
Dedutive Searh for Errors in

Free Data Type Spei�ations

using Model Generation

Wolfgang Ahrendt

Department of Computing Siene,

Chalmers University of Tehnology, G�oteborg, Sweden

ahrendt�s.halmers.se

Abstrat. The presented approah aims at identifying false onjetures

about free data types. Given a spei�ation and a onjeture, the method

performs a searh for a model of an aording ounter spei�ation. The

model searh is tailor-made for the semantial setting of free data types,

where the �xed domain allows to desribe models just in terms of in-

terpretations. For sake of interpretation onstrution, a theory spei�

alulus is provided. The onrete rules are `exeuted' by a proedure

known as model generation. As most free data types have in�nite do-

mains, the ability of automatially solving the non-onsequene problem

is neessarily limited. That problem is addressed by limiting the instan-

tiation of the axioms. This approximation leads to a restrited notion of

model orretness, whih is disussed. At the same time, it enables model

ompleteness for free data types, unlike approahes based on limiting the

domain size.

1 Introdution

The main approahes to abstrat data type (ADT) spei�ation have in ommon

that, unlike in pure �rst order logi, only ertain models are onsidered. In the

initial semantis approah, the domain is identi�ed with one partiular quotient

over the set of terms, where the size of the single equivalene lasses is `mini-

mal'. In the loose semantis approah, the signature is split up into onstrutors

and (other) funtion symbols. Here, the semantial domain is identi�ed with

any quotient over the set of onstrutor terms. The funtion symbols are inter-

preted as mappings over suh domains. The term `loose' refers the possibility of

one spei�ation having a `polymorphi' meaning, i.e. owning di�erent models,

varying partiularly in the interpretation of the (non-onstrutor) funtion sym-

bols. In ontrast to that, initial semantis is always `monomorphi'. This paper

is onerned with free data type spei�ations, whih are an important speial

ase of loose spei�ations. Free data types own the additional property that

di�erent onstrutor terms denote di�erent elements. The domain is therefore

�xed to be the set of onstrutor terms. The only thing whih is left open is

the interpretation of the funtion symbols. Given an ADT spei�ation and a

onjeture ', we all it an error if ' is not a onsequene of the axioms AX ,

regardless of whether the error intuitively lies in the axioms or the onjeture.

The issue of non-onsequene translates to the existene of ertain models. A

formula ' is not a onsequene of a set AX of axioms, if there exists a model

of AX whih violates '. Our method performs the onstrution of suh models,

whih in the ase of free data types redues to the onstrution of interpreta-

tions. The advantage of having �xed domains is opposed by the disadvantage of

domain in�nity, aused by reursive onstrutors. As interpretations over in�-

nite domains are not even ountable, an automated proedure an hardly solve

the issue of non-onsequene in a total way. Instead, the issue is approahed by

solving the non-onsequene problem for an approximation of the spei�ation.

The method generates models for �nitely many, ground instantiated axioms. To

deide if the model found is extendible to the original axioms, i.e. if the model

atually reveals an error, the user an vary the number of ground instanes. In

spite of these restritions, the method is omplete with respet to error dete-

tion. This means that the output will omplain about a onjeture whenever the

onjeture is faulty.

2 Free Data Types

In the desribed approah, the distintion between onstrutors and other fun-

tion symbols is suh important that we ompletely separate both. We simply

all the non-onstrutor funtion symbols `funtions'. In the following, if X is a

family of sets, X denotes the union of all sets in X .

Signature. An ADT signature � is a tuple (S; C;F ; �), where S is a �nite set

of sort symbols, C = fC

s

j s 2 Sg is a �nite family of disjoint, S-indexed sets of

onstrutor symbols, F = fF

s

j s 2 Sg is a �nite family of disjoint, S-indexed

sets of funtions (C \ F = ;), and � : C [F ! S

�

gives the argument sorts for

every onstrutor or funtion symbol.

Example 1. We onsider the following signature � = (S; C;F ; �) for staks of

natural numbers (the onstrutors are written sans serif):

S = fNat ;Stakg

C = ffzero; sug

Nat

; fnil; pushg

Stak

g F = ffpred ; topg

Nat

; fpop; delg

Stak

g

�(su) = Nat �(push) = [Nat Stak ℄ �(zero) = �(nil) = � (no arguments)

�(pred) = Nat �(top) = �(pop) = Stak �(del) = [Nat Stak ℄

A onrete syntax for � an look like:

sorts

Nat ::= zero j su(Nat);

Stak ::= nil j push(Nat ; Stak);

funtions

pred : Nat ! Nat ;

top : Stak ! Nat ;

pop : Stak ! Stak ;

del : Nat � Stak ! Stak ;

Terms. A signature indues terms in general, and onstrutor terms in parti-

ular. T

�

is the set of all terms, T

s

is the set of terms of sort s. V

s

is the set of

variables of sort s. CT

�

is the set of all onstrutor terms, CT

s

is the set of on-

strutor terms of sort s, and CT

�

= fCT

s

j s 2 Sg. We only onsider signatures

where CT

s

6= ; for all s 2 S. For a term t 2 T

�

with at least i arguments, t#

i

denotes the i-th argument of t, suh that l(t

1

; : : : ; t

i

; : : : ; t

n

)#

i

= t

i

.

