
IJCAR 2004
Second International Joint Conference on Automated Reasoning

University College Cork, Cork, Ireland

Workshop Programme

Workshop on Disproving:
Non-Theorems, Non-Validity,

Non-Provability

Wolfgang Ahrendt, Peter Baumgartner,
Hans de Nivelle (Chairs)

WS 1 – July 5

Preface

Our field is called automated theorem proving because traditionally it has been con-
cerned with the art of finding proofs automatically. In the beginning, researchers were
motivated by the wish to build computer systems that can automatically solve hard,
mathematical problems. When searching for a hard proof, it is acceptable for a system
to eat up all resources and not to recognise false theorems.

However in the last years, one has become aware of the fact that for applications,
one also needs to be able to efficiently identify non-theorems. For example, automated
theorem proving systems are now being used as assistants which must automatically
solve easy subtasks in large, interactive projects. For such problems, the expectations
to the automated theorem prover are different: The input problems are not terribly
hard, usually contain additional irrelevant information, and often they are not provable.
In case the subgoal is incorrect, it is not acceptable to simply remain silent and consume
all resources in an interactive system.

Apart from the applications, the field of disproving has triggered many interesting
theoretical research questions, which are interesting on their own. For example, one of
the contributed papers addresses the problem of how to repair (modify) a non-theorem
in such a way that it becomes a theorem.

We also have two contributions about finding counter-models in non-standard logics.
One of the contributions addresses this problem for resource logics, the other for Gödel-
Dummett logic.

The workshop consists of seven contributed talks and one invited talk by Alan
Bundy with title Finding and Using Counter Examples. In addition, we share an in-
vited speaker, Toby Walsh, with the Workshop on Pragmatics of Decision Procedures
in Automated Reasoning. We are grateful to the organisers, Silvio Ranise and Cesare
Tinelli, to make this possible. We thank our PC for their reviewing efforts:

Christian Fermüller Ulrich Furbach
Bernhard Gramlich Deepak Kapur
Bill McCune Renate Schmidt
Carsten Schürmann Graham Steel
Cesare Tinelli Andrei Voronkov

We are indebted to Andrei Voronkov for providing an installation of his PC-expert
system, which greatly simplified organising the reviewing work.

June 2004,

Wolfgang Ahrendt, Peter Baumgartner, Hans de Nivelle

i

Contents

Unsound Theorem Proving
Christopher Lynch 1

The TM System for Repairing Non-Theorems
Simon Colton and Alison Pease 13

Bounded Model Generation for Isabelle/HOL
Tjark Weber 27

Reducing Symmetries to Generate Easier SAT Instances
Jian Zhang 37

Finding and Using Counter-Examples (invited talk)
Alan Bundy 45

The Use of Proof Planning Critics to Diagnose Errors in the Base
Cases of Recursive Programs
Louise A. Dennis 47

Resource Graphs and Countermodels in Resource Logics
Didier Galmiche and Daniel Méry 59

Gödel-Dummett counter-models through matrix computation
Dominique Larchey-Wendling 77

ii

Unsound Theorem Proving

Christopher Lynch ∗

June 16, 2004

Abstract

We discuss the benefits of complete unsound inference procedures for efficient
methods of disproof. We give a framework for converting a sound and complete
saturation-based inference procedure into successive unsound and complete proce-
dures, that serve as successive approximations to the theory. The idea is to suc-
cessively add new statements in such a way that the inference procedure will halt.
Then the satisfiability is evaluated over a stronger theory.

We illustrate this framework with Knuth-Bendix Completion, and show that
in some theories these successive approximations become weaker and weaker, and
sometimes become a decision problem. Then we illustrate the framework with a
new method for the (nonground) word problem, based on Congruence Closure. We
show a class where this becomes a decision procedure. Also, we show that this
new inference system is interesting in its own right. Given a particular goal, in
many cases we can halt the procedure at some point and say that all the equations
for solving the goal have been generated already. This is generally not possible in
Knuth-Bendix Completion.

1 Introduction

The major problem in automated theorem proving, that of deciding the unsatisfiability
of a set of statements, is undecidable in general. This is true in first order logic and
equational logic, for example. There exist sound and complete theorem provers. If a
theorem prover is sound, then that means that when it gives a proof of a theorem, you
are guaranteed that it is correct. If a theorem prover is complete, then when a conjecture
is true, a proof is guaranteed to be found.

Automated theorem provers have been used to prove difficult theorems. But the
search space is so large that in practice, more efficient incomplete sound theorem provers
are often used. Then proofs can be trusted, but disproofs cannot.

Our focus in automated theorem proving is not in finding proofs for difficult mathe-
matical theorems. Instead, we are interested in using theorem provers to solve verifica-
tion problems. When used in that context, many of the conjectures given to a theorem
prover will be false. So we would like to be able to trust a result that a conjecture is
false. In that case, incomplete theorem provers are useless. Also, complete and sound
theorem provers are generally not so efficient.

∗Department of Math and Computer Science, Clarkson University, Potsdam, New York,
clynch@clarkson.edu (on sabbatical at Naval Research Laboratory)

Therefore, we create a framework for unsound complete theorem provers for disprov-
ing conjectures. This technique is useful to weed out theorems which are obviously not
true. There are simple examples where theorem provers run forever trying to solve con-
jectures that are trivially false to a human. In addition, we could use an unsound and
complete theorem prover in combination with a sound and incomplete theorem prover
to approximate a conjecture from both sides.

The framework given in this paper is for saturation theorem provers, which operate
by continually inferring new statements implied by previous statements. Our framework
consists of a modification to a saturation theorem prover. We modify it by adding
statements that are not necessarily implied by previous statements. These potentially
false statements are chosen in such a way as to force the theorem prover to halt. The
effect of this is to evaluate a stronger conjecture. The procedure is complete, so that if
the stronger conjecture is false, then the given conjecture is false. The theorem prover
has approximated the theory with a stronger theory: an unsound approximation.

We iterate this process. We run the theorem prover again, but this time try to
approximate the theory with a weaker theory than before In this way, we continually
approximate the given theory.

In our framework, we have also shown that it is possible to create a weak approx-
imation, and gradually attempt to make this approximation stronger. We iterate the
construction of the two approximations, one strong and one weak. Anything found true
in the weak one is true, and things found false in the strong one are false. In some cases
this becomes a decision procedure.

For examples, we instantiate this framework with two concrete inference systems.
First is Knuth-Bendix Completion [3], where we show a class of theories where this
becomes a decision procedure. However, the direct purpose of this paper is not in
finding new decision procedures; that is only an example of the kinds of things that can
be done within this framework.

The second inference system which we use to instantiate this framework is a new
inference procedure, as far as we are aware. It is based on Abstract Congruence Closure,
for ground equational theories [4, 6] which we extend to nonground theories. For this
inference system, we show that it is sometimes possible to examine the set of equations
during the derivation and deduce that the conjecture can never be proved from this point.
This is generally impossible to do in theorem proving, because even if the equations
become large, it is always possible that an equation can be simplified to a smaller one.

In Section 2, we introduce theorem proving derivations, and give the framework
for unsound theorem proving. In Section 3, we instantiate the framework with Knuth-
Bendix Completion. In Section 4, we introduce Nonground Congruence Closure and
instantiate the framework with that. We conclude the paper with a discussion of how to
apply this method to Resolution and Paramodulation inference systems, and a compar-
ison with related work. This paper does not contain any of the proofs. All of the proofs
and all of the technical details can be found at www.clarkson.edu/~clynch/papers/uf.ps/

2

2 Framework

Basic definitions of Theorem Proving Derivations are from [2, 9]. A saturation inference
system is an inference system that starts with some set of statements, and uses trans-
formation rules to create new statements and delete old ones. Transformation rules are
of the form Γ −→ ∆, where Γ and ∆ are both sets of statements. The meaning of a
transformation rule is that the statements in Γ should be replaced bhy the statements
of ∆. There are two kinds of transformation rules: inference rules and deletion rules.
Inference rules are of the form {C1, · · · , Cn} −→ {C1, · · · , Cn, C}. It indicates that in
the presence of C1, · · · , Cn, C should be added. We will write that inference rule in the
following notation:

C1 · · ·Cn

C

Deletion rules will be of the form {C1, · · · , Cn} −→ {C2, · · · , Cn, D1, · · · , Dm}. This
means that if the statements C1, · · · , Cn exist in the current set of statements, then C1

should be deleted and D1, · · · , Dm added. Inference rules represent rules that must be
performed in an inference procedure, and deletion rules may be performed if desired.

Given a set of inference rules I and deletion rules D, an (I,D) theorem proving
derivation is a (possibly infinite) sequence S1, S2, · · · of sets of statements such that
each Si+1 is obtained by applying an inference rule from I or a deletion rule from D to
clauses of Si. We define S∞ =

⋃
i>=1

⋂
j>=i Sj The clauses in S∞ represent the set of

persistent statements, i.e., the statements that are never deleted. Given a set of inference
and deletion rules, since we assume they are applied according to some strategy, then
we can assume there is one theorem proving derivation for each set of statements.

We assume a well-founded ordering < on the statements. Based on that ordering,
there is a notion of redundancy. A statement C is redundant in S if there are state-
ments C1, · · · , Cn ∈ S such that each Ci < C for all i, and C1, · · · , Cn |= C. We will
construct the deletion rules so that they cannot be performed unless C1 is redundant in
{C2, · · · , Cn, D1 · · ·Dm}. A set of statements S is said to be saturated if the conclusion
of every inference rule from S is either in S or is redundant in S. A theorem proving
derivation S1, S2, · · · is fair if for every inference from S∞ with conclusion C, there exists
an i such that C ∈ Si or C is redundant in Si. If S1, S2, · · · is fair, then S∞ is saturated.

