forms of two terms;

• as a predicate, checking whether a term has a canonical form;

• as a way to limit the set of necessary rewrite rules.

In the rest of this subsection we give an example of the last usage, and describe
some common functions on views.

Consider the exercise of adding two fractions again. The first step in our example
strategy for adding two fractions is to let the fractions have the same denomin-
ator, and for this purpose we compute the least common denominator. Given an
expression of type Expr, the following Haskell function returns the least common
denominator of two fractions:

LCD :: Expr→ Maybe Integer
LCD ((a :/: Nat b) :+: (c :/: Nat d)) = Just (lcm b d)
LCD = Nothing

where lcm is a predefined function which calculates the lowest common multiple
of two integers. The function LCD is partial, which is reflected by the Maybe type
constructor. The function only works for sums of fractions: for all other values, the
function cannot compute an least common denominator and returns Nothing. In
fact, our definition of LCD is unsuitable for our Expr data type:

64

4.1 Strategy and rules

• Suppose we also want to use LCD when subtracting one fraction from another,
e.g., 2

3 −
1
4 . This requires an extra case for our definition, in which we match

on the constructor :−: at top-level.

• What if the first fraction is negative, as in − 1
4 + 2

3 ? In combination with
support for subtraction, this requires a substantial number of new cases.

• The denominator can also be negative (1
−4 + 2

3), leading to even more com-
binations that have to be considered.

In this context, pattern matching is cumbersome because the number of cases grows
rapidly. Instead, we use views to gain flexibility, without obscuring LCD’s definition.
A view allows us to represent a collection of expressions by means of expressions
of a particular canonical form.

At top-level, the function LCD is expecting an addition, and we can apply some
algebraic laws to put an expression into the expected form (if possible). The function
matchPlus tries to match an addition at top-level, and uses basic laws for negation
to do so. If it succeeds, it returns a pair containing the operands of the addition.

matchPlus :: Expr→ Maybe (Expr, Expr)
matchPlus (a :+: b) = Just (a, b)
matchPlus (a :−: b) = Just (a, Negate b) -- push negation inside
matchPlus (Negate a) = do (x, y)← matchPlus a

Just (Negate x, Negate y) -- distribute negation
matchPlus = Nothing

In the case for negation, we call the function recursively on the negated term. If
the call succeeds with a pair (x, y), both operands are negated. In the same fashion,
we introduce a function to match a fraction. Here, we only push negations into the
numerator.

matchDiv :: Expr→ Maybe (Expr, Expr)
matchDiv (a :/: b) = Just (a, b)
matchDiv (Negate a) = do (x, y)← matchDiv a

Just (Negate x, y) -- push negation inside
matchDiv = Nothing

We explicitly mark whether or not an expression is negative, by means of the
Negate constructor. The Nat constructor should only be used for positive constants,
otherwise we could construct negative numbers in two ways (Negate (Nat a) or
Nat (−a)). If we want to match an integer value, pattern matching again becomes
a bit awkward. The third match-function alleviates this problem. This function
matches a natural number preceded by one or more negations, and returns an
integer value.

65

4 Exercises

matchNumber :: Expr→ Maybe Integer
matchNumber (Nat n) = Just n
matchNumber (Negate e) = do c← matchNumber e

Just (−c)
matchNumber = Nothing

Note that (−c) is the primitive negation operation applied to integer c.
With the helper-functions for matching expressions, we can define LCD. With

some “plumbing” in the Maybe monad, this is not too difficult. However, there
is a more elegant way. The type of match functions precisely fit the Arrow inter-
face (Paterson, 2003), which is a general interface for computation. In our case, we
model partiality by introducing the Maybe monad, which turns match functions
into a Kleisli arrow: an arrow of type a→ m b for some monad m. We can use the
combinators from the Arrow type class to compose match functions. With the arrow
combinators, we define matchTwoFractions, which views an expression as the sum
of two fractions with constants in the denominators.

matchTwoFractions :: Expr→ Maybe ((Expr, Integer), (Expr, Integer))
matchTwoFractions = runKleisli $

Kleisli matchPlus >>> (matchFraction ∗∗∗ matchFraction)
where

matchFraction = Kleisli matchDiv >>> second (Kleisli matchNumber)

We can use this match function to give an improved definition for LCD:

LCD′ :: Expr→ Maybe Integer
LCD′ e = do ((a, b), (c, d))← matchTwoFractions e

Just (lcm b d)

So far, we have only looked at the matching function from a view. With each
partial function from a to b, we associate a build function, which returns a value in
the original domain. For example, the build function for a fraction can be defined
straightforwardly:

build :: (Expr, Expr)→ Expr
build (a, b) = a :/: b

4.2 Syntactic and semantic checks

If a student deviates from a strategy we can no longer use the strategy as a basis for
generating feedback. The only fact we can derive from a strategy is that a student

66

4.2 Syntactic and semantic checks

took a step that is not expected. In this case the feedback that can be derived from a
strategy is limited. We distinguish two cases when a student leaves the path that is
specified by the strategy: either the student applies a correct, but unknown rewrite
rule, or the student makes a mistake. In the latter case the rewritten expression is
no longer equivalent to the previous expression. To determine this fact we need a
semantic interpretation of the domain of the exercise. This interpretation can be
used to define an equivalence function on expressions. In our running example we
need a function that calculates whether or not two simple arithmetic expressions
are equal. We define this function in terms of a view:

matchExpr :: Expr→ Maybe Rational
matchExpr = calcExpr

where
calcExpr e =

case e of
Nat n → return (n % 1)
Negate e→ liftM negate (calcExpr e)
e1 :+: e2 → liftM2 (+) (calcExpr e1) (calcExpr e2)
e1 :−: e2 → liftM2 (−) (calcExpr e1) (calcExpr e2)
e1 :?: e2 → liftM2 (∗) (calcExpr e1) (calcExpr e2)
e1 :/: e2 → do x← calcExpr e1

y← calcExpr e2
guard $ y /= 0
return (x / y)

e1 : :̂ e2→ do x← calcExpr e1
y← calcExpr e2
guard $ y > 0 && denominator y 1
return (xˆ(numerator y))

→ Nothing
buildExpr :: Rational→ Expr
buildExpr r
| denominator r 1 = Nat (numerator r)
| numerator r < 0 = Negate (Nat (abs (numerator r)) :/: Nat (denominator r))
| otherwise = Nat (numerator r) :/: Nat (denominator r)

normExpr :: Expr→ Expr
normExpr = simplify (matchExpr, buildExpr)

We use these functions to define the equality function on simple arithmetic expres-
sions, where stands for the derived equality on Expr:

eqExpr :: Expr→ Expr→ Bool
eqExpr e1 e2 = normExpr e1 normExpr e2

67

4 Exercises

The eqExpr function normalises both expressions, and compares the normalised
expressions with the derived equality function.

The equivalence function is used in the feedback generation. If a student deviates
from the strategy we can report that an unknown, but correct step has been taken, or
that the student has made a mistake. In the first case an ITS that uses our feedback
functionality may decide to let the student carry on. An alternative is to force the
student to stay on the path described by the strategy.

An equivalence function is of primary importance when generating feedback.
An ITS should be able to determine whether or not the student has taken a correct
step or made a mistake, and report this to the student. But what if the student
(repeatedly) submits the same expression? The equivalence function is of no use in
such a situation, because obviously the expression remains equivalent. Another
situation in which the equivalence function does not provide relevant information,
is when a student has taken a step that is considered insignificant by a tutor. An
insignificant step is a correct rewrite step, but the application of that step does not
bring the expression closer to the final answer. For example, suppose a student
uses the commutativity property of (+) to rewrite 2 + 3 to 3 + 2. To detect this kind
of steps we specify a similarity function. The most straightforward definition for
similarity is to define it in terms of syntactic equivalence. However, as the example
makes clear, sometimes it is necessary to define a function that is more liberal than
syntactic equivalence. In our running exercise example we use the derived equality
function on the abstract syntax:

simExpr :: Expr→ Expr→ Bool
simExpr e1 e2 = e1 e2

finishedExpr is a semantic function that determines if a student submission can
be accepted as a final answer. It is defined as follows:

finishedExpr :: Expr→ Bool
finishedExpr expr = isProperFrac expr′ || isNat expr′

where
expr′ = rewriteNeg expr
isProperFrac expr =

case expr of
Nat c :+: (Nat a :/: Nat b) | a < b→ True
Nat a :/: Nat b | a < b→ True

→ False
isNat expr =

case expr of
Nat → True

68

4.2 Syntactic and semantic checks

→ False
rewriteNeg expr =

case expr of
Negate a :−: b → a :+: b
Negate (Nat a) :/: Nat b→ Nat a :/: Nat b
Nat a :/: Negate (Nat b)→ Nat a :/: Nat b
Negate (Negate) → expr
Negate a → a

→ expr

The function finishedExpr pattern matches on the forms that are allowed as a final
answer. An expression is finished if it is a mixed number, a proper fraction, or a
constant. Some forms of negative expressions are allowed as a final answer. For
example, the expression 1

−2 is accepted as a final answer, whereas the expression
−1
−2 is not.

The semantic and syntactic functions defined above are independent from the
rules and the strategy. We can use these functions to test certain properties of the
rules and the strategy. For example, every rewrite (and therefore also strategy)
should be semantics preserving. After applying a rewrite rule to an expression the
result should be equivalent to the original expression. In Section 4.3 we give a list
of properties of exercises.

Expression generator. An exercise contains an expression generator. A generated
expression should be solvable with the specified strategy. The generator that we
have implemented is based on the QuickCheck (Claessen and Hughes, 2000) library.
The definition below shows a generator for arithmetic expressions with fractions:

genExpr :: Int→ Gen Expr
genExpr n
| n 0 = frequency [(1, liftM (Nat ◦ abs) arbitrary)

, (4, liftM2 (λa b→ a :/: Nat b) arbitrary num)]
| otherwise = oneof [genExpr 0

, liftM Negate rec
, binop (:+:)
, binop (:?:)
, binop (:−:)]

where
rec = genExpr (n ‘div‘ 2)
binop f = liftM2 f rec rec
num = choose (1, 12)

69

4 Exercises

instance Arbitrary Expr where
arbitrary = sized genExpr

instance CoArbitrary Expr where
coarbitrary (Nat n) = variant 0 ◦ coarbitrary n
coarbitrary (Var v) = variant 1 ◦ coarbitrary v
coarbitrary (Negate a) = variant 2 ◦ coarbitrary a
coarbitrary (a :+: b) = variant 3 ◦ coarbitrary a ◦ coarbitrary b
coarbitrary (a :?: b) = variant 4 ◦ coarbitrary a ◦ coarbitrary b
coarbitrary (a :−: b) = variant 5 ◦ coarbitrary a ◦ coarbitrary b
coarbitrary (a :/: b) = variant 6 ◦ coarbitrary a ◦ coarbitrary b

This generator creates simple arithmetic expressions. The frequency function from
the QuickCheck library allows us to specify that we prefer the generation of frac-
tions above the generation of other expression constructs. When generating frac-
tions we need to take care that we do not introduce a division by zero. As a simple
solution, we generate only non-negative numbers for the denominator.

The last semantic function is suitableExpr, which checks whether or not the
expression generator generates proper tasks.

suitableExpr :: Expr→ Bool
suitableExpr = not ◦ finishedExpr

With this function we express that every expression that is not finished, i.e., at
least one step has to be taken, is suitable. Function suitableExpr is rather basic,
and probably accepts tasks we would not want to set. More appropriate tasks
are obtained if we check for a minimal number of additions, or the inclusion of a
negative number, in the definition of suitableExpr.

4.3 Properties

The following lemmas express properties that the components in an exercise should
satisfy. The lemmas connect the various components of an exercise.

Definition 4.2. Function unfocus converts a focused expression to a normal expression.

Lemma 4.3. Let S0 be a state (Γ, φ, σ). If unfocus (φ) is a suitable start expression, then
in all end states, the unfocused expression is finished:

∀ (Γ′, φ′, ε) ∈ run (S0) . finished (unfocus φ′)

70

4.3 Properties

Lemma 4.4. Let ≡ be the exercise’s equivalence function, E the set of valid expressions,
and R be the set of all rewrite rules for an exercise, i.e., the union of the rules used in the
strategy and the additional rules set, and r an element of R. Then all r in R are semantics
preserving:

∃ e, e′ ∈ E . e r
 e′ . e ≡ e′

Definition 4.5. Let d be a derivation, i.e., a sequence of pairs of rules and states. Then
exprs (d) is the set of all expressions in a derivation:

exprs (d) = {unfocus (φ) | (r, (Γ, φ, σ)) ∈ d}

Corollary 4.6. Let S be a state. Then all expressions in all derivations are in the same
equivalence class determined by the exercise’s equivalence relation ≡:

∀ d ∈ derivations (S) . ∀ e, e′ ∈ exprs (d) . e ≡ e′

Lemma 4.7. Let E be the set of expressions generated by the exercise’s generator. All
expressions e ∈ E are suitable and not finished: suitable (e) ∧ ¬ finished (e).

We use these properties to check the consistency of the definition of an exercise.
An exercise definition is consistent if:

• the rules are semantics preserving,

• the application of a strategy to a generated expression leads to expressions
that are finished,

• the generator generates suitable expressions that are not finished.

We have augmented the implementation of our strategy recogniser with tests that
check if an exercise definition has the specified properties. Proving these lemmas
for a particular exercise would guarantee that an exercise behaves as expected.

71

5 DOMAIN REASONERS

To support learning mathematics, many intelligent tutoring systems have been
developed. These ITSs manage a collection of learning objects, and offer a variety of
interactive exercises, together with a graphical user interface to enter and display
mathematical formulas. Advanced systems also have components for exercise
generation, for maintaining a student model, for configuring the tutorial strategy,
and so on. ITSs often delegate dealing with exercise-specific problems, such as
diagnosing intermediate answers entered by a student and providing feedback,
to external components. These components can be computer algebra systems
(CASs) or specialised domain reasoners. In general, a CAS will have no problems
calculating an answer to a mathematics question posed at primary school, high
school, or undergraduate university level. However, CASs are not designed to give
detailed diagnoses or suggestions to intermediate answers. As a result, giving
feedback using CASs is difficult. Domain reasoners, on the other hand, are designed
specifically to give good feedback. An ITS typically uses multiple domain reasoners,
and the behaviour of each of these is, to a large extent, determined by the domain.

A domain reasoner is responsible for the exercise-specific calculations, which are
needed to provide feedback to students solving interactive exercises. A domain
reasoner tracks the steps a student takes, generates hints, diagnoses errors, records
progress, calculates worked-out solutions, etc. The functionality of the domain
reasoner fundamentally depends on the domain, the rules that hold for the domain,
and the strategies for solving exercises within the domain. According to Beeson’s

73

5 Domain reasoners

design principles (Beeson, 1998) a domain reasoner should solve an exercise in
the same way as a student does. For this purpose, we need, amongst others, fine
control over the symbolic simplification procedures of the underlying mathematical
machinery.

In the past few years, we have developed domain reasoners that help with
diagnosing student behaviour in ITSs for calculating with fractions, performing
Gaussian elimination, solving systems of linear equations and other linear algebra
exercises, factoring polynomials, rewriting a logical term to disjunctive normal form,
rewriting relation algebra terms, developing functional programs, and determining
the derivative or integral of a function (Lodder et al., 2008; Gerdes et al., 2009;
Heeren et al., 2010).

Chapter 4 introduces three fundamental concepts for constructing domain reason-
ers. Using these three concepts we can generate feedback. The core components of
a domain reasoner are:

• A description of the domain, consisting of an abstract syntax together with a
parser and a pretty-printer.

• Rules with which expressions in the domain are manipulated.

• Strategies for solving exercises in the domain.

Additionally, for each domain we need functionality for generating tasks, tra-
versing terms, determining the equality of two terms, etc. Instances of these
concepts are grouped together in an exercise, see Chapter 4. Some components are
exercise-specific, such as the task generator and the strategy. Other components are
domain-specific, such as the abstract syntax and the equality function, and may be
shared among multiple exercises. A domain reasoner groups together one or more
exercises.

Our domain reasoners offer feedback functionality via web services (Gerdes
et al., 2008). These services act as an interface to our feedback functionality. We
have specified a general set of feedback services, with which each of our domain
reasoners can be accessed. Several intelligent tutoring systems, such as MATHDOX,
ACTIVEMATH and the Freudenthal Institute Digital Mathematics Environment use
our domain reasoning web services.

In addition to developers of intelligent tutoring systems, our domain reasoners
are used by students and teachers. Students and teachers do not interact with our
domain reasoners directly, but via an ITS. The different groups of users should be
able to customise a domain reasoner (Pahl, 2003). They have various requirements
with respect to customisation. For example, a student might want to see more
detail at a particular point in an exercise, a teacher might want to enforce that an
exercise is solved using a specific approach, and a developer of a mathematical

74

5.1 Feedback services

environment might want to compose a new kind of exercise from existing parts.
Heeren and Jeuring (2010) show how our domain reasoners can be adapted and
configured.

We use the input from students, via logs and statistics, to optimise our domain
reasoners, for instance by distilling common mistakes and extracting buggy rules.

The next section (Section 5.1) gives an overview of the feedback services that we
offer to ITSs. In Section 5.2 we show how to make a feedback service call. Section 5.3
explains how we use feedback scripts to translate the result of a feedback service
call to a textual feedback message.

5.1 Feedback services

A mathematical learning environment may use domain reasoners for several classes
of exercises. To minimise the effort of using multiple domain reasoners, domain
reasoners share a set of feedback services, which are exercise independent. We have
defined such a set of services around the exercise concept. These services provide
the kinds feedback we have identified in Section 2.5.

There are no restrictions on the usage of our feedback services. An example of
using our services is to start with giving correct/incorrect feedback, and to give
semantically rich feedback on individual steps only when a student repeatedly fails
to give a correct answer. Another possibility is to choose to only give feedback after
the final submission of a student, showing diagnoses of all the steps.

We offer the following feedback services:

allfirsts. Suggests all next steps accepted by the strategy.

onefirst. Returns the possible next step according to the strategy, taking the rule
ordering into account. This service uses the allfirsts service.

derivation. Returns a worked-out example, starting with the current term.

isfinished. Checks if the current expression is in a form accepted as a final answer.

stepsremaining. Computes how many steps remain to be done, according to the
strategy. Only the derivation returned by the derivation service is considered.

apply. Applies a rule to a particular subterm of the current term. The rule does not
need to be one of the rules that are accepted by the strategy. If the rule is not
accepted by the strategy, we deviate from it. If the rule cannot be applied, the
service call returns an error.

applicable. Collects the rewrite rules of a strategy and the additional rewrite rules,
and reports which rules can be applied to the (sub)term that is in focus.

75

5 Domain reasoners

generate. Returns an initial state with a freshly generated term. This service takes
an exercise code and an optional difficulty level as arguments.

diagnose. Diagnoses a term submitted by a student. The diagnose service checks
whether or not the submitted term is:

• the result of a buggy rule application,

• not equivalent,

• similar to the previous term,

• accepted by the strategy,

• a deviation from the strategy using a known rule,

• correct.

Based on an exercise specification we can automatically calculate the feedback
listed above. These services do not generate actual feedback messages. An ITS uses
the results of the services, for example the name of an applicable rule, to generate a
feedback message. For example, the service stepsremaining only gives the number
of steps that need to be taken to solve the task. The ITS translates this number,
say 5, into a proper feedback message: “There are at least 5 steps to be taken to
solve the exercise.”. To support ITSs in the generation of these feedback messages,
we have a number of additional services that generate textual feedback messages
based on the services listed above. We have defined textual variants of the onefirst,
derivation, and diagnose services. The construction of these messages is configurable,
see Section 5.3. We also have a number of administrative services. For example,
we offer a service that lists all available exercises. We do not further discuss the
definition of these administrative services.

Most of the feedback services are derived from the types of feedback that appear
in the tutoring principles of Anderson (1993), and from the tutoring services found
in VanLehn (2006). Some of the services cannot be found in these two sources, such
as the generate service. These services are needed by the ITSs to which we offer our
feedback functionality.

With the set of feedback services specified, we can provide the feedback that the
current ITSs that use our domain reasoners require from us. It may well be that
new users have extra or different requirements. We can easily adapt the existing
services, or add new services that offer new kinds of feedback. For example, Sec-
tion 6.2.1 shows the definition of a specialised service for the domain of functional
programming.

76

5.1 Feedback services

5.1.1 Formalised Services

Feedback tops the list of factors leading to good learning (Biggs and Tang, 2007), but
it is only effective when it is precise and to the point. To ensure that the feedback
given by our domain reasoners is to the point and relevant, we give a precise
definition of our services. The remainder of this section gives a formal definition of
the feedback services. We specify the services in terms of the definitions given in
Chapters 2 and 4.

allfirsts. The allfirsts service returns all next steps that are allowed by a strategy in
a particular state:

allfirsts S0 = {(r, S) | S0
r
� S}

The allfirsts service is defined in terms of the big step relation, which ignores
minor rules. The rules in this set are paired with a new state, which is the
result of applying the rewrite rule to the current state. Consider the following
state S:

S = (∅
, J 2

3 + 3
5K

, label "addTwoFractions"
(LCD <?> repeat (somewhere RENAME) <?> ADD <?> try SIMPL)

)

The strategy in this example state is the addTwoFractions strategy defined in
Section 2.3.10. An allfirsts S service call gives the following result.

