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Abstract. ε-terms, introduced by David Hilbert [8], have the form εx.φ,
where x is a variable and φ is a formula. Their syntactical structure is
thus similar to that of a quantified formulae, but they are terms, denoting
‘an element for which φ holds, if there is any’.

The topic of this paper is an investigation into the possibilities and lim-
its of using ε-terms for automated theorem proving. We discuss the re-
lationship between ε-terms and Skolem terms (which both can be used
alternatively for the purpose of ∃-quantifier elimination), in particular
with respect to efficiency and intuition. We also discuss the consequences
of allowing ε-terms in theorems (and cuts). This leads to a distinction
between (essentially two) semantics and corresponding calculi, one en-
abling efficient automated proof search, and the other one requiring hu-
man guidance but enabling a very intuitive (i.e. semantic) treatment of
ε-terms. We give a theoretical foundation of the usage of both variants in
a single framework. Finally, we argue that these two approaches to ε are
just the extremes of a range of ε-treatments, corresponding to a range of
different possible Skolemization variants.

1 Introduction

Calculi for full first-order predicate logic have to cope with the elimination of
existential quantifiers. Quantified variables are usually replaced by terms, which
have to obey certain restrictions. Many approaches in proof theory and almost all
approaches in automated deduction use the concept of Skolem functions (resp.
constants) for this purpose. An alternative concept for terms replacing existen-
tially quantified variables is that of ε-terms. An ε-term has the form εx.φ, where
x is a variable and φ is a formula. The intended meaning is ‘an element for which
φ holds, if there is any, and an arbitrary element otherwise’. If φ holds for more
than one element, or for none, ε acts as a choice operator.

A Skolem term introduced during elimination of the quantifier in ∃x.φ(x)
also denotes an element e for which φ(e) holds. But in contrast to the Skolem
term, the ε-term refers explicitly (on an object language level) to the property
φ it satisfies.



1.1 Short History of ε-Terms

The ε-symbol was introduced by Hilbert in the context of the formalist effort to
prove the consistency of arithmetic and analysis by finitary means. In particular,
ε-terms are used to give a finitary justification of the use of (non-finitary) quan-
tifier reasoning in predicate logic. The arguments in this context are typically
based on proof transformations. Model-theoretic reasoning would have been in-
appropriate, as reasoning about models is usually non-finitary. The principal
work in this area is by Hilbert and Bernays [8]. Leisenring [9] gives a more
condensed and up-to-date survey of the field.

In the context of automated deduction, reasoning with models is not regarded
as problematic. Indeed, soundness or completeness statements are almost always
relative to a given model semantics. Possible model semantics for ε-terms are
investigated by Meyer Viol [10] and also to a certain degree by Leisenring.

To our knowledge, in the context of automated deduction, calculi do not
use ε-terms as a syntactical construct. On the other hand, the development of
improved δ-rule versions (see below) can be seen as a progressing approximation
of ε-like behaviour.

1.2 Short History of δ-Rules

Elimination of existential quantifiers takes place either in a preprocessing step
or, in particular in analytic non-normal form calculi (i.e. tableaux and sequent
calculi), in a special expansion rule, called δ-rule. The evolution of different δ-
rules that we sketch now took place in the framework of tableaux. We use the
tableau notation in the rest of this paper.1

In a Smullyan style ground tableau calculus [11], there is a δ-rule of the form

∃x.φ(x)

φ(c)
,

where c is a constant symbol, which must be new relative to the tableau or
branch to which the rule is applied. The intuition behind this requirement is to
make sure that all we know about c is φ(c). (Sometimes, we do know more about
c, however, which is where some liberalized δ-rules come in.)

In a free variable tableau calculus, where free variables stand for instances
not yet known, the δ-rule

∃x.φ(x)

φ(f(x1, . . . , xn))

introduces a term t = f(x1, . . . , xn), where the choice of both the function
symbol and the variables has to meet certain requirements, which vary from one
δ-rule to the other. Early versions of this rule, e.g. [5], required that the function
symbol f is new and that all free variables present on the current branch are

1 Note, however, that it is trivial to translate the discussion to a sequent calculus
notation.



parameters of t. These parameters guarantee that t stays new w.r.t. the branch
even after applying arbitrary substitutions.

