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Abstract. This paper presents a methodology for automatically val-
idating program transformation rules that are part of a calculus for
Java source code verification. We target the Java Dynamic Logic cal-
culus which is implemented in the interactive prover of the KeY system.
As a basis for validation, we take an existing SOS style rewriting logic
semantics for Java, formalized in the input language of the Maude sys-
tem. That semantics is ‘lifted’ to cope with schematic programs like the
ones appearing in program transformation rules. The rewriting theory
is further extended to generate valid initial states for involved program
fragments, and to check the final states for equivalence. The result is used
in frequent validation runs over the relevant fragment of the calculus in
the KeY system.

1 Introduction

In our work we relate two formal artifacts dealing with the programming lan-
guage Java. The first is a sequent calculus for Java Dynamic Logic (JavaDL),
a program logic for Java source code. This calculus [2] is implemented in the
interactive prover of the KeY system [1]. The other artifact is a rewriting logic
semantics [11, 10] for Java, written as a rewrite theory RJava in the input lan-
guage of the Maude system [5]. The objective of the work is to achieve an auto-
matic validation of certain parts of the JavaDL calculus with respect to RJava ,
taking advantage of the executability of RJava .

The particular calculus rules we want to validate with this approach are
program transformation rules of the form (cf. Sect. 2)

Γ ` 〈Π ′ rs〉 φ,∆

Γ ` 〈Π rs〉 φ,∆
(1)
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Roughly speaking, this proof rule replaces, in the beginning of a list of Java
statements, a match of Π by the corresponding instance of Π ′. (rs stands for
the list of remaining statements.) Even if this appears as a very special case, a
large and important part of the Java related rules of the JavaDL calculus (about
45%) is of exactly that kind! Note that the applicability of rules of this particular
shape does not depend on the logical context, as Γ , ∆, and φ match arbitrary
(lists of) formulae. Neither is the context affected by the rule application. The
soundness of such a rule only depends on Π and Π ′. Therefore, validating the
rule reduces to showing semantical equivalence of Π and Π ′.

It is important to note that one cannot simply ‘run’ RJava , in spite of its
executability, on Π and Π ′. The reason is that the statements in Π and Π ′ are
not in plain Java syntax, but schemata for Java code. An example for a program
transformation rule is

Γ ` 〈typeof(e) v1 = e; typeof(n) v2 = n; l = v1 ∗ v2; rs〉 φ,∆

Γ ` 〈l = e ∗ n; rs〉 φ,∆
(2)

Here, l, e, n, rs, v1, and v2 are schema variables, matching certain syntactical cat-
egories (Sect. 2), and typeof delivers the static type of its argument. Comparing
such schematic program fragments raises several issues.

First of all, RJava is made for computing with concrete entities, like con-
crete memory locations, concrete (primitive) values, concrete object references,
and so forth. It is an essential part of this work to have extended RJava to a
lifted Java semantics, RJava lift , executing also schematic, i.e. abstract, Java code.
Some central ingredients are the storage of conditional values in the memory, and
parameterizing the values of abstract expressions by snapshots of the dynamic
parts of the execution state. One can easily imagine that such an abstract exe-
cution would explode beyond feasibility if applied to longer program schemata.
However, the pragmatics of program transformation rules (used for verification)
make the considered program fragments short enough to keep the execution by
RJava lift feasible.

Another issue is that the syntactical categories of schema variables, while
sufficient for the proof rule, are not detailed enough to induce a unique execution
by RJava , which for instance would need to distinguish between local variables
and object fields as instances of l. This problem is addressed by the generation
of all possible (and often very many) combinations.

One of the potential errors in a transformation rule is that certain instan-
tiations are forgotten, namely those in which the instance of different schema
variables coincide. The validation takes care of this by creating all possible uni-
fying combinations of variables before checking for equivalence.

Besides our restriction to transformation rules, we are further constrained by
the fact that RJava , in its current form, does not support all features of sequential
Java. In spite of those restrictions, we could apply the automated validation to
56 rules, three of which turned out to be incorrect. We also discovered some
errors in the semantics. As noted in [10], the whole process can be understood
as a mutual debugging, which we consider very natural in a context where the
ultimate reference (here the Java language specification [7]) is informal.