{(RENAME

, ({(n, 15)}
, J 10

15K+ 3
5

, (UP <?> repeat (somewhere RENAME) <?> ADD <?> try SIMPL)
))

, (RENAME

, ({(n, 15)}
, 2

3 + J 9
15K

, (UP <?> repeat (somewhere RENAME) <?> ADD <?> try SIMPL)
))
}

The result is a set of two steps that a student can take. Both use the same
rewrite rule RENAME, but they are applied to a different subterm. The rule LCD

77

5 Domain reasoners

does not show up in the set of allfirsts because it is a minor rule. The result of
the application of this rule is the addition of a key/value pair, which stores
the least common denominator in the environment. This information is in
turn used by the RENAME rule. Not only the environment and the expression
in focus are updated in the new state, but also the strategy. The strategy in the
new state reflects what remains to be done. The UP minor rule is introduced
by the somewhere combinator to get the focus back to its original place.

onefirst. The onefirst service returns a single possible next step that follows the
strategy. This service uses the allfirsts service and the rule ordering.

onefirst S0 = (r, S)
where (r, S) ∈ allfirsts S0 ∧ ∀ (ri, Si) ∈ allfirsts S0 . r 6 ri

Performing a onefirst service call on the state S from the previous paragraph,
taking into account the rule ordering from the example exercise specification
from Chapter 4, gives following result:

(RENAME

, ({(n, 15)}
, J 10

15K+ 3
5

, (UP <?> repeat (somewhere RENAME) <?> ADD <?> try SIMPL)
))

Recall that if we need to choose between two occurrences of the same rule,
the rule ordering takes the location of the subterm to which the rule is applied
into account. The rule that can be applied to the subterm that is nearest to the
root of the term is chosen. In the example, this is the left-most fraction.

derivation. The derivation service returns a worked-out solution of an exercise start-
ing with the current expression.

derivation S0 = (r1, S1) (r2, S2) ... (rn, Sn) where empty (Sn) ∧
∀ i ∈ 1 ... n . (ri, Si) = onefirst Si−1

A service call on S leads to:

(RENAME

, ({(n, 15)}
, J 10

15K+ 3
5

, (UP <?> repeat (somewhere RENAME) <?> ADD <?> try SIMPL)
))

(RENAME

78

5.1 Feedback services

, ({(n, 15)}
, 10

15 + J 9
15K

, (UP <?> repeat (somewhere RENAME) <?> ADD <?> try SIMPL)
))

(ADD

, ({(n, 15)}
, J 19

15K
, try SIMPL

))

(SIMPL

, ({(n, 15)}
, J1 + 4

15K
, ε
))

isfinished. The isfinished service checks if the expression in a state is in a form
accepted as a final answer. The isfinished service is an interface to the finished
predicate defined in an exercise.

isfinished (Γ, JeK, σ) = finished (unfocus JeK)

stepsremaining. The stepsremaining service computes how many steps remain to be
done according to the strategy. This is achieved by calculating the length of
the derivation.

stepsremaining S0 = length (derivation S0)

apply. The apply service applies a rule to an expression in a state at a particular
location, regardless of the strategy. The location is represented as a list of
integers, where each integer n represents the number of steps to the right
after a step downwards in a subexpression (the nth child). Starting at the root
of an expression we can assign every subexpression a unique location.

The function setFocus puts the focus at a particular subexpression, using
minor navigation rules.

setFocus S [] = S

setFocus S (n : ns) = setFocus (moveRight n S′) ns where S DOWN→ S′

moveRight S n | n 6 0 = S

| n > 0 = moveRight S′ (n− 1) where S RIGHT→ S′

79

5 Domain reasoners

The function focusToTop sets the focus to the root of an expression. We omit
the definition of this function. The apply service is defined as follows:

apply r loc S0 = S1 where setFocus (focusToTop S0) loc r→ S1

For example, the following service call:

apply SIMPL [1, 1] (Γ, J 2
3 − (1

5 + 2
4)K, σ)

gives

(Γ, 2
3 − (1

5 + J 1
2K), σ)

applicable. The applicable service takes a state and a location, and returns all major
rules that can be applied to the subexpression at this location, independent of
the strategy. Let R be the union of the rules in the strategy and the additional
rule set, then applicable is defined as follows:

applicable loc S0 = {r | r ∈ R, S1
r
� S2}

where S1 = setFocus (focusToTop S0) loc

generate. The generate service takes an exercise identification code and a difficulty
level (optional), and returns an initial state with a freshly generated expres-
sion.

diagnose. The diagnose service diagnoses an expression submitted by a student.
Possible diagnoses are:

• Buggy: a common misconception has been detected,

• NotEq: the current and submitted expression are not equivalent, so
something is wrong,

• Similar: the submitted expression is similar to the current expression in
the derivation,

• Expected: the submitted expression is expected by the strategy,

• Detour: the submitted expression was not expected by the strategy, but
the applied rule was detected,

• Correct: the submitted expression is correct, but we cannot determine
which rule was applied.

80

5.2 Web services

The diagnose service is defined as follows:

diagnose (Γ, φ, σ) submitted
| e 6≡ submitted ∧
∃ b ∈ B . (Γ, e) b

 (Γ′, submitted) = (Buggy, b)
| e 6≡ submitted = NotEq
| e ≈ submitted = Similar
| ∃ ((Γ′, φ′, σ′), r) ∈ allfirsts (Γ, φ, σ) .

submitted ≈ unfocus (φ′) = (Expected,
, (Γ′, JsubmittedK, σ′))

| ∃ r ∈ R . (Γ, e) r
 (Γ′, submitted) = (Detour, r)

| otherwise = Correct
where e = unfocus (φ) -- the current expression

Where ≡ is the equivalence relation, ≈ the similarity relation, R the set of
additional rules, and B the buggy rule set specified in an exercise. The diagnose
service not only returns the result of the analysis (e.g., NotEq or Expected), but
also detailed information. If we detect the application of a (buggy) rule, we
return this rule. If the submitted expression is expected by the strategy, we
return the new state together with the applied rule.

5.2 Web services

Our feedback services are available in the form of online web services. Web ser-
vices are easier to maintain and deploy than, for instance, a library. For example,
updating the services after a bug fix only requires replacing a single binary on
the deployment server. Another important reason why we use web services is
abstraction. By using web services we abstract away from our implementation
details. It enables users of our services to access our functionality without having
to know about the details of a domain reasoner. The web service interface serves as
a contract between the provider and consumer. We can standardise our interface
while retaining the possibility to adapt our feedback engine. Developers of ITSs
that use our services are fully in charge of how to use and present feedback to a
student.

Web services support inter-operable machine-to-machine interaction over a net-
work. Currently we support two communication protocols: JSON-RPC (Javascript
object notation - remote procedure call) and XML-RPC. A communications protocol
describes the format of the messages that are exchanged between communicating
parties, and rules for exchanging those messages. The software framework used

81

5 Domain reasoners

for our domain reasoners has a modular architecture and can easily be extended
with other protocols. In this document we use JSON-RPC for the examples. The
JSON-RPC invocation of our feedback services can be done via a CGI (common
gateway interface) binary using HTTP (hypertext transfer protocol).

Our domain reasoners can be reached via the following URL (uniform resource
locator):

http://ideas.cs.uu.nl/cgi-bin/ideas.cgi?input=<JSON_input>

The general structure of the JSON input parameter that needs to be supplied in the
URL is:

{ "method" : <service name>
, "params" : <list of parameters>
, "id" : <request id> }

An interesting feature of our protocol is that it is stateless. When necessary
the state is given as an extra parameter. We represent the state as a four tuple
containing:

• an exercise identifier,

• a parameter that encodes the steps that a student has taken. This parameter
corresponds to a location in the strategy. The encoding is rather simple: the
first element of the list is the number of rules that have been applied, and
the remaining elements indicate if we go left or right in case we encounter a
choice combinator. If the element is 0 we go left, if it is 1 we go right.

• the current expression,

• an environment parameter that holds the key/value set.

This representation of the state is a serialised form of a state defined in Definition 2.6.
Due to the stateless protocol, the state parameter can be saved and the exercise
can be continued at a later point. This offers ITSs using our domain reasoners the
possibility to save a student’s work.

The following example is a JSON-RPC invocation of the onefirst service. It calls
the service with a list of parameters, here a singleton list containing a four tuple de-
scribing the current state. The example shows the structure of the input parameter
in a service request URL.

http://ideas.cs.uu.nl/cgi-bin/ideas.cgi?input=
{ "method" : "onefirst"
, "params" : [["addFracEx", "[]", "2/3+3/5", ""]]
, "id" : 42 }

82

5.3 Feedback scripts

The URL needs to be escaped from illegal characters (like spaces and curly braces),
but for presentation purposes we use the representation with these characters. The
CGI binary has one parameter called input. Based on the example service call, our
domain reasoner generates the following reply:

{ "result": ["rename", "[1]", ["addFracEx"
, "[5,1,1,1,0,1]"
, "(10/15 + 3/5))"
, {"n": "15"}]

, "error": null
, "id": 42 }

Our domain reasoner replies that applying the rewrite rule rename is the first step
that a student can take. Furthermore, the reply returns the location of the focus,
and the new state after applying the suggested rewrite rule.

5.3 Feedback scripts

We offer textual versions for some feedback services, such as the diagnose service.
A textual feedback service translates the output of a feedback service to a textual
feedback message. Texts are specified and configured in so-called feedback scripts.
These scripts are external text files containing responses for various situations. In
case of the diagnose service, depending on the diagnosis (e.g., a common mistake
was recognised, or the submitted term is correct and accepted by the specified
strategy), a feedback message is selected from the script and reported to the student.
Figure 5.1 gives a graphical representation of the communication between an ITS,
and a domain reasoner that uses a feedback script. A feedback text can be selected
based on the current location in the strategy, denoted by a label. Other selection
criteria are the name of the rule that is recognised (possibly a buggy rule), or the
submitted term being correct or not.

We can generate three levels of feedback messages for the next step to take, which
can be categorised as follows (Vanlehn et al., 2005):

• general: a general, high-level statement about the next step to take;

• concrete: a more detailed explanation of the next step in words;

• bottom-out: the exact next step to carry out, possibly accompanied with the
rewritten term.

The level of a feedback message for the next step is passed as an argument to a
textual feedback service.

83

5 Domain reasoners

client server

ITS
domain
reasoner

feedback script

1. request

4. reply

2. diagnosis3. message

Figure 5.1: Feedback scripts communication

Having only static texts in the feedback scripts (that is, texts that appear verbatim
in the script) restricts the expressiveness of the messages that can be reported.
We allow a variety of attributes in the textual messages of a script, and these
attributes are replaced by dynamic content depending on the context. In this way,
messages can include the result from a feedback service, such as the number of
steps remaining. Feedback scripts contain some more constructs to facilitate writing
feedback messages, such as local string definitions and an import mechanism.

The text for the three levels of feedback messages can be specified in a feedback
script as follows:

text addTwoFractions = { Use the procedure for adding fractions:
If necessary, rename the fractions so
that they have a common denominator. }

hint concrete = { @expected }
hint bottom-out = { @expected: this results in @after }

The general level uses the text that belongs to the active label. The attribute
expected is replaced by the (translation of the) rule suggested by the strategy. The
attribute after represents the term after application of the expected rule. Another
example of dynamic feedback generation is the translation of a rule that makes use
of argument information. The attribute arg1 is replaced dynamically by a textual
representation of the first argument. For example, the translation for the RENAME

rule can be defined as follows:

text rename = { multiply the fraction @arg2 with @arg1/@arg1 }

The first argument of the RENAME rule is the factor to scale with, and the second
argument the fraction to be renamed. Rule translations are, for instance, used in
the textual version of the derivation feedback service for generating worked-out
solutions:

84

5.3 Feedback scripts

2
3
+

3
5

⇒ {multiply the fraction 2
3 with 5

5 }

10
15

+
3
5

⇒ {multiply the fraction 3
5 with 3

3 }

10
15

+
9

15

⇒ {add the fractions by adding their numerators}

19
15

⇒ {simplify the fraction}

1 +
4

15

An important advantage of external feedback scripts is that they can be changed
easily, without recompiling the tutoring software. This approach also allows us to
add feedback scripts that support new exercises. A final benefit is that support-
ing multiple languages (as opposed to only English) comes quite natural. Each
language supported has its own feedback script.

85

Part II

Haskell Tutor

87

6 A PROGRAMMING TUTOR
FOR HASKELL

Learning by doing through developing programs, and learning through feedback
on these programs are essential aspects of learning programming. Introductory
functional programming courses often start with distinguishing the various steps
a student has to take to write a program. A teacher usually explains by example
how to develop a program: give the main function a name; if the function takes
an argument, give the argument a name; if the value of the argument determines
the action to be taken subsequently, analyse the argument, and depending on
the form of the argument, develop the appropriate right-hand sides, etc. Once a
student starts developing a program herself, in a lab session or at home, this kind of
explanatory help is usually not present. Moreover, giving immediate help to large
classes of students is almost always impossible. Especially beginning programmers
are often at a loss about how to proceed when developing a program.

We have developed ASK-ELLE , a programming tutor

• that targets first year computer science students,

• in which a student incrementally develops a program that is equivalent
(modulo syntactic variability) to one of the teacher-specified model solutions
for a programming problem,

• that gives feedback and hints on intermediate, incomplete, and possibly
buggy programs, based on teacher-specified annotations in model solutions,

89

6 A programming tutor for Haskell

• to which teachers can easily add their own programming exercises, and in
which teachers can adapt feedback,

• and in which a student can use her preferred step-size in developing a pro-
gram: from making a minor modification to submitting a complete program
in a single step.

Using our programming tutor a student develops a program by making small, in-
cremental, changes to a previous version of the program. Other common scenarios
in teaching programming are to give a student an incomplete program, and ask her
to complete the program, or to give a student a program, and ask her to change
the program at a particular point. In such assignments, a student refines or rewrites
a program. Both rewriting and refining preserve the semantics of a program, and
refining possibly makes a program more precise.

The feedback that we offer, such as giving a hint, is derived from a strategy.
Strategies play a central role in our approach. We use strategies to capture the
procedure of how to solve an exercise. A strategy describes which basic steps have
to be taken, and how these steps are combined to arrive at a solution. In case of
a functional programming exercise, the strategy describes how to incrementally
construct a program. We reuse the strategy EDSL described in detail in Section 2.3
for defining strategies for programming.

In this part of this thesis we show how we can construct strategies for solving
programming exercises, and how these strategies can be used to automatically
give feedback and hints to students using an intelligent programming tutor to
incrementally develop a program. We restrict ourselves to a tutor for learning
the functional programming language Haskell (Peyton Jones, 2003). We believe,
however, that our approach based on programming strategies is also applicable to
other programming languages and programming paradigms. Our method is not
tied to a particular programming language. The concepts on which our approach
is based, such as strategies, refinement rules, and program transformations, are
applicable to every programming language.

We start this chapter with explaining the high-level architecture of the program-
ming tutor (Section 6.1), and continue with giving a description of the functional
programming domain (Section 6.2). We continue with describing how to test incom-
plete programs (Section 6.3), which is an important part of the domain description.
Section 6.4 shows an example interactive session, which shows how our func-
tional programming tutor supports the incremental development of programs. We
conclude this chapter with a description of some conducted experiments. The
chapters in the remainder of this part of the thesis concentrate on different aspects
of the tutor, such as how to specify exercises and how to construct programming
strategies.

90

6.1 Programming tutor overview

6.1 Programming tutor overview

Our programming tutor, called ASK-ELLE , offers exercises in the functional pro-
gramming language Haskell. We use concepts and techniques from software
technology, such as strategies, parsing, and program transformations, to calculate
semantically rich feedback. Our tutor can be accessed via a web browser1. On the
main page, a student selects an exercise to work on (such as reverse). While devel-
oping a program, a student can check that she is still on a path to a correct solution,
ask for a single hint or all possible choices on how to proceed at a particular stage,
or ask for a worked-out solution.

6.1.1 Architecture

The programming tutor consists of a front- and back-end. The front-end handles the
interaction with the student, such as displaying feedback messages. The back-end
takes care of the feedback generation. Figure 6.1 shows a schematic overview of
our programming tutor.

The front-end of the tutor is implemented as a web application, which makes uses
of AJAX (asynchronous Javascript and XML) technology to make service calls. Each
time a student clicks a button such as Check or Hint, our web application sends a
service request to the functional programming domain reasoner (the back-end).

The back-end of our tutor is a domain reasoner for the domain of functional
programming exercises in Haskell. The domain reasoner is built using the software
framework for specifying domain reasoners, which we introduced in Part I. Our
functional programming domain reasoner is also available for external program-
ming environments. The domain reasoner uses the Helium compiler for Haskell
to calculate feedback. The Helium compiler has been developed to give better
feedback to students on the level of syntax and types (Heeren et al., 2003). We
reuse Helium’s error messages when a student makes a syntax-error, or develops a
wrongly typed program. The domain reasoner offers the services that are listed in
Section 5.1. For example, if a student submits a syntax- and type-correct program,
we analyse the submitted program using the diagnose service.

The domain reasoner is stateless: all information the domain reasoner needs is
included in the service request. For example, a request to check a program sends
the strategy for solving the exercise together with the previous and new expression
of the student to the diagnose feedback service. The result of the diagnose service is
converted to a feedback message using feedback scripts (see Section 5.3).

1http://ideas.cs.uu.nl/ProgTutor/

91

http://ideas.cs.uu.nl/ProgTutor/

6 A programming tutor for Haskell

front-end back-end

web
application ASK-ELLE compiler

feedback script

1. request

6. reply

2. compile

3. result

4. diagnosis5. message

Figure 6.1: ASK-ELLE architecture

6.1.2 Recognising student programs

In a nutshell, we recognise (incomplete) student programs as follows. A teacher
specifies her exercises by giving a set of annotated model solutions for a program-
ming problem. A model solution is a program that an expert writes, using good
programming practices. We derive a programming strategy from this set of model
solutions. We use this strategy to track the progress of a student, and to generate
feedback. Our tutor supports the incremental construction, in a top-down fashion,
of a model solution. It recognises incomplete versions of these solutions, together
with all kinds of syntactical variants. We support the refinement of programs, but
instead of showing that a program ensures a post-condition, we assume a program
to be correct if we can determine it to be equal to a model solution. A student
applies refinement rules to an intermediate program to make it more defined. Before
we compare a student (intermediate) program to the programs generated by the
strategy, we normalise all programs using program transformations. For example,
in this normalisation procedure we give all variables a unique name (α-renaming).

6.2 Domain description

We have constructed a domain reasoner for the domain of functional programming
in Haskell. As explained in Section 2.1, we need to give instances for the three
fundamental components that are necessary for generating feedback: the domain,
rules for reasoning about the domain, and strategies for guiding reasoning. Feed-
back generation is offered to the web application front-end via feedback services. In
this section we introduce the different components for the functional programming
domain reasoner. The following chapters provide the details of these components.

The first component is a description of the domain of functional programs. The

92

6.2 Domain description

domain is given by an abstract syntax in the form of a Haskell datatype, a parser that
parses concrete syntax to abstract syntax, and a pretty printer that shows abstract
syntax trees as programs in concrete syntax. We have constructed a simplified
version of the Helium AST. We could have reused the Helium AST, but having
our own AST allows us to abstract away from Helium. This makes it possible to
more easily switch to another compiler, such as GHC (Glasgow Haskell compiler).
We reuse many components from the Helium compiler, such as the parser, pretty
printer, and type checker. We have specified a view to go back and forth between
the Helium AST and our own.

The second component is the rules with which the terms in the domain, the
(intermediate) programs, are manipulated. In contrast to mathematical domains,
we use refinement rules instead of rewrite rules. Rewriting preserves the semantics
of a program; refining makes a program more defined. Refinement rules typically
replace an unknown part by some expression. A program refinement rule can
introduce one or more new unknown parts. A program is complete if it does not
contain any more unknown parts. Every constructor in the AST has a corresponding
refinement rule that refines an undefined value to the constructor, possibly applied
to undefined values. For example, we have a construct for an expression variable
and hence we have a refinement rule that introduces an expression variable. We
explain the refinement rules in detail in Chapter 8.

The third component is the strategy for solving a functional programming ex-
ercise. The strategy for a particular programming exercise is derived from a set
of model solutions. In Chapter 8 we explain the details of this process. The pro-
gramming strategy allows a student not only to give one of the model solutions,
but many variants of it.

Besides these three components we need some additional components, such
as the equivalence and similarity relations, before we can specify programming
exercises. Chapter 4 contains a complete overview of these components. We list the
additional components that are shared between all programming exercises:

equivalence. Checking if two programs have the same input/output behaviour is
undecidable. We do want to give feedback about the correctness of submitted
programs. If a submitted program follows a strategy, we know that it is equal
to a model solution and hence correct. If a student program does not follow a
strategy, we still want to be able to give feedback. As an approximation we use
testing to check if a program behaves the same as one of the model solutions.
If we can find a counter example, we know that the student program is wrong,
and we report this. If a student program passes our tests, we regard it as
equivalent. Strictly speaking, this is not correct and we therefore need to
construct our feedback messages with care, because if a student program
passes the test, it is not guaranteed to be correct. Section 6.3 describes how

93

6 A programming tutor for Haskell

we test (intermediate) programs.

similarity. To determine whether or not two (intermediate) programs are similar to
each other we use normalisation. Our normalisation procedure uses many
program transformations to rewrite a program to a normal form. After
normalising both programs, we compare them syntactically. In Chapter 9 we
describe the normalisation procedure.

generator. Strategies for mathematical exercises can be used to solve many tasks
(containing different terms). For example, adding the fractions in 1

2 + 2
3

and 2
3 + 1

5 can be solved using a single strategy. In contrast to mathematical
strategies, a programming strategy only solves a single programming exercise.
For instance, a programming strategy for writing the reverse function cannot
be used to solve a programming exercise that asks to define the length function.
The generator for the functional programming domain is very simple. It
only generates a completely undefined program, since every programming
exercise starts with such a program.

suitable. It is unnecessary to check whether or not a start term is suitable, because
we always start out with the same undefined start program. The suitable
predicate always returns True for programming exercises.

finished. The finished predicate checks if a submitted program can be accepted as
a final answer. The finished check should be independent of the strategy,
because we use this predicate (amongst others) to validate strategies. To
verify if a student is finished and has solved a programming exercise, we
check if the program is fully defined (i.e., the program does not contain holes
anymore), and test if it behaves the same as a model solution.

The remaining components of an exercise: the buggy rules set, the additional rules
set, and the rule ordering relation are not used in the generation of feedback for
programming exercises.

Using the above components we can construct a functional programming exer-
cise in Haskell. To add a new programming exercise a teacher adds a set of model
solutions for that exercise. All exercise components are constructed automatic-
ally from these model solutions. A teacher can adapt the generated feedback by
annotating the model solutions. Chapter 7 shows how model solutions can be
annotated.

Our programming tutor offers a number of programming exercises. Figure 6.2
shows the list of exercises currently offered. These exercises are a subset of the
Haskell-99 2 set of programming problems. Solving these programming exercises

2http://www.haskell.org/haskellwiki/99_Haskell_exercises

94

http://www.haskell.org/haskellwiki/99_Haskell_exercises

6.2 Domain description

supposedly gives a good overview of the programming language. This set of 99
programming problems is also available for other languages, such as Prolog, Lisp,
Scala, and Perl.