Later versions of the δ-rule for free variable tableaux modified the restric-
tions for t, always shortening the minimal proof length. At first, the δ+-rule,
introduced by Hähnle and Schmitt [7], reduced the parameters of t to the free
variables of the expanded formula only. Now, t is actually a Skolem term in the
sense, that the soundness argument for this rule uses the semantic properties
of Skolemization. Note that, with this rule, it is possible to unify t with a free
variable occurring above in the branch. Consequently, after applying such a uni-
fier to the tableau, the term replacing the existentially bound variable occurs
in the proof prior to the rule that introduced it. It is not trivial to formulate a
sound δ-rule for a ground tableau, which corresponds one to one to δ+, see [2,
Sect. 3.6].

A further modification of restrictions for t is formulated in the δ++
-rule by

Beckert et. al.[3]. Now, the function symbol of the Skolem term need not be new
in general. Instead, the same functor can be used when the δ++

-rule is applied
to formulae that are identical up to renaming of (free and bound) variables. In
theory, classes of such formulae are the functors. This way of Skolemization is
closely related to the idea of ε-terms, because the chosen element is identified by
a class of formulae it satisfies. However, Skolemization of two formulae, where
one is an instance of the other, leads to non-unifiable results. Consequently, δ++

-
rule application and substitution of free variables are not exchangeable, which
is unsatisfying from an intuitive point of view.

There are already δ-rules going beyond δ++
, e.g. δ∗ [1] and δ∗

∗

[4], which we
shall come back to in the course of this paper.

1.3 This Paper

This paper is concerned with the embedding of ε-terms in a calculus well suited
for automated theorem proving. Moreover, our issue is the border between ε-
handling that fits purely automated proof search, and ε-handling requiring hu-
man guidance. The context of our work is research on concepts for integrating
automated and interactive theorem proving in a homogeneous way. By ‘homoge-
neous’ we mean an integration of the two paradigms in one prover, based on one
calculus. In this setting, a calculus must be intuitive, as well as efficient, which
shall be an issue in Sect. 3 and 4.

In this paper, we present a spectrum of treatments of ε-terms, discussing
their suitability for automated proof search. ε essentially is a choice operator.
Therefore, fixing its semantics means fixing the features of the choice. Given
∃x.φ(x), the choice of an element e, for which φ(e) holds, may for example
depend only on the semantics (i.e. the extension) of φ. Another possibility is to
let the choice depend only on the syntax of a formula (compare δ++

above). But
then, the choice function should have some basic properties, which we discuss
below.

We start, in Sect. 2, with the introduction of a δε-rule and, because of the
similarity to the δ+

+
-rule, compare both with respect to minimal proof length.



Then, we turn to the semantics of ε-terms in Sect. 3, defining a hierarchy of
ε-structures. The distinction between different structures is justified in Sect. 4,
where two calculi that are complete for different semantics are presented and
discussed with respect to automated theorem proving.

2 Using ε-Terms Instead of Skolem Functions

2.1 Introducing ε-Terms

We begin by defining a number of basic syntactic notions.

Definition 1 (Syntax, free/bound variables, substitutions). Let V be a
fixed (infinite) set of variables. The sets Tm, resp. Fm, of well formed first
order terms, resp. formulae, are defined as usual, with the additional require-
ment, that for all x ∈ V and φ ∈ Fm, there is a term εx.φ ∈ Tm.2

For a term or formula α, define bv(α) ⊆ V, resp. fv(α) ⊆ V, the sets of
bound, resp. free variables of α. A term, resp. formula is called closed if
it has no free variables. The sets of all closed terms, resp. closed formulae are
denoted by Tm0, resp. Fm0.

A substitution is a mapping σ : V → Tm, where dom(σ) := {x ∈ V |
σ(x) 6= x} (called the domain of σ) is finite. The notation σ = [x1/t1, . . . , xn/tn]
is used for the substitution with σ(xi) = ti, dom(σ) = {x1, . . . , xn}.

The most important point here is that terms may contain bound variables,
which is not the case in ordinary first order logic: εx.φ is a term in which the
variable x is bound. This means that a little more care needs to be taken, when
arguing about substitutions.