In general, what we needed for our purpose was a semantic formalism which is
executable yet abstract. Rewriting logic, with its special support for associativity
and commutativity, suited this purpose well. For instance, we need to represent
a memory and all we know is that it maps a location L to a value V. The
memory can be represented by [L,V] rm, with rm being a constant representing
the arbitrary rest of the memory, and the juxtaposition with empty syntax being
the associative and commutative multiset union, allowing us to abstract away
from the concrete position of the location L in the memory. Such abstractions are
heavily used in semantics formulated in a rewriting logic framework [10], where
states are concrete but left hand sides of rewrite rules are abstract. We need
abstraction even more, as in our lifted semantics even the states are abstract.

The paper is structured as follows. In the next two sections we present the
two formalisms which we are concerned with: the program transformation rules
of the JavaDL calculus (Sect. 2) and the rewriting logic which we use as basis for
the validation (Sect. 3). Our approach to validate program transformation rules
is then described in Sect. 4. In Sect. 5 we explain our lifting of the semantics. In
Sect. 6, our implementation and experiences are sketched, before we conclude in
Sect. 7 with a comparison to other approaches.

2 A Calculus for Java Source Code Verification

The KeY system aims at the deductive verification of sequential Java programs.
The verification is based on a sequent calculus for JavaDL, which covers, among
the propositional and first-order rules, full sequential Java4.

Java Dynamic Logic (JavaDL) is a multi-modal logic, described in detail
in [2]. For the purpose of this paper it is sufficient to state roughly that sub-
formulae can be of the shapes [π]φ and 〈π〉φ, where π is a sequence of Java
statements and φ is again a formula. The intuitive meaning of [π]φ is that,
if π terminates normally φ holds in the final state; 〈π〉φ means that π must
terminate and afterwards φ must hold. The logic is closed under the usual first-
order quantifiers and junctors, so the typical Hoare triple {ψ}π{φ} is formalized
as ψ → [π]φ. In the following we only consider formulae with modality 〈·〉, the
other modality is treated exactly the same way.

Example 1. For local variables i and j of type int, the following JavaDL for-
mula, which is valid in all states, says that after executing the piece of Java code
in angled brackets j ∗ j equals i:

〈i=(j=i)∗(i++);〉 j ∗ j
.
= i (3)

The JavaDL calculus rules that work on sequents consisting of JavaDL for-
mulae can be divided into the following categories:

4 More precisely, the target language is JavaCard, but the calculus covers a larger
fragment of Java which can be characterized as Java with exactly one thread and
without garbage collection.



1. axiomatic program transformation rules,
2. axiomatic rules connecting the program and first order logic,
3. axiomatic first-order or theory specific rules,
4. derived rules, i.e. rules whose application could be simulated by applying a

series of axiomatic rules,
5. axiomatic rules that apply state changes (updates) on first order formulae.

The basic concept behind the JavaDL calculus is the paradigm of sym-
bolic execution. In order to resolve a formula 〈π1 . . . πn〉 φ (with statements
π1, . . . , πn), π1 is taken into focus first. If it contains complex expressions, like
i=(j=i)∗(i++);, rules of group 1 transform it into less complex expressions, in
our example to int eval1=(j=i); int eval2=i++; i=eval1*eval2;. Other-
wise the state change of the first statement is, by applying rules of group 2, mem-
orized as an update written in front of the modality. E.g., (3) is transformed—
by several rule applications—into the equivalent formula U 〈〉 j ∗ j

.
= i where

U = {i := i ∗ i, j := i} is an update capturing the effect of the considered
code as a parallel assignment to i and j. When code in a modality is completely
worked off, rules of group 5 make the formula pure first order, by simplifying
and executing the accumulated updates.

All of the rules from the groups 1 to 4 are implemented as taclets [3]. Taclets
are representations of traditional rule schemes, but additionally have an oper-
ational meaning. Also, they embody a precise notion of schematic expressions.
This work is only concerned with taclets of group 1. These taclets are mostly
concerned with correctly reflecting the sophisticated evaluation order of com-
plex Java expressions. Due to this non-trivial task and the sheer number (see
Sect. 6) of rules of this kind, correctness checks are highly desired. In the sequel,
we will detail only those parts of taclets which are relevant for this work.

A program transformation rule is written as a taclet as follows:

find(〈Π rs〉 b) varcond(new T1v1, . . . , Tnvn) replacewith(〈Π ′ rs〉 b) (4)

where Π,Π ′ are (schematic) sequences of Java statements. We call taclets which
comply with this shape program transformation taclets (PTT). Intuitively, such
taclets implement the concept of rewrite rules: when they are applied during
proof construction, an occurrence of a formula 〈Π rs〉φ is rewritten to 〈Π ′ rs〉φ.
Π ′ may contain new program variables declared in the varcond section.