The inference rules are sound if C1, · · · , Cn |= C. The deletion rules are sound if
C1, · · · , Cn |= Di for all i. Inference rules are designed so that each saturated set has
certain properties. The most common is the refutational property. In that case, we
distinguish a new atom called ⊥, usually called the empty clause, which indicates that
a set of statements is unsatisfiable. We have the important definitions of soundness and
completeness of an inference system.

Definition 1 A set of inference rules I and deletion rules D is sound if for every fair
theorem proving derivation S1, S2, · · ·, if ⊥ ∈ S∞ then S1 is unsatisfiable. I is complete
if ⊥ ∈ S for every saturated and unsatisfiable S.

It is obvious that a set of inference and deletion rules is sound if each individual
inference and deletion rule is sound.

3

Ideally, a theorem prover should be sound and complete. Then we are guaranteed
that the existence or non-existence of ⊥ determines whether a set of statements is
satisfiable or not. Of course, the problem of theorem proving is, in general, undecidable
for first order logic. So, in practice, theorem provers that have proved important results
are not always complete. For example, the Robbins Algebra problem was proved with
an incomplete theorem prover [8].

Throughout the history of automated theorem proving, until very recently, much of
the emphasis has been on solving very hard theorems. A theorem proving contest is run
every year at the CADE conference, with the main emphasis on proving unsatisfiability.
In the past, theorem prover developers have come up with methods which destroy the
completeness while retaining soundness, because this usually helped to find theorems
faster. A simple example of a sound and incomplete strategy is that strategy which
discards every clause with more than a given number of symbols.

In this paper, we are interested in satisfiability. Therefore, we will develop strategies
that destroy soundness but do not destroy completeness. Soundness of an inference
system is implied by soundness of the inference and deletion rules. We will relax that
requirement. In particular, we will allow unsound deletion rules, while still requiring
the inference rules to be sound. We will keep the requirement that deletion rules only
remove redundant statements. Therefore, the inference systems we consider will still be
complete, but not sound.

In the rest of this section, five different ideas will be discussed. First is the idea
of Unsound Theorem Proving. That is the idea of modifying a sound and complete
theorem proving procedure so that it may be unsound, but that it remains complete and
it terminates, so that it can decide satisfiability in some cases. The second well-known
ideas is Incomplete Theorem Proving which modifies a sound complete theorem proving
procedure so that it may become incomplete, but it remains sound and it terminates.
This procedure can show unsatisfiability but not satisfiability. The third idea is Iterative
Unsound Theorem Proving. This iterates Unsound Theorem Proving, with the goal of
becoming more and more sound each time, thereby proving the satisfiability of more
statements. The third idea is Iterative Incomplete Theorem Proving which iterates
Incomplete Theorem Proving, with the goal of becoming more complete each time. The
final idea is Iterative Unsound and Incomplete Theorem Proving, which simultaneously
iterates Unsound and Incomplete Theorem Proving.

The idea of Unsound Theorem Proving is presented now. After each inference rule
is performed, we look at the conclusion. In some cases, we will keep the conclusion. In
other cases, we will perform a deletion rule where the statements D1, · · · , Dm might not
follow from previous statements. Therefore, the inference rules remain sound, but the
deletion rules do not. This gives us an unsound but complete finite theorem proving
derivation. We will assume that all the Di come from a predetermined finite set F , so
it will prove whether or not a larger set of statements is unsatisfiable. If this larger set
is satisfiable, the original set is satisfiable. Since F is finite, this procedure must halt.

For Incomplete Theorem Proving, we also look at the conclusion of each inference.
If the conclusion is not in F , then we do not add it. Therefore, we lose completeness.
But since F is finite, the procedure terminates.

For Iterative Unsound Theorem Proving, we run the Unsound Theorem Proving
Procedure. If this returns “unsatisfiable” to us, then we cannot be sure that the answer

4

is correct, because of unsoundness. So we repeat the procedure with a larger set F .
And this process is iterated. Iterative Incomplete Theorem Proving is similar, except
that in this case we cannot trust a result of “satisfiable”, so in that case we iterative
Incomplete Theorem Proving for a larger value of F .

Iterative Unsound and Incomplete Theorem Proving is a combination of the two
processes. We choose an F , then run the Unsound Theorem Proving procedure for that
F . If it returns “unsatisfiable”, we run the Incomplete Theorem Proving procedure for
the same F . If that returns “satisfiable” we choose a larger value of F and iterate.

Define an F -replacement deletion rule as follows:

Definition 2 Let F be a set of statements. A deletion rule

C

D1 · · ·Dm

is an F -replacement if C 6∈ F and D1, · · · , Dm ∈ F .
Non-F replacement rules will always be designed so that every clause not in F is the

premise of a non-F replacement rule.

If I is a set of inference rules, and D is a set of deletion rules containing an F -
replacement rule, and F is a finite set, then every (I,D) derivation is finite, because
only statements from F are saved. The key idea of this paper is that a complete set of
inference and deletion rules can be augmented with an F -replacement rule, so that any
derivation from the augmented set of rules will halt, and if ⊥ is not generated from S
then S is satisfiable.

We describe the Iterated Unsound and Incomplete Theorem Proving Process. Let
S be the set of statements for which we want to decide satisfiability. Let I and D
be a sound and complete set of inference and deletion rules. Let F̂ = F1, F2, · · · be a
monotonic sequence of finite sets of statements, i.e., Fk ⊆ Fk+1 for all k. We define
F∞ =

⋃
k≥1 Fk. For each k let Ik be a modification of I such that all inferences with

a conclusion in Fk are not performed. For each k, let Dk be D augmented with an Fk

replacement rule. Then the (I,D, F̂) derivation from S is the following:
1. Let k = 1
2. Let Si,1, Si,2, · · · be an (I,Dk) derivation with Si,1 = S.
3. Let S′i,1, S′i,2, · · · be an (Ik, D) derivation with S′i,1 = S.
4. If ⊥ 6∈ S∞, halt and say SATISFIABLE.
5. If ⊥ ∈ S′∞, halt and say UNSATISFIABLE.
6. Let k = k + 1
7. Go to 2

We will show that this process is sound. In fact we extend the definition of soundness
to say that if ⊥ is not produced or if the function returns SATISFIABLE, then S is
satisfiable. The process is complete if F∞ contains all statements.

Theorem 1 Let I and D be a sound and complete set of inference and deletion rules.
Let F̂ be a monotonic sequence of finite sets of statements. Suppose that every (I,D)
derivation from S ⊆ F∞ only produces statements in F∞

1. Let S ⊆ F∞. Then if
1This is true, for example, if F∞ contains all statements.

5

the (I,D, F̂) derivation returns SATISFIABLE (resp. UNSATISFIABLE) then S is
satisfiable (resp. unsatisfiable). Also, if S is unsatisfiable, then the (I,D, F̂) derivation
returns UNSATISFIABLE.

The proof is due to the fact that each (I,Dk) derivation is finite and complete, and
each (Ik, D) derivation is finite and sound.

We often consider F∞ to be the set of all statements, then it is trivially the case
that all derivations from S ⊆ F∞ only contain statements in F∞.

We point out some of the benefits of this procedure over the (I,D) procedure. First
of all, if a set of statements is satisfiable, then this procedure is more likely to give an
answer. There are simple cases where sound and complete derivations will not halt. We
give some examples later in the paper. Also, suppose that we have a set of satisfiable
statements S, for which the (I,D) derivation is finite. It still might be better to use
an (I,D, F̂) derivation, because the proof of satisfiability might be simpler. A stronger
theory may have a smaller saturated set, and therefore a smaller proof.

The (I,D, F̂) derivation might actually become a decision procedure. We give some
examples later in the paper. An example of this is when for every satisfiable set of
statements S, there is a k such that ⊥ is not in the (I,Dk) derivation.

Theorem 2 Let (I,D) be sound and complete. Let F̂ be a monotonic sequence of finite
sets of statements such that all derivations from S ⊆ F∞ only contain statements in F∞.
Let Ĝ be a sequence such that all Gk ⊆ Fk. Suppose that for every satisfiable S ⊆ G∞,
there is a k such that ⊥ is not in the (I,Dk) derivation from S. Then the (I,D, F̂)
procedure is a decision procedure for all S ∈ G∞.

It is not necessary to know that the (I,D, F̂) procedure is a decision procedure in
order for it to be one, whereas it is necessary to know in advance if the (Ik, D) derivation
is a decision procedure in order for it to be one. We will discuss that issue further in
the next section.

These ideas can also be applied to existential problems, i.e., unification problems. In
that case, the (I,Dk) and the (Ik, D) derivation both produce a complete set of unifiers.
One is an over-approximation, and one is an under-approximation. This could be a
useful way to approximate unification.

3 Knuth-Bendix Completion

We have presented an abstract framework for using unsound theorem proving to deter-
mine satisfiability, and develop decision procedures. But that framework is not useful
unless some interesting examples fit into the framework. In particular, what are the
Fk in the sequence F1, F2, · · ·, and even more important, what are the values of the Dk

used in the Fk replacement deletion rules.
Next we extend this framework to Knuth-Bendix Completion [3], which is an in-

ference system over equations s ≈ t and disequations s 6≈ t. Completion consists of
Inference rules Critical Pair, Narrowing and Equation Resolution, plus Deletion
rule Simplification. Now we will apply our framework to Knuth-Bendix Completion.
First we define the sequence F1, F2, · · ·.