Instead of giving a formal semantics for ε-terms right away, we first show
what we want to use them for, and defer the rigorous discussion to Sect. 3. The
given intuition behind ε-terms captures the essence of ∃-quantifier elimination:
given ∃x.φ, εx.φ denotes a value of which we know nothing, except that it makes
φ true. Accordingly, we use the δ-rule

∃x.φ(x)

φ(εx.φ(x))
δε .

To give the reader a general idea of how this works, here is a proof of the
inconsistency of the set of formulae

{∀u.p(u, a, b), (∀y.∃x.¬p(x, y, b)) ∨ (∀z.∃x.¬p(x, a, z))}

2 This means, that unlike the usual practice, terms and formulae are defined by mutual
recursion.



in an unsigned tableau-calculus with free variables:

1 : ∀u.p(u, a, b)
2 : (∀y.∃x.¬p(x, y, b)) ∨ (∀z.∃x.¬p(x, a, z))

3, γ(1) : p(U, a, b)

4, β(2) : ∀y.∃x.¬p(x, y, b) 5, β(2) : ∀z.∃x.¬p(x, a, z)
6, γ(4) : ∃x.¬p(x, Y, b) 7, γ(5) : ∃x.¬p(x, a, Z)

8, δε(6) : ¬p(εx.¬p(x, Y, b), Y, b) 9, δε(7) : ¬p(εx.¬p(x, a, Z), a, Z)

The tableau is closed after applying the following substitution:

[U/εx.¬p(x, a, b), Y/a, Z/b]

With the δ, δ+, δ+
+

or δ∗ rules, different skolem functions would be chosen for
the skolemization of formulae 6 and 7, so the tableau could not be closed without
a second instance of the γ-formula 1.

It should be mentioned at this point, that ε-terms (a) may be nested, (b)
may contain free variables, and (c) may lead to rather large formulae, as they
repeat most of the δ-formula. The problem of large formulae can be addressed
in an implementation using structure sharing.

The main benefit of using ε-terms to handle δ-formulae is that identical
formulae lead to introduction of the same term. The same idea is realized in the
δ+

+
-rule. Therefore, in the next section we compare that rule to δε.

2.2 Exponentially Shorter Proofs with ε-terms than with δ++

We shall now show that the δε-rule can cut down minimal proof-length exponen-
tially with respect to a certain modification of the δ++

-rule: while the original
δ+

+
-rule allows to assign the same Skolem-function symbol to any two formu-

lae which are equal up to renaming of bound and free variables, we require the
formulae to be equal up to renaming of free variables only. We refer to this
modification as the δ+

−

-rule.

Theorem 1 (Proof length with δε vs. δ+
−

). There is a family φn, n ∈ IN of

valid first order formulae, such that the minimal number bε, resp. b+
−

of branches
in a closed tableau for φn with the δε-rule, resp. δ+

−

-rule satisfy bε(n) ∈ Θ(n),

and b+
−

(n)∈ Θ(2n).

Proof. The proof is based on the same ideas as the one in [3], where it is shown,
that the δ+

+

-rule permits exponentially shorter proofs than the δ+-rule. Define

φ0 := true

φn+1 := ∃x.
(

φn ∧
(

pn(x, a, b)→ (∃y.∀x.pn(x, y, b) ∧ ∃z.∀x.pn(x, a, z))
)

)

for n ∈ IN.

The proof proceeds analogous to that of [3]. As in the introductory example of
section 2.1, the inclusion of the skolemized formula in the ε-terms provides the



necessary information to permit the simultaneous closure of two branches in the
δε case, where another γ-rule application is needed with δ+−. ut

Clearly, any δ+
−

-proof can be simulated using δε, so the δε-rule is strictly
stronger than δ+

−

.

Remark 1. It is not hard to modify the δε-rule to obtain exponentially shorter
minimal proofs than with the origninal δ+

+
-rule of [3]: one only needs to define

closure by means of unification modulo renaming of bound variables. Alterna-
tively, normalize the names of bound variables when applying the δε-rule. We
will omit this technical detail here, however.

Remark 2. Baaz and Fermüller [1] show a stronger speed-up result, namely that
the δ+

+
rule gives non-elementary speedup w.r.t. to the δ+ rule. We are currently

investigating whether their proof technique can be applied to show that δε yields
non-elementary speed-up w.r.t. δ+

+
.