Example 2. This is a PTT:

find(〈l = e ∗ n; rs〉 b)
varcond(new typeof(e) v1, typeof(n) v2)
replacewith(〈typeof(e) v1 = e; typeof(n) v2 = n; l = v1 ∗ v2; rs〉 b)

(5)

Traditionally, one would denote the represented sequent rule as (2). Note how-
ever, that—in contrast to that rule—the taclet is applicable on both sides of
the sequent, and even on sub-formulae of sequent formulae. Most importantly
however, side conditions on the instantiations of the rule schema are explicitly
defined with taclets.



Table 1. Schema variable sorts and instantiations for Example 3

Schema variable sort Conditions on instantiations ι
Schema var.
in (5)

ι in (3)

Formula ι is a formula b j ∗ j
.
= i

Expression ι is an expression e (j=i)

Lefthandside ι is a local variable or a field with
either no prefix or a prefix not
possibly causing side-effects

l i

v1 eval1

v2 eval2

NonSimpleExpression ι is an expression but does not sat-
isfy the Lefthandside condition and
is not a (possibly negated) literal

n i++

RemainingStatements arbitrary sequence of statements rs (empty)

Clearly, a taclet must be interpreted as a pattern: For instance, (5) should
be applicable for all formulae b, for all Java expressions l, e, n, v1, v2 which
satisfy certain criteria, and for all sequences of Java statements rs. Expressions
in taclets usually contain schema variables (printed in sans-serif here) to capture
this need for genericity. When a taclet is applied, schema variables are instan-
tiated with concrete expressions. Schema variables are assigned conditions and,
in a special declaration section, sorts. Conditions and sorts determine which
concrete expressions are legal instantiations for the schema variable. A taclet
is applicable if there are legal and consistent instantiations of all the schema
variables of the taclet. Table 1 gives an overview of the most important schema
variable sorts. All terminology in this table refers to [7]. For PTTs, there is only
the condition varcond(new T1v1, . . . , Tnvn), which requires instances of v1, . . . , vn

to be fresh and of the (Java) types T1, . . . , Tn.

Example 3. Consider Table 1. Let the schema variables of the taclet (5) be de-
clared as shown in the third column. The instantiations in the last column sat-
isfy the conditions imposed by the second column and by the varcond condition
of (5). Thus, taclet (5) is applicable to formula (3).

Taclets can be applied in a proof through either user interaction or the auto-
mated deduction engine. The effect of an application of a PTT is quite intuitive:
the occurrence in the formula matching the find part of the taclet is replaced by
the instantiated version of the replacewith part.

There is another bit to make the description of PTTs complete: The typeof(·)
construct provides taclets with the static types of (instantiated schematic) ex-
pressions. This meta construct [3] allows for introducing declarations into the
results of taclet applications as the following example demonstrates.

Example 4. When the taclet (5) is applied to (3) the following formula results:

〈int eval1=(j=i); int eval2=i++; i=eval1*eval2;〉 j ∗ j
.
= i

Because of the variable condition in (5) two new variables of type int have been
introduced since the expressions j=i and i++ are both of that type.



3 The Rewriting Logic Semantics of Java

In this section, we introduce the semantics we validate against, and the frame-
work in which it is formalized.

3.1 Rewriting Logic and Maude

Rewriting logic [9] is the logical framework in which the semantics of Java we
want to use is given. A (simplified) rewrite theory is a triple (Σ,E,R) where
(Σ,E) is an equational theory with the signature Σ of operations and sorts
and the set E of equations, and R is a set of rewrite rules. The equations and
rewrite rules can also be conditional. The rewrite rules are always used modulo
the equations. A rewrite rule t ⇒ t′, with t and t′ terms over the signature Σ,
is an inference from a logical point of view while from a computational point of
view it is a concurrent transition of states.

Maude [5] is a high performance implementation of rewriting logic. Equa-
tions in Maude theories are directed, have to be terminating and need to have
the Church-Rosser property. In Maude we mostly work on multisets as data
structures due to the possibility of using the internal associativity, commutativ-
ity and identity axioms which are declared as attributes for an operator.