Semantis (of funtions and terms). An F-interpretation I assigns to eah

funtion symbol f , with f 2 F

s

and �(f) = s

1

: : : s

n

, a mapping I(f) : CT

s

1

�

: : : � CT

s

n

! CT

s

. If I is an F-interpretation, then the pair (CT

�

; I) is a

freely generated �-algebra. A variable assignment � : V

�

! CT

�

is a mapping,

suh that, for x 2 V

s

, �(x) 2 CT

s

. For every F-interpretation I and variable

assignment �, the valuation val

I;�

: T

�

! CT

�

of terms is de�ned by:

{ val

I;�

(x) = �(x), for x 2 V

�

.

{ val

I;�

(f(t

1

; : : : ; t

n

)) = I(f)(val

I;�

(t

1

); : : : ; val

I;�

(t

n

)), for f 2 F .

{ val

I;�

((t

1

; : : : ; t

n

)) = (val

I;�

(t

1

); : : : ; val

I;�

(t

n

)), for 2 C.

We disuss some partiular features of these de�nitions: (a) Only funtion, not

the onstrutors are interpreted by I. (b) For a given �, all freely generated

�-algebras have the same domain, whih is CT

�

, the sorted partitioning of the

set of onstrutor terms. (Therefore, val is not indexed by the domain.) () The

valuation of terms an be seen as a ombination of standard valuations, see

\val

I;�

(f(�; : : :)) = I(f)(val

I;�

(�); : : :)", and Herbrand struture valuations, see

\val

I;�

((�; : : :)) = (val

I;�

(�); : : :)".

Equalities are the only atoms in our logi. For

�

is the set of �rst order

equality formulae, built from atoms by :, ^, _, !, 8 and 9. Literals (2 Lit

�

)

are equalities and negated equalities. Clauses (2 Cl

�

) are disjuntions of literals.

The ontrary of a formula ', Contr('), the free variables of whih are x

1

; : : : ; x

n

,

is de�ned by Contr(') = 9x

1

: : : : 9x

n

: :'. The valuation val

I;�

of terms and

formulae is de�ned as usual. It is not indexed over some domain, as the domain

is �xed.We just point out that in 8x:' and 9x:', the x is semantially quanti�ed

over CT

s

, if x 2 V

s

. Given an F-interpretation I, a formula ' 2 For

�

is valid in

I, abbreviated `I j= '', if for all variable assignments � it holds that val

I;�

(') =

true. A freely generated �-algebra (CT

�

; I) is a model of ' 2 For

�

resp. � �

For

�

, if I j= ' resp. I j= for all 2 �. Given � � For

�

and ' 2 For

�

, then

' is a onsequene of �, abbreviated `� j=

�

'', if every model of � is a model

of '. j=

�

' abbreviates ; j=

�

'.

Example 2. Let � = (S; C;F ; �) be an ADT signature with

S = fNat ;Boolg C = ffzero; sug

Nat

; ftt; ffg

Bool

g F = ffg

Nat

; fpg

Bool

g

�(su) = �(p) = Nat �(zero) = �(tt) = �(ff) = � Then:

{ j=

�

su(su(su(zero))) 6

:

= su(zero)

{ fp(zero)

:

= tt; p(x)

:

= tt ! p(su(x))

:

= ttg j=

�

p(x)

:

= tt

(`

:

=' is the equality symbol of the objet logi. ` 6

:

=' abbreviates negated equality.)

An ADT spei�ation is a pair h�;AXi, where � is an ADT signature and

AX � For

�

. AX is the set of axioms. The notions of model and onsequene

are extended to spei�ations (while overloading `j=' a bit): (CT

�

; I) is a model

of h�;AXi if it is a model of AX . ' is a onsequene of h�;AXi, abbreviated

`h�;AXi j= '', if AX j=

�

'.

`h�;AXi 6j= '' abbreviates that ' is not a onsequene of h�;AXi.

Example 3. The spei�ation NatStak is given by h�;AXi, where � is taken

from Example 1 and AX is given by

AX = f pred(su(n))

:

= n ; top(push(n; st))

:

= n ; pop(push(n; st))

:

= st;

del (n; nil)

:

= nil ; del(n; push(n; st))

:

= st ;

n 6

:

= n

0

! del (n; push(n

0

; st))

:

= push(n

0

; del (n; st)) g

Given a spei�ation SPEC and a formula ', it may be that neither ' nor

the opposite, Contr('), is a onsequene of a spei�ation SPEC. For instane,

neither (a) NatStak j= pred(n) 6

:

= n nor (b) NatStak j= 9n: pred(n)

:

= n

holds. This is due to the underspei�ation of pred . In one model of NatStak,

I(pred)(zero) is zero, falsifying (a). In another model of NatStak, I(pred)(zero)

is su(zero), falsifying (b).

Proposition 1. Let � = (S; C;F ; �) be an ADT signature and h�;AXi an

ADT spei�ation. Then:

h�;AXi 6j= '

()

there exists an F-interpretation with I j= AX [Contr(')

In that ontext, we all h�;AX [Contr(')i a `ounter spei�ation', and I the

`ounter interpretation'. Our method mainly onstruts suh ounter interpreta-

tions.

Given a spei�ation h�;AXi and a onjeture ', the method onsists in

three steps. The �rst is to onstrut and normalise the ounter spei�ation

h�;AX [Contr(')i. A spei�ation is normalised if its axioms are lauses

(2 Cl

�

). Partiularly, the existential quanti�ers introdued by Contr are Skolem-

ized away. The Skolemization handling has to respet our partiular semantial

setting, by adding the Skolem symbols to the funtions, not to the onstrutors!

The seond and main step is the searh for, and onstrution of, an aording

interpretation, see the following setion. In the ase of suess, the last step on-

sists in some post-proessing, for sake of giving the user feedbak in terms of

the original spei�ation and onjeture. We give examples for suh output in

setion 7.