Remark 3. It is also possible to strengthen the δε-calculus in a way that makes
it strictly stronger than the δ∗-rule of Baaz and Fermüller [1], which in turn gives
non-elementary speed-up w.r.t. the δ+

+

-rule. For lack of space, we are not going
to develop this any further in this paper.

3 Semantics of ε-Terms

In the last section, we have introduced ε-terms as syntactical entities, but we
have not given them a formal model-semantics, which is the topic of this section.

3.1 Valuation in Pre-Structures

We want our logic with ε-terms to be a conservative extension of classical predi-
cate logic, i.e. the validity of terms and formulae that do not contain ε-terms
should remain the same. Accordingly, the valuation functions correspond closely
to the classical case. On the other hand, we will discuss several possible seman-
tics for ε-terms, so we give some minimal semantic definitions first and refine
them later.

Definition 2 (Variable assignments, pre-structures). A variable assign-
ment of V to a set D is a function β : V → D. We denote by β{x ← d} the
modified assignment with

β{x← d}(y) :=

{

d if y = x,
β(y) otherwise.

A pre-structure is a triple S = (D, I,A) with the following properties:

– (D, I) is a classical first order structure with carrier D and interpretation
I.



– The ε-valuation A is a function that maps any ε-term εx.φ and any variable
assignment β on D to a value A(εx.φ, β) ∈ D.

This definition contains no restriction whatsoever on the valuation of ε-terms. We
will add restrictions that reflect the intended behaviour of these terms later. Here,
we proceed by defining the valuation of terms and formulae on pre-structures.

Definition 3 (Term and formula valuation). The valuation val(S, β, t) ∈
D of a term t ∈ Tm in a pre-structure S = (D, I,A) under a variable assignment
β is defined as for classical first order logic, except for the valuation of ε-terms,
where we set

val(S, β, εx.φ) := A(εx.φ, β) .

The validity relation for formulae, S, β |= φ is defined exactly as for classical
first order logic.

Note, that – in contrast to the syntax – no mutual recursion between terms and
formulae is needed in these semantic definitions: the whole valuation of ε-terms is
delegated to the function A, so the semantic definitions do not take the formula
in an ε-term into account so far.

3.2 A Hierarchy of Structures

In this section, we give several concrete restrictions leading to more useful se-
mantics for ε-terms. In particular, we define the substitutive and extensional
semantics, for which we give complete calculi in Sect. 4.

Two minimal requirements are needed to ensure a sensible semantics for ε-
terms: first, the valuation of an ε-term should depend only on the valuation of
variables occurring free in that term. Second, an ε-term εx.φ should actually
denote a value that satisfies φ, if any such value exists. These requirements are
captured in the following definition:

Definition 4 (Intensional structure). A pre-structure S = (D, I,A) is called
intensional structure or I-structure, if

– any ε-term εx.φ and two assignments β1, β2 with β1|fv(εx.φ) = β2|fv(εx.φ)

satisfy A(εx.φ, β1) = A(εx.φ, β2).
– for any β, x ∈ V, φ ∈ Fm, if S, β |= ∃x.φ, then S, β{x← A(εx.φ, β)} |= φ.

A formula which is valid in all I-structures under all variable assignments is
called I-valid. If it is valid in at least one I-structure under at least one variable
assignment, it is called I-satisfiable.

This intensional semantics lacks an important property: it is not substitutive.
E.g., from ∀x.q(εy.p(x, y)) it is not possible to infer q(εy.p(a, y)). Similarly, from
the equality a = b, we can not infer εx.p(x, a) = εx.p(x, b). However, these infer-
ences become possible, if we further constrain the set of permissible structures.



Definition 5 (Substitutive structure). An I-structure S=(D, I,A) is called
substitutive or S-structure, if for all x, y ∈ V, φ ∈ Fm, β : V → D and
t ∈ Tm with fv(t) ∩ bv(εx.φ) = ∅,

A([y/t](εx.φ), β) = A(εx.φ, β{y ← val(S, β, t)}) .

S-validity and S-satisfiability are defined analogous to Definition 4.