6

Definition 3 Given a term t, let |t| be the number of non-variable symbols in t. Then
Fk is the set of equations s ≈ t and disequations s 6≈ t such that |s| ≤ k and |t| ≤ k.

Clearly F∞ is the set of all equations and disequations. Another possibility for Fk

is to let k be a limit on the depth of the terms in Fk. The Fk replacement deletion rule
is to add an equation that subsumes one not in Fk:

Definition 4 The Unsound Subsumption deletion rule is the rule {A} −→ {A′} where
A′σ = A for some σ, A 6∈ Fk and A′ ∈ Fk.

This replaces an equation or disequation A, with A′ where A′ is a new equation or
disequation that strictly subsumes A, and A′ ∈ Fk. It is easy to find such an A′. It is
just necessary to replace subterms in A with variables. The best idea is to replace as
few subterms as possible, so that A′ is in Fk but not in Fk−1. We will assume that we
will always select the subterm to replace from the side of the equation with the most
symbols, if one side has more symbols.

Next we show how the (I,D, F̂) derivation becomes a decision procedure for some
theories (sets of equations). For example, consider the theories E we will call size
preserving linear theories:

Definition 5 Let E be a set of equations. Then E is size preserving linear if and only
if for every s ≈ t ∈ E, |s| = |t| and each variable that occurs in s ≈ t occurs exactly
once in s and once in t.

Definition 6 For all k, define Gk to be the set of size preserving linear equations in
Fk, and all ground disequations in Fk.

The following theorem is implied by the fact that once an equation e outside of Gk

is created, then any rule with e as one of its premises will have a conclusion that is not
in Gk.

Theorem 3 Let (I,D) be the Inference and Deletion Rules of KB Completion. Then
(Ik, D) is a decision procedure for all members of Gk.

There is a similar theorem for unsound derivations.

Theorem 4 Let I and D be the Inference and Deletion Rules of KB Completion. Then
(I,D, F̂) with Unsound Subsumption is a decision procedure for all S in G∞.

As we did in the framework, we once again point out the distinction between those
two theorems. For Theorem 3, it is necessary to know in advance that (Ik, D) will be a
decision procedure. But for Theorem 4, (I,D, F̂) is a decision procedure, and it is not
necessary to know that in order for it to be one. For example, (I,D, F̂) is a decision
procedure for the theory {f(f(x)) ≈ g(f(x)), h(a) ≈ b}, whereas (Ik, D) would require
a new theorem in order to turn it into a decision procedure. It is worth pointing out
that Knuth-Bendix Completion will normally not halt for many size preserving linear
theories, such as {f(f(x)) ≈ g(f(x))}.

7

4 Nonground Congruence Closure

Now we extend the Abstract Congruence Closure algorithm of [6, 4] to equations with
variables. That algorithm works by creating new constants representing equivalence
classes of terms. In our approach, we create new function symbols in addition to new
constants. The function symbols when applied to terms represent equivalence classes.
So the function symbol itself represents a parametrized equivalence class. We apply
the Knuth-Bendix procedure to the flattened equations. The result might not be flat.
Therefore, we flatten the conclusion of the inference, and create a new function symbol.
This process can go on forever, but it is still complete, if we order the new (possibly
infinitely many) symbols in a well-founded way.

There are some advantages of this approach over Knuth-Bendix Completion. Equa-
tions are kept small, and inferences are easy to perform. The ordering used is trivial to
calculate on flat terms. Also, rewrite chains are polynomial in the number of equations.

Unfortunately, this procedure may not halt on sets of equations where Knuth-Bendix
Completion halts. However, when we apply unsound theorem proving to this method,
it appears to have advantages over Knuth-Bendix Completion. In many instances of
traditional theorem proving, it is possible to tell that if there was a proof we would
have found it already. This corresponds to Knuth-Bendix Completion being able to
determine that all future equations will be larger than a given size. As far as we know,
there is no way to do that in Knuth-Bendix Completion, aside from coming up with
some meta-theorem, as in the previous section, or using unsound theorem proving. In the
Congruence Closure method, unsound theorem proving is not even necessary. Although
we present it to strengthen this approach, and to handle additional classes of equations.

We will now define Nonground Congruence Closure. First, define the height Ht(t)
of a term t such that Ht(x) = 0 for all variables x, and Ht(f(t1, · · · , tn)) = 1 +
max{Ht(t1), · · · ,Ht(tn)}. The depth of a subterm s of t will be the maximum depth of
s in the tree representation of t. Let V ars(t) be the set of variables in t. Let root(t) be
the top symbol of t. We define flat equations. All equations can be flatttened.

Definition 7 An equation s = t is flat if (i) Ht(s) ≤ 2 and Ht(t) ≤ 1, (ii) V ars(t) ⊆
V ars(s) and t is linear2, and (iii) if depth(x, s) = 2 then x only occurs once in s.

We are going to consider a signature Σ, and an infinite set of new function symbols
C = {c1, c2, · · ·}. Let ΣC = Σ ∪ C be an extended signature. We assume a total
precedence <p on the symbols, with the requirement that arity(f) < arity(g) implies
that f <p g. Furthermore if i < j and arity(ci) = arity(cj) then ci <p cj . This last fact
guarantees that the precedence order is well-founded. From the precedence ordering, we
can define an ordering <f on ground terms.

Definition 8 Let s = f(s1, · · · , sn) and t = g(t1, · · · , tm). Then s >f t if

1. |s| > |t|, or

2. |s| = |t| and f >p g, or

2Each variable occurs at most once in t.

8

3. |s| = |t| and f = g and {s1, · · · , sn} >f {t1, · · · , tn}3.

In the long version we show that <F is really a well-founded monotonic ordering.
We also show that it is simple to compute on flat equations.

The inference and deletion rules for Congruence Closure are the same as the inference
and deletion rules for Knuth-Bendix Completion, with the addition of one flattening
deletion rule that will be performed once after a non-flat equation is created by an
inference or deletion rule.

Flattening:

u ≈ v

u ≈ c(x1, · · · , xn) v ≈ c(x1, · · · , xn)

where u ≈ v is not flat4, {x1, · · · , xn} = V ars(u) ∩ V ars(v), and c is a new function
symbol from C.

Note that the result of a Critical Pair or Simplification Rule will be an equation
u ≈ v such that Ht(u) ≤ 2 and Ht(v) ≤ 2. Therefore, the conclusion of Flattening
will always be a flat equation, since c(x1, · · · , xn) is linear, and all of its variables also
appear in u and v.

Compare equations by defining s ≈ t <f u ≈ v if {s, t} <f {u, v}, where <f is
its own multiset extension. Since the two new equations imply the replaced equation,
and because the new equations are smaller, this is an instance of removing a redundant
equation. Therefore, the Congruence Closure inference system is sound and complete.

Now that the Nonground Congruence Closure inference procedure is defined, we fit
it into our framework. We have defined the inference rules so that all equations are flat,
but the disequations are not necessarily flat. It would also be possible to flatten the
disequations, but we chose not to approach it that way.

For unsound theorem proving, we need to define a sequence F1, F2, · · ·.

Definition 9 Let Fk be the set of equations and disequations such that for all s 6≈ t in
Fk, |s| ≤ k and |t| ≤ k, and the only function symbols that can appear in Fk are the
function symbols of Σ ∪ {c1, · · · , ck}.

Then the Fk replacement rule is the Combine Equivalence Class deletion rule.

Definition 10 Combine Equivalence Classes is the deletion rule {u = cj(x1, · · · , xn)} −→
u = ci(y1, · · · , ym)}, where j > k, i ≤ k, arity(ci) ≤ arity(cj)5, and {y1, · · · , ym} ⊆
{x1, · · · , xn}.

Notice that each Fk is finite, and that the Combine Equivalence Classes rule will
replace a term not in Fk with a term in Fk, assuming that A is not a disequation with
too many symbols on one side. But we will use this rule in inferences where such rules
are never created. The Combine Equivalence Classes rule has the effect of preventing the

3Here we mean the multiset extension of >f
4For instance, because Ht(u) = Ht(v) = 2.
5We can assume some initial constant ci, or set of constants with small arity, if necessary so that

this is always posssible.

9

inference procedure from creating new function symbols at some point, which creates
an unsound, complete inference procedure.

Given an equation s ≈ t ∈ E, we sometimes write it as s → t if s >f t. Then →
represents the rewrite relation, and →∗ represents its reflexive and transitive closure.
We will define a size function called minsize on all symbols and all terms, with respect
to a set of equations. The intention will be that minsize(t, E) = min{|s| | s ∈ TΣ and
s→∗ t}, where minsize(t) = |t| for all t ∈ Tσ.

Definition 11 Let E be a set of equations. If x is a variable, then minsize(x,E) = 0.
Define minsize(f(t1, · · · , tn), E) = 1 + Σ1≤i≤nminsize(ti, E). Define minsize(c, E) =
min{minsize(t, E) | t→ c(x1, · · · , xn) ∈ E}.

In the long version, we show that for every term t, minsize has some value, and
minsize(t, E) is the size of the smallest term in TΣ which rewrites to t.

For any term t, define maxsym(t, E) = max{minsize(c, E) | c is a symbol in t},
and define maxsym(s ≈ t, E) = min{maxsym(s,E),maxsym(t, E)}. If u ≥f v, then
define an equation u ≈ v ∈ E to be expanding if maxsym(u,E) ≤ maxsym(v,E) and
every variable of u occurs in v.