6.2.1 Additional feedback services

When solving a programming exercise a student can ask for an analysis of the steps
taken so far, or ask for a hint. The web application translates a request of the student
to a service call to the functional programming domain reasoner. The feedback
services described in Section 5.1 are not sufficient for the functional programming
domain reasoner. We need two additional feedback services, which may also be
useful for other domains.

The additional services are:

deepdiagnose. Similar to the Lisp tutor (Corbett et al., 1988), the refinement rules in
our tutor model Haskell at the finest grain size that has functional meaning
in Haskell. It is therefore likely that a student wants to take multiple steps
at once. We want to offer students the possibility to take multiple steps at
once. For example, when defining a case alternative, it is not uncommon that
a student defines the entire case alternative in one step.

The original diagnose service only recognises the first next step. The diagnose
feedback service takes the strategy, the previous program, and the current
program as arguments. It determines if the current program can be de-
rived from the previous program using any of the rules that are allowed by
the strategy, generated by the allfirsts service. The diagnose service uses the
similarity relation to calculate a normal form of both the expected and the
submitted programs, and checks that the submitted program appears in the
set of expected programs.

The deepdiagnose service recognises multiple steps. The deepdiagnose service
is defined as follows. We only show the case that is different from the diagnose
service:

deepdiagnose (Γ, φ, σ) submitted
...

| ∃ (Γ′, φ′, σ′) ∈ dfs (Γ, φ, σ) . submitted ≈ unfocus (φ′)
= (Expected, (Γ′, JsubmittedK, σ′))

...
where

dfs [] = []
dfs (S : SS) = S : dfs (map fst (allfirsts S) ++ SS)

95

6 A programming tutor for Haskell

Where ≈ is the similarity relation, and dfs a function that performs a depth-
first search. In Chapter 10 we show how we can search efficiently for a similar
intermediate program.

taskdescription. We can add labels to any (sub)strategy using the label combinator
(see Section 2.3.5). These labels introduce minor rules that are used to indicate
whether or not a label is active at a certain position in the strategy. We can
attach a feedback message to these labels using our feedback scripts. The
actual label in the strategy acts as an identifier for a feedback message in an
accompanying feedback script.

The taskdescription service returns the feedback messages for all active labels.

Furthermore, we have added textual versions for the deepdiagnose and allfirsts
services.

6.3 Testing incomplete programs

When a student deviates from a programming strategy, we cannot use the strategy
for calculating feedback. In this case, our feedback services use other components
of an exercise to generate feedback, such as the equivalence function, see Chapter 4.
Checking if two programs are equivalent is very hard, and in general undecidable.
For programming exercises we use testing as an approximation.

There exist quite a few libraries for testing in Haskell, such as SmallCheck (Runci-
man et al., 2008) and QuickCheck (Claessen and Hughes, 2000). We use QuickCheck
to test programs submitted by students. Using QuickCheck we can specify logical
properties that a program (or a function) should satisfy. QuickCheck generates test-
cases and tries to falsify the given property. If QuickCheck can falsify a property, it
tries to find the smallest counter example. This process is called shrinking.

QuickCheck normally only tests fully defined programs, as do other testing
libraries for Haskell. However, most of the programs that we want to test in our
tutor are not fully defined; we want to test incomplete programs. Consider the
following incomplete program for reverse:

reverse = reverse′ []
where

reverse′ acc [] = []
reverse′ acc (x : xs) = reverse′ • xs

Although the definition of reverse is incomplete, we can already prove that this
program does not meet the specification of reverse. The first function binding of
reverse′, which pattern matches on the empty list, returns the empty list, whereas it
should have returned the accumulated list.

96

6.4 An interactive session

We use a modified version of QuickCheck3, which can test incomplete pro-
grams. If this version of QuickCheck evaluates an undefined part of a program, it
throws a special exception. When this exception is caught, QuickCheck considers
the exception as expected behaviour and continues with the test. We generate
a straightforward property to test if the student program behaves the same as a
model solution. For example, the property for the reverse exercise is defined as
follows:

prop_EqReverseModel :: [Int]→ Bool
prop_EqReverseModel xs = model xs student xs

where
model xs = Prelude.reverse xs
student xs = ...

Note that it does not matter to which model solution we compare the student
program, since all model solutions should have identical behaviour.

Running the modified version of QuickCheck with the given property and the
example student definition given earlier, gives the following result:

> quickCheck prop_EqReverseModel
∗∗∗ Failed ! Falsifiable (after 4 tests and 1 shrink) :
[0]

This result can be used as input for the construction of a feedback message, which
can be presented to the student.

6.4 An interactive session

This section shows some interactions of a hypothetical student with the tutor. We
assume that the student has just started a course on functional programming, and
has visited lectures on how to write simple functional programs on lists. Her
teacher has set the exercise number 5 from the Haskell-99 list: reverse a list. The
exercise is based on the following model solutions:

-- Use the prelude function foldl
reverse = foldl (flip (:)) []

and

-- Introduce a helper function that uses an accumulating parameter
reverse = reverse′ []

3The modification is contributed by Koen Claessen.

97

6 A programming tutor for Haskell

where
reverse′ acc [] = acc
reverse′ acc (x : xs) = reverse′ (x : acc) xs

Note the accumulating parameter model solution for reverse is in essence the same
as the model solution using foldl. Our tutor recognises the accumulating parameter
solution from the foldl model solution. However, if we omit this model solution,
we would not be able to guide the student towards this solution.

In addition to these two model solutions, the tutor can also recognise the con-
struction of the naive, quadratic time solution for reverse, often implemented by
means of an explicit recursive definition:

-- Use explicit recursion
reverse [] = []
reverse (x : xs) = reverse xs ++ [x]

If a student implements this version of reverse, the tutor can tell the student that
this is a correct definition of reverse, but that it is a quadratic time algorithm, and
that a linear-time algorithm is preferable4. Despite the fact that we can also specify
suboptimal solutions, we will call these solutions “model solutions”.

We now show a couple of possible scenarios in which the student interacts with
the tutor to solve this problem. At the start of a tutoring session the tutor gives a
problem description:

Write a function that reverses a list: reverse :: [a]→ [a].

For example:

> reverse "A man, a plan, a canal, panama!"
"!amanap ,lanac a ,nalp a ,nam A"

> reverse [1, 2, 3, 4]
[4, 3, 2, 1]

and displays the name of the function to be defined:

reverse = •

The task of a student is to refine the incomplete parts, denoted by • , of the program.
The symbol • is used as a placeholder for a hole in a program that needs to be
refined to a complete program. A student can use such holes to defer the refinement

4We have not yet implemented this feature. However, it is relatively easy to detect which model
solution was implemented.

98

6.4 An interactive session

of parts of the program. After each refinement, a student can ask the tutor whether
or not the refinement is bringing him or her closer to a correct solution, or, if the
student doesn’t know how to proceed, ask the tutor for a hint. Besides holes, a
student can also introduce new declarations, function bindings, alternatives, and
refine patterns.

Suppose the student has no idea where to start and asks the tutor for help. The
tutor offers several ways to help a student. For example, it can list all possible ways
to proceed solving an exercise. In this case, the tutor would respond with:

There are several ways you can proceed:

• Introduce a helper function that uses an
accumulating parameter.

• Use the prelude function foldl.

• Use explicit recursion.

We assume here that a student has some means to obtain information about concepts
such as accumulated parameters that are mentioned in the feedback texts given by
the tutor. This information might be obtained via lectures, an assistant, or lecture
notes, or might even be included in the tutor at some later stage. Among the
different possibilities, the tutor can make a choice, so if the student doesn’t want to
choose, but just wants a single hint to proceed, she gets:

Introduce a helper function that uses an accumulating
parameter.

Here we assume that the teacher has set up the tutor to prefer the solution that uses
a helper function with an accumulating parameter. The student can ask for more
detailed information at this point, and the tutor responds with increasing detail:

Define function reverse in terms of a function reverse’,
which takes an extra parameter in which the reversed
list is accumulated.

with the final bottom-out hint:

Define:

reverse = reverse′ •
where reverse′ acc • = •

At this point, the student can refine the function at multiple positions. In this
exercise we do not impose an order on the sequence of refinements. However, the

99

6 A programming tutor for Haskell

tutor offers a teacher the possibility to enforce a particular order of refinements.
Suppose that the student chooses to implement reverse′ by pattern matching on the
second argument, which is a list, starting with the empty list case:

reverse = reverse′ []
where

reverse′ acc [] = •

Note that this step consists of two smaller steps: the argument to reverse′ has been
instantiated to [], and the definition of reverse′ got an extra argument. She continues
with:

reverse = reverse′ []
where

reverse′ acc [] = acc

which is accepted by the tutor. If the student now asks for a hint, the tutor responds
with:

Define the non-empty list case of reverse’

She continues with

reverse = reverse′ []
where

reverse′ acc [] = acc
reverse′ acc (x : xs) = •

which is accepted, and then

reverse = reverse′ []
where

reverse′ acc [] = acc
reverse′ acc (x : xs) = reverse′ • ys

which gives:

Error: undefined variable ys

This is an error message generated by the compiler for the programming language.
The student continues with:

reverse = reverse′ []
where

100

6.4 An interactive session

reverse′ acc [] = acc
reverse′ acc (x : xs) = reverse′ • xs

Thinking of a possible optimisation, the student rewrites the program as follows:

reverse = reverse′ []
where

reverse′ acc [] = []
reverse′ acc (x : xs) = reverse′ • xs

The tutor responds with:

This program is incorrect.
Counterexample: [0].

The student undoes the last change, and continues with:

reverse = reverse′ []
where

reverse′ acc [] = acc
reverse′ acc (x : xs) = reverse′ (x : acc) xs

The tutor ends with the message:

Done! You have solved the exercise.

6.4.1 Integers within a range

The next example we show is problem 22 from the Haskell-99 questions: Write a
function which enumerates all numbers contained in a given range. For example:

> range 4 9
[4, 5, 6, 7, 8, 9]

The Haskell 99 page mentions six solutions to this problem; here is one:

range x y = unfoldr (λi→ if i succ y then Nothing else Just (i, succ i)) x

This solution uses the unfoldr function defined by:

unfoldr :: (b→ Maybe (a, b))→ b→ [a]
unfoldr f b = case f b of

Just (a, new_b)→ a : unfoldr f new_b
Nothing → []

101

6 A programming tutor for Haskell

Our system prefers the solution using unfoldr. The following shows the tutor’s
response when asked for a derivation:

range = •

⇒ { Introduce parameters }

range x y = •

⇒ { Use unfoldr }

range x y = unfoldr • •

⇒ { Start at x }

range x y = unfoldr • x

⇒ { Introduce a lambda-abstraction }

range x y = unfoldr (λi→ •) x

⇒ { Introduce an if-then-else to specify a stop criterion }

range x y = unfoldr (λi→ if • then • else •) x

⇒ { Introduce the stop criterion }

range x y = unfoldr (λi→ if i succ y then • else •) x

⇒ { Return Nothing for the stop criterion }

range x y = unfoldr (λi→ if i succ y then Nothing else •) x

⇒ { Give the output value and the value for the next iteration }

range x y = unfoldr (λi→ if i succ y then Nothing else Just (i, succ i)) x

These interactions show that our tutor can

• give hints about which step to take next, in various levels of detail,

• list all possible ways in which to proceed,

• point out that an error has been made, and where the error appears to be,

• show a complete worked-out example.

102

6.5 Experiments

In addition to the web application front-end, we also have a command-line
version of our programming tutor. We mainly use the command-line version to
quickly test new functionality and new exercises. We do not intend to use this
front-end on a large scale.

[alex@edoras ~/Documents/Research/FPTutor]$ bin/fptutor.cgi --interactive

>> >=> >=======> >=> >=>
>>=> >=> >=> >=> >=>

>> >=> >===> >=> >=> >=> >=> >=> >==>
>=> >=> >=> >=> >=> >====> >=====> >=> >=> >> >=>

>=====>>=> >==> >=>=> >=> >=> >=> >>===>>=>
>=> >=> >=> >=> >=> >=> >=> >=> >>

>=> >=> >=> >=> >=> >=> >=======> >==> >==> >====>

Please choose one of the following exercises:

1: last
2: butlast
...
8: reverse
...
22: range
[1 .. 18] > 8

Write a function that reverses a list: reverse :: [a] -> [a].
For example:

> reverse "A man, a plan, a canal, panama!"
"!amanap ,lanac a ,nalp a ,nam A"

> reverse [1,2,3,4]
[4,3,2,1]

Ask-Elle > diagnose
Type a new term, you can use multiple lines and stop with a single . on a line.
| reverse = foldl (flip (:)) []
| .

Feedback: Correct.

Ask-Elle> :q

6.5 Experiments

We have used our functional programming tutor in a course on functional program-
ming for bachelor students at Utrecht University in September 2011. The course
attracted more than 200 students. Around a hundred of these students have used
our tutor in two sessions in the second week of the course after three lectures. 40
students filled out a questionnaire about the tutor, and we collected remarks at the
lab session in which the students used the tutor. Table 6.1 shows the questions and
the average of the answers on a Likert scale from 1 to 5. The first seven questions

103

6 A programming tutor for Haskell

Question Score

1 The tutor helped me to understand how to write simple functional
programs

3,15

2 I found the high-level hints about how to solve a programming
problem useful

3,43

3 I found the hints about the next step to take useful 3,05
4 The step-size of the tutor corresponded to my intuition 2,85
5 I found the possibility to see the complete solution useful 4,25
6 The worked-out solutions helped me to understand how to con-

struct programs
3,55

7 The feedback texts are easy to understand 3,25
8 The kind of exercises offered are suitable for a first functional

programming course
3,90

Table 6.1: Questionnaire: questions and scores.

are related and indicate how satisfied a student is with the tutor. The last question
addresses how students value the difficulty of the offered exercises.

The goal of the experiment is to analyse if students appreciate our approach,
such as giving feedback on intermediate answers. The experiment does not check
whether or not the tutor is more effective or efficient from a learning point of view.
We hope to study this in the future.

Reflection on the scores The scoring shows that the students particularly like the
worked-out solution feedback. However, we don’t know whether the students like
the stepwise construction of a program, or if they are just interested in the final
answer. The kind of exercises are as expected by the students. The results also
show that the step-size used by the tutor does not correspond to the intuition of the
student. We noticed this already during the experiment. The students often took
larger steps than the tutor was able to handle.

The average of the first seven question gives an overall score of the tutor of 3,4
out of 5. This is maybe sufficient, but there clearly is room for improvement.

6.5.1 Evaluation

In addition to questions about the usage of the tutor, the questionnaire contained a
number of general questions, such as

104

6.5 Experiments

1. We offer the feedback services: such as giving a hint and diagnosing the
submitted program. Do you think we should offer more or different feedback
services?

2. Do you have any other remarks, concerns, or ideas about our programming
tutor?

The answers from the students to the first question indicate that the current services
are adequate. We received some interesting suggestions on how to improve our
tutor in response to the second open question. The remarks that appear most are:

• Some solutions are not recognised by the tutor

• The response of the tutor is sometimes too slow

The first remark might indicate that a student thinks his or her own solution is
correct, but our tutor doesn’t accept it because it is incorrect or contains imperfec-
tions, such as being inefficient. During the labs several students blamed the tutor
for not accepting their incorrect solutions. Nevertheless, these remarks address
the fact that we cannot give a judgement when a student deviates from a path
towards one of the model solutions. There are three possible reasons why our
tutor thinks that a student deviates from a path towards a model solution. If a
student program is incorrect, we should be able to detect and report this by giving a
counter example5. If a student solution is correct, and uses desirable programming
techniques, the set of model solutions should be extended. In the third case the
tutor receives a functionally correct student program that contains some, possibly
minor, imperfections, for example, a clumsy way of calculating the length of a list
xs: length (x : xs)− 1. The tutor cannot conclude that a student program contains
imperfections when it passes the tests but deviates from the strategy, so it cannot
give a definitive judgement. However, after using an exercise in the tutor for
a while, and updating the tutor whenever we find an improvement, it is likely
that the set of model solutions is complete, and therefore unlikely that a student
comes up with a new model solution. Therefore, in this particular case we can
give feedback that a student program probably has some undesired properties. We
have used our approach for assessment of functional programming exercises (see
Chapter 11), in which we could recognise almost 90% of the correct solutions based
on only five model solutions. All of the other 10% of the correct solutions had some
imperfections.

The second remark is related to the step-size supported by the tutor. When a
student takes a large step, the tutor has to check many possibilities, due to the
flexibility that our tutor offers. We solved this problem by introducing a special

5At the time of the experiment our programming tutor was not able to use testing.

105

6 A programming tutor for Haskell

search mode when recognising large steps. In Chapter 10 we explain how we have
implemented this search mode.

In addition to the above experiment, we also questioned a number of functional
programming experts from the IFIP WG 2.1 group6 and student participants of
the Central European Functional Programming (CEFP 2011) summer school. We
asked for input about some of the design choices we made in our tutor, such as
giving hints in three levels of increasing specificity. Both the experts as well as the
students support most of the choices we made. The main suggestion we got for
adding extra services/functionality was to give concrete counterexamples using
testing for semantically incorrect solutions. This suggestion corresponds to our
own interpretation of the results from the experiment.

6http://www.cs.uu.nl/wiki/bin/view/IFIP21/WebHome

106

http://www.cs.uu.nl/wiki/bin/view/IFIP21/WebHome

H-99 # Name Description

1 last Write a function that selects the last element of a list.
2 butlast Write a function that selects the but last element of a list

(with a minimal length of 2).
3 elementat Write a function that finds the n-th element of a list. The

first element in the list is number 1.
4 length Write a function that calculates the number of elements a

list contains.
5 reverse Write a function that reverses a list.
6 palindrome Write a function that finds out whether a list is a palin-

drome. A palindrome can be read forward or backward
(e.g. xamax).

7 concat Write a function that flattens a list.
8 compress Write a function that eliminates consecutive duplicates of

list elements.
9 pack Write a function that groups consecutive duplicates of list

elements into sublists. If a list contains repeated elements
they should be placed in separate sublists.

10 encode Write a function that calculates the so-called ‘run-length
encoding’ of a list.

14 dupli Duplicate the elements of a list.
15 repli Replicate the elements of a list a given number of times.
16 dropevery Drop every n-th element from a list.
17 split Split a list into two parts; the length of the first part is

given.
18 slice Extract a slice from a list. Given two indices, i and k, the

slice is the list containing the elements between the i-th
and k-th element of the original list (both limits included).
Start counting the elements with 1.

19 rotate Rotate a list n places to the left.
20 removeat Remove the n-th element from a list.
22 range Write a function which enumerates all numbers contained

in a given range.

Figure 6.2: Offered programming exercises.

7 SPECIFYING
PROGRAMMING EXERCISES

Anderson et al. (1995) claim that one of the reasons why programming tutors
are not used much, is the of lack of teacher adaptability. It is often quite hard
for teachers to adapt or add programming exercises to a tutor, and to adapt the
feedback given by a tutor. An important goal of ASK-ELLE is to allow as much
flexibility as possible for both teachers and students. Adding an exercise to our
tutor is relatively easy. A teacher can specify her own exercises by giving a set of
model solutions for a problem. Based on these model solutions our tutor generates
feedback. A teacher can adapt feedback by annotating model solutions. A student
may use her own names for functions and variables, and may use different, but
equivalent, language constructs. In this chapter we show how we use annotated
model solutions from a teacher to give feedback to a student in ASK-ELLE. This
requires translating annotated model solutions to a form that we can use to track
intermediate student steps.

7.1 Configuration

By annotating a model solution, a teacher adds feedback to the solution. This
feedback only applies to the model solution in which it is specified. If a student
implements a program based on that particular model solution, she receives that
feedback when asking for support. Some feedback, however, concerns the exercise
as a whole instead of a single model solution. For example, a description of the

109

7 Specifying programming exercises

exercise or an example result of an application of the program to be implemented.
In addition to annotated model solutions, the teacher should supply a configuration
file with meta-data about the programming exercise. A configuration file is spe-
cified using XML (extensible markup language) notation, and should adhere to the
following DTD (document type definition):

<!DOCTYPE exercise [
<!ELEMENT exercise (description, classes?)>
<!ATTLIST exercise id CDATA #REQUIRED

function CDATA #REQUIRED
type CDATA #REQUIRED>

<!ELEMENT description (#PCDATA)>
<!ELEMENT classes (class+)>
<!ELEMENT class (#PCDATA)>

]>

Here is an example of a configuration file1:

<?xml version="1.0"?>
<!DOCTYPE exercise SYSTEM "exercise.dtd">
<exercise id="reverseID" function="reverse" type="[a] -> [a]">

<description>
Write a function that reverses a list: reverse :: [a] -> [a].
For example:

Data.List> reverse "A man, a plan, a canal, panama!"
"!amanap ,lanac a ,nalp a ,nam A"

Data.List> reverse [1,2,3,4]
[4,3,2,1]

</description>
<classes>

<class>list.manipulation</class>
<class>CS.FP.2012</class>

</classes>
</exercise>

Most of the elements, and attributes are self-explanatory. The function attribute is
used to identify the main function of the programming exercise, which should be
of the type defined using the type attribute. The description element is displayed
when a student selects a programming exercise. Furthermore, to support managing
exercises, they can be arranged in classes. Using a class a teacher groups together
exercises, for example for practising list problems, collecting exercises of the same
difficulty, or exercises from a particular textbook.

1Note that the ampersand character (&) and the left angle bracket (<) must not appear in their literal
form, and need to be escaped.

110

7.2 Feedback scripts for programming exercises

7.2 Feedback scripts for programming exercises

Section 5.3 introduces feedback scripts. These scripts are used to translate the
results of a feedback analysis to a textual feedback message. The programming
tutor also uses these feedback scripts. Every refinement rule has a corresponding
feedback message. For example, the refinement rule that introduces the constructor
Nothing has the following entry in a feedback script:

text con.nothing.20 = Introduce the constructor Nothing

Our domain reasoners require that the name of a rule is unique. A refinement
rule is suffixed with a number to make it unique. In Section 8.1 we explain how
refinement rules are constructed. A feedback script for a programming exercise is
automatically generated. The resulting scripts can be changed by a teacher. Another
example is the introduction of a variable:

text var.x.23 = Introduce the variable @name_x

The var.x.23 refinement rule introduces a variable name. The name of the variable
in the feedback text declaration is a reference @name_x to another feedback text.
The value of @name_x is inserted at run-time, so that we can give feedback using the
names introduced by a student. For example, the following code may be injected at
runtime:

text name_x = y

Furthermore, every library function has its own feedback text. For example:

string unfoldrText = Use the unfoldr function

These texts can also be adjusted by a teacher.