Substitutivity, namely the fact that

val(S, β, [y/t]α) = val(S, β{y ← val(S, β, t)}, α)

for any term or formula α with fv(α) ∩ bv(εx.φ) = ∅, follows directly from this
definition for S-structures. Substitutivity is a central property for the construc-
tion of a calculus, as it captures the semantic effects of the syntactic operation
of substituting parts of a term or formula.

Classical first order logic has the property that replacing an arbitrary sub-
formula ψ of a formula φ by a logically equivalent formula ψ′ maintains the
validity of φ. This is not necessarily the case with S-validity. In fact, from
∀x.p(x) ↔ q(x) it does not follow that εx.p(x) = εx.q(x). As long as we use
ε-terms for ∃-quantifier elimination only, this would not be a problem. But, as
we argue in the next section, it is reasonalbe to permit the use of ε-terms in the
formulation of problems, which might well be done by a human. In that case, it
is vital to make the behaviour of ε-terms as intuitive as possible. The main intu-
ition behind logical equivalence is that replacing part of a formula by something
equivalent should not change the meaning of the whole. We therefore define a
semantics that has this property, by making the interpretation of an ε-term εx.φ
depend on the semantics of the formula φ.

Definition 6 (Extensional structure). For an ε-term εx.φ, an I-structure
S = (D, I,A) and a variable assignment β : V→ D, define the extension

Ext(S, β, εx.φ) := {d ∈ D | S, β{x← d} |= φ}

An I-structure is called extensional or E-structure, if for all x, y ∈ V, φ, ψ ∈
Fm, β : V → D,

if Ext(S, β, εx.φ) = Ext(S, β, εy.ψ), then A(εx.φ, β) = A(εy.ψ, β) .

E-validity and E-satisfiability are defined analogous to Definition 4.

The three variations of ε-term semantics constitute a hierarchy, as stated in
the following theorem.

Theorem 2 (Hierarchy Theorem). Let φ ∈ Fm. If φ is E-satisfiable, then
it is S-satisfiable. If φ is S-satisfiable, then it is I-satisfiable.

Proof. The only non-trivial part of the proof is to show that extensional struc-
tures are always substitutive, which is done by showing substitutivity for all
formulae and terms, using structural induction. For the complete proof, see [6]
or [9]. ut



It was mentioned at the beginning of this section, that the logic with ε-terms
should be a conservative extension of classical first order logic, whatever the exact
semantics chosen for the ε-terms. This is ensured by the following theorem.3

Theorem 3 (Embedding Theorem). Let φ ∈ Fm be a formula without ε-
terms. The following statements are equivalent:

1. φ is satisfiable in classical first order logic.4

2. φ is I-satisfiable.
3. φ is S-satisfiable.
4. φ is E-satisfiable.

Proof. 1.⇒4.: Let S0 = (D, I) be a classical first order structure, and β : V→ D
a variable assignment such that S0, β |= φ. We show the existence of an E-
structure S = (D, I,A) with S, β |= φ. As φ does not contain ε-terms, the
validity of φ does not depend on A. Thus, it suffices to construct any E-structure
with carrier D and interpretation I.

Using the axiom of choice, we may assume the existence of a function α :
P(D)→ D satisfying α(M) ∈M for all non-empty sets M ⊆ D. The ε-valuation
A is defined by successive approximation. We define the family of sets Fi ⊂ Fm
for i ∈ IN by:

F0 := {φ ∈ Fm | φ contains no ε-terms}
Fi+1 := Fi ∪ {φ ∈ Fm | φ contains only ε-terms εx.φ′ with φ′ ∈ Fi}

Obviously, we have Fm =
⋃∞

i=0 Fi. Let ι(φ) := min{i | φ ∈ Fi} be the first of
these sets containing a given formula φ. We now define a family of ε-valuations
Ai for i ∈ IN as follows:

A0(εx.φ, β) := d⊥

Ai+1(εx.φ, β) :=

{

α(Extι(φ)(εx.φ)) for φ ∈ Fi,
d⊥ otherwise,

where Exti(εx.φ) := {d ∈ D | (D, I,Ai), β{x ← d} |= φ}, and d⊥ ∈ D is an
arbitrary carrier element. Defining

A(εx.φ, β) := Aι(φ)+1(εx.φ, β)

makes S := (D, I,A) an E-structure. The proof that this is the case is not very
hard, though somewhat technical, and can be found in [6].