3 Expliit Reasoning about Interpretations

The ore of the proposed method onstruts F-interpretations for normalised

ADT spei�ations. We an think of an F-interpretation I being a set of (in

general in�nite) tables, one for eah funtion f 2 F . The basi idea of our

approah is to perform reasoning about F-interpretations using a representation

that immediately desribes individual lines of interpretation tables. In partiular,

we represent lines of these tables as atoms, using the three argument prediate

`I'. I(f; ht

1

; : : : ; t

n

i; t) represents the information that I(f)(t

1

; : : : ; t

n

) is t.

It is important to note that suh atoms are not part of the objet logi, used

in formulae 2 For

�

, if only beause the objet signatures we onsider do not

ontain prediate symbols. Instead, I-atoms are formulae on the meta level. These

(and others) will be used for a kind of `meta reasoning'. Beside `I-atoms', we will

use some others, alling them all `meta atoms'. Eah set of I-atoms represents

a part of some F-interpretation, if the set is funtional in the last arguments,

i.e. if there are no two I-atoms I(g; ht

1

; : : : ; t

n

i; t

0

) and I(g; ht

1

; : : : ; t

n

i; t

0

0

)

with di�erent onstrutor terms t

0

and t

0

0

. An arbitrary set of I-atoms, not

neessarily being funtional, desribes an interpretation andidate. The searh

for proper interpretations onsists mainly in the onstrution of interpretation

andidates, by inferring new I-atoms using proof rules. Other proof rules rejet

andidates, e.g. as soon as they turn out not to be funtional.

The inferred I-atoms do not have the pure form skethed above, in general.

Some onstrutor terms may be unknown, initially, and must be searhed for.

They are represented by plae holders, whih are replaed later. Consider a fun-

tion f : Nat ! Nat , and suppose we are searhing for the value of I(f)(zero).

The following disussion is supported by the tree depited here.

I(f; hzeroi; val(f(zero)))

searh Nat(val(f(zero)))

is(val(f(zero)); zero)

I(f; hzeroi; zero)

is(val(f(zero)); su(arg1(val(f(zero)))))

searh Nat(arg1(val(f(zero))))

is(arg1(val(f(zero)))); zero)

is(val(f(zero)); su(zero))

I(f; hzeroi; su(zero))

.

.

.

The searh is initialised by reating the I-atom I(f; hzeroi; val(f(zero))). Its last

argument, val(f(zero)), ats as a plaeholder for the onstrutor term whih we

searh for, and its syntax tells that it replaes the onstrutor term whih equals

`val(f(zero))'. As suh, this atom does not ontain muh information. However,

it is only meant to be a starting point. The searh for a more informative last

argument is initialised by adding another meta-atom, searh Nat(val(f(zero))),

to the model andidate. This atom auses a branhing of the andidate, where

eah branh orresponds to one onstrutor of the sort Nat . On the �rst branh,

we assume val

I

(f(zero)) to equal zero, by inferring is(val(f(zero)); zero). On

the seond branh, we assume val

I

(f(zero)) to equal a onstrutor term start-

ing with su, by inferring an atom of the form is(val(f(zero)); su(: : :)). The

left out argument of su(: : :) is explained now. On this branh val

I

(f(zero))

equals su(t) for some t 2 CT

Nat

. What we know about t is (a) that it is

the �rst argument of su(t), i.e. t = su(t)#

1

= val

I

(f(zero))#

1

, and there-

fore represent t using the syntax arg1(val(f(zero))), suh that we atually have

is(val(f(zero)); su(arg1(val(f(zero))))). What we also know about t is (b) that t

is a onstrutor term 2 CT

Nat

whih we have to searh for further. Correspond-

ing to the above disussion, we also add searh Nat(arg1(val(f(zero)))) to the

seond branh. This searh-atom auses another split, whih is skethed in tree.

Coming bak to our �rst branh, it remains to propagate the information from

is(val(f(zero)); zero) to the initial atom I(f; hzeroi; val(f(zero))), by inferring

I(f; hzeroi; zero). A similar propagation happens twie on the �rst subbranh

of the seond branh, leading to the atom I(f; hzeroi; su(zero)).

Looking at the leaves of the tree, we see that the di�erent possible values of

I(f)(zero) are enumerated. If this was everything we wanted, we should not have

hosen a dedutive treatment. But at �rst, this mehanism will interfere with

others explained below. And at seond, the stepwise onstrution of onstrutor

terms from the outer to the inner allows to rejet a model andidate earlier, in

some ases it enables rejetion in �nite time at all. In our example, the term

su(arg1(val(f(zero)))) represents all (i.e. in�nitely many) terms starting with

su.

After this demonstration, we introdue the rules we used, denoting them in

a tableaux style. x, y, z, fv and tv are rule variables.

searh Nat(x)

is(x; zero) is(x; su(arg1(x)))

searh Nat(arg1(x))

I(fv; tv; x)

is(x; z)

I(fv; tv; z)

is(x; su(y))

is(y; z)

is(x; su(z))

In the following, we turn over to use a linear notation for suh rules, using

the general pattern:

at

1

; : : : ; at

n

| {z }

premise

!

onlusion

z }| {

at

11

; : : : ; at

1n

1

| {z }

1:extension

; : : : ; at

m

1

; : : : ; at

mn

m

| {z }

m:extension

:

This simpli�es the task of de�ning the transformation of spei�ations into rules.

Moreover, this notation of rules is very lose to the input notation of the tool

we later use for rule exeution.