3.2 The Maude Rewriting Semantics of Java RJava

The rewrite theory for Java semantics5, called RJava in the sequel, was developed
by Feng Chen at the University of Illinois at Urbana-Champaign and presented
in the paper [6]. This rewriting logic theory is given as an executable specifica-
tion in Maude, thus it gives us a Java interpreter for free. The semantics uses
continuation-passing style (CPS) to keep track of the code which is to be exe-
cuted. Continuations can roughly be seen as an executable stack of statements
which can be restored anytime. The semantics uses an explicit environment and
memory model, i.e. variables are mapped to locations inside the environments
and those locations are mapped to values in the memory. We call the whole state
information, including the memory and environments, configuration from now
on. As is usual within such rewriting logic specifications most rewrite rules and
equations can be used locally and do not need to specify precisely the rest of the
state in which they can be used. There is no documentation by the developers
of this Java semantics but to get an impression on how it is structured we rec-
ommend the paper [11] where a (simpler) semantics for a CaML-like language
has been developed in great detail. For a more general account of the design of
such semantics, and on Maude as a semantic framework, see [10].

In Fig. 1 we present the configuration parts of RJava in Maude-style notation.
With code1 and code2 being code pieces which shall be executed sequentially,
the continuation looks like (a): k wraps a continuation so it can later be used
inside a multiset. The environment (b), wrapped by e, maps variable names

5 This Maude theory can be downloaded from http://fsl.cs.uiuc.edu/javafan/



(a) Continuation: k(code1 −> code2 −> . . .)
(b) Environment: e([X1, L1 ] [ X2, L2] . . .)
(c) Context: c(k(code1 −> code2 −> . . .), e([X1,L1] [X2, L2] . . .), o(currObj))
(d) Memory: m([L1, V1] [L2, V2] . . .), n(I)
(e) Static env.: s( staticEnv)
(f) List of classes: cl ( listOfClasses )

Fig. 1. Important parts of an RJava configuration

Xi to locations Li. The continuation, environment, and additionally the current
object currObj, constitute one part of the overall configuration, the context (c).
Moreover, explicit memory (d) is needed, mapping locations Li to values Vi. The
next free location in the memory is denoted by an integer I . Other parts of the
configuration are the static environment staticEnv and the list listOfClasses of all
classes, used for instance in method lookups.

These items (and a few more which we omit here) are put together under the
run operator. Any such configuration can be executed by RJava .

run(c(k (...), e (...), o (...)), m (...), n (...), s (...), cl (...))

Note that the comma ‘ ,’ here is a multiset-union operator, both inside run and
inside c. As an example of a rewrite rule operating on such a configuration, we
show the rule for writing to the memory:

=> c(k(change(V, L) −> K), Cnt),
=> m([L, V’] M)
=> c(k(K), Cnt),
=> m([L, V] M)

In this rule the actual Java code has been evaluated long enough to have been
reduced to change(V, L). K matches the rest of the continuation. The context
Cnt matches the subset of all other components wrapped inside c, apart from
the explicitly given k. In the memory at location L there is a value V’ which is
overwritten. The rest M of the memory remains unchanged and the change code
has disappeared from the continuation after its execution.

3.3 Limitations of RJava and Improvements

RJava is a prototypic formalization of the Java semantics, and therefore has a
couple of limitations, which restrict the number of transformation rules to which
we can apply our approach (see Sect. 6). Some interesting Java features are not
modeled, such as abrupt termination, switch, conditional expressions, method
overloading, and static class initialization. Some other features were realized
in an incomplete or faulty manner. During the realization of our approach, we
fixed several of these shortcomings. Finally, we have added additional features
to RJava by introducing type checks for assignments and type casts. More on
the improvements to the original RJava can be found in [12].



4 Validating Program Transformation Rules

The style of semantics formalized in the rewriting logic framework partly builds
on the tradition of structural operational semantics (SOS)6. One central para-
digm is to include a ‘still-to-be-executed’ program in the state of execution
which is modified as execution proceeds. In SOS, one notationally separates
the program π from the rest of the state, by writing (π, s). Correspondingly,
by (π0, s0) → (π1, s1) we mean that there is a number of steps after which the
execution of the program π0, when started in s0, results in the program π1 to
be executed from state s1.

7 A special case is (ππrs , s0) → (πrs , s1), where the
second program πrs (remaining statements) is a suffix of the first, and a certain
number of execution steps will resolve π completely, while πrs is still untouched.