4.⇒3. and 3.⇒2. follow immediately from Theorem 2.

2.⇒1.: The validity of φ is independent of the ε-valuation, as φ contains no
ε-terms. Therefore, (D, I,A), β |= φ implies (D, I), β |= φ in classical first order
logic. ut
3 This is the semantic equivalent of Hilbert’s Second ε-Theorem. It is of course much

easier to show, because we argue with model-semantics instead of proof theory.
4 The definition of satisfiability differs slightly between authors. We call a formula

satisfiable if there are a structure and a variable assignment which satisfy the formula.



It should be remarked, that there are many more variants of ε-semantics than
the three proposed in this paper. The intensional semantics is minimal, in the
sense, that it captures only the most basic properties of ε-terms. The extensional
semantics, on the other hand, assures an intuitive structural property. Finally, as
the next section shows, the substitutive semantics has pleasant properties when
it comes to constructing a calculus. But there are of course many other possible
restrictions on the evaluation of ε-terms, that give rise to as many different
semantics. E.g., it is possible to require the value of ε-terms to remain the same
under renaming of bound variables, a property that is guaranteed in E-structures,
but not in S-structures. That would permit a full simulation of the δ++

-rule. It is
also possible to construct an even stronger semantics than the extensional one:
for instance, one might require the existence of a well-ordering on the carrier
set D, such that the value of an ε-term is always the minimal element of its
extension. In view of the results of the next section, however, stronger semantics
are probably not of much interest to automated theorem proving.

4 Proving theorems with ε-Terms

If we restricted the use of ε-terms to ∃-quantifier elimination, the completeness
of the resulting calculus for first order problems – without ε-terms – would be
an easy consequence of the completeness of less liberal δ-rules, like δ+ or δ+

+
.

The main thing to show would be the soundness of the new rule.

However, the work presented in this paper was done with the aim of inte-
grating automated and interactive proof systems using a common calculus. In
that setting, it seemed unnatural to forbid the use of ε-terms in the formulation
of the proof obligations themselves. The user might want to formulate lemmata
or cut-formulae that use ε-terms. So the question was, whether we could find a
calculus that was complete for the whole logic with ε-terms, or more precisely,
for which semantics such a calculus could be found.

We now present variants of the free-variable tableau calculus for the substitu-
tive and extensional semantics; the intensional semantics, lacking substitutivity,
is to weak to allow a reasonable free-variable calculus. The calculus for the exten-
sional semantics will use a logic with equality, but we shall not discuss equality
handling here, as the problems arising are largely orthogonal. For a more detailed
discussion, including equality handling with constraints, see [6].

4.1 A Complete Calculus for the Substitutive Semantics

We consider a standard unsigned free-variable tableau calculus with the usual α,
β and γ expansion rules, as well as a closure rule based on syntactic unification,
that applies a substitution to all formulae in the tableau. We use the following
δε expansion rules:

∃x.φ

[x/εx.φ]φ
and

¬∀x.φ

[x/εx.¬φ]¬φ
.



Additionally we introduce an ε expansion rule,

∀x.¬φ | [x/εx.φ]φ.

In the left branch, one has to show, that there exists at least one element sat-
isfying φ. In the right branch, we can use the fact that εx.φ denotes one such
element.

By taking x 6∈ fv(φ), this rule can easily be seen to be equivalent to the
cut-rule! So, to permit the application of the ε-rule in an automated theorem
prover without exploding the search space, we have to make sure that it is only
applied in a very limited way. We show that the calculus remains complete, if
we allow the application of the ε-rule only if

1. the branch contains an atomic formula (¬)p(t1, . . . , tn), such that

(a) εx.φ is a subterm of one of the terms ti,
(b) no free variable of εx.φ is bound by a containing ε-term in ti,

2. εx.φ was not introduced by a δ-rule, and
3. the ε-rule has not previously been applied for εx.φ on this branch.