Lemma 1 Let n be a number and u 6≈ v be a ground disequation in TΣ such that |u| ≤ n
and |v| ≤ n. Let S be a set of equations appearing in a Theorem Proving derivation
from some subset of TΣ. Let Sn = {s ≈ t ∈ S | maxsym(s) ≤ n and maxsym(t) ≤
n}. Suppose that Sn is saturated under the Nonground Congruence Closure rules, and
all equations in Sn are expanding. Then Sn ∪ {u 6≈ v} is unsatisfiable if and only if
S ∪ {u 6≈ v} is unsatisfiable.

The lemma follows from the fact that for an expanding set of equations, once an
equation s ≈ t appears with maxsym(s) > n or maxsym(t) > n, then any descendent
of that equation will also have that property.

Suppose that we are trying to prove the unsatisfiability of a set or equations and
disequations. And supppose that at some point of the theorem proving derivation, we
have saturated all equations of the form s ≈ t withmaxsym(s) ≤ n andmaxsym(t) ≤ n.
If all such equations are expanding, then (In, D) is a decision procedure for the word
problem for any equation u ≈ v with |u| ≤ n and |v| ≤ n. Furthermore, the (I,Dn, F̂)
procedure will be a decision procedure, even though we may not know that it is.

If we can show that some set of equations S will only create expanding equations in
the saturation, then the (I,D, F̂) procedure is a decision procedure for S. For example,
we can show that it forms a decision procedure for size preserving linear theories.

Theorem 5 The (I,D, F̂) procedure is a decsision procedure for size preserving linear
theories.

Finally, we consider another interesting theory, where Knuth-Bendix Completion
does not halt, but it is not size preserving. The theory is {f(g(f(x))) ≈ g(f(x))}. If we
flatten this theory, we get equations g(f(x)) = c1(x) and f(c1(x)) = c1(x) (assuming
a simplification). There is one inference that can be done on these two equations. Its
result adds the two equations g(c1(x)) = c2(x) and c1(c1(x)) = c2(x). If we could

10

continue this process infinitely, then for all i and j, we get f(ci(x)) = ci(x), g(ci(x)) =
ci+1(x) and ci(cj(x)) = ci+j(x). Notice that minsize(g,E) = minsize(f,E) = 1, and
minsize(ci, E) = i+1 for all i. All of the rules in the infinite saturated set are expanding,
so both the unsound and traditional method will give us a decision procedure.

5 Conclusion

We have discussed the benefits of unsound theorem proving, for disproving conjectures.
It can often find disproofs when traditional methods do not.

We gave a framework for unsound and complete theorem proving, which amounts
to proof in a stronger theory, which can be decided. We discussed how to iterate the
process to attempt to find weaker and weaker approximations, and we showed how this
can be combined with a sound and incomplete theorem prover, and how to iterate them
both to continually attempt to refine approximation from both sides.

We instantiated our framework with Knuth-Bendix Completion and a nonground
Congruence Closure method, based on ground Congruence Closure methods [6, 4]. Our
Nonground Congruence Closure is new, as far as we know. However, it is in the same
spirit as what is done in [10], which also uses the Knuth-Bendix inference rules followed
by eaqer splitting of equations introducing new constant symbols, and it also has an
arity-compatible precedence. The inference system of [10] was shown to terminate for
standard theories. A difference is that we allow depth-2 linear variables to appear at
depth one on the right hand side of rules. This means that we can capture all equational
theories, but of course it makes theorem proving undecidable. We gave some evidence to
indicate that our Nonground Congruence Closure be especially powerful in combination
with unsound theorem proving.

We did not discuss how to instantiate the framework with clausal theorem prov-
ing methods like Resolution and Paramodulation. However, we can quickly suggest a
method for unsound deletion. In the paper, we have shown how to prevent terms from
becoming too large. For clauses, we must also prevent them from becoming too long. A
simple method to do that is to delete some literals when a clause gets too long. There
may be other more sophisticated and interesting methods.

Our work can be compared with other approximation methods. For example, [1]
shows how to disprove false conjectures by translating them into second-order monadic
logic. This is an unsound approximation in the same sense as our paper. In [7], an
efficient approximation of E-unification is given by modifying a goal-directed inference
method. Those two papers give a single approximation, using a completely different
method than ours. Many goal directed theorem proving procedures and constraint
solving methods could be thought of as successive unsound approximations. The paper
of [5] is close in spirit to our paper. It discusses how to get successive approximations by
converting first order clauses into ground clauses, and then applying a satisfiability test.
When a ground solution is found, it must be verified for soundness. It also discusses
other approximations besides ground clauses. We are not aware of other work besides
ours which successively modifies a saturation procedure to produce strong models.

11

References

[1] Serge Autexier and Carsten Schurmann. Disproving false conjectures. In LPAR,
volume 2850 of Lecture Notes in Computer Science, pages 33–48. Springer, Septem-
ber 2003.

[2] L. Bachmair and H. Ganzinger. Resolution theorem proving. In A. Robinson and
A. Voronkov, editors, Handbook of Automated Reasoning, volume I, chapter 2, pages
19–99. Elsevier Science, 2001.

[3] Leo Bachmair, Nachum Dershowitz, and David Plaisted. Completion without Fail-
ure, volume II. Academic Press, 1989.

[4] Leo Bachmair and Ashish Tiwari. Abstract congruence closure and specializations.
In David McAllester, editor, Automated Deduction — CADE-17, volume 1831 of
Lecture Notes in Artificial Intelligence, pages 64–78, Pittsburgh, PA, jun 2000.
Springer-Verlag.

[5] Harald Ganzinger and Konstantin Korovin. New directions in instantiation-based
theorem proving. In IEEE Symposium on Logic in Computer Science, pages 55–64,
Ottawa, Ont., jun 2003. IEEE.

[6] Deepak Kapur. Shostaks congruence closure as completion. In International Con-
ference on Rewriting Techniques and Applications, volume 1232 of LNCS, pages
23–37, Bacelona Spain, jun 1997. Springer-Verlag.

[7] Christopher Lynch and Barbara Morawska. Approximating e-unification. In 15th
Annual Workshop on Unification Theory, Siena, Italy, 2001.

[8] William McCune. Solution of the robbins problem. Journal of Automated Reason-
ing, 19(3):263–276, 1997.

[9] R. Nieuwenhuis and A. Rubio. Paramodulation-based theorem proving. In
A. Robinson and A. Voronkov, editors, Handbook of Automated Reasoning, vol-
ume I, chapter 7, pages 371–443. Elsevier Science, 2001.

[10] Robert Nieuwenhuis. Complexity analysis by basic paramodulation. Information
and Computation, 147:1–21, 1998.

12

WoD 2004 Preliminary Version

The TM System for Repairing Non-Theorems

Simon Colton

Department of Computing
Imperial College, London

United Kingdom
sgc@doc.ic.ac.uk

Alison Pease

School of Informatics
University of Edinburgh

United Kingdom
alisonp@dai.ed.ac.uk

Abstract

We describe a flexible approach to automated reasoning, where non-theorems can
be automatically altered to produce proved results which are related to the origi-
nal. This is achieved in the TM system through an interaction of the HR machine
learning program, the Otter theorem prover and the Mace model generator. Given
a non-theorem, Mace is used to generate examples which support the non-theorem,
and examples which falsify it. HR then invents concepts which categorise these
examples and TM uses these concepts to modify the original non-theorem into spe-
cialised theorems which Otter can prove. The methods employed by TM are inspired
by the piecemeal exclusion, strategic withdrawal and counterexample barring meth-
ods described in Lakatos’s philosophy of mathematics. In addition, TM can also
determine which modified theorems are likely to be interesting and which are not.
We demonstrate the effectiveness of this approach by modifying non-theorems taken
from the TPTP library of first order theorems. We show that, for 98 non-theorems,
TM produced meaningful modifications for 81 of them. This work forms part of
two larger projects. Firstly, we are working towards a full implementation both of
the reasoning and the social interaction notions described by Lakatos. Secondly, we
are aiming to show that the combination of reasoning systems such as those used
in TM will lead to a new generation of more powerful AI systems.

Key words: Automated theorem modification, automated
reasoning, model generation, machine learning, automated theory
formation, philosophy of mathematics.

This is a preliminary version. The final version will be published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

Colton and Pease

1 Introduction

Mathematics has developed in a much more organic way than its rigid text-
book presentation of definition-theorem-proof would suggest. Automated the-
orem proving systems more closely reflect the textbook notion of mathematics
than a developmental approach. In particular, most deduction systems are
designed either to prove results if they are true, or find counterexamples if
they are false, but not both. System designers also assume that the concepts
mentioned in the conjecture are correctly defined and actually relate to the
mathematical notions the user is interested in. Clearly, the adoption of these
assumptions is not conducive to the kind of exploration more common in re-
search mathematics, in which concept definitions change and become more
sophisticated, and flawed conjectures and proofs are gradually refined. Hence,
it is time to increase the flexibility of reasoning systems to better handle ill-
specified problems.