4 Transforming the Signature

The linear notation of the above searh Nat-rule is:

searh Nat(x) ! is(x; zero) ; is(x; su(arg1(x))); searh Nat(arg1(x)) :

We now de�ne the general ase.

De�nition 1. Let � = (S; C;F ; �) be an ADT signature, with s 2 S and C

s

=

f

1

; : : : ;

n

g, where j�(

i

)j � j�(

j

)j for i � j. Then

TransSort

�

(s)

=

searh s(x) ! TransConstr

�

(x;

1

) ; : : : ; TransConstr

�

(x;

n

) :

Note the semi-olon between the di�erent extensions of the rule. The ondition

j�(

i

)j � j�(

j

)j ensures that we order the extensions after the number of the

onstrutor's arguments. The individual extensions are de�ned as follows.

De�nition 2. Let � be an ADT signature, with 2 C

�

.

{ if j�()j = 0, then: TransConstr

�

(x;) = f is(x;) g

{ if �() = s

1

: : : s

n

, then:

TransConstr

�

(x;)

=

f is(x; (arg1(x); : : : ; argn(x))) ; searh s

1

(arg1(x)) ; : : : ; searh s

n

(argn(x)) g

In onrete rules resulting from the transformation, we skip the set braes. Here

is the result of TransSort

�

(Stak):

searh Stak(x) !

is(x; nil) ;

is(x; push(arg1(x); arg2(x))) ; searh Nat(arg1(x)) ; searh Stak(arg2(x)) :

We now introdue the handling of (in)equality, disussing onrete rules, for Nat

and Stak at �rst.

same(su(x); zero) ! :

same(push(x

1

; x

2

); push(y

1

; y

2

)) ! same(x

1

; y

1

) ; same(x

2

; y

2

) :

di�erent(zero; zero) ! :

di�erent(push(x

1

; x

2

); push(y

1

; y

2

)) ! di�erent(x

1

; y

1

) ; di�erent(x

2

; y

2

) :

The �rst and the third rule ause the proof proedure to rejet a model andidate.

Note that the last rule is a branhing rule. We de�ne the general ase now:

De�nition 3. Let � = (S; C;F ; �) be an ADT signature. The rules reeting

the `freely generatedness', are ontained in FreeGen

�

= TestSame

�

[TestDi�

�

.

{ TestSame

�

is the smallest set ful�lling:

� for eah two di�erent onstrutors

1

,

2

of the same sort (f

1

;

2

g � C

s

),

where j�(

1

)j = n and j�(

2

)j = m,

same(

1

(x

1

; : : : ; x

n

);

2

(y

1

; : : : ; y

m

)) ! : 2 TestSame

�

� for eah onstrutor 2 C

s

, where j�()j = n 6= 0

same((x

1

; : : : ; x

n

); (y

1

; : : : ; y

n

))

! same(x

1

; y

1

) ; : : : ; same(x

n

; y

n

) :

�

2 TestSame

�

{ TestDi�

�

is the smallest set ful�lling:

� for eah onstrutor 2 C

s

,

� if �() = �, then

di�erent(;) ! : 2 TestDi�

�

� if j�()j = n 6= 0, then:

di�erent((x

1

; : : : ; x

n

); (y

1

; : : : ; y

n

))

! di�erent(x

1

; y

1

) ; : : : ; di�erent(x

n

; y

n

) :

�

2 TestDi�

�

The same- and di�erent-atoms are introdued either by transformed axioms

(see below), or by the following rule whih `heking' for funtionality.

I(fv; tv; z) ; I(fv; tv; z

0

) ! same(z; z

0

) :

In the end of setion 3, we enountered the two rules:

is(x; su(y)) ; is(y; z) ! is(x; su(z)) :

I(fv; tv; x) ; is(x; z) ! I(fv; tv; z) :

The general ase of suh `replaement' rules is desribed here only informally. The

�rst rule must be provided for eah onstrutor, and for eah of a onstrutor's

argument positions. The seond rule is general enough. In addition, we need

similar rules to replae eah position in the tuples of I-atoms, as well as rules for

replaing arguments of same() and di�erent().

5 Transforming the Axioms

The rules disussed so far only onsider the signature. But we atually are searh-

ing for a model of a spei�ation, i.e. for a model of its axioms. In our approah,

also (or partiularly) the axioms are transformed to rules. We now explain this

transformation, using very simple examples at the beginning. We start with

ground equalities. Let f

1

(t

1

)

:

= f

2

(t

2

) be an axiom, where f

1

, f

2

are funtions

of some sort s, and t

1

, t

2

are onstrutor terms. This equality an be repre-

sented by the rule:

! I(f

1

; ht

1

i; val(f

1

(t

1

))) ; searh s(val(f

1

(t

1

))) ; I(f

2

; ht

2

i; val(f

2

(t

2

))) ;

searh s(val(f

2

(t

2

))) ; same(val(f

1

(t

1

)); val(f

2

(t

2

))) :

The rule intuitively says that we have to searh for the two last arguments of

the I-atoms, but with the onstraint that they have to be the same. The empty

premise means that the extension atoms an be added to any model andidate. In

pratie, the rule will be applied towards the beginning, before the initial model

andidate branhes. A transformation of f

1

(t

1

) 6

:

= f

2

(t

2

) results in almost the

same rule, just that we have `di�erent' instead of `same'.

The rule for f

1

(t

1

)

:

= f

2

(t

2

) an be optimised, by loss of its symmetry.