Now, a transformation rule of the shape (1) (or a corresponding PTT (4))
is sound if the following holds for all programs π matching the schema Π ,
all programs π′ matching the schema Π ′, all arbitrary programs πrs , and all
states s0 being ‘admissible’ w.r.t. ππrs and π′πrs : If (ππrs , s0) → (πrs , s1) and
(π′πrs , s0) → (πrs , s

′

1
), then s1 and s′

1
are ‘equivalent’. We defer a discussion of

state equivalence to Sect. 5.3. A state is called admissible w.r.t. some programs
if those programs can possibly be executed starting from this state. For instance,
the state must, in its environment, map all variables in π to some locations, and
in its memory, map all those locations to values.

The above statement is quantified over infinitely many programs π, π′, πrs

and states s0. The goal is, however, to have an executable criteria for the state-
ment. In short, the idea is to define a lifted semantics, executing the schematic
programs Π and Π ′ directly, working on generic states. With such a semantics
at hand, the ‘universally quantified’ soundness criteria given above reduces to
showing: If (Π rs, sΠ,Π′ ) → (rs, s) and (Π ′ rs, sΠ,Π′) → (rs, s′), then s and
s′ are equivalent, where sΠ,Π′ is the generic state being admissible w.r.t. Π and
Π ′, and rs is a generic constant representing the ‘remaining statements’, not
being executed. For instance, validating the PTT (5) (or equivalent the rule (2))
amounts to executing both
– l = e * n; and
– typeof(e) v1 = e; typeof(n) v2 = n; l = v1 * v2;

from the generic state admissible for both, and comparing the results.
The realization of this approach is elaborated in the next section.

5 Lifting the Semantics

In order to enable the execution of schematic code, we can first of all turn several
less problematic schema variables into generic constants, allowing the rewrite
rules to perform symbolic computation. This, together with the complication
of meaningful typing, is discussed in Sect. 5.1. Schematic expressions, however,

6 See [10] for the similarities and differences.
7 The usage of → instead of

∗

→ conforms with rewriting logic rather than with SOS.



require some extra effort. Instances of schematic expressions might have arbi-
trary side effects on the state, but we do not know which. Moreover, the same
schematic expression can appear more than once in schematic code, with the dif-
ferent appearances having different results and different side effects. Therefore,
evaluating schematic expressions requires extra constructs, which we introduce
in Sect. 5.2. Problems concerning fresh variables introduced by PTTs are solved
in Sect. 5.3, and in Sect. 5.4 we refine our analysis by nondeterministically iden-
tifying different schema variables.

5.1 Schema Variables versus Generic Constants

When preparing a piece of schematic code (like l = e * n;) for execution, we
model side-effect free schema variables as generic constants, with the effect that
the rules of the rewriting semantics will perform symbolic computation. Such
a generic constant is a true constant only to rewriting logic, i.e. on a technical
level. Intuitively, however, it acts as a representative of any fitting expression.
By side-effect free schema variables, we mean those where instantiations are
restricted to expressions which, by their syntactic nature, cannot possibly have
a side-effect. Luckily, the taclet language provides this information, among other
things, by sorts (which we have not spelled out in taclet (5), but indicated in
the first column of Table 1). It is actually the very purpose of sorts in the taclet
language, to constrain the applicability of taclets during proof construction. It
is not surprising that, for the sound application of certain rules, it matters a lot
whether or not side-effects can arise. Here, the needs of theorem proving match
well with the needs of symbolic computation, where side-effects matter even
more. In the example, l is of sort Lefthandside, a sort which happens to embody
side-effect freeness. Therefore, l can in principle be turned into a generic constant.

Unfortunately, we also have to deal with a certain mismatch between program
logic rules and symbolic computation via a rewrite semantics. The latter is,
even if symbolic, yet more concrete. For instance, a schema variable of type
Lefthandside can be instantiated with either of: a local variable, a static field, or
a field of the current object. As the rewriting semantics executes these different
possibilities each in a different way, our approach requires to test out all of them.
As we usually have several schema variables in a taclet, all possible combinations
must be checked in the validation. This leads to an explosion of combinations.
Fortunately, programs in PTTs are by their very nature quite small, containing
usually at most five schema variables, which is why this approach is feasible.