We describe here the development of the Theorem Modifier (TM) system.
This takes a set of axioms and a conjecture in first order logic and tries to
prove it. If this fails, TM attempts to modify the conjecture into a set of
theorems which it can prove. To achieve this flexibility, TM combines the
power of three automated reasoning systems, namely the HR machine learn-
ing program [1], the Otter theorem prover [11] and the Mace model generator
[12]. As described in §3, TM uses these systems in ways prescribed in the
philosophy of mathematics developed by Lakatos [9]. In particular, TM per-
forms counterexample-barring, piecemeal exclusion and strategic withdrawal.
These techniques are further explained in §2. As a simple example of TM
working, given the non-theorem that all groups are Abelian, it states that it
cannot prove the original result, but it has discovered that self-inverse groups
are Abelian. To evaluate this approach, in §4, we describe how TM success-
fully found meaningful modifications to 81 of 98 non-theorems derived from
the TPTP library of first order theorems [16].

The development of the TM system forms part of two larger projects.
Firstly, we are working towards a full implementation both of the reasoning
and the social interaction notions described by Lakatos in [9]. Secondly, we
are aiming to show that the combination of reasoning systems such as those
used in TM will lead to a new generation of AI systems which are able to solve
problems which individual techniques cannot.

2 Background

The way in which TM forms modified theorems is inspired by the notions
expressed in the philosophy of mathematics presented by Imre Lakatos [9],
as described in §2.1 below. The implementation of these ideas is heavily
dependent on third party software, in particular the Otter, Mace and HR
programs. Of these, HR is the least well known, so we describe this in §2.2.

14

Colton and Pease

2.1 Lakatos’s Philosophy of Mathematics

Our inspiration for TM comes from Lakatos, who presented a fallibilist ap-
proach to mathematics, in which proofs, conjectures and concepts are fluid and
open to negotiation [9]. Lakatos strongly criticised the deductivist approach
in mathematics, which presents definitions, axioms and theorem statements
as immutable ideas which come from nowhere into a mathematician’s empty
mind. Rather than a mysterious and ever-increasing set of truths, Lakatos
saw mathematics as an adventure in which – via patterns of analysis which
he categorised into various methods – conjectures and proofs are gradually
refined but never certain. He rejected the view that discovery in mathematics
is essentially irrational and should be left to the psychological arena, as cham-
pioned by, for instance, Popper [15]. Instead, he outlined a heuristic approach
which holds that mathematics progresses by a series of primitive conjectures,
proofs, counterexamples, proof-generated concepts, modified conjectures and
modified proofs. Lakatos demonstrated his argument using case studies in-
cluding the development of Euler’s conjecture that for any polyhedron, the
number of vertices (V) minus the number of edges (E) plus the number of
faces (F) equals two.

Lakatos’s treatment of exceptions is noteworthy for two reasons. Firstly,
he highlights their existence in mathematics – traditionally thought of as an
exact subject. Secondly, he shows how exceptions, rather than simply be-
ing annoying problem cases which would force a mathematician to abandon
a conjecture, can be used to further knowledge. He does this via two meth-
ods; piecemeal exclusion and strategic withdrawal. Piecemeal exclusion works
by generalising from a counterexample to a class of counterexamples and
then excluding this class from the faulty conjecture. For instance, Lakatos
showed how, by examining the hollow cube which is a counterexample to
Euler’s conjecture, mathematicians modified the conjecture to ‘for any poly-
hedron without cavities, V − E + F = 2’ [9]. Put formally, suppose that
we have the conjecture ∀ x (A(x) ⇒ B(x)), a set of counterexamples N such
that ∀ x ∈ N,A(x) ∧ ¬B(x), and a set of positive examples P such that
∀ x ∈ P,A(x) ∧B(x). To perform piecemeal exclusion, find a concept C such
that ∀ x ∈ N, C(x), and ∀ x ∈ P, ¬C(x), then modify the conjecture to:
∀ x (¬C(x) ∧ A(x)) ⇒ B(x). When there is only one counterexample and
no simply expressed concept which covers it, piecemeal exclusion extends to
counterexample-barring, in which the counterexample is explicitly forbidden in
a modified conjecture, i.e., given a single counterexample x1 ∈ N , one modifies
the conjecture to: ∀ x 6= x1 (A(x) ⇒ B(x)).

Strategic withdrawal works by considering the examples supporting a con-
jecture, finding a concept which covers a subset of these, and limiting the do-
main of the conjecture to that of the concept. For instance, by examining the
supporting examples of Euler’s conjecture, such as the cube, tetrahedron and
octahedron, mathematicians retreated to the ‘safe’ domain of convex polyhe-
dra (i.e. polyhedra whose surface is topologically equivalent to the surface of a

15

Colton and Pease

sphere). Put formally, given the above conjecture, set of supporting examples
P and counterexamples N , first find a concept C such that ∀ x ∈ P, C(x), and
∀ x ∈ N, ¬C(x), then modify the conjecture to: ∀ x (C(x) ∧ A(x)) ⇒ B(x).

Clearly, an implementation of a theorem modification system along the
lines suggested by Lakatos requires three core functionalities. Firstly, an abil-
ity to prove theorems is required. We achieved this by incorporating the Otter
program [11] into the system. Otter is a powerful first order resolution theorem
prover which has been used for many discovery tasks in algebraic domains,
e.g., [13]. Secondly, an ability to generate counterexamples to non-theorems
is required. We achieved this by incorporating the Mace program [12] into the
system. Mace is a powerful model generator which employs the Davis-Putnam
method for generating models to first order sentences. Thirdly, an ability to
suggest modifications to non-theorems in the light of counterexamples is re-
quired. We achieved this by incorporating the HR program into the system.
HR is described below.

2.2 The HR System

HR is named after the mathematicians Hardy and Ramanujan, and the core
functionality of this system is described in [1]. HR performs descriptive in-
duction to form a theory about a set of objects of interest which are described
by a set of background concepts, as detailed further in [3]. This is in contrast
to predictive learning systems which are used to solve the particular problem
of finding a definition for a target concept. The theories HR produces con-
tain concepts which relate the objects of interest; conjectures which relate the
concepts; and proofs which explain the conjectures. Theories are constructed
via theory formation steps which attempt to construct a new concept. HR
builds new concepts from old ones using a set of 15 generic production rules
[4] which include:

• The exists rule: this adds existential quantification to the new concept’s
definition

• The negate rule: this negates predicates in the new definition

• The match rule: this unifies variables in the new definition

• The compose rule: this takes two old concepts and combines predicates from
their definitions in the new concept’s definition

For a more formal description of these production rules, and the others that
HR uses, see [3] or [4].

For each concept, HR calculates the set of examples which have the prop-
erty described by the concept definition. Using these examples, the definition,
and information about how the concept was constructed and how it compares
to other concepts, HR estimates how interesting the concept is [6], and this
drives a heuristic search. As it constructs concepts, it looks for empirical

16

Colton and Pease

relationships between them, and formulates conjectures whenever such a rela-
tionship is found. In particular, HR forms equivalence conjectures whenever
it finds two concepts with exactly the same examples, implication conjectures
whenever it finds a concept with a proper subset of the examples of another,
and non-existence conjectures whenever a new concept has an empty set of
examples. HR is also able to make near-conjectures whenever the relationship
has only a few counterexamples. To attempt to determine the truth of each
conjecture, they are passed to a third party theorem prover and a third party
counterexample finder (usually Otter and Mace, but there are interfaces to
other reasoning systems [17]). HR also works hard to break the conjectures
into lemmas which are easier to prove, and it will also extract prime implicates
which may be more interesting to the user [2].

HR has been used for a variety of discovery projects in mathematics. It has
been particularly successful in number theory [5] and algebraic domains [14].
Moreover, we have used HR to improve the abilities of Artificial Intelligence
systems, most notably constraint solvers [7], and we are currently extending
HR to perform discovery tasks in other scientific domains, in particular bioin-
formatics. While we have used HR to generate first order conjectures [8], the
application described in this paper is the first one in which we have applied
HR to the problem of proving, rather than generating, theorems.

3 Automated Theorem Modification

Users supply TM with a conjecture of the form: A⇒ C where A is a conjoined
set of axioms which describe the domain they are working in, and C is the
statement of the conjecture they wish to prove/modify/disprove. The theorem
is supplied in Otter first-order syntax, which means that C must be negated,
as Otter will derive a contradiction using resolution. TM assumes that C is
placed in the last line of input, preceded by a line per axiom. We hope to
relax such restrictions in future versions of the program. For the purposes
of this paper, we also assume that we are working in an algebraic domain,
where algebraic objects comprise a set of elements and a set of operators
relating those elements which are constrained as prescribed by the axioms.
An example algebra is group theory, where there is a single operator which
satisfies the associativity, identity and inverse axioms.

3.1 Forming Modified Theorems

How the TM program operates can be characterised by how and when it calls
the Otter, Mace and HR programs, and how it implements the piecemeal ex-
clusion, strategic withdrawal and counterexample-barring methods described
in §2. To begin with, TM checks whether the conjecture is true, i.e., A⇒ C.
It does this by invoking Otter for a period of time specified by the user, and if
Otter is successful, this is reported to the user and TM stops. If the theorem

17

Colton and Pease

cannot be proved by Otter in the time given, TM then uses Otter to attempt
to prove that the negation of C follows from A. For reasons we shall see later,
if the negation of the theorem is true, then TM will not be able to modify this
conjecture using its current techniques.