Instead of twie searhing for something that should �nally be the `same' thing,

it suÆes to searh for one of both:

! I(f

1

; ht

1

i; val(f

2

(t

2

))) ; I(f

2

; ht

2

i; val(f

2

(t

2

))) ; searh s(val(f

2

(t

2

))) :

This is of ourse more eÆient. Moreover, the examples are easier to understand

when the resulting rules are as short as possible. On the other hand, the de�ni-

tion of the transformation is muh simpler in a version that is not optimised and

therefore more regular. In this paper, only de�ne the unoptimised transformation

formally. However, in the example transformations, we also show the optimised

versions, whih are more readable. A formal de�nition of the optimised transfor-

mation is given in [Ahr01, Set. 3.2.3℄. (Note that the rule for f

1

(t

1

) 6

:

= f

2

(t

2

)

annot be optimised similarly.)

The next example shows that, in general, we have to transform funtion

terms in a reursive manner. The (again quite arti�ial) axiom f

1

(f

2

(t

1

))

:

= t

2

translates to the rule:

! I(f

2

; ht

1

i; val(f

2

(t

1

))) ; searh s(val(f

2

(t

1

))) ; I(f

1

; hval(f

2

(t

1

))i; t

2

) :

Intuitively, this says that the last argument of I(f

2

; ht

1

i; val(f

2

(t

1

))) is a not

yet known onstrutor term, whih has to be searhed for. What is known about

val(f

2

(t

1

)) is represented by the I-atom I(f

1

; hval(f

2

(t

1

))i; t

2

).

So far, we disussed ground axioms, for simpliity. We now onsider the axiom

f(x)

:

= t. The resulting rule is:

s(x) ! I(f; hxi; t) :

`Binding' variables by sort prediates is a tehnique widely used. The operational

meaning for the above rule is that, whenever we have s(t

0

) on the urrent branh,

for some t

0

, then we an infer I(f; ht

0

i; t). In general, we an have funtions

on both side, as well as nested funtions. The transformation then follows the

same patterns as skethed above for the ground ase, but �nally `binding ' all

variables by providing sort atoms in the rule premise. We demonstrate this in

another example: the ommutativity axiom f(x; y)

:

= f(y; x) beomes

s(x); s(y) !

I(f; hx; yi; val(f(y; x))) ; I(f; hy; xi; val(f(y; x))) ; searh s(val(f(y; x))) :

Note again that x and y are `rule variables'. They do not appear on the branhes,

whih are always ground. The appliation of this rule generates a new plae

holder val(f(t; t

0

)) for every pair t and t

0

for whih s-prediates are provided.

The di�erene between our usage of val terms, and omputing new plae holder

symbols in eah rule appliation, is that we an possibly reuse the val terms, even

when applying other rules. Therefore, the usage of val terms has similarities to

the usage of �-terms in free variable tableaux, desribed in [GA99℄. In our ontext,

the less plae holders we produe, the less searhes we start.

In the general ase, axioms of normalised spei�ations are lauses, i.e. dis-

juntions of equalities and inequalities. The aording rules an diretly reet

the disjuntion in the `branhing', by transforming eah literal to a distint

extension of the rule.

De�nition 4. Be � = (S; C;F ; �) an ADT signature and ax 2 Kl

�

,

with ax = lit

1

_ : : : _ lit

n

, Var(ax) = fx

1

; : : : ; x

m

g and sort(x

i

) = s

i

. Then:

TransAxiom

�

(ax) =

s

1

(x

1

) ; : : : ; s

m

(x

m

) ! TransLit

�

(lit

1

) ; : : : ; TransLit

�

(lit

n

) :

In the following de�nition of TransLit

�

and its subparts, we use `Rep(t)' to fator

out a ertain ase distintion. The `representation' of a term t 2 T

�

, Rep(t), is

de�ned to be t itself, if t ontains only onstrutors and variables, or val(t), if t

ontains any funtions. In partiular, Rep is the identity for variables as well as

for onstrutor terms.

De�nition 5. Let � = (S; C;F ; �) be an ADT signature.

{ Let t

1

; t

2

2 T

s

for some s 2 S. Then:

TransLit

�

(t

1

:

= t

2

) =

f same(Rep(t

1

);Rep(t

2

)) ; TransTerm

�

(t

1

) ; TransTerm

�

(t

2

) g

TransLit

�

(t

1

6

:

= t

2

) =

f di�erent(Rep(t

1

);Rep(t

2

)) ; TransTerm

�

(t

1

) ; TransTerm

�

(t

2

) g

{ Let t 2 T

�

. Then:

� if t ontains no funtions, then: TransTerm

�

(t) = ;

� if t = a with a 2 F

s

, �(a) = �, then:

TransTerm

�

(t) = f I(a; hi; val(a)); searh s(val(a)) g

� if t = f(t

1

; : : : ; t

n

) with f 2 F

s

, �(f) = s

1

: : : s

n

, then:

TransTerm

�

(t) =

f I(f; hRep(t

1

); : : : ;Rep(t

n

)i; val(t)) ; searh s(val(t)) g

[

n

S

i=1

TransTerm

�

(t

i

)

� if t = (t

1

; : : : ; t

n

) with 2 C

s

, �() = s

1

: : : s

n

, and if t ontains fun-

tions, then:

TransTerm

�

(t) =

f is(val(t); (Rep(t

1

); : : : ;Rep(t

n

))) g [

n

S

i=1

TransTerm

�

(t

i

)

Note that TransTerm

�

(t) is empty exatly when Rep(t) is t. This means that the

reursion stops at terms that an be represented by themselves in the resulting

rules. In ontrast, funtion terms an only appear nested in val terms, i.e. plae

holders. Also note that we took the liberty to take over the variables as they

are, even if in the rules they at as `rule variables', to be mathed/instantiated

by rule appliation.