7.3 Annotating model solutions

Section 6.4 shows an example interactive session with the tutor, in which a student
develops a program for calculating the reverse of a list. This section shows what a
teacher has to do to get this behaviour from the tutor, along with more feedback
examples. A teacher adds a programming exercise to the tutor by specifying model
solutions. For the example of reversing a list, we have specified three model
solutions. The first is defined in terms of the higher-order function foldl:

{−# DESC Use the prelude function foldl. #−}
reverse =

111

7 Specifying programming exercises

{−# FEEDBACK foldl takes an operator and a base value as argument. #−}
(foldl {−# FEEDBACK Use flip and (:). #−}(flip (:)) [])

The second model solution uses an accumulating parameter:

{−# DESC Introduce a helper function that uses an accumulating parameter. #−}
reverse = reverse′ []

where
reverse′ acc [] = acc
reverse′ acc (x : xs) = reverse′ (x : acc) xs

The third model solution is a explicit recursive definition of reverse:

{−# DESC Use explicit recursion. #−}
reverse [] = []
reverse (x : xs) = reverse xs ++ [x]

Since {-... -} is used for multi-line comments in Haskell, annotated solutions are
valid Haskell programs.

A teacher may annotate solutions to fine-tune the generated feedback. We distin-
guish two types of annotations: location specific and global annotations. Location
specific annotations, such as the FEEDBACK annotation, target a particular expres-
sion in the model solution. To obtain this location information, and the attached
feedback, we have extended the Helium compiler that we use for compiling the
source code. The lexer, parser, and abstract syntax have been extended to incorpor-
ate feedback annotations. The global annotations are always placed in the header
of the model solution source file. These annotations concern the entire model
solution, such as the DESC annotation. Except for parsing these annotations, it is
not necessary to further adapt the compiler.

The three solutions above are annotated with a high-level description of the
approach used in the solution, using the following construction:

{−# DESC <description of model solution> #−}

The first hint in Section 6.4 gives the descriptions for the three model solutions for
the reverse exercise.

In addition to the description annotation, the teacher has attached a specific
feedback message to the right-hand side of the reverse definition, and to the operator
argument of foldl in the first model solution, using {−# FEEDBACK ... #−}. When
introducing the operator is one of the steps a student can take, and the student asks
for help, the tutor will display the message specified. These feedback messages are
organised in a hierarchy based on the AST of the model solution. This enables the
teacher to configure the tutor to give feedback messages in an increasing level of

112

7.3 Annotating model solutions

detail. This type of feedback is accessible via the taskdescription feedback service.
Suppose a student chooses to implement the reverse function using the higher-order
function foldl, and has started in the following way:

reverse = foldl • •

Here the student can refine the program at two locations: she can introduce an
operator argument, or a base argument. If the student asks for help, the tutor
responds with:

foldl takes an operator and a base value as argument.

A feedback message is ‘active’ for an element if it is an ancestor of that part of the
AST. The above feedback message is given because the corresponding feedback
annotation is active for a hole that can be refined by the student. There may be
multiple feedback messages active for a particular hole. Since refining the operator
argument is one of the possible next steps, the annotation on the operator is also
active. The tutor can use this annotation to display a feedback message with more
detail:

Use flip and (:).

Suppose the student asks for an even more detailed hint at this point. Because the
most detailed feedback annotation has been given, the tutor displays the feedback
message belonging to the rule that introduces the flip function:

Introduce the function flip.

If the student remains stuck, we give a bottom-out hint:

Refine the program to:

reverse = foldl (flip •) •

In addition to giving detailed feedback about a single step, the tutor can list the
different steps that are allowed. In the given example, refining the hole for the base
case is another step that the student can take. When asked for a hint about another
step the tutor responds with:

Introduce the empty list constructor [].

Another way to adapt the feedback is by specifying an alternative implementation
for a prelude function. For example, the specification below shows how to give an
alternative implementation for the map prelude function:

113

7 Specifying programming exercises

{−# ALT map f xs = [f x | x <- xs] #−}

Using this annotation we not only recognise the prelude definition, but also the
alternative implementation given here. By adding an alternative a teacher expands
the number of accepted solutions and therefore changes the way in which the tutor
gives feedback. Alternatives give the teacher partial control over which program
variants are allowed.

Besides adding alternatives to expand the number of accepted solutions, a teacher
may want to emphasise one particular implementation method. For example, a
teacher may want to enforce the use of higher-order functions and prohibit their
explicit recursive definitions. Using the MUSTUSE annotation a teacher disables the
recognition of the definition of a prelude function:

reverse = {−# MUSTUSE #−}foldl (flip (:)) []

A feedback annotation binds stronger than all other language constructs, i.e., it
applies to the smallest possible expression. In the above example the student
is not allowed to use the explicit recursive definition of foldl due to the MUSTUSE
annotation. The student is allowed to use the definition of flip, because the scope
of the MUSTUSE annotation is limited to the expression foldl. If a teacher wants to
prohibit the use of definitions of library functions altogether, she can expand the
scope of the annotation by placing parentheses:

reverse = {−# MUSTUSE #−}(foldl (flip (:)) [])

Using the presented annotations a teacher can easily adapt which solutions are
accepted, and fine-tune the generated feedback to her needs. We believe that
making programming exercise adaptable by means of annotated model solutions
lowers the threshold of using our functional programming tutor.

114

8 CONSTRUCTING
PROGRAMMING STRATEGIES

This chapter introduces strategies for functional programming, and shows how
to construct such strategies. In Chapter 2 we introduce an embedded domain-
specific language for specifying strategies. This strategy language is used for
mathematical domains based upon rewrite rules. We also use this strategy language
to specify strategies for functional programming exercises. The main difference
with mathematical domains is that we use refinement rules instead of rewrite rules.

A strategy for defining a program consists of multiple steps. For example,
developing a function implementing reverse:

reverse = reverse′ []
where

reverse′ acc [] = acc
reverse′ acc (x : xs) = reverse′ (x : acc) xs

requires developing all components of the program, which in the case of an explicit
recursive definition, such as for reverse′, consist of a case distinction between the
empty list and the non-empty list, and a recursive call in the non-empty list case,
amongst others. A programming strategy may also contain a choice between
different (sequences of) steps. For example, we can choose to either use the higher-
order function foldl, or a helper function with an accumulating parameter for reverse.
Sometimes, the order in which the steps are performed is not relevant, as long as
they are performed at some point. For example, the arguments of reverse′ can be
refined in any order.

115

8 Constructing programming strategies

A programming strategy captures the multiple steps that a student needs to
take to define a program. Based on these programming strategies we support the
incremental development of a program. In practice, all programs are developed
incrementally, so we think incremental development is a realistic assumption. A
program that is developed incrementally contains parts that are yet to be defined;
these undefined parts are called holes. Replacing these holes by ‘more defined’
parts are the steps a student takes when solving a programming problem. In our
programming tutor the student replaces holes by typing in the part of the desired
program at that point. An alternative is to let the student apply refinement rules
that are offered by the tutor. The exact input method is immaterial for our approach.

A strategy for a functional program describes how a student may construct a
functional program for a particular problem. Some well-known approaches to
constructing correct programs are:

• specify a problem by means of pre- and post-conditions, and then calculate a
program from the specification, or provide an implementation and prove that
the implementation satisfies the specification (Hoare, 1969; Dijkstra, 1975),

• refine a program by means of refinement rules until an executable program is
obtained (Back, 1987; Morgan, 1990),

• specify a problem by means of a simple but possibly very inefficient pro-
gram, and transform it to an efficient program using semantics-preserving
transformation rules (Bird, 1987; Meertens, 1986).

If we would use one of the first two approaches in a programming tutor that
can give hints to students on how to proceed, we would have to automatically
construct correctness proofs, a problem that is known to be hard. The last approach
has been studied extensively, and several program transformation systems have
been developed. However, our main goal is to refine instead of transform programs,
since this better reflects the activities of beginning programmers. In our approach
the set of accepted solutions is limited. Compared to the approaches mentioned
above, our approach is more restrictive.

We use programming strategies to track the progress of a student solving a
programming problem. We support the incremental construction, in a top-down
fashion, of model solutions. We can detect deviations from the strategy, supply hints
about what to do next, and analyse a step taken by a student.

The next section (Section 8.1) introduces refinement rules. The refinement rules
need to be applied to a hole at a particular location in the incomplete program. In
Section 8.2 we explain how we focus a refinement rule on a hole. We continue with
showing an example functional programming strategy in Section 8.3 In the last
section, Section 8.4, we describe how we derive a programming strategy from a
model solution.

116

8.1 Refinement rules

8.1 Refinement rules

The basic steps for constructing a solution for a programming task are program
refinement rules. These rules typically replace an unknown part (•) by some
expression. A refinement rule can introduce one or more new unknown parts. We
are finished with an exercise as soon as all unknown parts have been completed.
As in the Lisp tutor (Corbett et al., 1988), the refinement rules in our tutor model
Haskell at the finest grain size that has functional meaning in Haskell.

The incremental development of the reverse function in the interactive session in
Section 6.4 contains several program refinement rules: introduce a helper function,
pattern match to determine whether or not a list is empty, and make a recursive
call to the function. These rules are the basic elements in programming strategies.
They are reusable in other programming exercises, and not specific for the reverse
exercise.

We offer a number of refinement rules to students. For example:

• ⇒ λ • → • Introduce a lambda abstraction
• ⇒ if • then • else • Introduce an if-then-else
• ⇒ v Introduce the variable v

A hole represents a value, and such values may have different types. For example,
a hole may represent an expression, as in all of the above examples, or a declaration,
as in

• ⇒ f • = • Introduce a function binding

A refinement rule replaces a hole with a value of its type, which possibly contains
holes again. Internally, such a value is represented by a value of the datatype
representing the abstract syntax of a part of a program. For example, the abstract
syntax for expressions would typically contain the following constructors:

data Expr = Lambda Pattern Expr
| If Expr Expr Expr
| App Expr Expr
| Var String
| Case Expr Alts
| ...
| Hole

For declarations we have the following datatype:

data Decl = DFunBinds FunBinds
| DPatBind Pat Rhs

117

8 Constructing programming strategies

| ...
| DHole

Every constructor has a corresponding rule function that takes the same number of
arguments as the constructor, and returns a refinement rule for that constructor. So
the rule function that produces a refinement rule for introducing an if-then-else
expression takes three expression arguments. The arguments may be holes or terms
containing holes. As another example, the rule function for building a refinement
rule that introduces a lambda abstraction takes a pattern, and an expression (the
body of the lambda expression) as arguments. As a final example, to make a
refinement rule that introduces a variable, we use a rule function that takes the
name of that variable (such as v in Figure 8.1) as an argument. The resulting
refinement rule returns an expression that does not contain a hole anymore. These
rule functions that build refinement rules encapsulate a constructor. For example,
the rule function for a case is specified as follows:

caseRule :: Expr→ [Alt]→ Rule Expr
caseRule e alts = describe "Introduce case" $ ruleList "case" f

where
f = [Case e alts]

where Case is a constructor of the datatype Expr. The rule will replace any hole of
type Expr with a case expression. The helper function f performs the replacement.
Since any hole is replaced, the function f does not take its argument into considera-
tion. The function ruleList translates a function, which returns a list of results, into
a rule. The function describe attaches a description to the rule. We list some rule
functions that are often used in Figure 8.1.

A refinement rule should be as ‘small’ as possible, in the sense that if we would
further split such a rule, we cannot represent the corresponding program any-
more, since we cannot build an abstract syntax tree for a program that is halfway
completing an abstract-syntax tree construction. For example, the if-then-else
expression cannot be split into an if-then and an else part in Haskell. In other
words, a refinement rule refines a program on the level of the context-free syntax,
and not on the level of tokens.

Holes are the central concept in our refinement rules. Where can they appear?
Refinement rules refine:

• expressions, such as the • in λi→ • ,

• declarations (the second • in reverse = reverse′ • where •),

• function bindings (f [] = 0⇒ f [] = 0; f • = •),

• alternatives (case xs of []→ 0⇒ case xs of []→ 0; • → •),

118

8.1 Refinement rules

• patterns (case xs of • → • ⇒ case xs of []→ •).

We do not introduce refinement rules for other syntactic categories such as modules
or classes, because these concepts hardly show up in our beginners’ programs. Of
course, this might change when the range of applications of the tutor is extended.

How do we come up with a set of refinement rules? A simple solution would
be to take the context-free description of Haskell, and turn all productions into
refinement rules. However, this general approach leads to all kinds of unnecessary
and undesirable rules. For example, deriving a literal integer 42 using the context-
free grammar for Haskell takes many steps, but a student would only see • ⇒ 42.
Our leading argument is that a refinement rule should be useful to a student, in the
sense that it changes the way a program looks. Furthermore, the set of refinement
rules should completely cover the programming language constructs we want
the students to use, so that any program can be constructed using refinement
rules. Complete coverage of a set of rewrite rules is verified by checking that for
every datatype containing holes in the abstract syntax of programs (datatypes for
expressions, declarations, function bindings, alternatives, and patterns, in our case),
there exist refinement rules from a hole to any other constructor of the datatype.

Some refinement rules are performed silently, and are combined with one or
more other refinement rules when generating steps, for example for a derivation
or a hint. For instance, introducing an application in a Haskell program amounts
to typing a space. We expect that few beginning students will view an application
introduction as a step on its own, but instead always supply either a function or an
argument name, or both. Our domain reasoner offers the possibility to annotate a
rule that should be performed silently, by declaring it as a minor rule. We use these
minor rules to increase the step size, and avoid showing steps like • ⇒ • • . If
application is declared to be a minor rule, a user can refine a hole to an application
of a particular function, such as unfoldr, to one or more as yet unknown arguments.

At the moment, our tutor mainly supports the incremental construction of a
program by means of refinement. However, it can also be used to rewrite a program,
preserving its semantics, but changing some other aspects. For example, we might
want to ask a student to change her program from using an explicit recursive
definition of reverse to a definition using foldl, as in

reverse = reverse′ []
where

reverse′ acc [] = acc
reverse′ acc (x : xs) = reverse′ (x : acc) xs

⇒ { Definition of flip }

reverse = reverse′ []
where

119

8 Constructing programming strategies

Declarations
patBindRule •1 •2 : • ⇒ •1 = •2
funBindsRule [•1 , •2]: • ⇒ •1

•2

Function bindings
funBindRule f •1 •2 : • ⇒ f •1 = •2

Expressions
varRule v: • ⇒ v
litRule l: • ⇒ l
appRule •1 •2 : • ⇒ •1 •2
lambdaRule •1 •2 : • ⇒ λ •1 → •2
caseRule •1 •2 : • ⇒ case •1 of

•2

Alternatives
altRule •1 •2 : • ⇒ •1 → •2

Patterns
pVarRule v: • ⇒ v
pWildcardRule: • ⇒

Figure 8.1: Some refinement rules for functional programming in Haskell

reverse′ acc [] = acc
reverse′ acc (x : xs) = reverse′ (flip (:) acc x) xs

⇒ { Definition of foldl }

reverse = reverse′ []
where

reverse′ acc = foldl (flip (:)) acc

⇒ { Inline and β-reduce }

reverse = foldl (flip (:)) []

8.2 Focusing refinement rules

In our tutor, a program is constructed incrementally, in a top-down fashion. When
starting the construction of a program there usually is a single hole. During the

120

8.2 Focusing refinement rules

development, refinement rules introduce and refine many holes. For example, the
app refinement rule introduces two new holes: one for an expression that is of
a function type, and one for an expression that is the argument of that function.
When used in a strategy for developing a particular program, a refinement rule
always targets a particular location in the program. For example, the refinement
rule that introduces the second argument expression in a foldl application cannot
be applied to an arbitrary expression hole, but should be applied at exactly the
location where the argument, which introduces the base value, is needed in the
program. In the next example this is the second expression hole (counted from left
to right):

foldl (flip •) • ⇒ foldl (flip •) base_value

A refinement rule needs to know which particular location to target in the program.
That is, a refinement rule needs to focus on the right hole. A rewrite rule, on the
other hand, may be applicable to more than one location in the AST.

When defining a strategy for developing a functional program, we need to
relate the new holes that are introduced by the refinement rules to the rules (or
strategies) that are going to refine them. For example, the rules that refine the
holes introduced by the app refinement rule need to be targeted to the location of
those holes. Recall that our refinement rules just encapsulate a constructor of an
abstract syntax datatype in a rule. For instance, the app rule encapsulates the App
constructor from the Expr datatype in an expression refinement rule:

appRule :: Expr→ Expr→ Rule Expr
appRule f x = describe "Introduce application" $ ruleList "app" g

where
g = [App f x]

The appRule refinement rule applies App to two holes of type Expr. The first might
for example be refined by the var :: String→ Expr refinement rule that introduces
a prelude function, as in var "length". The var refinement rule and the first hole
should be connected to each other. We achieve this connection by giving a hole an
identifier and focusing a refinement rule to be only applicable to a hole with that
particular identifier. We extend the Hole constructors of the various abstract syntax
datatypes with an identifier field. For example, the Hole constructor of the Expr
data type is extended as follows:

type HoleID = Int
data Expr = Hole HoleID | ...

Recall that rules can operate on a pair of a zipper and an environment, see Sec-
tion 2.3.9. We target a refinement rule to be only applicable to a particular hole by

121

8 Constructing programming strategies

using the focus of the zipper. The combination of a zipper and an environment is
called a context. We can lift rules to work on a context. For example the rule that
introduces a variable:

varRule :: Name→ Rule Expr
varRule n = describe ("Introduce the variable "++ show n) $ ruleList "var" f

where
f = [Var n]

can be lifted as follows:

varRule′ :: Name→ Rule (Context Expr)
varRule′ = liftToContext ◦ varRule

The function liftToContext lifts a rule so that it is applied to the expression in focus.
We put the focus on the to be refined hole, before we apply the corresponding

refinement rule. For example, before applying the refinement rule that introduces
the right-hand side of the reverse′ helper function, we put the focus on the hole at
the right-hand side:

reverse = •2
where

reverse′ acc [] = J •1 K

We use the navigation rules to put the focus on a particular hole. So, given a hole
and a refinement rule we can focus the rule as follows:

focusRule :: Eq a⇒ a→ Rule (Context a)→ Strategy (Context a)
focusRule hole rule = 〈focusOn hole <?> rule〉

Where focusOn puts the focus on the given hole, using navigation rules. We omit
the definition of this function. The placement of the focus is put in sequence with
the refinement rule. The sequence of putting the focus right and applying the rule
is put in an atomic block, because interleaving with other steps may change the
focus. For example, the following code makes the rule varRule′ only applicable to a
hole with identifier 1:

varacc :: Strategy (Context Expr)
varacc = focusRule •1 (varRule′ "acc")

This strategy can be used to refine the right-hand side of the helper function reverse′

given earlier. Applying this strategy results in:

reverse = •2
where

reverse′ acc [] = J •1 K

122

8.3 Strategies in functional programming

⇒ { Introduce the variable acc }

reverse = •2
where

reverse′ acc [] = JaccK

The approach of finding holes by means of their identifier requires that these
identifiers are unique. The numbering of holes takes place in a state monad.

A refinement rule is only applicable when the holes it refines are present in the
AST. For instance, in the programming strategy for reverse′, the refinement rule that
introduces the right-hand side of reverse′ is applied before the varRule′ "acc" rule.
We use the sequence combinator to enforce the order in which the refinements have
to take place. When sequencing two programming substrategies, we ensure that
the first substrategy refines to a term that can be refined by the second substrategy.
Determining the order of refinement rules is defined during the derivation of a
programming strategy.

Relating holes and refinement rules using holes with identifiers has some con-
sequences for the implementation of our functional programming domain reasoner.
For the other domains we have developed, the domain reasoners operate on the
term that has been submitted by the student. In the functional programming do-
main reasoner, however, we get an AST with holes without identifiers when we parse
a student submission, because the concrete syntax does not contain hole identifiers.
To compare a student program to the expected programs by the strategy, we need
to repair the holes in the student submission so that they have the correct identifiers.
To do so, we reconstruct the student term. Recall that we maintain information
about what part of the strategy has already been solved by the student, since it
is communicated back and forth between the front- and back-end, see 6.1.1. We
reconstruct the AST of the student term using this part of the strategy, by applying
it to the start term.

8.3 Strategies in functional programming

For any programming problem, there are many solutions. Some of these solutions
are syntactical variants of each other, but other solutions implement different ideas
to solve a problem. We specify a strategy for solving a functional programming
problem by means of model solutions for that problem. We can automatically derive
a strategy from a model solution. The strategies for the various model solutions
are then combined into a single strategy using the choice combinator. So, for the
reverse model solutions from Section 6.4 we would get a single strategy combining
the three strategies for the model solutions

123

8 Constructing programming strategies

We derive a programming strategy from a model solution by inspecting the
abstract syntax tree of a model solution, and matching the refinement rules with
the AST. This is a tree matching algorithm, which yields a strategy. In Section 8.4
we describe the process of deriving programming strategies. For example, here is a
strategy that is derived from the definition of reverse in terms of foldl:

patBind
<?> pVar "reverse"
<?> app <?> var "foldl"

<?> ((paren <?> app <?> var "flip"
<?> infixApp <?> con "(:)"

)
<%> con "[]"

)

There are several things to note about this strategy. The ordering of the rules by
means of the sequence combinator <?> indicates that this strategy for defining
reverse recognises the top-down construction of reverse. Since we use the interleave
combinator <%> to separate the arguments to foldl, a student can develop the
arguments to foldl in any order. This strategy uses three rules we did not introduce
in the previous section, namely infixApp, which introduces an infix application, con,
which introduces a constructor of a datatype, and paren. The rule paren ensures
that the first argument of foldl is in between parentheses. The hole introduced by
this rule is filled by means of the strategy that introduces flip (:). The rule paren is
minor, so we don’t require a student to explicitly introduce parentheses in a single
step, but recognise it together with the introduction of the function flip. Since rules
correspond to abstract syntax tree constructors, this shows that our abstract syntax
also contains constructors that represent parts of the program that correspond to
concrete syntax, such as parentheses. This way we can also guide a student in
the concrete syntax of a program. However, we might also leave concrete syntax
guidance to the parsing and type-checking phase of Helium.