Next, TM checks whether the conjecture is true if and only if the objects in
the domain (which are all algebraic objects) are trivial – in the sense that they
have only one element – and whether the conjecture is true if and only if the
objects are non-trivial. To do this, Otter is asked to prove: A⇒ ((∀ a, b (a =
b)) ⇔ C) and A ⇒ ((∃ a, b (a 6= b)) ⇔ C) respectively. If either can be
proved, then TM returns the modified theorem that the conjecture is true
for trivial/non-trivial algebras only. These are special cases, and checking
for them is in line with Lakatos’s counterexample-barring. If TM were to
follow Lakatos’s advice directly, then it would first find counterexamples to
the theorem and try to prove that if they are excluded from the conjecture,
it is true. However, in all but a few cases, we have found that Otter is not
good at proving such results, as describing the models to be excluded leads
to a great number of first order sentences being added to the input file for
Otter. The exception, of course, is when the algebra to be excluded is trivial,
as we have seen above that this can be simply stated. However, in algebraic
domains, theorems which are true for all but the trivial algebra are quite
rare. In fact, the opposite is often true: the theorem is true only for the
trivial algebra. For these reasons, we decided that having TM check initially
for these two simple modifications was a better idea than implementing full
counter-example barring techniques.

If none of these preliminary checks have been successful, then the conjec-
ture is either a non-theorem, or is too difficult for Otter to prove in the time
available. In either case, this presents an opportunity to modify the theorem
in order to enable Otter to prove it. We have so far concentrated on mod-
ifying a conjecture by specialising it, i.e., adding in extra conditions which
enable Otter to prove the modified theorem. To do this, TM first finds some
example algebras which support the conjecture, by using Mace to generate
models which satisfy A and for which C holds. Mace is then used to generate
some examples which contradict the conjecture, i.e., models which satisfy A
but which break the conjecture C. Mace is given a limit for both time and
size. Normally, we ask Mace to find an example of size 1, an example of size
2, etc., up to size 8, and that it can spend 10 seconds on each search. For
instance, when we give TM the false conjecture that all groups are Abelian,
it uses Mace to find an example Abelian group for each size 1 to 8, which
support the conjecture. However, it also finds a non-Abelian group of size 6
and a non-Abelian group of size 8, which falsify the conjecture.

The supporting and falsifying examples generated by Mace are given as
the objects of interest to a session using HR. HR is also supplied with the
file containing the statement of the conjecture in Otter format. From this,
it extracts the background concepts in the domain, e.g., in group theory, HR

18

Colton and Pease

would extract the concept of groups, elements, multiplication, identity and
inverse. These form the basis of the theory HR forms, i.e., all concepts it
produces will be derived from these. TM then uses HR to form a theory for a
user-set number of theory formation steps, usually taken to be between 1000
and 5000. In this time, HR generates many concepts which can be interpreted
as specialisations of the algebra, such as Abelian groups, self-inverse groups,
etc. For instance, in group theory, given the groups up to size 8 as input, in
5000 steps, HR generates 37 specialisations of the concept of group.

¿From the theory produced by HR, TM identifies all the specialisation
concepts and extracts those which describe only algebras that support the
conjecture. For example, in the session associated with the non-theorem that
all groups are Abelian, amongst others, HR invents the concept of groups
which are self inverse, i.e., ∀ a (a = a−1). It turns out that these form a
subset of the examples which supported the conjecture, and hence TM extracts
this from HR’s theory. For each extracted specialisation, M , TM forms the
modified conjecture: (A ∧ M) ⇒ C by adding M to the axioms. Otter is
invoked to see which of these modifications can be proved, and any which are
proved are presented to the user. Note that, in addition to the specialisations
that HR produces, TM also extracts any concepts which have been conjectured
to be logically equivalent to a specialisation – these concepts are not normally
allowed into the theory as distinct items, but HR records the conjectured
equivalence of the definitions. This functionality is turned on by default, but
the user can set a flag to stop it happening, which will produce faster results
(as fewer calls to Otter will be made), but has the potential to miss interesting
modifying specialisations.

3.2 Identifying Uninteresting Modifications

Unfortunately, there are a number of reasons why the modifications generated
by this process can be uninteresting for the user. TM takes care to discard
any it can prove to be uninteresting, and highlights any which have a greater
chance than normal of being uninteresting. In particular, some specialisations
that HR produces are true only of the trivial algebra. As most conjectures
are also true of the trivial algebra, the modifications usually hold, but are
uninteresting. For instance, the modified conjecture: “all groups which are
the trivial group are Abelian” holds very little interest. Hence, whenever a
modification has been proved, and the examples satisfying the definition of
the specialisation M in the modification amount to just the trivial algebra,
TM invokes Otter to check whether: A ⇒ (M ⇔ (∀ a, b (a = b))) It is
unlikely, but not impossible that such re-definitions of the trivial algebra will
be interesting to the user (for instance, the re-definition might contain an
unusual combination of background concepts). Hence, in TM’s output, the
modification is set-aside from the others, but it is not discarded.

Another problem arises when HR derives concepts which are re-definitions
of the conjecture statement. Obviously, adding this to the axioms would make

19

Colton and Pease

the conjecture trivially true, e.g., all Abelian groups are Abelian. Hence, for
every specialisation, M , where every supporting example has the property
prescribed by M , TM uses Otter to try to prove: (i) M ⇔ C (ii) A⇒ (M ⇔
C) and (iii) M ⇒ C. Often M is just a simple restatement of C, and of no
interest, but it sometimes happens that the equivalence of C and M is quite
surprising and non-trivial to prove, hence the modification is valid. Hence, if
TM proves any of the three results above, it presents the modification to the
user separately, and provides the result as a possible indication of why the
modification is true and a caution that it may be uninteresting because the
specialisation trivially proves the conjecture.

This process of modifying conjectures by specialising them is an imple-
mentation of Lakatos’s strategic withdrawal method, whereby a concept which
excludes all of the counterexamples is discovered and the conjecture is spe-
cialised to only apply to examples satisfying that concept. Note also that
when HR uses the negate rule, which TM instructs it to, for every speciali-
sation M , the negation ¬M will also be produced. Hence, if the examples of
M contained all the falsifying examples for the conjecture, then ¬M would
describe a subset of the supporting examples, and hence would be used in a
modification attempt. Recalling that the piecemeal exclusion strategy involves
finding a concept which covers all the counterexamples (and possibly more),
then excluding the concept from the conjecture, we see that TM is also using
piecemeal exclusion to form the modifications.

3.3 Summary of Theorem Modification

To summarise, in our running example that all groups are Abelian, TM un-
dertakes the following process. Firstly, it tries and fails to prove that the
conjecture is true already, and similarly fails to prove that the negation of
the conjecture follows from the axioms (i.e., it fails to prove that all groups
are non-Abelian). If the latter were true, then no amount of specialisation
would improve matters. TM also fails to prove that a group is Abelian if and
only if it is trivial, and that a group is Abelian if and only if it is non-trivial.
It then employs Mace to generate some Abelian groups which support the
conjecture and some non-Abelian groups which falsify the conjecture. Both
sets of examples are given, along with the conjecture statement as input to
HR, which forms a theory of groups containing many specialisations of the
notion of group. From this theory, TM extracts all those specialisations which
describe only groups which support the conjecture. When using one of these,
namely self-inverse groups, in a modified conjecture, Otter proves the theorem
and TM reports that it can prove that self-inverse groups are Abelian, even
though the original conjecture is false. In contrast to the usual proof-or-fail
output from a theorem prover, TM outputs 5 different types of result:

• The original conjecture is true: A⇒ C
• The negation of the conjecture is true: A⇒ ¬C

20

Colton and Pease

• The conjecture is true only for trivial algebras (A⇒ C) ⇔ Triv
• It is true only for non-trivial algebras (A⇒ C) ⇔ ¬Triv
• The original conjecture is false, but various modifications of it are true,
(A ∧M) ⇒ C

In the latter case, when appropriate, TM can also warn the user that the
modification may be trivially true because either M is only true of the trivial
algebra, or because one of the following lemmas holds: M ⇔ C, A ⇒ (M ⇔
C) or M ⇒ C.

4 Testing and Evaluation

We used the TPTP library [16] to supply a set of non-theorems for experi-
ments designed to test the hypothesis that TM can find meaningful modifi-
cations to non-theorems. We looked at four categories within TPTP, namely
GRP (groups), FLD (fields), RNG (rings) and COL (combinatory logic). Un-
fortunately, we found only 9 non-theorems which were suitable, because (a)
there aren’t many non-theorems (b) many were actually just statements of
axioms for which models can be found and (c) many were not in the form of
axioms followed by conjecture, e.g., there are many non-theorems stating that
one set of axioms is not equivalent to another set.

In order to provide a more substantial test set, we took theorems from
the above TPTP categories and altered them to become non-theorems. The
alterations included (i) removing axioms (ii) changing/removing quantifiers
(iii) altering variables and constants and (iv) altering bracketing. In this
fashion, we produced 158 altered theorems, which we used alongside the 9
proper non-theorems. We found that 30 of our altered TPTP theorems were
still theorems (TM told us this). Mace produced the same examples to both
support and falsify the conjecture, for 39 of the remaining 137 non-theorems.
This was due to constants such as an identity element being used in the
conjecture statement without reference in the axioms, or to variables being
instantiated differently. We removed these non-theorems from the test set,
leaving us with a core of 98 non-theorems.