As an example, we show the result of transforming the (normalised) last

axiom of NatStak (see Example 3).

TransAxiom

�

(n

:

= m _ del(n; push(m; st))

:

= push(m; del (n; st)))

=

Nat(n); Nat(m); Stak(st)

!

same(n;m) ;

same(val(del (n; push(m; st))); val(push(m; del(n; st))));

I(del ; hn; push(m; st)i; val(del (n; push(m; st))));

searh Stak(val(del(n; push(m; st))));

is(val(push(m; del(n; st))); push(m; val(del (n; st))));

I(del ; hn; sti; val(del (n; st)));

searh Stak(val(del (n; st))) :

The optimised version results in a shorter rule:

Nat(n); Nat(m); Stak(st)

!

same(n;m) ;

I(del ; hn; push(m; st)i; val(push(m; del(n; st))));

is(val(push(m; del(n; st))); push(m; val(del (n; st))));

I(del ; hn; sti; val(del (n; st)));

searh Stak(val(del (n; st))) :

We also show the transformation of another, simpler axiom:

TransAxiom

�

(pop(push(n; st))

:

= st)

=

nat(n); stak(st)

!

same(val(pop(push(n; st))); st);

I(pop ; hpush(n; st)i; val(pop(push(n; st))));

searh Stak(val(pop(push(n; st)))) :

In this quite typial axiom pattern, the optimised transformation gains an enor-

mous simpli�ation:

nat(n) ; stak(st) ! I(pop; hpush(n; st)i; st) :

6 Model Generation for Approximated Spei�ations

The rules transformed from the axioms an only be applied if the urrent model

andidate ontains appropriate sort atoms. Ideally, we would need to have s(t)

for every onstrutor term t of sort s, and that for eah sort. This annot be

realized in �nite time. But what we want is a method whih terminates in ase

there is a model. This makes the real di�erene to the traditional (refutational)

methods for proving onjetures. Our approah to the issue of model onstru-

tion for free data type spei�ations does not solve the problem ompletely. An

automated method hardly an. Instead we onstrut a model of an approxima-

tion of the spei�ation.

Let us assume now that the onstrutors are reursive (whih is mostly the

ase) and, therefore, determine an in�nite domain. The set of (quanti�er free)

axioms is then equivalent to an in�nite set of ground axioms, whih results

from instantiating the variables by all onstrutor terms. We now approximate

the spei�ation by onsidering a �nite subset of these ground axioms, whih

results from instantiating the variables by a �nitely many onstrutor terms.

Partiularly, we limit the number of instanes by limiting their `size', whih is

simply de�ned to be the number of onstrutors. `h�;AX

�n

i' denotes suh an

`n-restrited spei�ation', where the axioms are instantiated by all onstrutor

terms of maximal size n. The instantiation of axioms is reeted by applying

the rules transformed from the axioms, where the arguments of the mathed

sort atoms are the instanes. Therefore, to make the rules searh for a model

of `h�;AX

�n

i', we just initialise the �rst model andidate to be the set of sort

atoms for all onstrutor terms up to size n. In the theorems below, we all this

`n-initialisation'. In pratie, the n has to be rather small. But, depending on

the signature, the number of terms is signi�antly bigger than their maximal

size.

On this initial `model andidate' (at �rst only ontaining sort atoms), the

rules, transformed from a (ounter) spei�ation, are `exeuted' by some proe-

dure. We use a proedure known as model generation ([MB88℄, [FH91℄), whih

an be seen positive, regular hyper tableaux. The regularity ensures termination

in ase every mathing rule has at least one extension not adding anything new

to the branh. If one branh annot be extended further, model generation stops.

In the theorems below, we all this `termination by saturation' (in ontrast to

`termination by rejetion'). Our realization uses the tool `MGTP' (model gener-

ation theorem prover, [FH91℄) for exeuting the desribed rules. The input of a

model generation proedure is a set of what they alled `lauses', whih orre-

sponds to what we alled `rules'. These `lauses' have the general form depited

in the end of setion 3. In addition, the rules must be `range restrited', whih

means that eah variable must also our on the left side of `!'. Our rules ful�l

that restrition.

Taking the basi model generation proedure whih is implemented in MGTP

as an exeution model for the transformed rules, we state the following

Theorem 1. (n-restrited model orretness)

Let h�;AXi be a normalised ADT spe., n 2 N and R = TransSpe(h�;AXi).

If the n-initialised model generation proedure with input R terminates by sat-

uration, then (a) h�;AX

�n

i has a model, and (b) for every F-interpretation

I whih orresponds to the I-atoms on the saturated branh, it holds that I j=

h�;AX

�n

i.

Theorem 2. (model ompleteness)

Let h�;AXi be a normalised ADT spe., n 2 N and R = TransSpe(h�;AXi).

If h�;AXi has a model, then an n-initialised, fair model generation proedure

with input R terminates by saturation, and for every F-interpretation I whih

orresponds to the I-atoms on the saturated branh, it holds that I j= h�;AX

�n

i.

The fairness in Theorem 2 is a requirement not implemented in MGTP. In pra-

tie, this is less important than in theory, as the searh for onstrutor terms

builds small terms �rst, and as small terms usually suÆe to �nd a validating in-

terpretation. However, the rules as suh are omplete, and this independent of n!

Note that the theorem says \If h�;AXi has a model" instead of \If h�;AX

�n

i

has a model". We translate the ompleteness result to the non-onsequene prob-

lem we are originally interested in. If it holds that `h�;AXi 6j= ', then model

generation applied to the transformation of `h�;AX [Contr(')i terminates by

saturation.