5.2 Computing with the Unknown

Even with the help of generic constants, RJava per se does not provide means to
‘execute’ arbitrary unknown expressions possibly having side-effects, like those
matching the sorts Expression or NonSimpleExpression. To be able to treat
those, we lift RJava to a rewrite theory for schematic Java (RJava lift ) as described
in this section. First of all, we note that the same expression, when executed twice
in different states, can have different side-effects and results. On the other hand,



when executed twice but starting in the same state, side-effects and result will be
identical. Therefore we introduce snapshots of the state capturing those parts of
the configuration which both side-effects and result can depend on. This allows
to compare two states in which such an expression is executed, and to decide
whether the side-effects and results of two evaluations are the same.

We demonstrate the concept of snapshots by an example configuration in
Fig. 2.a. All the sans-serif typed elements are operators of the semantics whereas
the others represent elements of the appropriate types.

(a) run(c(k(Code), e(Localenv ),
o(Currentobject )),
m(Memory), n(Nextfreememcounter ),
s(Staticenv ), cl(Listofclasses),
nextSnapshot(Natnextsnapcounter ),
snapshots(Snapshotlist ), ...)

(b) (snap(Natnextsnapcounter ),
c(e(Localenv ), o(Currentobject )),
m(Memory))

Fig. 2. An example configuration (a) and a fitting snapshot (b)

Fig. 2.a shows that we extend the structure of configurations by a Snapshotlist
and a Natnextsnapcounter (syntactically wrapped by snapshots or nextSnapshot,
respectively). The snapshot taken for this very configuration is depicted in
Fig. 2.b. Its first element (snap(Natnextsnapcounter ) in this case) acts as a name
for the snapshot, to be used as a parameter elsewhere (see below). After such a
snapshot is taken, it is added to the Snapshotlist , and the Natnextsnapcounter is
incremented. Using snapshots, we can now represent the state-dependent evalu-
ation of unknown expressions. For that, what remains is to model the effect of
an arbitrary side-effect on the memory.

The side-effects of any expression can be viewed in the following way: a num-
ber n of memory locations L1, . . . , Ln is updated with certain values V1, . . . , Vn.
We however do not know any of L1, . . . , Ln or V1, . . . , Vn, nor even the number n
of affected memory locations. Therefore, when modeling the side-effects of a sym-
bolic expression e, to be evaluated in a symbolic state s, we represent L1, . . . , Ln

by the symbolic location list Ll(e, s), parameterized over e and s. Accordingly,
V1, . . . , Vn is represented by the symbolic value list Vl(e, s). Furthermore, we ac-
tually do not use the full (symbolic) state for s, but only the name of the state’s
snapshot.

Now, when executing the so represented symbolic side-effects on the memory,
we replace the value of each memory location with a ‘kind of’ conditional term,
called extended conditional value. (Simple conditional terms are insufficient for
this task.) Suppose that, before executing e, some particular symbolic memory
location L holds the particular value V . The execution of e triggers that V is
rewritten to the extended conditional value

L in Ll(e, s) ?? Vl(e, s) :: V



This construct represents the new value and has the following meaning: if L is a
member of the list Ll(e, s) then the resulting value is the corresponding element
in the list Vl(e, s). Otherwise the result is V , which was the old value. Note that
this replacement is performed at each location/value pair in the memory, but
everywhere using the according L and V .

Extended conditional values cannot be further evaluated (since expressions e
are symbolic) but instead remain in the memory as they are, which is fine since
we just aim at comparing two resulting states.

We illustrate the lifted semantics with the help of the following example:

Example 5. The following taclet is a slight variation of (5) but it is unsound
since the order of evaluation is wrongly simulated:

find(〈l = e ∗ n; 〉 b)
varcond(new typeof(e) v1, typeof(n) v2)
replacewith(〈typeof(n) v2 = n; typeof(e) v1 = e; l = v1 ∗ v2; rs〉 b)

After processing both programs as described above, we end up with the following
two values as memory contents at the location that l is mapped to. To simplify
the presentation, we omit certain complications of purely syntactical kind here.
i stands for the initial snapshot counter.
– ( resultof e in snap(i ) ) ∗ ( resultof n in snap(i+1) )

– ( resultof e in snap(i+1) ) ∗ ( resultof n in snap(i ) )

A further analysis of the snapshots with names snap(i ) and snap(i+1), which
could in principle be equal but are different in this case, finally reveals that the
two considered programs are in fact different in result and side-effects. To better
understand the actual side-effects, just imagine we had in our memory any other
location, say, l1 , with value v1. Executing both programs would then lead to
replacing v1 by one of the following new values, respectively:
– l1 in Ll(n, snap(i+1)) ?? Vl(n, snap(i +1)) ::