In addition to testing the effectiveness of TM, we also wanted to determine
whether any alterations to the setup would improve the performance. It was
clear from an early stage that giving Mace extra time and range did not
improve matters, as it only found a few more examples which did not affect the
specialising concepts that HR found. Also, we experimented by giving Otter
more time, but we have not seen any evidence that this improves performance
of TM – it is often the case that if a prover is going to solve a problem,
it will do so quickly, and giving a little extra time will not help for more
difficult problems. Hence, we concentrated on altering the way in which we
ran HR. We ran three sessions using TM to attempt to modify each of the 98
non-theorems. Otter and Mace were given 10 seconds, with Mace looking for
examples up to size 8, and HR was allowed 1000 theory formation steps in

21

Colton and Pease

Session 1 2 3

Equivalent to trivial algebra 24 24 24

No valid modifications 11 10 9

Only redefinition modifications 8 8 8

Valid modifications with caution 18 18 18

Valid modifications no caution 37 38 39

Total valid modifications 79 80 81

Average number of modifications per non-theorem 0.8 1.3 3.1

Average time to generate modifications (s) 73 120 253

Table 1
Results from modification attempts on 98 non-theorems

the first two sessions, and 3000 steps in the third session. In the first session,
however, the ability to use equivalence conjectures to harvest specialisations
was turned off. The results are presented in table 1.

In the sessions, we found that in many cases, the only modifications came
with a caution that the specialisation may trivially make the theorem true.
However, in around two thirds of these cases, upon looking at the modification,
it was found to be valid, i.e., not obviously just a restatement of the conjecture.
Taking these into account, in addition to the modifications stating that the
conjecture is true if and only if the algebra is trivial (a valid modification),
TM produced proper modifications for 79, 80 and 81 of the 98 of the non-
theorems respectively, i.e., 81%, 82% and 83%. We believe that such a success
rate is very encouraging. These figures don’t appear to provide much evidence
of improvement by running HR for longer and allowing it to use information
from equivalence conjectures. However, if we look at the average number of
modifications produced in the three sessions, we see that using the setup as in
the first session, on average TM will find 0.8 proved modifications, but using
the setup as in the third session, TM will find 3.1 modifications per theorem.
However, the time taken to produce these modifications triples.

To illustrate why TM highlights theorems for which M ⇒ C, we can look
at the non-theorem we generated from TPTP theorem GRP001. This states
that, if all elements in the group square to give the identity, then the group
must be Abelian, i.e., (∀ a (a∗a = id)) ⇒ (∀ a, b (a∗ b = b ∗a)). We removed
the inverse and associativity axioms to make this into a non-theorem. TM
found only two specialisations to perform the modification, both of which
were cautioned. The first was: @ b, c, d (b∗ c = d∧ c∗ b 6= d). This is obviously
the specialisation into Abelian groups, hence, including this specialisation into
a modified theorem produced: “in Abelian groups, if all elements square to
give the identity, then the group is Abelian”, which is trivially true. Hence

22

Colton and Pease

TM was right in this case to caution us about this theorem.

In contrast, however, when we gave TM the non-theorem which we gener-
ated from TPTP theorem GRP011-4, it produced specialisations which were
not at all obvious, and hence made interesting modifications. GRP011-4 is
the left cancellation law, i.e., ∀ a, b, c ((a ∗ b = a ∗ c) ⇒ b = c)). We took
out the identity and inverse axioms to generate a non-theorem, and one of the
five (cautioned) specialisations was: @ b, c, d (b ∗ c = d ∧ b ∗ d 6= c) Hence the
modified theorem states that, in algebras for which ∀ x, y (x ∗ (x ∗ y) = y)),
the left cancellation law holds (with no mention of associativity).

TM managed to find valid modifications for 7 out of the 9 non-theorems
that we took directly from the TPTP library, and these provide interesting
illustrative examples of TM working as it should do. Firstly, TM successfully
modified 3 out of 5 non-theorems in combinatory logic – a new domain for
HR. For example, non-theorem COL073-1 states that, given certain axioms:
∀ y ((apply(y, f(y))) = (apply(f(y), apply(y, f(y))))). TM found a single spe-
cialisation from the 7 supporting examples Mace provided:
@ b, c, d (apply(b, c) = d ∧ apply(b, d) 6= c). However, this was only true of the
trivial algebra, and while Otter couldn’t prove an equivalence between this
specialisation and the trivial algebra, we cannot rule it out.

In group theory, the first non-theorem in the library is GRP024-4, which
states that, given the definition of the commutator operator on two elements
x and y being comm(x, y) = x ∗ y ∗ x−1 ∗ y−1, then this operator is asso-
ciative if and only if the product of the commutator is always in the cen-
tre of the group (defined to be the set of elements which commute with all
others). Hence this theorem states that: ∀ x, y, z (comm(comm(x, y)), z) =
comm(x, comm(y, x)) ⇔ ∀ u, v, w (comm(u, v) ∗w = w ∗ comm(u, v))). Mace
could not find any counterexamples to this, but it did find four groups for
which the conjecture is true. As strategic withdrawal doesn’t need any coun-
terexamples, TM could continue. It found that, with the extra axiom that the
groups are self inverse (i.e., ∀ x (x = x−1)), the conjecture actually holds.

The first of two ring theory non-theorems taken directly from the TPTP
library was RNG007-5, which states that, given a ring for which ∀ x (x∗x = x),
then ∀ x (x ∗ x = id). Given the first property as an axiom, TM proved that
the second property is equivalent to being the trivial algebra, which gives good
justification for implementing this functionality. The second ring theory non-
theorem was RNG031-6, which states that the following property, P , holds
for all rings: ∀ w, x ((((w ∗ w) ∗ x) ∗ (w ∗ w)) = id) where id is the additive
identity element. Mace found 7 supporting examples for this, and 6 falsifying
examples. HR produced a single specialisation concept which was true of
3 supporting examples: @ b, c (b ∗ b = c ∧ b + b 6= c). Otter then proved
that P holds in rings for which HR’s invented property holds. Hence, while
TM couldn’t prove the original theorem, it did prove that, in rings for which
∀ x (x∗x = x+x), property P holds. The specialisation here has an appealing
symmetry. A proof of the modified theorem is given in the appendix.

23

Colton and Pease

5 Conclusions and Further Work

We have described and demonstrated the effectiveness of the TM automated
theorem modification system. This is based on an implementation of methods
prescribed in Lakatos’s philosophy of mathematics, and relies on the interac-
tion of the HR, Otter and Mace programs. In tests, TM modified 7 out of 9
non-theorems from the TPTP library into interesting, proved alternatives, and
on an artificial set of 98 non-theorems, it produced meaningful modifications
80% of the time, which we believe is highly encouraging given that this is only
the first version of the software. We intend to improve the implementation in
at least the following ways:

• enabling it to strengthen modifications after it has weakened the original
conjecture. For instance, if it has proved A ⇒ (P ⇔ Q), try A ⇒ (P ∧ Q).
We expect this to result in more interesting theorems;

• extending the domains on which it works, to security protocols, chemistry
and bioinformatics as well as other mathematical domains;

• automatically evaluating the modifications further, to enable TM to recog-
nise interesting modifications from all those produced. For instance it might
consider aspects of the proof, such as its length;

• using a failed proof attempt to suggest modifications to a conjecture C. This
is Lakatos’s method of lemma incorporation: given a counterexample to a con-
jecture, find which step of the proof it violates and then modify the conjecture
by making that step a condition. The modified conjecture therefore becomes:
∀ x which satisfy proof step i, C holds. We are currently implementing this
method;

• exploring the possibilities of using TM to suggest case splits for difficult but
true theorems. For instance, given a theorem: ∀ x P (x) ⇒ Q(x), and a con-
cept C(x) which covers all the supporting examples and no counterexamples,
then TM would form and attempt to prove (i) ∀ x (C(x) ∧ P (x)) ⇒ Q(x)
and (ii) ∀ x (¬C(x) ∧ P (x)) ⇒ Q(x). This suggests ways of automatically
rephrasing a conjecture statement into one which can be proved.

TM is part of a larger project, in which we are implementing all of the
methods prescribed by Lakatos in [9]. The aim of this project is to (a) provide a
computational model for the use of Lakatos’s ideas and (b) enhance the model
and implementation of automated theory formation (ATF) as described in [1].
Our model of Lakatos-enhanced theory formation has developed along two
axes: the sophistication of the conjecture-correcting methods which Lakatos
proposed, and the social nature of the discourse he described.

There are various reasons to automate theories of scientific discovery, in-
cluding developing new techniques which aid scientists in their work [10]. We
have demonstrated a new technique, namely automated theorem modification,

24

Colton and Pease

which has the potential to aid mathematicians, by adding more robustness and
flexibility to automated theorem proving. We believe that such robustness –
in the case of TM, gained by the integration of deductive, inductive and model
based techniques – will play an important part in the next generation of au-
tomated theorem provers.

Acknowledgements

We would like to thank Alan Smaill and John Lee for their continued input to
this project. Special thanks to Bill McCune and Geoff Sutcliffe for supplying
data and for their input to this work, and to Roy McCasland for providing the
proof found in the appendix. We are grateful to the anonymous referees for
their useful comments on an earlier draft of this document, and to the organ-
isers of the IJCAR workshop on disproving. This work has been supported by
EPSRC platform grant GR/S01771/01.

References

[1] S Colton. Automated Theory Formation in Pure Mathematics. Springer-Verlag,
2002.

[2] S Colton. The HR program for theorem generation. In Proceedings of CADE,
2002.

[3] S Colton and S Muggleton. ILP for mathematical discovery. In Proceedings of
the 13th International Conference on Inductive Logic Programming, 2003.

[4] S Colton, A Bundy, and T Walsh. Automatic identification of mathematical
concepts. In Machine Learning: Proceedings of the 17th International
Conference, 2000.

[5] S Colton, A Bundy, and T Walsh. Automatic invention of integer sequences. In
Proceedings of the Seventeenth National Conference on Artificial Intelligence,
2000.