Both proofs for these theorems are nontrivial, partiularly the ompleteness

argument, whih requires a termination argument, to be inferred from the model

whih is assumed to exist. The detailed proofs are given in [Ahr01℄.

7 Implementation and Examples

The method is implemented as a JAVA program, whih, given a spei�ation

h�;AXi and a onjeture ', (a) omputes the transformation of the normal-

isation of h�;AX [Contr(')i, (b) alls MGTP, and in ase of saturation ()

analyses the saturated branh, produing an output both to the prompt and to

a L

A

T

E

X �le, telling why ' might not be a onsequene of h�;AXi.

For instane, given NatStak and the onjeture del(top(st); st)

:

= pop(st),

the (abbreviated) L

A

T

E

X output is:

the onjeture del(top(ST), ST) = pop(ST)

is violated by the following variable assignment: ST : nil

and by the following evaluation of onjeture subterms:

del(top(ST),ST) : nil

top(ST) : zero

pop(ST) : push(zero,nil)

The interpretation found by the system satis�es the axioms,

if instantiated by onstrutor terms with less than 4 onstrutors!

(end of output)

The warning reminds the user on what we alled n-restrited orretness. Nev-

ertheless, the system tells that the spei�ation allows pop(nil) being evaluated

to push(zero; nil), in whih ase del (top(nil); nil)

:

= pop(nil) is false, and therefore

the onjeture is false. This shows that either the onjeture or the spei�ation

has to be hanged. Another example for a false onjeture on NatStak whih

the system omplains about is push(top(st); pop(st))

:

= st.

Due to the n-restrited orretness, the system possibly an omplain about

a onjeture that atually is a onsequene of the axioms. This happens for

instane when we ask if p(x)

:

= tt is a onsequene of (see Example 2, page 3):

fp(zero)

:

= tt; p(x)

:

= tt ! p(su(x))

:

= ttg

The system omplains about this onjeture, beause it an always onstrut

I(p; hsu(t)i; ff) for a t whih is slightly bigger than the size restrition n.

The last example we mention here is based on a spei�ation taken from

[Thu98℄. Even if [Thu98℄ also investigates errors in spei�ations, this error is

neither disussed nor deteted nor even intended there. We refer to that revealed

error not to blame the author, but to demonstrate how easily suh errors hap-

pen, even in a ontext where one is very aware of the possibility of errors. (In

general, an more open exhange of errors that really happen would be of great

bene�t to the development of error revealing tehniques.) The ited spei�a-

tion is intended to desribe a `merge sort' algorithm. The two main axioms are:

sort(empty)

:

= empty and sort(append (l; l

0

))

:

= merge(sort(l); sort(l

0

)).

Our system, when being asked if the singleton list is stable under sort ,

i.e. sort(ons(n; empty))

:

= ons(n; empty), omplains and suggests to evaluate

sort(ons(n; empty)) to empty (!), as this is onsistent with the spei�ation,

whih does not speify at all how to sort a singleton. (To omprehend this, it

suÆes to know two more axioms:merge(empty; l

0

)

:

= l

0

andmerge(l; empty)

:

= l.)

As any other sorting redues to sorting the singleton, the spei�ation does not

speify the sorting of any (but the empty) list.

8 Related Work and Conlusion

The works related to our task and approah an be divided in two (overlapping)

�elds: (1.) model onstrution and (2.) deteting faulty onjetures. In the �rst

area, there are several methods searhing for �nite domain models. The methods

desribed in [Sla94℄ and [ZZ96℄ searh for models of a �xed size, whereas [BT98℄

dynamially extends the �nite domain. As free data types usually have in�nite

domains, these �nite domain methods annot diretly be applied to our setting.

(A further disussion follows bellow.) Other methods in the �rst area are more

syntax oriented, desribing models by (extensions of) formulae ([FL96℄, [CP00℄).

These approahes onstrut models for �rst order formulae, usually not on-

taining equalities. Our objet logi, however, is ompletely equality based and,

beause of onstrutor generatedness, beyond �rst order. In the seond area, a

lot of work is done in the ontext of initial (or rewrite) semantis, where due to

monomorphiity, the notions of proof and onsisteny are very lose ([Ba88℄).

Also where monomorphiity is imposed by purely sysntatial means, the de-

tetion of faulty onjetures redues to proving their opposite ([Pro92℄). In that

ontext, even the orretion of faulty onjetures is examined ([Pro96℄, [MBI94℄).

To the best knowledge of the author, the only work that is similarly dediated

to the detetion of faulty onjetures in loose spei�ations (not even restrited

to free data types), is [Thu98,RST01℄. There, a `ounter example' is essentially

a falsifying variable assignment, rather than a falsifying model. Unsurprisingly,

that method, as well as ours, annot totally solve the issue of non-onsequene.

During the onstrution of falsifying variable assignments, the method produes

side ondition, the onsistene of whih left to be judged by the user. Like in our

approah, the user has to take the �nal deision. The assignment of values to

axiom variables is inluded in our method (see the example outputs). Moreover,

our method analyses possible valuation of funtion terms.