If the above strategy would be the complete strategy for defining reverse, then
a student would only be allowed to construct exactly this definition. This would
almost always be too restrictive. Therefore, we would typically use a strategy that
combines a set of model solutions. However, our approach necessarily limits the
solutions accepted by the tutor: a solution that uses an approach fundamentally
different from the specified model solutions will not be recognised by the tutor.
Depending on the model solutions provided, this might be a severe restriction.
However, in experiments with lab exercises in a first-year functional programming
course (Gerdes et al., 2012b), we found that our tutor recognises almost 90% of
the correct student programs by means of a limited set of model solutions. The
remaining 10% of correct solutions were solutions ‘with a smell’: correct, but using

124

8.4 Deriving programming strategies

constructs we would never use in a model solution. We expect that restricting the
possible solutions to a programming problem is feasible for beginning program-
mers. It is rather uncommon that a beginning programmer develops a new model
solution for a beginners’ problem.

8.4 Deriving programming strategies

When solving a programming exercise in our tutor, a student needs to define a
program that solves a programming problem. A programming strategy describes
sequences of refinement steps: applying all the steps of such a sequence to a start
term results in a solution for the programming problem. We could specify all
allowed sequences that solve a programming task by hand. This is, however, a
labourious and error prone process. For example, when specifying a programming
strategy by hand, it is necessary to manually connect the refinement rules to
their corresponding hole (by supplying the correct identifiers). It is less labour
intensive to automatically derive a programming strategy from a model solution.
The advantage of using model solutions is that it becomes relatively easy for a
teacher to add new programming tasks to the tutoring system, since she will be
familiar with the programming language. In fact, there is no need to learn a new
formalism, or to change the implementation of the system. We combine multiple
model solutions with the strategy combinator for choice.

During the derivation of a programming strategy we inspect the AST of a model
solution, and map each language construct to a refinement rule using its corres-
ponding rule function. For example, when deriving an application, we use the
corresponding rule function appRule. The refinement rule returned by appRule is
combined with the derived strategies of the components of an application, i.e., a
function and its arguments. When deriving a programming strategy, we specialise
all rules to be applicable to a particular hole. For example, for the derivation of an
application we first generate new holes that are passed as argument to the appRule
rule function. Then, the rule functions for the arguments of the application are
specialised to these holes.

By using the interleave combinator in the strategy for certain combinations of
language constructs, we gain some flexibility in the sequences of refinement steps
that we accept. For example, the two definitions for the two function bindings
for reverse′ can appear in any order since this does not change the meaning of the
function.

In Chapter 7 we show that a teacher can annotate model solutions to fine-tune
the feedback generation. During the derivation of a programming strategy we
have to take these annotations into account. Our abstract syntax, and the Helium
compiler, have been extended to accommodate these annotations:

125

8 Constructing programming strategies

data Expr = App Expr Expr
| Hole HoleID
| ...
| Feedback String Expr
| MustUse Expr
| Alt Decl

These annotations are translated to the right strategy constructs. For example,
the Feedback annotation is translated to a label that contains the feedback message.
Consider the following contrived example:

($) f x = {−# FEEDBACK Apply f to x #−}(f x)

This program would be translated to the following strategy:

funBinds
<?> funBind "$"
<?> (pVar "f" <%> pVar "x")
<?> label "Apply f to x" (app <?> (var "f" <%> var "x"))

In this strategy a label has been placed on the substrategy for recognising the right-
hand side of the function. If a student asks for help when defining the right-hand
side, the tutor will give a feedback message based on this label.

8.4.1 Strategies for library functions

To recognise as many syntactic variants as possible of (a part of) a solution to a
programming problem, we derive special strategies for recognising occurrences of
library functions in programs. When deriving a library function we not only derive
the usage of that function, but also its definition. For example, the strategy derived
for flip not only recognises flip itself, but also its definition, which can be considered
an inlined and β-reduced version of flip. For example, the following function:

snoc = flip (:)

is translated into:

patBind
<?> pVar "snoc"
<?> app <?> var "flip" <?> con ":"
<|> lambda <?> pVar "x" <?> pVar "y"

<?> infixApp <?> con ":" <?> (var "y" <%> var "x")

126

8.4 Deriving programming strategies

The variable names x and y, used in the lambda-abstraction, need to be fresh
and should not appear free in the argument of flip, in order to avoid variable
capturing. The above strategy recognises both flip (:) itself, and the β-reduced, infix
constructor, form λxs x→ x : xs.

It is important to specify model solutions for exercises using abstractions avail-
able in Haskell’s prelude like foldl, foldr, flip, etc, if applicable. If a student would
use these abstractions in a solution, where a model solution wouldn’t, then the
student’s program wouldn’t be accepted. For any function in the prelude, a student
may either use the function name itself in her program, such as for example (◦), or
its implementation, such as λf g x→ f (g x).

In addition to recognising the definition of a library function, a teacher can
specify alternative definitions of a library function, see Section 7.3. This increases
the number of accepted variants even further. A student program that uses this
alternative definition will also be recognised. For example,

{−# ALT foldl op e == foldr (flip op) e . reverse #−}
reverse = foldl (flip (:)) []

So, if a function that is specified by means of a foldl, using this alternative we also
accept an implementation in terms of a foldr together with reverse.

Many programming tasks involving lists use higher-order functions, such as
foldr. For instance, the task of merging a list of lists by appending all the lists, or
computing all the permutations of a list, are tackled by using foldr. In classroom
settings, we often experience that students find it difficult to define a function
using foldr, and prefer to use explicit pattern matching and recursion. This is
not always desirable, and it could even be a goal of a programming task to use
functions such as foldr, just to become familiar with these higher-order functions.
In this case, a teacher may want to prohibit the use of the definition of higher-order
functions. In Section 7.3 we have introduced the MUSTUSE annotation, which
prevents the recognition of the definition of a library function. If the derivation
process encounters a MUSTUSE annotation, it no longer derives strategies for
library functions, which recognise the definition of a library function as well as its
usage.

A strategy cannot capture all variants of a program that a student introduces.
For example, the fact that a student uses different names for variables is hard, if
not impossible, to express in a strategy. However, we do want to give a student
the possibility to use her own variable names. We use normalisation to handle such
kinds of variations. Chapter 9 describes the normalisation process.

127

9 A CANONICAL FORM
FOR HASKELL PROGRAMS

One of the advantages of using strategies for recognising student programs is that
accepted programs are guaranteed to be equivalent to a model solution. However,
most strategies are rather strict, and might reject programs that are equivalent but
have some differences. For example, consider the following two programs:

f x = x− 1

and

f y = (−) y 1

Although the two programs are different in appearance, they are equivalent.
Not all differences can or should be captured in a strategy, because they are

standard transformations of a program, independent of a particular strategy. For
example, sometimes a student doesn’t explicitly specify all arguments to a function,
and for that purpose we use η-reduction when analysing a student program:

λx→ f x⇒ f

Using normalisation, we want to recognise as many syntactical variants of Haskell
programs as possible. We are not so much interested in the exact canonical form, as
long as it can be used to efficiently compare two terms for equality. To verify that a
program submitted by a student follows a strategy, we apply all rules allowed by

129

9 A canonical form for Haskell programs

the strategy to the previous submission of the student, normalise the programs thus
obtained, and compare each of these programs against the normalised submitted
student program.

Normalisation uses various program transformations to reach a canonical form
of a Haskell program. The program transformations used in the normalisation
process are based on the lambda calculus. The lambda calculus is at the core of
Haskell, and its reduction rules form the heart of the evaluation machinery. We
use amongst others α-renaming, β- and η-reduction, inlining, and desugaring
program transformations. In general, comparing two lambda terms for equality
is undecidable. However, we can decide equivalence for many terms using these
program transformations. Our equivalence checker may reject equivalent programs
and hence we may have false-negatives. Until now we have not found this to be a
problem in practice. If programs are found to be equivalent, they are semantically
equivalent, so we do not obtain false-positives.

Our normalisation procedure starts with α-renaming, which gives all bound
variables a fresh name. Then it desugars the program, restricting the syntax to a
(core) subset of the full abstract syntax. The next step removes constant arguments
and inlines local definitions, which makes some β-reductions possible. Finally, nor-
malisation performs β- and η-reductions in applicative order (leftmost-innermost)
and normalises a program to β-normal form. For example, consider the following
model solution for reverse:

reverse = rev []
where

rev acc [] = acc
rev acc (x : xs) = rev (x : acc) xs

The next code shows the reverse model solution after normalisation:

reverse =
let b = λy1→ λy2→ case (y1, y2) of

(c, [])→ c
(d, e : f)→ b ((:) e d) f

in b []

Although the programs are the same, they are syntactically quite different.

9.1 Program transformations

In this section we show some of the program transformations and discuss the
limitations of our normalisation.

130

9.1 Program transformations

9.1.1 Desugaring

Desugaring removes syntactic sugar from a program. Syntactic sugar is usually
introduced to conveniently write programs, such as writing λx y→ for λx→
λy→ Syntactic sugar does not change the semantics of a program. However, if
we want to compare a (possibly partially complete) student program syntactically
against model solutions we want to ignore syntactic sugar. Desugaring consists
of several program transformations such as removing superfluous parentheses1,
rewriting a where expression to a let expression whenever possible, moving the
arguments of a function binding to a lambda abstraction (e.g., f x = y⇒ f = λx→
y), and rewriting infix operators to (prefix) functions. The following derivation
shows how a somewhat contrived example is desugared:

reverse = foldl f [] where f x y = y : x

⇒ { where to let }

reverse = let f x y = y : x in foldl f []

⇒ { Infix operators to (prefix) functions }

reverse = let f x y = (:) y x in foldl f []

⇒ { Function bindings to lambda abstractions }

reverse = let f = λx→ y→ (:) y x in foldl f []

In the following paragraph on inlining we will see how the declaration of f is
inlined in the foldl-expression.

9.1.2 Inlining

Inlining replaces a call to a user-defined function by its body. We perform inlining
to make β-reduction possible. Inlining is performed together with dead-code
elimination, because the inlining procedure may introduce dead-code. Dead-code
elimination is a program transformation that removes code that will never be
evaluated. For example:

reverse = let f = λx→ λy→ (:) y x in foldl f []

⇒ { Inline }

reverse = let f = λx→ λy→ (:) y x in foldl (λx→ λy→ (:) y x) []

1Helium has AST constructors for parentheses.

131

9 A canonical form for Haskell programs

⇒ { Dead-code elimination }

reverse = foldl (λx→ λy→ (:) y x) []

Note that we do not perform these two transformations on incomplete programs,
e.g., programs that contain holes. The reason for this limitation is that dead-code
elimination may remove refinements that are introduced by a student. Consider
the following intermediate program:

reverse = •

Suppose a student submits the following intermediate program:

reverse = •
where

reverse′ • • = •

Applying the dead-code elimination transformation to the above intermediate
program results in the same program as started with. As a consequence, we would
not be able to detect the student step.

We do not inline recursive functions. Recursive functions are rewritten in terms
of fix, which does not get β-reduced to avoid non-termination.

9.1.3 Constant arguments

An argument is constant if it is passed unchanged to all recursive function calls.
Consider the following naive implementation of the higher-order function foldr:

foldr op b [] = b
foldr op b (x : xs) = x ‘op‘ foldr op b xs

This implementation has two constant arguments: op and b. A better implementa-
tion is:

foldr op b = f
where f [] = b

f (x : xs) = x ‘op‘ f xs

The above definition is the definition of foldr in the Haskell prelude. Compilers
often optimise such constant arguments away, to save space and increase speed.
Our goal with this transformation is not to optimise programs, but instead to
increase the number of possibilities to apply β-reduction. Note that we do not
inline recursive functions. However, the constant arguments of a recursive function

132

9.2 Discussion

can be β-reduced. The optimisation of a recursive function with constant arguments,
such as the naive foldr function, separates the recursive (f in the example) from
the non-recursive part of a function. Therefore, only after optimising constant
arguments away does it help to inline the function. The optimised version of foldr
will be inlined, but the recursive helper function f will not be inlined.

9.1.4 Lambda calculus reductions

We use α-conversion to rename bound variables. To check that a program is
syntactically equivalent to a model solution, we α-convert both the submitted
student program as well as the model solution. α-conversion ensures that all
variable names are unique. This simplifies the implementation of other program
transformation steps, such as β-reduction, because substitutions become capture
avoiding.

η-reduction reduces a program to its η-short form, trying to remove as many
lambda abstractions as possible. η-reduction replaces λx→ f x by f if x does not
appear free in f .

Finally, we apply β-reduction. β-reduction takes the application of a lambda
abstraction to an argument, and substitutes the argument for the lambda-abstracted
variable: (λx→ expr) y⇒β expr[x := y]. The substitution [x := y] replaces all free
occurrences of the variable x by the expression y. For example, using β-reduction
we get:

(λf x y→ f y x) (:)⇒ λx y→ (:) y x

9.2 Discussion

When recognising a student program we want to be as flexible as possible and
ignore some differences between the student program and a corresponding model
solution. This flexibility is implemented at two places: in the programming strategy,
and the normalisation procedure. Why do we implement this flexibility in two
places? Why do we need strategies at all? Does it suffice to only use normalisation
to recognise student programs based on a set of model solutions? For example,
instead of deriving strategies for library functions (as described in Section 8.4.1),
which recognise also the definition of that function, we could add a program
transformation to our normalisation procedure that rewrites the usage of a library
function to its definition. The justification for the chosen implementation is that
we cannot generate feedback based on the normalisation procedure. We can only
generate feedback based on strategies. So, if we want to use a rewrite or refinement
step for generating feedback, then it needs to be in the programming strategy.

133

9 A canonical form for Haskell programs

Correctness of a normalisation procedure depends on several aspects (Filinski
and Korsholm Rohde, 2004). A normalisation procedure is

• sound if the output term, if any, is β-equivalent to the input term,

• standardising if equivalent terms are mapped to the same result,

• complete if normalisation is defined for all terms that have normal forms.

We claim that our normalisation procedure is sound and complete but not stand-
ardising, but we have yet to prove this. The main reason for our normalisation
procedure to be non-standardising is that we do not inline and β-reduce recursive
functions. For example, while the terms take 3 [1 . .] and [1, 2, 3] are equivalent, the
first will not be reduced by normalisation. Therefore, these terms have different
normalisation results. We do not incorporate β-reduction of recursive function
because this might lead to non-terminating normalisations.

Normalisation by evaluation (NBE) (Berger et al., 1998) is an alternative approach
to normalisation. NBE evaluates a λ-term to its (denotational) semantics and then
reifies the semantics to a λ-term in β-normal and η-long form. The difference
with our, more traditional, approach to normalisation is that NBE appeals to the
semantics (by evaluation) of a term to obtain a normal form. The main goal of NBE

is to efficiently normalise a term. We are not so much interested in efficiency, but it
may well be that NBE improves standardisation of normalisation.

134

10 A PROGRAMMING
STRATEGY RECOGNISER

An important aspect of a programming tutor is that it offers sufficient freedom to
students: a student should be able to use her own names, to use her own favourite
programming style, her own refinement step-size, etc. We try to be as flexible as
possible towards students while guiding the student towards a correct and elegant
solution. We use special strategies to recognise definitions and alternatives of
library functions. To ignore insignificant differences, such as different variable
names, we use program normalisation. Another feature of our programming tutor
is that we allow an arbitrary step size. The refinement rules in our tutor model
Haskell at the finest grain size that has functional meaning in Haskell. Forcing a
student to take small steps, by allowing only one refinement step at a time, would
be a severe limitation of our programming tutor. We want to offer students the
possibility to make larger steps than these small steps. This is challenging in the
context of teacher annotated model solutions to program exercises.

Our tutor constructs a programming strategy from a set of model solutions. The
strategy is interpreted as a recogniser that recognises program refinement steps of
students. Chapter 3 describes the implementation of the recogniser for our strategy
language. This chapter discusses how we adapt this recogniser, such that it can
efficiently recognise multiple refinement steps.

Strategy recogniser. We interpret a strategy as a context-free grammar. The lan-
guage generated by a strategy can be used to determine whether or not a sequence

135

10 A programming strategy recogniser

of rules applied by a student follows a strategy. The sequence of rules should be a
sentence in the language, or a prefix of a sentence, since we solve exercises incre-
mentally. A recogniser for a context-free grammar recognises refinement steps that
are applied to some initial term, usually the empty program. The current location
within the strategy, the remaining strategy, at which the student has applied a
refinement rule is maintained in a state. The recogniser uses this state information
to give precise feedback. Using the information about the progress of student, we
can calculate which steps are allowed next, and check whether or not a student
deviates from a path towards a model solution.

10.1 Parallel top-down recogniser

The recogniser accepts intermediate (incomplete) solutions because it recognises
prefixes. It cannot use backtracking, since this would imply that it suggests steps
that do not lead to the intended solution, and hence guides students into the
wrong direction. It follows that the recogniser needs to choose between the various
model solutions on the basis of a single refinement step. This is problematic when
multiple model solutions share a first step, i.e., when we encounter a left-factor
in the strategies generated for the model solutions. Note that combining model
solutions almost always leads to left-factors. The introduction of a declaration,
and a function name is very often shared between the different model solutions.
Consider the following, somewhat contrived, strategy:

leftFactor = label `1 (app <?> var "f" <?> var "x")
<|> label `2 (app <?> var "g" <?> var "y")

The two substrategies labelled `1 and `2 share a left-factor: the rewrite rule app.
We should decide which substrategy to follow after recognising the application
of app, but the requirement to choose based on a single refinement step does
not allow for this. Committing to a choice after recognising that app has been
applied is unfortunate, since it will force the student to follow the same substrategy.
For example, if the recogniser chooses var "f" after the application of app and
commits to the substrategy with label `1, and a student subsequently performs
the var "g" step, we erroneously report that that step does not follow the strategy.
The standard method of dealing with this problem is to apply left-factoring. Left-
factoring is a grammar transformation that is useful when two productions for the
same nonterminal start with the same sequence of terminal and/or nonterminal
symbols. This transformation factors out the common part, called the left-factor, of
such productions. In a strategy, the equivalent transformation factors out common
sequences of rewrite rules from substrategies separated by the choice combinator.
However, the presence of labels makes it impossible to use left-factoring, since

136

10.2 Search space reduction

moving or merging labels leads to scrambling annotations of models solution,
making it very hard if not impossible to give the intended hints. It is clear how to
left-factor (major) rewrite rules, but how should we deal with labels, or minor rules
in general? Pushing labels inside the choice combinator,

leftFactor = app <?> (label `1 (var "f" <?> var "x")
<|> label `2 (var "g" <?> var "y"))

or making a choice between the two labels breaks the relation between the label
and the strategy. Labels are used to mark positions in a strategy, and have corres-
ponding feedback texts, which very likely become inaccurate if labels are moved
automatically. We need to defer committing to a particular path in the strategy.

To deal with left-factors, we conceptually fork the recogniser whenever we run
into a left-factor. If any of these recognisers fails to recognise the student solution,
we discard it. Thus we obtain a top-down variant of a parallel recogniser. Using
a top-down parallel recogniser we allow a teacher to specify model solutions
that have common components. In the implementation we do not start another
recogniser process, but we extend the state, which the recogniser uses, to maintain
a list of remaining strategies, instead of a single strategy. The relevant feedback
services, such as onefirst and diagnose are adapted to so that they operate on a list of
states.

To parse an ambiguous grammar we need a parallel parser. Tomita (1985) in-
troduced parallel parsing for bottom-up parsers. Similar to Tomita, we parse in
parallel. Different from Tomita, we perform parallel parsing top-down.

The strategy language has been used to describe how to solve exercises in many
mathematical domains, such as solving quadratic equations, and differentiating
functions. The strategies in these domains are less likely to be ambiguous, and
a top-down recogniser for LL(1) grammars that are not left-recursive supports
solving such exercises well.

10.2 Search space reduction

We have performed several experiments with ASK-ELLE, and asked students to
evaluate the programming tutor, see Section 6.5. Students are generally positive
about using the tutor; their main comment is that the tutor is of no help when
performing many refinement steps in a single step. Some students even paste
complete solutions in the tutor (which we might consider undesirable behaviour,
but which we don’t want to disallow). At the time of the experiments, the tutor
could not recognise this. Recognising multiple steps is difficult. In an expression
such as

137

10 A programming strategy recogniser

reverse list = reverse′ list []
where reverse′ • • = •

reverse′ (x : xs) • = reverse′ xs •

a student may refine any of the five holes, in any order. The derived strategy for
this solution allows to interleave the refinement of the five holes. The number of
interleavings grows factorially. That means that even for relatively small intro-
ductory programs the number of intermediate solutions may be huge. The use
of standard strategies not only increases the number of accepted solutions, but
also the number of possible interleavings. The experiment showed that it is not
an option to check, by means of multiple calls to the firsts function, if a student
submission is an element of the set of all possible intermediate solutions.

To efficiently check if a student submission is accepted by a strategy, we make
some assumptions about how a student refines a program. For example, we assume
that it is more likely that a student first finishes a particular part of the program,
such as a function binding, then refining at arbitrary places. Consider the following
incomplete definition of map′:

map′ •1 •2 = •3
map′ f (•4 : •5) = •6

The student has started to refine the second function binding, which pattern
matches on a non-empty list. Instead of refining holes in the first function binding,
she probably completes the second function binding first. Therefore, we use depth-
first search to find matching solutions. We search the abstract syntax tree in a
depth-first manner for a hole that can be refined. For example, if a refinement rule
introduces two function bindings, then we take the first and try to refine it as far as
possible before we start on the second function binding.

10.2.1 Pruning

We constrain the search space of intermediate answers to determine whether or not
a student submission follows a strategy. First, we observe that the first steps of the
different strategies for model solutions may be the same, but they diverge after a
number of steps. For example, if a student submits

reverse = foldl (flip •) •

she follows the strategy of the model solution using foldl, and we do not generate the
intermediate answers of the other model solutions. Since we use refinement rules,
a student can no longer refine her program towards those model solutions. This
reduces the number of interleavings significantly. We filter out these intermediate

138

10.2 Search space reduction

DFunBinds

FunBind

•LHS

•Name

map’

•

DFunBinds

FunBind

•6LHS

Pats

(•4 : •5)f

Name

map’

FunBind

•3LHS

Pats

•2•1

Name

map’

Figure 10.1: Example ASTs that overlap.

answers by determining whether or not the normalised abstract syntax trees of the
model solution and the student submission overlap, where a hole (•) overlaps
with any tree. Figure 10.1 shows an example of an intermediate answer to the map′

function, which overlaps with the student submission.