For instance, given an atom

p(f(εx.q(x, y)), εx.r(g(εy.s(x, y)))) ,

the ε-rule is applied for εx.q(x, y) and εx.r(g(εy.s(x, y))), but not for εy.s(x, y),
as the variable x is bound in the containing ε-term. Note, that these restrictions
ensure, that the ε-rule is not applied at all, if there are no ε-terms in the original
problem. Of course, the ε-rule is also sound without these restrictions.

Theorem 4 (Soundness of Calculus with δε- and ε-Rules). Let φ ∈ Fm0

be a closed formula. If there is a closed tableau for ¬φ using the δε and ε expan-
sion rules, then φ is S-valid.

Proof. The proof follows the proof for the classical free-variable tableau calculus
with the δ+-rule, see [7]. An S-structure S = (D, I,A) is said to satisfy a tableau
T , if for all variable assignments β : V→ D there is a branch on which S, β |= φ
for all formulae φ on the branch. We must show, that if S satisfies T , then S
also satisfies any tableau T ′ constructed by the application of an expansion rule.
Here, only the δε- and ε-rules are interesting.

If T ′ is constructed by applying the δε-rule for a formula ∃x.φ on a branch
B of T , and S = (D, I,A) satisfies T , let β : V → D be a variable assignment,
and B0 a branch, such that all formulae on B0 are valid under S, β. If B0

and B are not the same, the branch B0 has not changed, and we are finished.
Otherwise, we show that the new formula on B is also valid under S, β. We
know S, β |= ∃x.φ. From Def. 4 we get S, β{x ← A(εx.φ, β)} |= φ, and with
val(S, β, εx.φ) = A(εx.φ, β) and substitutivity, we have S, β |= [x/εx.φ]φ, what
we needed to show. Note that there can be no problems with collisions between
free variables in εx.φ and bound variables in φ, as any free variables in φ must



have been introduced by a γ-rule, and are thus new with respect to any quantified
variable. The case for ¬∀x.φ is, of course, analogous.

If B is extended using the ε-rule, yielding two extended branches, and S, β
satisfy every formula on B, there are two cases:

1. S, β |= ∃x.φ. Then, due to Def. 4, we have S, β{x ← A(εx.φ, β)} |= φ, and
as in the δε-case, it follows that S, β |= [x/εx.φ]φ. So S, β satisfy all formulae
on the right branch.

2. S, β 6|= ∃x.φ. Then we obviously get S, β |= ∀x.¬φ, and S, β satisfy all
formulae on the left branch.

The rest of the proof is identical to the one without ε-terms. ut

If the formula φ to be proved does not contain ε-terms, the ε-rule can never
be applied, so this theorem also proves the soundness of the δε-rule, if ε-terms
are used for ∃-quantifier elimination only. Also note that the restrictions of the
ε-rule were not used in this proof.

Theorem 5 (Completeness of Calculus with δε- and ε-Rules). Let φ ∈
Fm0 be a closed S-valid formula. Then there is a closed tableau for ¬φ using the
δε and ε expansion rules.

We do not give the proof of this theorem here, as it is rather lengthy and
technical. A full proof is given in [6]. Here, we only point out the two main
difficulties:

– While the Hintikka-set construction proceeds as usual, the definition of an
S-structure satisfying all formulae of the Hintikka-set poses some problems:
if we chose the set of all closed terms as carrier set, we would have to apply
the ε-rule to all possible closed ε-terms to ensure completeness, contrary
to the restrictions of the ε-rule. So we need to limit ourselves to all closed
terms occurring in atomic formulae of the Hintikka-set. But then, it becomes
difficult define the structure in a way that ensures substitutivity for all ε-
terms and not only for the ones constituting the carrier.

– The restrictions of the ε-rule make lifting a trifle more complicated: in the
ground version, we restrict the application of the ε-rule to closed ε-terms
occurring in atomic formulae on the current branch. When we lift a ground
tableau, these closed ε-terms may disappear into a free variable that has
not yet been instantiated when the ε-rule is applied. In this case, we must
show, that there must be a corresponding ε-term – possibly containing not-
yet-instantiated free variables – somewhere else on the branch. This is the
case because the free variable in question will at some time be instantiated
by unification, so the instance is necessarily ‘somewhere’ on the branch from
the beginning. Of course, the formal proof is a little involved.