( l1 in Ll(e , snap(i )) ?? Vl(e , snap(i )) :: v1)

– l1 in Ll(e , snap(i+1)) ?? Vl(e , snap(i +1)) ::

( l1 in Ll(n, snap(i )) ?? Vl(n, snap(i )) :: v1)

5.3 State Equivalence

Recall that, after ‘running’ (Π rs, sΠ,Π′) → (rs, s) and (Π ′ rs, sΠ,Π′) →
(rs, s′), we require s and s′ to be equivalent. We now explain what we mean
by that. The states s and s′ are considered equivalent if they are equal modulo
new variables. A variable is called new if it is introduced by the transformation,
and thus only appears in Π ′, and is freshly declared therein. Examples of such
new variables are v1 and v2 in rule (2) and PTT (5).

The need for an extended notion of equivalence is obvious: variables newly
introduced in Π ′ appear in the configuration representing s′, but not in the
configuration representing s, which is why these configurations cannot possibly
be entirely equal. However since new variables cannot appear in the remaining



code rs, they could just as well be removed before executing rs. This is however
not what the semantics does, as it is not designed for being aware of variables
appearing anymore or not. Instead, we realize a certain removal of new variables
within the ‘comparison modulo’ of resulting states. This is part of the rewrite
theory for validating transformation rules, RJavavalTransf

8, which further extends
RJava lift .

To get a handle on when to perform the comparison modulo we use a new
marker, the pause operator, to indicate where the ‘interesting’ part of the program
(either of Π or Π ′) is over, with only some ‘uninteresting’ rest rs left. Note that
the following rewriting logic rule, which triggers the comparison modulo, only
matches continuations starting with pause:

= compareResultsModNewVars(run(c(k(pause −> K), context), state),
= compareResultsModNewVars(run(c(k(pause −> K), context’), state’))
= compareResult(removeNewVarsLocs(run(c(k(pause −> K), context), state)),
= compareResult(removeNewVarsLocs(run(c(k(pause −> K), context’), state’)))

= compareResult(run(c(k(pause −> K), context), state) ,
= compareResult(run(c(k(pause −> K), context’), state’) )
= == run(c(k(pause −> K), context), state)
= == run(c(k(pause −> K), context’), state’)

First, the new variables are removed from environments and memories in the ac-
tual state and in the snapshots. The ‘cleaned’ resulting states are then compared
using Maude’s default equality check ==.

5.4 Identical Instantiation of Different Schema Variables

As mentioned in Sect. 1, it can easily be forgotten that, in situations where a
PTT applies, different schema variables can match the same instantiation.

Stenzel [13] remarks that a transformation x=y++; x=y; y=y+1; is wrong
since an assignment x=x++; leaves x unchanged, while x=x; x=x+1; increments
x (according to [7]). Stenzel discovered the erroneous transformation, which was
part of his calculus, by an ‘on paper’ verification of the rules. Remarkably, the
calculus we investigate here carried the same error, in the form of the taclet:

find(〈l1=l2++; rs〉 b) replacewith(〈l1=l2; l2=l2+1; rs〉 b)

Our automatic validation detects errors of this kind by means of nondeterministic
rewrite rules for the generation of configurations, and using the Maude support
for exhaustively trying out all branches. In our example, l1 and l2 are identified
on the one branch, and distinguished on the other. Note that the whole idea of
‘running’ a schema Π instead of its instances π (Sect. 4) would be unsound if
we forced constants representing unknowns to be different.

8 Available at http://i12www.ira.uka.de/˜aroth/download/maude/.



6 Automated Validation and Results

Our approach to validate the PTTs of KeY is implemented as a completely
automated process. It consists of two steps: (1) Using the taclet infrastructure
of KeY, the code transformation of each PTT is extracted and Maude code is
generated which triggers the generation of start configurations and (2) Maude
builds the actual start configurations and executes them as input to RJavavalTransf .

In the first step two tasks are accomplished: The Java syntax of the PTTs
is transformed to that used by RJava (and RJavavalTransf ), which slightly differs
from the standard syntax. More importantly, schema variables are replaced by
concrete generic constants as described in Sect. 5.1. Depending on the schema
variable sort several start configurations are generated, each containing another
generic constant. If there is more than one schema variable in the considered
programs, all combinations of their generic instantiations are generated.