10.2.2 A search mode for the interleave combinator

Even with pruning, the search space remains too large, due to the amount of
possible interleavings. To reduce the number of interleavings, we observe that
when recognising multiple steps, the order of refinements of holes that may be
interleaved is irrelevant. Consider the reverse example from the previous subsection.
For recognition it does not matter whether we first introduce the cons operator
followed by the empty list constructor, or vice versa. Interleaving causes many
duplicates in the set of intermediate answers. For example:

reverse = foldl (flip •) •
⇒ reverse = foldl (flip (:)) •
⇒ reverse = foldl (flip (:)) []

or:

reverse = foldl (flip •) •
⇒ reverse = foldl (flip •) []
⇒ reverse = foldl (flip (:)) []

We use the irrelevance of refinement order when recognising multiple steps by
introducing a search mode for the interleave combinator. The deepdiagnose feedback
service uses the search mode when diagnosing a student program, to check whether
or not it can be accepted by the programming strategy.

139

10 A programming strategy recogniser

The semantics of the original interleave combinator chooses between the left-
interleave of both substrategies:

x <%> y = (x %> y) <|> (y %> x)
(〈a〉 <?> x) %> y = a <?> (x <%> y)

The search mode for interleave changes the semantics of <%>. It chooses between
the left-interleave of the substrategies and the right substrategy:

x <%> y = (x %> y) <|> y
(〈a〉 <?> x) %> y = a <?> (x <%> y)

The right-hand side of the choice ignores steps from x. We recognise intermediate
answers containing steps from x with the left-interleave of x with y. Because of
the left-interleave, these steps are recognised before steps from y. This is safe
because the order of refinement steps does not matter. Using the search mode
for interleave, all sequences of refinement steps leading to the same intermediate
program are replaced by a single sequence, drastically reducing the search space.
The search mode is used in the deepdiagnose service (see Section 6.2.1). Note that we
still need the normal behaviour of the interleave combinator for generating hints.
The feedback services other than deepdiagnose, such as allfirsts, use the original
semantics of the interleave combinator.

Figure 10.2 shows an example of all possible derivations for the normal and the
alternative semantics of the interleave combinator, for the following strategy:

σ = (σ1 <?> σ2 <?> σ3) <%> (σ4 <?> σ5 <?> σ6)

When using the alternative semantics, all intermediate answers (depicted by the
grey circles) are recognised by a single derivation. The search mode improves the
efficiency of recognising (intermediate) programs substantially.

Our approach is similar to partial-order reduction in model checking (Alur et al.,
2001). It can be applied in the functional programming domain because we use
refinement rules. If we would also use rewrite rules, we would need to prove that
the rewriting system is Church-Rosser to use the alternative semantics of interleave.

140

σ 1
σ4

σ 2

σ4 σ 1

σ5

σ 3
σ4 σ 2

σ5 σ 1
σ6

σ4 σ 3

σ5 σ 2

σ6 σ 1

σ5 σ 3
σ6 σ 2

σ6 σ 3

(a) Normal mode

σ 1
σ4

σ 2

σ4 σ5

σ 3
σ4 σ5 σ6

σ4 σ5 σ6

σ5 σ6

σ6

(b) Search mode

Figure 10.2

11 ASSESSING
HASKELL PROGRAMS

Besides using programming strategies and programming transformations to gener-
ate semantically rich feedback, we also use these techniques for assessing functional
programming exercises in Haskell.

Traditionally, a teacher or an assistant assesses a student’s abilities and progress.
However, providing timely feedback is not always possible with large class sizes.
Repeatedly assessing student exercises is tedious, time consuming, and error prone.
It is difficult to keep judgements consistent and fair. To assist teachers in assessing
programming assignments, many assessment tools have been developed. We have
developed a tool for assessing student programs in Haskell based on programming
strategies. Using programming strategies we can guarantee that a student program
is equivalent to a model solution, and we can report which solution strategy has
been used to solve a programming problem.

Many programming exercise assessment tools are based on some form of test-
ing (Ala-Mutka, 2005). Test-based assessment tools try to determine correctness
by comparing the output of a student program to the expected results on test data.
Using testing for assessment has a number of problems. First, an inherent problem
of testing is coverage: how do you know you have tested enough? Testing does
not ensure that the student program is correct. Second, assessing design features,
such as the use of good programming techniques or the absence of imperfections,
is hard if not impossible with testing. This is unfortunate, because teachers want
students to adopt good programming techniques. Consider the following func-

143

11 Assessing Haskell programs

tion that solves the problem of converting a list of binary numbers to its decimal
representation:

fromBin :: [Int]→ Int
fromBin = fromBin′ 2
fromBin′ n [] = 0
fromBin′ n (x : xs) = x · nˆ(length (x : xs)− 1)

+ fromBin′ n xs

This function returns correct results, hence test-based assessment tools will most
likely accept this as a good solution. However, this implementation contains at
least one imperfection: the length calculation is inefficient (an element is added
to the list and then the length of the list is subtracted by one). We found this
imperfection frequently in a set of student solutions. Third, testing cannot reveal
which algorithm has been used. For instance, when asked to implement quicksort,
it is difficult to discriminate between bubblesort and quicksort. Fourth, testing is a
dynamic process and is therefore vulnerable to bugs, and even malicious features,
that may be present in solutions.

We use programming strategies, derived from teacher annotated model solutions,
and our normalisation procedure to assess functional programming exercises in
Haskell. Our approach is rather different from testing: we can guarantee that the
submitted student program is equivalent to a model program. We can recognise
many different equivalent solutions from a model solution. For example, the
following student solution:

fromBin = fromBaseN 2
fromBaseN b n = fromBaseN′ b (reverse n)

where
fromBaseN′ [] = 0
fromBaseN′ b′ (c : cs) = c + b′ · (fromBaseN′ b′ cs)

is recognised from this model solution:

fromBin = foldl ((+) ◦ (2·)) 0

Despite the fact that this solution appears very different from the model solution, it
will be recognised as equivalent. The two solutions are essentially the same. The
foldl function can be defined as a foldr:

foldl op b = foldr (flip op) b ◦ reverse

The student solution makes use of this equivalence. It uses, however, the explicit
recursive definition of foldr. We specify this equivalence using the ALT annotation,
see Section 7.3.

144

11.1 Using our assessment tool

In this chapter we show how programming strategies and program transforma-
tions can be used to assess functional programming exercises. Using strategies for
assessing student programs solves the four problems of using testing for assessment
described above:

1. if a program is determined to be equivalent, it is guaranteed to be correct

2. we can recognise and report imperfections

3. we can determine which algorithm has been implemented

4. strategy-based assessment is carried out statically.

In contrast with our approach, test-based assessment tools can give a judgement
of all programs including incorrect ones. Test-based assessment tools can prove
a program to be incorrect by providing a counter-example. We could add testing,
using QuickCheck, to the assessment tool to get around this disadvantage.

Strategy based assessment. The most important features we want to assess in a
student program are:

• Correctness: does the program implement the requirements?

• Design: has the program been implemented following good programming
practices?

We use programming strategies as a foundation for assessment of programming
exercises. To use our assessment tool, a teacher only needs to specify one or more
annotated model solutions. A programming strategy is automatically derived
from these model solutions. Using a programming strategy we generate a set of
solutions equivalent to the model solutions. A student solution is correct if it is an
element of the generated set. In general, strategies do not generate all solutions
that are equivalent to the model solution described. We normalise the generated set
of model solutions and the student program using meaning preserving program
transformations, which are described in Section 9.1. The assessment tool only
assesses fully defined programs, which means that we can safely include the
inlining and dead-code elimination program transformations in the normalisation
procedure. After normalising we syntactically check if a program is an element of
the set of normalised model solutions.

11.1 Using our assessment tool

We have applied our assessment tool to student solutions that were obtained from a
lab assignment in a first-year functional programming course at Utrecht University

145

11 Assessing Haskell programs

(2008). We were not involved in any aspect of the assignment, and received the
solutions after they had been graded (‘by hand’) by the teaching assistants. In total
we received 94 student solutions.

The students had to implement the fromBin function introduced earlier. This
function should convert a list of bits to a decimal number. For example, applying
fromBin to [1, 0, 1, 0, 1, 0] should return 42. This is a small typical beginners exercise
in Haskell. The fromBin exercise can be solved in various ways, using different
kinds of higher-order functions. There are a number of model solutions, which
differ quite a bit from one another. All of them use recommended programming
techniques.

The first of our model solutions uses a foldl.

{−# ALT foldl op b = foldr (flip op) b . reverse #−}
fromBin = foldl ((+) ◦ (2·)) 0

The second model solution uses tupling. Tupling is a well-known programming
technique that groups intermediate results in a tuple, which is passed around in a
recursive function. The tuple is passed in the form of multiple function arguments.

fromBin xs = fromBin′ (length xs− 1) xs
where

fromBin′ [] = 0
fromBin′ l (x : xs) = x · 2ˆl + fromBin′ (l− 1) xs

The third solution reverses the input list, and then computes the inner product
of this list and a list of powers of two.

fromBin = sum ◦ zipWith (·) (iterate (·2) 1) ◦ reverse

All of the above model solutions are elegant and efficient. The fourth (and last)
model solution is simple, but inefficient:

fromBin [] = 0
fromBin (x : xs) = x · 2ˆlength xs + fromBin xs

Because the length of the list is calculated in each recursive call, this definition
takes time quadratic in the size of the input list to calculate its result. The other
model solutions are all linear. It is up to the teacher to decide to either accept or
reject solutions based on this model. This flexibility is one of the advantages of our
approach.

11.1.1 Classification of student solutions

We have partitioned the set of student programs into four categories by hand:

146

11.1 Using our assessment tool

Good. A good program is a proper solution with respect to the features we assess
(correctness and design). It should ideally be equivalent to one of the model
solutions.

Good with modifications. Some students have augmented their solution with
sanity checks. For example, they check that the input is a list of zeroes and ones.
Since the exercise assumes the input has the correct form, we have not incorporated
such checks in the model solutions. The transformation machinery cannot yet
remove such checks, we have removed them by hand.

Imperfect. We reject programs containing imperfections. The solution to fromBin
given at the beginning of this chapter is an example of an imperfect solution.
Another common imperfection we found is the use of a superfluous case:

fromBin [] = 0
fromBin (x : []) = x
fromBin (x : xs) = (x · 2ˆlength xs) + fromBin xs

In this example, the second case is unnecessary.

Incorrect. A few student programs were incorrect. They all contained the same
error: no definition of fromBin on the empty list.

11.1.2 Results

From the 94 student programs, 64 programs fall into the good category and 8
fall into the good with modifications category. From these, our assessment tool
recognises 64 programs (89%). Another, and perhaps better, way of looking at these
figures is that 64 student solutions are accepted based on just four model solutions.
All of the incorrect and imperfect programs were rejected in the test. Some of these
incorrect programs were not noticed by the teaching assistants that corrected these
programs.

Using our tool a teacher only needs to assess the remaining student solutions.
Our tool cannot tell if these remaining student solutions are correct or incorrect.
We could use testing for these cases.

It may happen that a correct student solution does not correspond to a model
solution. If such a solution is elegant and efficient, a teacher could add it to the
set of model solutions. In the case it does not meet the requirements for a model
solution, it is up to the teacher to take a decision. For example, the following
student solution uses the tupling technique:

147

11 Assessing Haskell programs

fromBin [] = 0
fromBin [x] = x
fromBin (x : y : rest) = fromBin ((2 · x + y) : rest)

Instead of using a tuple or an extra argument, this solution ‘misuses’ the head of the
list to store the result, which rules it out for being considered as a model solution.
The teacher needs to decide whether or not this ‘misuse’ is an imperfection or not.

By checking all model solutions independently, we can tell which model solution,
or strategy, a student has used to solve the exercise. Our test showed that 18
students used the foldl model solution, 2 used tupling, 2 the inner product solution,
and 40 solutions were based on the last model solution with explicit recursion.

It is unlikely that a solution is accepted by more than one model solution. In our
test all solutions were accepted by a single model solution. If model solutions are
very similar, it might be possible to use the ALT annotation to recognise both from
a single model solution.

11.2 Related work on assessment

The survey of automated programming assessment by Ala-Mutka (2005) shows that
many assessment tools are based on dynamic testing. In contrast, our assessment
tool statically checks for correctness. The survey provides many pointers to related
work. We describe the three closest approaches.

The PASS system, developed by Thorburn and Rowe (1997), assesses C programs
by evaluating whether a student program conforms to a predefined solution plan.
A drawback of the system is that it needs testing for this evaluation. Moreover,
a solution plan is much more strict compared to a strategy. For example, the
system considers the definition of any helper-function incorrect. Our approach
allows a higher degree of freedom by means of standard strategies and program
transformations.

The approach of Truong et al. (2004) is also based on model solutions and abstract
syntax tree inspections. However, their primary use is to assess software quality
and not so much correctness. In addition to similarity checks, their system also
calculates software metrics, which are used to give feedback to a student. A
drawback of their approach is that it does not take the different syntactic forms of
a model solution into account. Moreover, the similarity check considers only the
outline of a solution and not its details.

Xu and Chee (2003) show how to diagnose Smalltalk programs using program
transformations. Our work is quite similar to theirs. For a functional programming
language the set of transformations is much smaller and simpler. We would like to
implement their advanced method for locating errors in student programs.

148

11.2 Related work on assessment

Program verification tools are used to prove programs correct with respect to
some specification (Mol et al., 2002). Automatic program verification tools provide
as much support as possible in constructing this proof. However, users always
need to give hints or proof steps to complete proofs for non-trivial programs, such
as fromBin.

149

12 EPILOGUE AND
FUTURE WORK

In this thesis we have introduced a strategy language for specifying exercises, and
an intelligent tutor that supports the stepwise development of simple functional
programs. The tutoring system targets students at the starting university, or pos-
sibly end high-school, level. Using our programming tutor a student is allowed
to develop a program in many different ways. Teachers can add programming
exercises to the programming tutor by means of annotated model solutions. Teach-
ers determine which solutions are accepted and/or suggested to students, and
which solutions are not allowed. Our tutor automatically calculates hints and feed-
back at intermediate development steps from the model solutions for a problem.
This reduces the work required for using the tutor, and allows a teacher to use
her favourite exercises. The generated feedback is calculated from programming
strategies, which are derived from the annotated model solutions. Using program-
ming strategies, in combination with program transformations, the tutor recognises
many different student programs from a limited set of model solutions.

The distinguishing characteristics of our functional programming tutor are:

• it supports the incremental development of programs: students can submit
incomplete programs and receive feedback and/or hints.

• it calculates feedback automatically based on model solutions to exercises. A
teacher does not have to specify feedback the feedback by hand.

• correctness is based on provable equivalence to a model solution, using

151

12 Epilogue and future work

a normal form for functional programs. If we cannot determine whether
or not a program is equivalent to a model solution, we use testing as an
approximation.

• it recognises arbitrary many student steps on the way to a solution.

We have conducted an experiment in which around a hundred students worked
with our functional programming tutor. Furthermore, we asked functional pro-
gramming experts about the design choices we made. The main conclusions of
these two investigations are:

• Students appreciate worked-out solutions, and are moderately positive about
the tutor.

• We need to judge student programs even when a student deviates from the
model solutions.

We have extended our programming tutor with testing capabilities to address the
latter judgement problem.

We use programming strategies not only for generating feedback, but also for
assessing programming exercises. We differ from test based assessment tools in
that we can guarantee a student solution to be equivalent to a model solution. In a
test we performed on almost 100 student programs we managed to recognise and
characterise 89% of the correct solutions, and we found several programs that had
been incorrectly graded as correct by student assistants.

We have introduced a strategy language with which we can specify strategies for
programming exercises, and exercises in many other domains. A strategy is defined
as a context-free grammar. The formulation of a strategy as a context-free grammar
allows us to automatically calculate several kinds of feedback. Languages for
modelling procedures or strategies for exercises have been developed before. Our
language has a similar expressive power and structure. Our main contribution is
that we make strategies explicit, and that we can automatically calculate advanced
feedback. This is achieved by separating the strategy language into a context-
free language, the strategy combinators, and a non-context-free language, the
embedding as a domain-specific language.

Furthermore, we have presented a formal and precise definition of the main
concepts that we use to construct semantically rich feedback for ITSs, such as the
strategy language and the feedback services. We have defined several relations
on strategies that give the semantics of the strategy language, such as the big-step
relation. Feedback services are an interface to our feedback functionality that can
be used by learning environments. These services are expressed in terms of the
big-step relation. The formalisation gives us more confidence in the correctness of

152

12.1 Future work

our approach. Furthermore, the formalisation allows us to state properties that the
concepts used should have. We use these properties to validate our implementation.

We have also presented the implementation of a recogniser for strategies. Al-
though it is tempting to reuse existing parsing tools and libraries, a closer look
at the problem reveals subtle differences that make existing tools unsuitable for
recognising incomplete beginners’ programs. Some design choices were discussed,
in particular for how to deal with recursion, and how to mark positions in a
strategy. We have shown how our implementation of a recogniser can be used to
automatically calculate several kinds of feedback.

12.1 Future work

We conclude with a list of possible directions for further research.

Functionality

Refactoring exercises. For now our programming tutor only offers exercises that can
be solved by refining an intermediate program to a solution. In addition to
this kind of exercises, we would like to offer refactoring exercises. When
solving a refactoring exercise a student rewrites (instead of refines) a program
into a semantically equivalent program, which is possibly more efficient or
elegant. The HaRe (Li et al., 2005) and hlint 1 projects are good sources for an
initial set of rewrite rules for the domain of functional programming.

Other programming languages/paradigms. The concepts that we use to generate feed-
back and hints for programming exercises are not specific for Haskell. We can
use the approach described in this thesis to develop similar programming
tutors for other functional programming languages, such as Lisp or OCaml.
Our approach is not bound to functional programming: we could use the
same approach to develop tutoring systems for other programming languages
or paradigms. We believe that we have not made assumptions that exclude
imperative programming languages and think that our programming tutor
is language generic, but we would have to further investigate this. We want
to investigate the possibilities for automatically generating large parts of a
programming tutor, based on a (probably annotated) grammatical descrip-
tion (Klint et al., 2005), and using generic programming techniques (Back-
house et al., 1999).

Support for larger programs. Our programming tutor offers introductory program-
ming exercises, which are rather small. We have not investigated if the

1http://community.haskell.org/~ndm/hlint/

153

http://community.haskell.org/~ndm/hlint/

12 Epilogue and future work

domain reasoner for functional programming can handle large programs.
We might not be able to recognise all steps from beginning to end for large
programs. However, we are probably able to recognise the first steps. We
think that the first steps in program development are the most important
steps, which require detailed and good feedback. It is at this point where
programming techniques have to be selected and applied. We would like to
investigate whether or not our approach scales, and check if it is able to deal
with larger programs.

Bug location. When a student deviates from a strategy, we use testing to check if the
student submission has the same behaviour as a model solution. In case we
find a counterexample, we report to the student that the program is incorrect
and display the counterexample. It would be an improvement if we could give
the student the location of the error. If we are able to determine the location
of the bug, we could display, for example, a red line underneath the part of
the program that causes the erroneous behaviour. Brain-storming sessions
with Koen Claessen, Bastiaan Heeren, Johan Jeuring, and Ulf Norell led to
the following idea. If we find a counterexample in a program, we gradually
undefine the program (i.e., make a program less defined, by replacing a
defined part with a hole) and test if it still behaves incorrectly. When we can
no longer falsify the program, we know what part of the program is incorrect.
The following derivation exemplifies this process for the reverse function:

reverse [] = •
reverse (x : xs) = x : •

⇒ {test fails ; remove first function binding}
reverse (x : xs) = x : •

⇒ {test still fails ; remove right− hand side}
reverse (x : xs) = •

⇒ {test succeeds ; undefine (:)} -- go as deep as possible

reverse (x : xs) = x ‘ • ‘ •
⇒ {test succeeds ; undefine x}

reverse (x : xs) = • : •
⇒ {test succeeds ; max depth reached}

From the above example we can conclude that the error is introduced by the x
in the right-hand side of the second function binding. Using this information
we could give the student a detailed feedback message, in which an indication
of the location of the error is underlined in red.

The described process is similar to techniques that are used to construct type

154

12.1 Future work

error messages (Lerner et al., 2007). The approach also bears resemblance
to the shrinking process in QuickCheck (Claessen and Hughes, 2000). We
would like to investigate this idea, and experiment with it.

Program design exercises. Developing a function is an important part of functional
programming. But so are testing a function, describing its properties, abstract-
ing from recurring patterns, etc. (Felleisen et al., 2002). We want to investigate
how much of the program design process can be usefully integrated in an
intelligent tutoring system for functional programming.

Technology

Inlining/dead-code elimination. When recognising intermediate program solutions
we do not use inlining and dead-code removal. If we inline an incomplete
program submitted by a student, we might undo the step that a student has
taken. If the student introduces a helper function that is not used anywhere
in the program, then inlining and dead-code removal would undo this step.
As a consequence, the tutor is unable to detect if the student has taken a step.
For example, if the student submits the next program:

f = • •
followed by

f = g •
where

g = •
Applying the inlining/dead-code removal program transformation would
result in the previous program submitted by the student.

However, inlining is needed to recognise some intermediate programs. For
instance, if a student uses a helper function whereas the corresponding model
solution does not, we need inlining/dead-code removal to recognise the
student solution. We would like to investigate when it is possible to perform
the inlining/dead-code removal program transformation.

Compiler. We use the Helium compiler because it generates excellent error messages.
Unfortunately, Helium does not fully support the Haskell98 standard, let
alone the newer Haskell2010 standard. For example, there is no support
for type classes. GHC does support both Haskell standards, and has many
more features. We have implemented our programming tutor in a modular
way, and it is should not take too much effort to replace the current compiler.
However, we have extended and adapted some parts of Helium, such as the
parser and the abstract syntax. We want to investigate if it is possible to use
GHC instead of Helium for compiling student programs.

155

12 Epilogue and future work

Usability

Experiments with teachers. We have not yet performed experiments with teachers,
excluding ourselves, using our system. We want to perform experiments
in which teachers need to add programming exercises, and fine-tune the
generation of feedback. We want to test the usability of our tutor.

Learning effect. We also want to study the learning effect of our tutor together with
researchers from the domain of learning sciences.