We onlude by stressing the main features of the presented approah and its

implementation. We provide a fully automated method whih is tailor-made for

deteting non-onsequene between a free data type spei�ation and a onje-

ture. It searhes for a ounter model, basially by onstruting an interpretation

table and searhing for its entries. The user reeives feedbak in form of variable

assignments and subterm evaluations whih falsify the onjeture. To enable ter-

mination, the property of a falsifying interpretation to atually be a model of

the spei�ation is approximated only. This is done by instantiating the axioms

with terms of a limited size only. This size is a parameter of the method and

its implementation. The prie of the limited term size is a restrited model or-

retness: a model of a limited instantiation is not neessarily a model of the full

spei�ation. The user must attak this problem by (a) examining the proposed

term evaluations and (b) varying the term size limit.

It is important not to onfuse our limited instantiation of the axioms with a

limited domain size. In our ase, by inreasing the limit we an only lose models,

and by dereasing the limit, we an only gain models. This is the very reason

why our model ompleteness result is not restrited by the hosen limit. Suh a

monotonous behaviour would not hold if we varied domain sizes. We ould not

gain model ompleteness by following a similar approah like [BT98℄ (see above).

Model onstrution is the means rather that the purpose of our method. We

�nally want to detet faulty onjetures. From this pint of view, having model

ompleteness is worth to pay a prie for. The system indeed detets all non-

onsequenes, even if it detets to many. At the same time, the restritions are

kept transparent to the user (see the example output above). In ase the error is

real, it is usually not diÆulty to omprehend one one is pointed to. Providing

unexpeted valuations of funtion terms then helps to identify underspei�ed

properties whih are the soure of errors.

Aknowledgements I am grateful to Reiner H�ahnle for his general support as well

as for many, many, fruitful disussions, and for arefully heking the proofs in [Ahr01℄.

I am also grateful to Sonja Pieper for implementing the presented method.

Referenes

[Ahr01℄ Wolfgang Ahrendt. Deduktive Fehlersuhe in Abstrakten Datentypen. 2001.

Dissertation (preversion, in German), University of Karlsruhe, available under

http://www.s.halmers.se/~ahrendt/ade02/diss.ps.gz.

[Ba88℄ Leo Bahmair. Proof by onsisteny in equational theories. In Pro. Third

Annual Symposium on Logi in Computer Siene, Edinburgh, Sotland, pages

228{233. IEEE Press, 1988.

[BT98℄ Fran�ois Bry and Sunna Torge. A dedution method omplete for refutation

and �nite satis�ability. In Pro. 6th European Workshop on Logis in AI

(JELIA), volume 1489 of LNAI, pages 122{136. Springer-Verlag, 1998.

[CP00℄ Riardo Caferra and Niolas Peltier. Combining enumeration and dedutive

tehniques in order to inrease the lass of onstrutible in�nite models. Jour-

nal of Symboli Computation, 29:177{211, 2000.

[FH91℄ Hiroshi Fujita and Ryuzo Hasegawa. A model generation theorem prover in

KL1 using a rami�ed-stak algorithm. In Koihi Furukawa, editor, Proeedings

8th International Conferene on Logi Programming, Paris/Frane, pages 535{

548. MIT Press, 1991.

[FL96℄ Christian Ferm�uller and Alexander Leitsh. Hyperresolution and automated

model building. Journal of Logi and Computation, 6(2), 1996.

[GA99℄ Martin Giese and Wolfgang Ahrendt. Hilbert's �-terms in Automated Theo-

rem Proving. In Neil V. Murray, editor, Automated Reasoning with Analyti

Tableaux and Related Methods, International Conferene, Saratoga Springs,

USA, volume 1617 of LNAI, pages 171{185. Springer-Verlag, 1999.

[MB88℄ Rainer Manthey and Fran�ois Bry. SATCHMO: A theorem prover imple-

mented in Prolog. In Proeedings 9th Conferene on Automated Dedution,

volume 310 of LNCS, pages 415{434. Springer-Verlag, 1988.

[MBI94℄ Raul Monroy, Alan Bundy, and Andrew Ireland. Proof plans for the orre-

tion of false onjetures. In Frank Pfenning, editor, Pro. 5th International

Conferene on Logi Programming and Automated Reasoning, Kiev, Ukraine,

volume 822 of LNAI, pages 54{68. Springer-Verlag, 1994.

[Pro92℄ Martin Protzen. Disproving onjetures. In D. Kapur, editor, Pro. 11th

CADE, Albany/NY, USA, volume 607 of LNAI, pages 340{354. Springer-

Verlag, 1992.

[Pro96℄ Martin Protzen. Pathing faulty onjetures. In Mihael MRobbie and John

Slaney, editors, Pro. 13th CADE, New Brunswik/NJ, USA, volume 1104 of

LNCS, pages 77{91. Springer-Verlag, 1996.

[RST01℄ Wolfgang Reif, Gerhard Shellhorn, and Andreas Thums. Flaw detetion in

formal spei�ations. In Rajeev Gor�e, Alexander Leitsh, and Tobias Nipkow,

editors, Automated Reasoning, IJCAR 2001 Siena, Italy, June 18-23, 2001

Proeedings, volume 2083 of LNAI. Springer-Verlag, 2001.

[Sla94℄ John Slaney. FINDER: �nite domain enumerator. In Alan Bundy, editor, Pro.

12th CADE, Nany/Frane, volume 814 of LNCS, pages 798{801. Springer-

Verlag, 1994.

[Thu98℄ Andreas Thums. Fehlersuhe in Formalen Spezi�kationen. diploma thesis,

Fakult�at f�ur Informatik, Universit�at Ulm, 1998.

[ZZ96℄ Jian Zhang and Hantao Zhang. Generating models by SEM. In Mihael

MRobbie and John Slaney, editors, Pro. 13th CADE, New Brunswik/NJ,

USA, volume 1104 of LNCS, pages 309{327. Springer-Verlag, 1996.