KeY currently contains around 210 PTTs (of around 480 Java related rules).
We could not check all of them mainly because of the prototypic nature of the
Maude Java semantics RJava (Sect. 3.3) and because some (37) contain advanced
meta constructs which capture program transformations not expressible by pure
schematic means. Despite these restrictions, 56 PTTs are currently treatable.

Our checker identified three unsound taclets, one as reported in Sect. 5.4, one
for the analog case of the decrement operation, and one which was caused by
evaluating a side-effect twice. With the help of logging output, one could quite
easily find out in which cases problems occurred. After correcting the three rules,
we were able to validate all of the 56 PTTs. The runs are sufficiently fast (around
3 minutes), thus confirming our estimations from Sect. 5.1 that the combinato-
rial explosion of cases is irrelevant for our purposes. Our implementation is now
already used in practice within the KeY project. Nightly runs ensure that acci-
dentally introduced mistakes in the rules are detected as soon as possible.

7 Conclusions and Related Work

The described approach achieves a completely automated validation of program
transformation rules of the JavaDL calculus against a semantics in rewriting
logic, a high level declarative formalism. The validation machinery is almost
entirely defined in rewriting logic itself. For the purpose of validating transfor-
mations, we exploited (a) the precise formalization of the JavaDL rule schemas
as taclets and (b) the executability of the rewrite semantics. As a major contri-
bution, we lifted the Java rewrite semantics to deal with schematic programs.
Moreover, we solved the issues arising from a certain mismatch in the typing sys-
tems of both formalisms, from newly introduced variables, and from potentially
identical instantiations of different schema variables.

There is extensive literature relating program logic calculi and language se-
mantics. We restrict ourselves to works targeted at similarly complete calculi over
similarly complex languages (which actually happens to further narrow down to
calculi over Java only).



We start with work targeting the same calculus. [4] describes how a taclet-
specific mechanism ensures the soundness of derived rules (group 4 in Sect. 2).
It creates correctness proof obligations from taclets, rendered in the object logic.
In contrast to our work on axiomatic transformation rules, the justification of
derived rules does not involve a definition of the (Java) semantics. In that respect,
what comes closer is the work of K. Trentelman [14] on three JavaDL rules of
group 2 (which connect the program and the logic part of sequents). Those taclets
are proven correct w.r.t. a formalization of Java in Isabelle/HOL, called Bali. The
whole metatheory for relating both formalisms is explicitly formalized within
Isabelle/HOL. The correctness proofs of the taclets are therefore completely
formal, and machine checked, but require non-trivial interaction.

In the LOOP project [8], a denotational semantics of Java is formalized as
a PVS theory. Java programs are compiled into semantical objects, and proofs
are performed in the PVS theory directly. On top of that, a Hoare-style and
a wp style calculus are formalized as a PVS theory, and verified against the
semantics within PVS. As opposed to ‘usual’ Hoare-style or wp calculi, these
ones work on the semantical objects, not on the syntax of Java.

In [13], K. Stenzel reports on an ‘on paper’ verification of his dynamic logic
calculus for Java against a big-step semantics for Java he developed as well. He
found three mistakes in the calculus, one of which was also present in two rules
of the calculus we consider here (see Sect. 5.4). We profitted from that work in
the sense that it made us aware of the identical-schema-variable-instantiations
problem. As a result, our mechanism can (and did) detect mistakes which are of
this nature.

Except from [4], all these approaches have in common that the rule veri-
fication is performed by interacting with a proof system, or even by hand. In
contrast to this, our approach is much more lightweight, as the ‘mental reason-
ing’ which determines for instance our lifting of the semantics, is not captured
by a formal meta theory of any kind, thereby gaining a lower level of certainty.
On the other hand, we achieve a fully automatic validation of more than 50 rules
though the used semantics does not cover all features of (sequential) Java yet.
We will however need to investigate whether our ‘lifting features’ are already
sufficient or need further extension when the coverage is extended.

Another future work is to weaken the now very restrictive form of transfor-
mation rules, to also cope with simple dependencies from the logical context of
the programs. This would allow for handling certain branching rules as well.

We consider it a strength of the approach (and the same holds for [14])
that the two artifacts, calculus and semantics, are defined in very different for-
malisms, by different people, for different purposes. We believe that some of the
certainty which we lose by not performing formal meta reasoning is regained by
the different origins of the formalisms we use for cross-validation.
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