156

SAMENVATTING

Computers zijn niet meer weg te denken uit onze samenleving. Dagelijks komen
veel mensen op verschillende manieren in aanraking met computers. Is het niet
met een normale desktop computer, dan wel met een mobiele telefoon, die een
kleine computer onder de motorkap heeft. Ook televisies, witgoed-apparaten en
auto’s, om slechts enkele te noemen, zijn tegenwoordig steeds meer voorzien van
een computer. Bovendien hebben we ook vaak indirect met computers van doen.
Bijvoorbeeld, iemand die wel eens contact heeft gehad met een helpdesk, weet
maar al te goed dat veel zaken door computers worden afgehandeld2.

Een computer kan berekeningen voor ons uitvoeren; dit gebeurt via computerpro-
gramma’s3, of programma’s in het kort. Deze programma’s zijn geïnstalleerd op een
computer en sturen deze aan. Bijvoorbeeld, een navigatie-programma stuurt de
navigatie-computer in een auto aan, door deze een route te laten berekenen naar
een opgegeven bestemming en door aanwijzigingen weer te geven op een scherm.
Vanzelfsprekend is het belangrijk dat de programma’s en computers functioneren
zoals de gebruiker dat voor ogen heeft.

Computerprogramma’s worden geschreven in een programmeertaal. In een pro-
grammeertaal kun je uitdrukken wat een computer moet doen. Er bestaan vele
programmeertalen zoals: Haskell, Erlang, Clean, Java, C en C++. Deze program-
meertalen zijn onder te verdelen in twee groepen (paradigma’s), namelijk het
imperatieve en het functionele paradigma. Een programma geschreven in een
imperatieve programmeertaal bestaat uit een sequentie van instructies die een
computer achtereenvolgens uitvoert. Functionele talen hebben een andere aan-

2Wat niet per definitie inhoudt dat de zaken dan beter zijn geregeld.
3Een andere term voor een computerprogramma is een applicatie.

157

Samenvatting

pak; in een functionele programmeertaal definieert een programmeur een aantal
(wiskundige) functies die beschrijven wat een computer moet doen.

Het schrijven van een computerprogramma is geen eenvoudige aangelegenheid
en vergt kennis van een programmeertaal. Het leren van een programmeertaal is
eveneens geen sinecure. Evenals bij andere vakken is het maken van opgaven een
belangrijk onderdeel van het leren. Door feedback (terugkoppeling) te geven op
uitgewerkte opgaven kan een student zich verbeteren. Onderzoek heeft aangetoond
dat het geven van feedback het meest effectief is, wanneer dit tijdens het maken
van een opgave gebeurt. Normaliter wordt deze directe feedback door een leraar
gegeven. Het is natuurlijk erg moeilijk voor een leraar om een grote groep studenten
directe feedback te geven. Om een leraar daarbij te ondersteunen zijn er vele
elektronische leeromgevingen ontwikkeld, waarin studenten opgaven kunnen
maken en daarbij directe feedback aangeboden krijgen.

Er zijn leeromgevingen ontwikkeld voor een aantal programmeertalen, waaron-
der Java, Lisp, Prolog en Haskell. Een leeromgeving biedt meer voordelen dan
enkel de mogelijkheid voor het geven van directe feedback. Zo is het bijvoorbeeld
altijd beschikbaar en kunnen grote groepen studenten er tegelijkertijd gebruik van
maken. Ondanks de voordelen van leeromgevingen voor programmeren, worden
ze niet veel gebruikt. Naast de voordelen kleven er ook een aantal nadelen aan het
gebruik van een leeromgeving voor programmeren. Een veel voorkomend nadeel
is dat het moeilijk is voor een leraar om de aangeboden opgaven aan te passen. Het
toevoegen van opgaven is vaak veel werk, waarbij de te geven feedback soms met
de hand moet worden gespecificeerd.

In dit proefschrift laten we onder andere zien hoe we deze nadelen kunnen
aanpakken. Wij hebben een programmeerleeromgeving ontwikkeld, genaamd
ASK-ELLE, waarin feedback automatisch wordt gegenereerd, en het gemakkelijk is
om opgaven toe te voegen of aan te passen. ASK-ELLE is een leeromgeving voor
de functionele programmeertaal Haskell. Haskell heeft een aantal karakteristieke
eigenschappen: het heeft een ‘lazy’ evaluatie mechanisme, het is sterk getypeerd
en het staat niet zonder meer neveneffecten toe. Mede door deze eigenschappen is
Haskell een geschikte programmeertaal voor het gebruik in het onderwijs.

In ASK-ELLE kunnen studenten o.a.: stapsgewijs programma’s ontwikkelen,
nagaan of een gemaakte stap goed is of niet, om een hint vragen als ze vast zitten
en volledig stapsgewijs uitgewerkte programma’s bekijken. Deze feedback wordt
automatisch gegenereerd op basis van modeloplossingen voor een programmeerop-
gave. Een modeloplossing is een uitwerking voor een opgave die een expert zou
schrijven en waarin gebruik wordt gemaakt van goede programmeertechnieken.
Een leraar kan een opgave aan ASK-ELLE toevoegen door één of meerdere mode-
loplossingen te definiëren voor een programmeeropgave. De genereerde feedback
kan worden aangepast door de leraar. Daartoe kan de leraar de modeloplossingen
voorzien van aanwijzingen hoe de feedback moet worden gegenereerd. Tevens kan

158

een leraar de feedback teksten bewerken en is er ondersteuning voor feedback in
meerdere talen.

Het proefschrift is in twee delen gesplitst. Het eerste deel behandelt ‘domain
reasoners’. Een ‘domain reasoner’ is verantwoordelijk voor de generatie van feed-
back voor opgaven uit een bepaald domein. Voorbeelden van zulke domeinen
zijn: propositie logica, lineaire algebra, rekenen met breuken en functioneel pro-
grammeren. Onze ‘domain reasoners’ bieden de generatie van feedback aan via
webservices. Webservices maken het mogelijk om onze ‘domain reasoners’ op af-
stand via het Internet te gebruiken. Bijvoorbeeld, het minimum aantal stappen dat
een student nog moet nemen om een opgave op te lossen, wordt als webservice
aangeboden. Naast onze eigen leeromgevingen maken ook externe leeromgevingen
gebruik van onze ‘domain reasoners’.

Een ‘domain reasoner’ bevat een aantal opgaven voor het gekozen domain.
De opgaven worden beschreven binnen de context van een ‘domain reasoner’.
De beschrijving van een opgave bevat onder andere: een omschrijving van de
syntax van het domein, een set van regels waarmee expressies in het domain
kunnen worden herschreven, de strategie waarmee de opgave kan worden opgelost
en semantische functies (zoals de gelijkheidsfunctie). Deze onderdelen heeft de
‘domain reasoner’ nodig om feedback te genereren.

Een prominent onderdeel van een opgave is de strategie; deze heeft verreweg het
meeste invloed op de generatie van feedback. Een strategie beschrijft welke stappen
(toepassingen van regels) een student kan nemen om een opgave op te lossen. Wij
hebben een strategietaal ontwikkeld waar strategieën in kunnen worden uitgedrukt.
Deze strategietaal biedt een aantal combinatoren aan waarmee strategieën kunnen
worden samengesteld. Bijvoorbeeld, de strategietaal heeft een combinator waarmee
twee (sub)strategieën in sequentie kunnen worden gezet. Dat wil zeggen dat eerst
de ene strategie moet worden uitgevoerd voordat aan de andere mag worden
begonnen. Een strategie wordt geïnterpreteerd als een contextvrije grammatica.
We hebben een aantal strategiefuncties ontwikkeld, die veel lijken op de firsts en
empty functies voor contextvrije grammatica’s. De firsts strategiefunctie bepaalt de
set van toegestane stappen volgens de strategie. De empty functie gaat na of we
volgens de strategie klaar zijn. Deze twee functies worden veelvuldig gebruikt bij
het genereren van feedback. In dit proefschrift presenteren we een formalisatie van
de strategietaal. Dit geeft ons de mogelijkheid om eigenschappen af te leiden, die
de strategietaal zou moeten hebben. Deze eigenschappen kunnen we gebruiken
om onze implementatie te testen.

Het tweede deel van dit proefschrift gaat in op de details van ASK-ELLE. We
laten een voorbeeld interactieve sessie zien hoe een student een opgave oplost
met behulp van ASK-ELLE. Een student begint met een totaal ongedefinieerd pro-
gramma (een gat) en maakt stapsgewijs het programma meer compleet. Hiervoor
gebruikt de student verfijningsregels voor het functionele programmeerdomein. Het

159

Samenvatting

toepassen van een verfijningsregel op een incompleet programma vervangt een
gat in het programma door een programma-constructie (dat mogelijk gaten bevat),
en maakt daarmee het programma meer gedefinieerd. Dit wijkt af van de andere
(wiskundige) domeinen, waar herschrijfregels worden gebruikt in plaats van ver-
fijningsregels. Een student is klaar met een opgave als het programma volledig
gedefinieerd is en geen gaten meer bevat.

Welke verfijningsregels een student kan toepassen, wordt bepaald door een (pro-
grammeer)strategie. Deze strategie wordt afgeleid uit een set van modeloplossin-
gen voor een programmeeropgave. Elke constructie in een modeloplossing wordt
vertaald naar een bijbehorende verfijningsregel. Bijvoorbeeld, als een modelop-
lossing een if − then − else-constructie bevat, wordt deze tijdens het afleiden
van de strategie naar een verfijningsregel vertaald die een gat vervangt door deze
constructie. Indien er in de modeloplossing gebruik wordt gemaakt van een biblio-
theekfunctie (een voorgedefinieerde standaardfunctie), dan wordt de strategie zo
uitgebreid dat we het gebruik van een dergelijke functie ook herkennen. Hiermee
kan de programmeertutor meerdere equivalente vormen van hetzelfde programma
herkennen en is daarmee flexibeler geworden. De student heeft dan de vrijheid
om de modeloplossing te volgen of de definitie van een bibliotheekfunctie te
gebruiken. Om de tutor nog meer equivalente vormen van een modeloplossing te
laten herkennen, maken we gebruik van normalisatie. Normalisatie zorgt ervoor dat
we niet-significante verschillen negeren. Bijvoorbeeld, het feit dat een student een
andere naam gebruikt voor een variabele in vergelijking met de modeloplossing
willen we graag negeren. Normalisatie maakt gebruik van programmatransformaties
gebaseerd op de λ-calculus. Indien een student afwijkt van de strategie kunnen
we geen oordeel geven of het programma van de student correct is of niet. In de
wiskundige domeinen kunnen we terugvallen op een equivalentie functie. Deze is
voor het functionele programmeerdomein echter niet beschikbaar. In een dergelijk
geval maken we gebruik van testen om na te gaan of een programma van een
student zich hetzelfde gedraagt als een modeloplossing. De programmeertutor kan
zelfs incomplete programma’s testen.

We hebben een aantal experimenten met de programmeertutor uitgevoerd. We
hebben ongeveer 200 eerstejaars studenten informatica van de Universiteit Utrecht
met de tutor laten werken. De studenten waren gematigd positief over de tutor.
Uit een enquête die de studenten hebben ingevuld, kwamen twee verbeterpunten
naar voren. De tutor dient een oordeel te geven indien er wordt afgeweken van de
strategie en de tutor moet programma’s herkennen die tot stand zijn gekomen met
het toepassen van meerdere verfijningsregels in één keer. Het eerste punt hebben
we aangepakt door het testen van incomplete programma’s toe te voegen aan de
tutor (dit was op het moment van de experiment nog niet geïmplementeerd). Het
tweede punt hebben we opgelost door de manier van herkennen van (incomplete)
programma’s aan te passen. Doordat de strategie heel veel verschillende vormen

160

van een modeloplossing herkent, is het geen optie om deze allemaal te genereren
en vervolgens na te gaan of het studentprogramma een element is van deze set. We
geven de strategietaal een andere semantiek wanneer we een studentprogramma
proberen te herkennen. We maken gebruik van het feit dat tijdens het herkennen
van een studentprogramma de volgorde van verfijningsregels niet relevant is. Door
de volgorde te fixeren, wordt de zoekruimte enorm gereduceerd.

We gebruiken de technieken die aan onze programmeertutor ten grondslag
liggen ook voor een ander doel. We hebben een applicatie ontwikkeld waarmee
we geautomatiseerd functionele programmeeropgaven kunnen nakijken. Met deze
applicatie hebben we eveneens een experiment uitgevoerd. De resultaten zijn
veelbelovend: op basis van een vijftal modeloplossing konden we bijna 90% van
alle studentuitwerkingen van een oordeel voorzien.

161

CURRICULUM VITAE

Alex Gerdes

10 juli 1978 Geboren te Emmen

1990 – 1995 HAVO aan het Esdal College te Emmen

1995 – 1996 HTS - Elektrotechniek aan de Hogeschool Drenthe (propedeuse)

1996 – 2000 HTS - Technische Informatica aan de Hogeschool Drenthe

1999 – 2001 Software design engineer bij Ericsson te Emmen

2001 – 2007 Studie Technische Informatica aan de Open Universiteit

Afstudeeronderzoek op het gebied van generiek programmeren,
uitgevoerd aan de Universiteit Utrecht.

2001 – 2007 Signal processing/software engineer bij ASTRON te Dwingeloo

2007 – 2012 Promovendus aan de faculteit Informatica van de Open Universiteit

Q2 – 2012 Software developer bij de Universiteit Utrecht

2012 – heden Software developer bij QuviQ te Göteborg in Zweden

163

BIBLIOGRAPHY

Kirsti Ala-Mutka. A survey of automated assessment approaches for programming
assignments. Computer Science Education, 15(2):83–102, 2005.

R. Alur, R. K. Brayton, T. A. Henzinger, S. Qadeer, and S. K. Rajamani. Partial-Order
Reduction in Symbolic State-Space Exploration. Formal Methods in System Design,
18:97–116, 2001.

John R. Anderson. Rules of the Mind. Lawrence Erlbaum Associates, 1993.

John R. Anderson, Frederick G. Conrad, and Albert T. Corbett. Skill Acquisition
and the LISP tutor. Cognitive Science, 13:467–505, 1986.

John R. Anderson, Albert T. Corbett, Kenneth R. Koedinger, and Ray Pelletier.
Cognitive tutors: lessons learned. The Journal of the learning sciences, 4(2):167–207,
1995.

David Aspinall, Ewen Denney, and Christoph Lüth. A Tactic Language for Hiproofs.
In MKM 2008: Proceedings of the 7th international conference on Intelligent Computer
Mathematics, volume 5144 of LNCS, pages 339–354. Springer Verlag, 2008.

Franz Baader and Tobias Nipkow. Term Rewriting and All That. Cambridge Univer-
sity Press, 1997.

Ralph-Johan Back. A Calculus of Refinements for Program Derivations. Reports on
Computer Science and Mathematics 54, Åbo Akademi, 1987.

165

Bibliography

Roland Backhouse, Patrik Jansson, Johan Jeuring, and Lambert Meertens. Generic
Programming — An Introduction. In AFP 1999: 3rd International Summer School on
Advanced Functional Programming, volume 1608 of LNCS, pages 28–115. Springer
Verlag, 1999.

Michael J. Beeson. A computerized environment for learning algebra, trigonometry,
and calculus. Journal of Artificial Intelligence and Education, 1:65–76, 1990.

Michael J. Beeson. Design Principles of Mathpert: Software to support education in
algebra and calculus. In N. Kajler, editor, Computer-Human Interaction in Symbolic
Computation, pages 89–115. Springer Verlag, 1998.

Ulrich Berger, Matthias Eberl, and Helmut Schwichtenberg. Normalization by
Evaluation. In B. Möller and J. Tucker, editors, Prospects for Hardware Foundations,
volume 1546 of LNCS, pages 624–624. Springer Verlag, 1998.

Jan A. Bergstra and Jan Willem Klop. Algebra of communicating processes with
abstraction. Theoretical Computer Science, 37:77–121, 1985.

John Biggs and Catherine Tang. Teaching for Quality Learning at University. Open
University Press, 2007.

Richard Bird. An introduction to the theory of lists. In M. Broy, editor, Logic of
Programming and Calculi of Discrete Design, volume F36 of NATO ASI Series, pages
5–42. Springer Verlag, 1987.

Richard Bird. Introduction to Functional Programming using Haskell. Prentice Hall,
1998.

Christian Bokhove and Paul Drijvers. Digital Tools for Algebra Education: Criteria
and Evaluation. International Journal of Computers for Mathematical Learning, 15(1):
45–62, 2010.

Peter Boon and Paul Drijvers. Algebra en applets, leren en onderwijzen (algebra and
applets, learning and teaching, in Dutch). http://www.fi.uu.nl/publicaties/
literatuur/6571.pdf, 2005.

Peter Borovanský, Claude Kirchner, Hélène Kirchner, and Christophe Ringeissen.
Rewriting with strategies in ELAN: A functional semantics. International Journal
of Foundations of Computer Science, 12(1):69–95, 2001.

Eric Bouwers. Improving automated feedback – a generic rule-feedback generator.
Master’s thesis, Utrecht University, department of Information and Computing
Sciences, 2007.

166

http://www.fi.uu.nl/publicaties/literatuur/6571.pdf
http://www.fi.uu.nl/publicaties/literatuur/6571.pdf

Bibliography

John Seely Brown and Richard R. Burton. Diagnostic Models for Procedural Bugs
in Basic Mathematical Skills. Cognitive Science, 2:155–192, 1978.

Alan Bundy. The Computer Modelling of Mathematical Reasoning. Academic Press,
1983.

Alan Bundy. The use of explicit plans to guide inductive proofs. In Conference on
Automated Deduction, pages 111–120, 1988.

Alan Bundy. A critique of proof planning. In Computational Logic (Kowalski Fests-
chrift), volume 2408 of LNAI, 2002.

Hamid Chaachoua, Jean-François Nicaud, Alain Bronner, and Denis Bouhineau.
Aplusix, a learning environment for algebra, actual use and benefits. In ICME
2004: 10th International Congress on Mathematical Education, 2004.

Koen Claessen and John Hughes. Quickcheck: a lightweight tool for random
testing of haskell programs. In ICFP 2000: Proceedings of the 5th ACM SIGPLAN
international conference on Functional Programming, pages 268–279. ACM Press,
2000.

Arjeh Cohen, Hans Cuypers, Ernesto Reinaldo Barreiro, and Hans Sterk. Interactive
mathematical documents on the web. In Algebra, Geometry and Software Systems,
pages 289–306. Springer Verlag, 2003.

Albert T. Corbett, John R. Anderson, and Eric J. Patterson. Problem compilation and
tutoring flexibility in the Lisp tutor. In ITS 1988: Proceedings of the 1st international
conference on Intelligent Tutoring SystemsProceedings of the conference on Intelligent
Tutoring Systems, pages 423–429, 1988.

Alcino Cunha and Joost Visser. Strongly typed rewriting for coupled software
transformation. Electronic Notes in Theoretical Computer Science, 174(1):17–34, 2007.

Edsger W. Dijkstra. Guarded commands, nondeterminacy and formal derivation
of programs. Communications of the ACM, 18:453–457, 1975.

Hans van Ditmarsch. Logic software and logic education. http://www.cs.otago.
ac.nz/staffpriv/hans/logiccourseware.html. These pages contain a compre-
hensive, alphabetically ordered list of educational logic software, 2009.

Ido Erev, Adi Luria, and Anan Erev. On the effect of immediate feedback, 2006.
http://goo.gl/eodze.

Matthias Felleisen, Robert Bruce Findler, Matthew Flatt, and Shriram Krish-
namurthi. How to design programs: an introduction to programming and computing.
The MIT Press, 2002.

167

http://www.cs.otago.ac.nz/staffpriv/hans/logiccourseware.html
http://www.cs.otago.ac.nz/staffpriv/hans/logiccourseware.html
http://goo.gl/eodze

Bibliography

Andrzej Filinski and Henning Korsholm Rohde. A denotational account of untyped
normalization by evaluation. In I. Walukiewicz, editor, Foundations of Software
Science and Computation Structures, volume 2987 of LNCS, pages 167–181. Springer
Verlag, 2004.

Sally Fincher and Marian Petre, editors. Computer Science Education Research, 2004.
Routledge Falmer.

Robert Bruce Findler, John Clements, Cormac Flanagan, Matthew Flatt, Shriram
Krishnamurthi, Paul Steckler, and Matthias Felleisen. DrScheme: a programming
environment for Scheme. Journal of Functional Programming, 12(2):159–182, 2002.

Jeroen Fokker. Functional parsers. In J. Jeuring and E. Meijer, editors, Advanced
Functional Programming, volume 925 of LNCS. Springer Verlag, 1995.

Wan Fokkink. Introduction to Process Algebra. Springer Verlag, 2000.

Freudenthal Institute. Digital Math Environment. http://www.fi.uu.nl/dwo,
2004.

Alex Gerdes, Bastiaan Heeren, Johan Jeuring, and Sylvia Stuurman. Feedback
services for exercise assistants. In D. Remenyi, editor, The Proceedings of the 7th
European Conference on e-Learning, pages 402–410. Academic Publishing Limited,
2008.

Alex Gerdes, Bastiaan Heeren, and Johan Jeuring. Constructing Strategies for
Programming. In J. Cordeiro, B. Shishkov, A. Verbraeck, and M. Helfert, editors,
Proceedings of the First International Conference on Computer Supported Education,
pages 65–72. INSTICC Press, 2009.

Alex Gerdes, Bastiaan Heeren, and Johan Jeuring. Properties of Exercise Strategies.
Electronic Notes in Theoretical Computer Science, 44:21–34, 2010a.

Alex Gerdes, Johan Jeuring, and Bastiaan Heeren. Using Strategies for Assessment
of Programming Exercises. In SIGCSE 2010: Proceedings of the 41st ACM SIGPLAN
technical symposium on Computer Science Education, pages 441–445, 2010b.

Alex Gerdes, Johan Jeuring, and Bastiaan Heeren. Teachers and students in charge.
In EC-TEL 2012: the 7th European Conference on Technology Enhanced Learning.
Springer Verlag, 2012a. To appear. An extended version is available as Technical
report Utrecht University UU-CS-2012-007.

Alex Gerdes, Johan Jeuring, and Bastiaan Heeren. An interactive functional pro-
gramming tutor. In ITICSE 2012: Proceedings of the 17th Annual Conference on
Innovation and Technology in Computer Science Education. ACM Press, 2012b.