4.2 A Complete Calculus for the Extensional Semantics

We have argued, that the extensional semantics is more intuitive than the substi-
tutive one. Thus, it would be good to have a complete calculus for the extensional



semantics too. We now present such a calculus, but it will turn out that it is not
suited for use in an automated theorem prover.

We obtain a complete calculus for the extensional semantics, if we add an-
other tableau expansion rule to the calculus described in Sec. 4.1, namely

¬∀z.([x/z]φ↔ [y/z]φ′) | εx.φ = εy.φ′
,

referred to as the ext expansion rule.5 Intuitively the rule says that, whenever we
can show that the equivalence of two formulae is a consequence of the current
branch, we can identify the values of the corresponding ε-terms. Together with
any complete set of rules for equality handling, this yields a sound and complete
calculus for the extensional semantics, as is shown in [6]. (The completeness
proof is much easier as that of Theorem 5, as we do not impose any restrictions
on the application of the ext or ε-rule.)

There is a number of problems with the ext-rule:

– We currently do not know – though it seems plausible – whether the rule
remains complete if we restrict its application to ε-terms already occurring
on the branch.

– Even if this were the case, it would have to be applied to any pair of occurring
ε-terms, which would give rise to a quadratic number of rule applications.

– The formula introduced on the left branch is a δ-formula, leading to the
introduction of another ε-term, which would in turn have to be taken into
account for the ext-rule. Maybe, it is not necessary for completeness to apply
the ext-rule to these new ε-terms, but that is not yet known.

– Most possible applications of the ε-rule would be completely useless for a
proof, as two formulae are normally not equivalent. Each such unnecessary
split would at least double the size of the proof.

Clearly, the ext-rule is as dangerous for a machine to apply as a non-atomic cut!
Unfortunately, there does not seem to be any other way to cope with extensional
semantics.

In the setting of an integrated automated and interactive proof system, we
decided to adopt the following view: human users may consider ε-terms to have
extensional semantics. They are given a complete calculus including the ext-rule
for interactive work. The automated part of the system uses the calculus de-
scribed in Sect. 4.1, which is not complete for the extensional semantics. But
thanks to the Hierarchy Theorem 2, it is sound: any S-valid formula is also
E-valid. And we also provide a precise semantic characterization of the incom-
pleteness, namely the automated system can find proofs only for theorems that
are not only E-valid, but also S-valid.
5 This rule was designed for a logic with equality. In a logic without equality, exten-

sionality could be handled with a rule like

ψ(εx.φ)

¬∀z.([x/z]φ↔ [y/z]φ′) | ψ(εy.φ′)
.



5 Conclusion

The idea of eliminating existential quantifiers by means of ε-terms is known
for decades. So far, however, this concept is not used (on an object language
level) in frameworks for automated deduction. Traditionally, most approaches
there deal with Skolem terms instead, e.g. in the context of δ-rules. Compared
to simple (i.e. earlier) versions of Skolemization, the ε-terms seem to be more
complicated. During the last years, on the other hand, the investigation into
more efficient δ-rules lead to more sophisticated Skolemization techniques. We
interpret this evolution as a movement towards ε-like behaviour. Therefore, in
this paper we proposed to use ε-terms themselves in the context of automated
theorem proving, as they have several desirable properties. Compared to Skolem
terms, the representation of some information about the ‘chosen’ element is
shifted to the level of the object language. Therefore, the origin and usage of
that information is made transparent. For the same reason, object language
operations like substitution can be applied to this information. (This exactly is
the reason for the exponential speedup discussed in Sect. 2.2.)

Moreover, the usage of ε-terms enables us to add a property like extension-
ality, if desired, by just adding a rule to the calculus. This is the consequence
of the semantic hierarchy presented in Sect. 3 and the corresponding rules of
Sect. 4. We discussed the suitability of these different variants of an ε-calculus
for automated proof search. Here, we want to add that substitutivity on the one
hand and extensionality on the other hand can be seen as the extremes of a
range of ε-treatments. Between both, there are other possibilities to exploit spe-
cial cases of (easily checkable) equivalences. An example for this is the usage of
the concept of relevant formulae, used in the δ∗

∗

-rule of Cantone and Nicolosi [4].
We believe that ε-terms provide a framework in which many possible approaches
to existential quantifier handling may be expressed.
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