168

http://www.fi.uu.nl/dwo

Bibliography

Giorgi Goguadze, Alberto González Palomo, and Erica Melis. Interactivity of
exercises in ActiveMath. In ICCE 2005: International Conference on Computers in
Education. IOS Press, 2005.

Mark Guzdial. Programming environments for novices. In Sally Fincher and
Marian Petre, editors, Computer Science Education Research. Routledge Falmer,
2004.

John Hattie and Helen Timperley. The power of feedback. Review of Educational
Research, 77(1):81–112, 2007.

Bastiaan Heeren and Johan Jeuring. Recognizing Strategies. In Aart Middeldorp, ed-
itor, WRS 2008: Reduction Strategies in Rewriting and Programming, 8th International
Workshop, 2008.

Bastiaan Heeren and Johan Jeuring. Canonical Forms in Interactive Exercise As-
sistants. In MKM 2009: Proceedings of the 8th international conference on Intelligent
Computer Mathematics, volume 5625 of LNCS, pages 325–340. Springer Verlag,
2009.

Bastiaan Heeren and Johan Jeuring. Adapting mathematical domain reasoners. In
MKM 2010: Proceedings of the 9th international conference on Intelligent Computer
Mathematics, volume 6167 of LNCS, pages 315–330. Springer Verlag, 2010.

Bastiaan Heeren and Johan Jeuring. Interleaving strategies. In MKM 2011: Proceed-
ings of the 10th international conference on Intelligent Computer Mathematics, volume
6824 of LNCS, pages 196–211. Springer Verlag, 2011.

Bastiaan Heeren, Daan Leijen, and Arjan van IJzendoorn. Helium, for learning
Haskell. In Proceedings of the 2003 ACM SIGPLAN workshop on Haskell, pages 62 –
71. ACM Press, 2003.

Bastiaan Heeren, Johan Jeuring, Arthur Leeuwen, and Alex Gerdes. Specifying
Strategies for Exercises. In Proceedings of the 9th AISC international conference, the
15th Calculemas symposium, and the 7th international MKM conference on Intelligent
Computer Mathematics, pages 430–445. Springer Verlag, 2008.

Bastiaan Heeren, Johan Jeuring, and Alex Gerdes. Specifying Rewrite Strategies for
Interactive Exercises. Mathematics in Computer Science, 3(3):349–370, 2010.

Martin Hennecke. Online Diagnose in intelligenten mathematischen Lehr-Lern-Systemen
(in German). PhD thesis, Hildesheim University, 1999.

Ralf Hinze and Johan Jeuring. Generic Haskell: Applications. In R. Backhouse
and J. Gibbons, editors, Generic Programming, volume 2793 of LNCS, pages 57–96.
Springer Verlag, 2003.

169

Bibliography

Ralf Hinze, Johan Jeuring, and Andres Löh. Comparing approaches to generic
programming in Haskell. In R. Backhouse, J. Gibbons, R. Hinze, and J. Jeuring,
editors, Datatype-Generic Programming, volume 4719 of LNCS, pages 72–149.
Springer Verlag, 2007.

Tony Hoare. An axiomatic basis for computer programming. Communications of the
ACM, 12:576–580, 1969.

Tony Hoare. Communicating sequential processes. Prentice Hall, 1985.

Jay Holland, Tanja Mitrovic, and Brent Martin. J-Latte: a constraint-based tutor for
Java. In ICCE 2009: Proceedings of the 17th International on Conference Computers in
Education, pages 142–146, 2009.

Jun Hong. Guided programming and automated error analysis in an intelligent
Prolog tutor. International Journal on Human-Computer Studies, 61(4):505–534, 2004.

Helmut Horacek and Magdalena Wolska. Handling errors in mathematical formu-
las. In M. Ikeda, K. Ashley, and T.-W. Chan, editors, ITS 2006: Proceedings of the
8th international conference on Intelligent Tutoring Systems, volume 4053 of LNCS,
pages 339–348. Springer Verlag, 2006.

Paul Hudak. Building domain-specific embedded languages. ACM Computing
Surveys, 28A(4), 1996.

Paul Hudak. The Haskell school of expression: learning functional programming through
multimedia. Cambridge University Press, 2000.

Gérard Huet. The Zipper. Journal of Functional Programming, 7(5):549–554, 1997.

John Hughes. The Design of a Pretty-printing Library. In AFP 1995: 1st International
Spring School on Advanced Functional Programming, volume 925 of LNCS, pages
53–96. Springer Verlag, 1995.

John Hughes. Generalising monads to arrows. Science of Computer Programming, 37:
67 – 111, 2000.

Graham Hutton. Higher-order Functions for Parsing. Journal of Functional Program-
ming, 2(3):323–343, 1992.

Graham Hutton. Programming in Haskell. Cambridge University Press, 2007.

Marina Issakova. Solving of linear equations, linear inequalities and systems of linear
equations in interactive learning environment. PhD thesis, University of Tartu, 2007.

170

Bibliography

Johan Jeuring, Alex Gerdes, and Bastiaan Heeren. A programming tutor for Haskell.
In V. Zsók, Z. Horváth, and R. Plasmeijer, editors, CEFP 2011: Central European
Functional Programming School, volume 7241 of LNCS, pages 1–45. Springer Verlag,
2012.

W. L. Johnson and Elliot Soloway. Proust: Knowledge-based program understand-
ing. IEEE Transactions on Software Engineering, 11(3):267–275, 1985.

Henry A. Kautz and James F. Allen. Generalized plan recognition. In National
Conference on Artificial Intelligence, pages 32–37, 1986.

Caitlin Kelleher and Randy Pausch. Lowering the barriers to programming: A
taxonomy of programming environments and languages for novice programmers.
ACM Computing Surveys, 37(2):83–137, 2005.

Paul Klint, Ralf Lämmel, and Chris Verhoef. Toward an engineering discipline for
grammarware. ACM Transactions on Software Engineering and Methodology, 14(3):
331–380, 2005.

M. Kölling, B. Quig, A. Patterson, and J. Rosenberg. The BlueJ system and its
pedagogy. Journal of Computer Science Education, Special issue on Learning and
Teaching Object Technology, 13(4), 2003.

Amruth N. Kumar. The effect of using problem-solving software tutors on the
self-confidence of female students. In SIGCSE 2008: Proceedings of the 39th ACM
SIGPLAN technical symposium on Computer Science Education, pages 523–527. ACM
Press, 2008.

Ralf Lämmel and Simon Peyton Jones. Scrap your boilerplate: a practical approach
to generic programming. ACM SIGPLAN Notices, 38(3):26–37, 2003.

Ralf Lämmel, Eelco Visser, and Joost Visser. The Essence of Strategic Programming.
Available at http://homepages.cwi.nl/~ralf/eosp/, 2002.

Daan Leijen and Erik Meijer. Parsec: A practical parser library. Electronic Notes in
Theoretical Computer Science, 41(1):1–20, 2001.

Benjamin S. Lerner, Matthew Flower, Dan Grossman, and Craig Chambers. Search-
ing for type-error messages. In PLDI 2007: Proceedings of the ACM SIGPLAN
conference on Programming language design and implementation, pages 425–434.
ACM Press, 2007.

Huiqing Li, Simon Thompson, and Claus Reinke. The Haskell Refactorer, HaRe,
and its API. Electronic Notes in Theoretical Computer Science, 141(4):29–34, 2005.

171

http://homepages.cwi.nl/~ralf/eosp/

Bibliography

Josje Lodder, Johan Jeuring, and Harrie Passier. An interactive tool for manipulating
logical formulae. In M. Manzano, B. Pérez Lancho, and A. Gil, editors, Proceedings
of the Second International Congress on Tools for Teaching Logic, 2006.

Josje Lodder, Harrie Passier, and Sylvia Stuurman. Using IDEAS in Teaching Logic,
Lessons Learned. In CSSE 2008: International Conference on Computer Science and
Software Engineering, pages 553–556, 2008.

Natalia López, Manuel Núñez, Ismael Rodríguez, and Fernando Rubio. WHAT:
Web-based Haskell adaptive tutor. In AIMSA 2002: Proceedings of the 10th Interna-
tional Conference on Artificial Intelligence: Methodology, Systems, and Applications,
pages 71–80. Springer Verlag, 2002.

Susan Lowes. Online teaching and classroom change: The impact of virtual high
school on its teachers and their schools. Technical report, Columbia University,
Institute for Learning Technologies, 2007.

Michael McCracken, Vicki Almstrum, Danny Diaz, Mark Guzdial, Dianne Hagan,
Yifat Ben-David Kolikant, Cary Laxer, Lynda Thomas, Ian Utting, and Tadeusz
Wilusz. A multi-national, multi-institutional study of assessment of program-
ming skills of first-year cs students. In Working group reports from ITiCSE on
Innovation and technology in computer science education, pages 125–180. ACM Press,
2001.

Lambert Meertens. Algorithmics — towards programming as a mathematical
activity. In Proceedings of the CWI Symposium on Mathematics and Computer Science,
volume 1 of CWI Monographs, pages 289–334. North–Holland, 1986.

Erica Melis, Eric Andrès, George Goguadze, Paul Libbrecht, Martin Pollet, and
Carsten Ullrich. Activemath: a generic and adaptive web-based learning en-
vironment. International Journal of Artificial Intelligence in Education, 12:385–407,
2001.

Jeroen J.G. van Merriënboer, Otto Jelsma, and Fred G.W.C. Paas. Training for
reflective expertise: A four-component instructional design model for complex
cognitive skills. Educational Technology, Research and Development, 40(2):23–43,
1992.

Maarten de Mol, Marko van Eekelen, and Rinus Plasmeijer. Theorem proving
for functional programmers - Sparkle: a functional theorem prover. In IFL
2001: Proceedings of the 13th International Workshop on Implementation of Functional
Languages, volume 2312 of LNCS, pages 55–72. Springer Verlag, 2002.

Carroll Morgan. Programming from specifications. Prentice Hall, 1990.

172

Bibliography

Edna H. Mory. Feedback research revisited. In D.H. Jonassen, editor, Handbook of
research for educational communications and technology, 2003.

Elizabeth Odekirk-Hash and Joseph L. Zachary. Automated feedback on programs
means students need less help from teachers. In SIGCSE 2001: Proceedings of the
32nd ACM SIGPLAN technical symposium on Computer Science Education, pages
55–59. ACM Press, 2001.

Dereck C. Oppen. Pretty printing. ACM Transactions Programming Languages and
Systems, 2(4):465–483, 1980.

Bryan O’Sullivan, John Goerzen, and Don Stewart. Real World Haskell. O’Reilly
Media, Inc., 2008.

Claus Pahl. Managing evolution and change in web-based teaching and learning
environments. Computers & Education, 40(2):99–114, 2003.

Harrie Passier and Johan Jeuring. Feedback in an interactive equation solver. In
M. Seppälä, S. Xambo, and O. Caprotti, editors, WebALT 2006: Proceedings of the
Web Advanced Learning Conference and Exhibition, pages 53–68. Oy WebALT Inc.,
2006.

Ross Paterson. Arrows and computation. In J. Gibbons and O. de Moor, editors,
The Fun of Programming, pages 201–222. Palgrave, 2003.

Larry C. Paulson. ML for the Working Programmer, 2nd Edition. Cambridge University
Press, 1996.

Arnold Pears, Stephen Seidman, Lauri Malmi, Linda Mannila, Elizabeth Adams,
Jens Bennedsen, Marie Devlin, and James Paterson. A survey of literature on the
teaching of introductory programming. In Working group reports on ITiCSE on
Innovation and technology in computer science education, pages 204–223. ACM Press,
2007.

Simon Peyton Jones, editor. Haskell 98, Language and Libraries. The Revised Report.
Cambridge University Press, 2003.

Nelishia Pillay. Developing intelligent programming tutors for novice programmers.
SIGCSE Bulletin, 35(2):78–82, 2003.

Rinus Plasmeijer, Peter Achten, and Pieter Koopman. iTasks: executable specifica-
tions of interactive work flow systems for the web. In ICFP 2007: Proceedings of
the 12th ACM SIGPLAN international conference on Functional Programming, pages
141–152. ACM Press, 2007.

173

Bibliography

Viera K. Proulx. Programming patterns and design patterns in the introductory
computer science course. In SIGCSE 2000: Proceedings of the 31st ACM SIGPLAN
technical symposium on Computer Science Education, pages 80–84. ACM Press, 2000.

Colin Runciman, Matthew Naylor, and Fredrik Lindblad. Smallcheck and lazy
smallcheck: automatic exhaustive testing for small values. In Proceedings of the
first ACM SIGPLAN symposium on Haskell, pages 37–48. ACM Press, 2008.

John A. Self. Formal approaches to student modelling. Technical report, Lancaster
University, 1991.

The OpenMath Society. The OpenMath Standard. http://www.openmath.org/
standard/index.html, 2006.

Elliot Soloway. From problems to programs via plans: the content and structure of
knowledge for introductory LISP programming. Journal of Educational Computing
Research, 1(2):157–172, 1985.

Elliot M. Soloway, Beverly Woolf, Eric Rubin, and Paul Barth. Meno-II: an intelligent
tutoring system for novice programmers. In IJCAI 1981: Proceedings of the 7th
international joint conference on Artificial intelligence, volume 2, pages 975–977.
Morgan Kaufmann Publishers Inc., 1981.

J. Sweller, J.J.G. van Merriënboer, and F. Paas. Cognitive architecture and instruc-
tional design. Educational Psychology Review, 10:251–295, 1998.

Doaitse Swierstra and Luc Duponcheel. Deterministic, Error-Correcting Combin-
ator Parsers. In AFP 1996: 2nd International Summer School on Advanced Functional
Programming, volume 1129 of LNCS, pages 184–207. Springer Verlag, 1996.

Edward R. Sykes and Franya Franek. A Prototype for an Intelligent Tutoring System
for Students Learning to Program in Java. Advanced Technology for Learning, 1(1),
2004.

Simon Thompson. The Craft of Functional Programming. Addison-Wesley, 1999.

Gareth Thorburn and Glenn Rowe. Pass: an automated system for program
assessment. Computers & Education, 29(4):195–206, 1997.

Masaru Tomita. Efficient Parsing for Natural Language: A Fast Algorithm for Practical
Systems. Kluwer Academic Publishers, 1985.

Nghi Truong, Paul Roe, and Peter Bancroft. Static analysis of students’ Java pro-
grams. In ACE 2004: Proceedings of the sixth conference on Australasian computing
education, pages 317–325. Australian Computer Society, Inc., 2004.

174

http://www.openmath.org/standard/index.html
http://www.openmath.org/standard/index.html

Bibliography

Ian Utting, Stephen Cooper, Michael Kölling, John Maloney, and Mitchel Resnick.
Alice, greenfoot, and scratch – a discussion. ACM Transactions on Computing
Education, 10(4):17:1–17:11, 2010.

Jeroen J. G. Van Merriënboer and Paul A. Kirschner. Ten Steps to Complex Learning:
A Systematic Approach to Four-component Instructional Design. Lawrence Erlbaum
Associates, 2007.

Thomas van Noort, Alexey Rodriguez Yakushev, Stefan Holdermans, Johan Jeuring,
Bastiaan Heeren, and José Pedro Magalhães. A lightweight approach to datatype-
generic rewriting. Journal of Functional Programming, 20(3-4):375–413, 2010.

Kurt VanLehn. Mind Bugs – The Origins of Procedural Misconceptions. The MIT Press,
1990.

Kurt VanLehn. The behavior of tutoring systems. International Journal on Artificial
Intelligence in Education, 16(3):227–265, 2006.

Kurt Vanlehn, Collin Lynch, Kay Schulze, Joel A. Shapiro, Robert Shelby, Linwood
Taylor, Don Treacy, Anders Weinstein, and Mary Wintersgill. The Andes Physics
Tutoring System: Lessons Learned. International Journal on Artificial Intelligence in
Education, 15:147–204, 2005.

Eelco Visser, Zine-el-Abidine Benaissa, and Andrew Tolmach. Building Program
Optimizers with Rewriting Strategies. In ICFP 2008: Proceedings of the 13th ACM
SIGPLAN international conference on Functional Programming, pages 13–26, 1998.

Philip Wadler. Views: A Way for Pattern Matching to Cohabit with Data Abstraction.
In POPL 1987: Proceedings of the 14th ACM SIGACT-SIGPLAN symposium on
Principles of programming languages, pages 307–313, 1987.

L. Xu and A. Sarrafzadeh. Haskell-Tutor: An Intelligent Tutoring System for Haskell
Programming language. Postgraduate Conference of the Institute of Information and
Mathematical Sciences, 2004.

Songwen Xu and Yam San Chee. Transformation-Based Diagnosis of Student
Programs for Programming Tutoring Systems. IEEE Transansactions on Software
Engineering, 29(4):360–384, 2003.

Claus Zinn. Supporting tutorial feedback to student help requests and errors in
symbolic differentiation. In M. Ikeda, K. Ashley, and T.-W. Chan, editors, ITS
2006: Proceedings of the 8th international conference on Intelligent Tutoring Systems,
volume 4053 of LNCS, pages 349–359. Springer Verlag, 2006.

175

LIST OF ACRONYMS

ACP algebra of communicating processes. 25, 27
AJAX asynchronous Javascript and XML. 91
AST abstract syntax tree. 29, 30, 93, 112, 113, 121, 123–125,

138, 139

CAS computer algebra system. 73
CFG context-free grammar. 19, 22–24, 36
CGI common gateway interface. 82, 83
CMU Carnegie Mellon university. 43

DME digital math environment. 15, 18
DTD document type definition. 110

EBNF extended Backus-Naur form. 28, 29
EDSL embedded domain-specific language. 16, 18, 19, 29,

35, 44, 90, 115

GHC Glasgow Haskell compiler. 93, 155

HTTP hypertext transfer protocol. 82

177

List of acronyms

ITS intelligent tutoring system. 2, 5, 57, 68, 73–76, 81–84,
152

JSON Javascript object notation. 81, 82

LCD least common denominator. 21, 23, 32, 64, 78

NBE normalisation by evaluation. 134

RPC remote procedure call. 81, 82

TRS term rewrite system. 60

UML unified modelling language. 35
URL uniform resource locator. 82, 83

XML extensible markup language. 81, 91, 110, 177

178

INDEX

α-renaming, 130
β-reduction, 130
η-reduction, 7, 133
7→ relation, 37
L, 33
→ relation, 38
� relation, 38
ASK-ELLE, 4, 89, 91

additional feedback services, 95
allfirsts service, 77
annotating model solutions, 111
applicable service, 80
apply service, 79
architecture, 91
assessment, 143

back-end, 91
backtracking, 136
bug location, 154
buggy rule, 57, 61

combinator, 22
applicability check, 28
atomic, 26
choice, 23
derived combinators, 28
fail, 24
fix, 27
greedy combinators, 28
interleave, 25
sequence, 24
succeed, 24
traversal combinators, 29

configure programming exercises, 109
constant arguments, 132
context-free

grammar, 19, 22, 34
language, 16

deepdiagnose service, 95
derivation service, 78
derived combinators, see combinator

179

Index

deriving programming strategies, 125
desugaring, 130, 131
diagnose service, 80
domain reasoner, 73
DrScheme, 9

embedded domain-specific language,
16

empty, 36
environment, 22, 23
exercise, 57, 58

properties, 70
experiments, 103

feedback, 2, 18, 19, 41
scripts, 83, 111
services, 75

firsts, 36
formalised services, 77
front-end, 91
functional programming, 4, 91

generate service, 80
greedy combinators, see combinator

Haskell, 4, 91
tutor, 10

Haskell-99, 5
Helium, 5, 155
hint, 42

immediate feedback, 2
inlining, 130, 131
inner loop, 5
intelligent tutor, 2, 17
interactive session, 97
interleave combinator, 140
interleaving, 25

atomicity, 26
left-interleave, 25
sentences, 25
sets, 26

isfinished service, 79

Java tutor, 9

label, 27
lambda calculus, 130
left-factor, 136
left-recursion, 34
lift rewrite rules, 30
Lisp tutor, 8

model solutions, 6

navigation, 29
non-determinism, 61
normalisation, 7, 129

onefirst service, 78
outer loop, 5

parallel top-down recogniser, 136
Pascal tutor, 9
production rule, 1
program transformations, 7, 130
programming strategy, see strategy
programming exercise, 94
Prolog tutor, 8
pruning, 138

recursion, 27
refactoring exercises, 153
research questions, 4
rule, 22

definition, 23
major rule, 22
minor rule, 22, 36, 119
refinement rule, 7, 117, 120
rewrite rule, 7, 59

rule ordering, 61
run function, 39

search mode, 139

180

Index

search space reduction, 137
semantics, see strategy language se-

mantics
split relation, 37
state, 36, 82
step relation, 38
stepsremaining service, 79
strategy, 6, 16–21, 31, 33, 62

combinator, 22
functions, 36
language, 7, 22

semantics, 33
programming strategy, 115, 123

taskdescription service, 96
testing incomplete programs, 96
top-down recursive parsing, 19
traversal combinator, see combinator,

30

unit element, 24

views, 63

web services, 81

zipper, 29, 31, 37

181

	Introduction
	Ask-Elle
	Related work on programming tutors
	Structure of this thesis
	Origin of chapters

	Domain reasoners
	Strategies
	Strategies and feedback
	Example strategies
	A language for strategies for exercises
	Strategy functions
	Feedback based on strategies
	Related work on strategies

	A strategy recogniser
	Representing grammars
	Dealing with labels
	Smart constructors
	Running a strategy
	Tracing a strategy

	Exercises
	Strategy and rules
	Syntactic and semantic checks
	Properties

	Domain reasoners
	Feedback services
	Web services
	Feedback scripts

	Haskell Tutor
	A programming tutor for Haskell
	Programming tutor overview
	Domain description
	Testing incomplete programs
	An interactive session
	Experiments

	Specifying programming exercises
	Configuration
	Feedback scripts for programming exercises
	Annotating model solutions

	Constructing programming strategies
	Refinement rules
	Focusing refinement rules
	Strategies in functional programming
	Deriving programming strategies

	A canonical form for Haskell programs
	Program transformations
	Discussion

	A programming strategy recogniser
	Parallel top-down recogniser
	Search space reduction

	Assessing Haskell programs
	Using our assessment tool
	Related work on assessment

	Epilogue and future work
	Future work

	Samenvatting
	Curriculum vitae
	List of acronyms
	Index