[6] S Colton, A Bundy, and T Walsh. On the notion of interestingness in automated
mathematical discovery. International Journal of Human Computer Studies,
53(3):351–375, 2000.

[7] S Colton and I Miguel. Constraint generation via automated theory formation.
In Proceedings of CP-01, 2001.

[8] S Colton and G Sutcliffe. Automatic generation of benchmark problems for
automated theorem proving systems. In Proceedings of the Seventh AI and
Maths Symposium, 2002.

[9] I Lakatos. Proofs and Refutations: The logic of mathematical discovery.
Cambridge University Press, 1976.

25

Colton and Pease

[10] P. Langley. Lessons for the computational discovery of scientific knowledge. In
Proceedings of First International Workshop on Data Mining Lessons Learned,
2002.

[11] W McCune. The OTTER user’s guide. Technical Report ANL/90/9, Argonne
National Labs, 1990.

[12] W McCune. A Davis-Putnam program and its application to finite first-
order model search. Technical Report ANL/MCS-TM-194, Argonne National
Laboratories, 1994.

[13] W McCune and R Padmanabhan. Automated Deduction in Equational Logic
and Cubic Curves, LNAI 1095. Springer-Verlag, 1996.

[14] A Meier, V Sorge, and S. Colton. Employing theory formation to guide proof
planning. In Proceedings of the Tenth Symposium on the Integration of Symbolic
Computation and Mechanized Reasoning, LNAI 2385. Springer, 2002.

[15] K Popper. The Logic of Scientific Discovery. Basic Books, 1959.

[16] G. Sutcliffe and C.B. Suttner. The TPTP Problem Library: CNF Release
v1.2.1. Journal of Automated Reasoning, 21(2):177–203, 1998.

[17] J Zimmer, A Franke, S Colton, and G Sutcliffe. Integrating HR and tptp2x
into MathWeb to compare automated theorem provers. In Proceedings of the
CADE’02 Workshop on Problems and Problem sets, 2002.

Appendix

Theorem:
Let R be a ring such that ∀x ∈ R, x+x = x ∗x. Then ∀x, y ∈ R, x2yx2 = id.

Proof:
Let r be an arbitrary element in R. Then

−(r2) = −(r ∗ r) = −(r + r) = (−r) + (−r) = (−r) ∗ (−r) = (−r)2 = r2

Hence −(r2) = r2, so r2 + r2 = id.

Now let x and y be arbitrary elements in R. Then:

x2yx2 = (x2y)(x2) = ((x+ x)y)(x2)

= (xy + xy)(x+ x) = (xyx+ xyx) + (xyx+ xyx)

= (xyx ∗ xyx) + (xyx ∗ xyx) = (xyx)2 + (xyx)2

= id [by above result]

QED.

26

Bounded Model Generation for Isabelle/HOL∗

Tjark Weber

Institut für Informatik, Technische Universität München
Boltzmannstr. 3, D-85748 Garching b. München, Germany

webertj@in.tum.de

Abstract

A translation from higher-order logic (on top of the simply typed λ-calculus)
to propositional logic is presented, such that the resulting propositional formula is
satisfiable iff the HOL formula has a model of a given finite size. A standard SAT
solver can then be used to search for a satisfying assigment, and such an assignment
can be transformed back into a model for the HOL formula. The algorithm has been
implemented in the interactive theorem prover Isabelle/HOL, where it is used to
automatically generate countermodels for non-theorems.

1 Introduction

Interactive theorem provers have been enhanced with numerous automatic proof pro-
cedures for different application domains. However, when an automatic proof attempt
fails, the user usually gets little information about the reasons. It may be that an addi-
tional lemma needs to be proved, that an induction hypothesis needs to be generalized,
or that the formula one is trying to prove is not valid. In such cases an automatic tool
that can refute non-theorems would be useful.

This paper presents a translation from higher-order logic to propositional logic
(quantifier-free Boolean formulas) such that the propositional formula is satisfiable if
and only if the HOL formula has a model of a given finite size, i.e. involving no more
than a given number of elements. A standard SAT solver can then be used to search for
a satisfying assignment, and if such an assignment is found, it can easily be transformed
back into a model for the HOL formula.

An algorithm that uses this translation to generate (counter-)models for HOL for-
mulas has been implemented in the interactive theorem prover Isabelle/HOL [14]. This
algorithm is not a (semi-)decision procedure: if a formula does not have a model of a
given size, it may still have larger or infinite models. The algorithm’s applicability is
also limited by its complexity, which is non-elementary for higher-order logic. Never-
theless, formulas that occur in practice often have small models, and the usefulness of
an approach similar to the one described in this paper has been proved in [11].

∗This work was supported by the PhD program Logic in Computer Science of the German Research
Foundation.

27

Section 2 introduces the logic, a version of higher-order logic on top of the simply
typed λ-calculus. The model generation algorithm, and in particular the translation into
propositional logic are described in Section 3. We conclude with some final remarks in
Section 4.

2 The HOL Logic

Our translation can handle a large fragment of the logic that is underlying the HOL [9]
and Isabelle/HOL theorem provers. The logic is originally based on Church’s simple
theory of types [3]. In this section we present the syntax and set-theoretic semantics of
the relevant fragment. A complete account of the HOL logic, including a proof system,
can be found in [8].

We distinguish types and terms, intended to denote certain sets and elements of
sets respectively. Types σ are given by the following grammar, where α ranges over a
countably infinite set TV of type variables:

σ ::= B |α |σ → σ.

Type variables stand for arbitrary non-empty sets. B (sometimes called o in the lit-
erature) denotes a distinguished two-element set {>,⊥}. If σ1 and σ2 are types, then
σ1 → σ2 is the function type with domain σ1 and range σ2. It denotes the set of all1

total functions from the set denoted by its domain to the set denoted by its range. As
usual, → associates to the right, i.e. σ1 → σ2 → σ3 is short for σ1 → (σ2 → σ3).

We assume a countably infinite set V of variables. A term tσ of type σ is either
an (explicitly typed) variable, logical constant, application, or λ-abstraction. Terms are
given by the following grammar:

tσ ::= xσ | cσ | (tσ′→σ tσ′)σ | (λxσ1 . tσ2)σ1→σ2 ,

where x ranges over variables, and cσ is either =⇒ B→B→B (implication) or =σ′→σ′→B
(equality on σ′), usually written in infix notation. Other logical constants, includ-
ing ∨B→B→B, ∧B→B→B, ¬B→B, and quantifiers of arbitrary order, can be defined as
λ-terms [1]. Terms of type B are called formulas.

We now define the semantics of terms. Let tσ be a term of type σ. Let tv(tσ) ⊆ TV
be the set of all type variables that occur in tσ. tv can be defined inductively with the
help of an auxiliary function tv′ that collects the type variables occuring in a type:

tv′(B) = ∅,
tv′(α) = {α},

tv′(σ1 → σ2) = tv′(σ1) ∪ tv′(σ2),
1The difference between standard and Henkin’s general models [10], where function types may denote

a subset of all total functions, is not relevant in the context of this paper: we will only consider finite
models.

28

and

tv(xσ) = tv′(σ),
tv(cσ) = tv′(σ),

tv((tσ′→σ t
′
σ′)σ) = tv(tσ′→σ) ∪ tv(t′σ′),

tv((λxσ1 . tσ2)σ1→σ2) = tv′(σ1) ∪ tv(tσ2).

Note that tv(tσ) is not necessarily contained in tv′(σ). Types σ with tv′(σ) 6= ∅ and
terms tσ with tv(tσ) 6= ∅ are called polymorphic. Furthermore, let fv(tσ) ⊆ V be the
set of all free variables that occur in tσ, defined as usual:

fv(xσ) = {xσ},
fv(cσ) = ∅,

fv((tσ′→σ t
′
σ′)σ) = fv(tσ′→σ) ∪ fv(t′σ′),

fv((λxσ1 . tσ2)σ1→σ2) = fv(tσ2) \ {xσ1}.

It is obvious that tv(tσ) and fv(tσ) are finite.
An environment D for tσ is a function that assigns to each type variable α ∈ tv(tσ)

a non-empty set Dα. A variable assignment A for tσ w.r.t. an environment D maps
each variable xσ′ ∈ fv(tσ) to an element A(xσ′) of the set denoted by the type σ′. (For
σ′ a type variable, this set is given by Dσ′ .) Given a variable assignment A, a variable
xσ′ ∈ fv(tσ), and an element d of the set denoted by σ′, let A[xσ′ 7→ d] be the assignment
that maps xσ′ to d, and v 6= xσ′ to A(v). Now

[[xσ]]AD = A(xσ),

[[=⇒ B→B→B]]AD is the function that sends


>,> to >
>,⊥ to ⊥
⊥,> to >
⊥,⊥ to >

,

[[=σ′→σ′→B]]AD is the function that sends x, y ∈ D(σ′) to
{
> if x = y
⊥ otherwise

,

[[(tσ′→σ t
′
σ′)σ]]AD = [[tσ′→σ]]AD([[t′σ′]]AD) (function application),

[[(λxσ1 . tσ2)σ1→σ2]]
A
D is the function that sends each d ∈ D(σ1) to [[tσ2]]

A[xσ1 7→d]

D .

Hence the semantics of a term tσ is an element of the set denoted by the type σ, i.e.
[[tσ]]AD ∈ D(σ).

3 Bounded Model Generation

The model generation for a HOL formula φ = tB proceeds in several steps. We first fix
the size of the model by choosing an environment D for φ that contains only finite sets.
(Note that environments are determined uniquely up to isomorphism by the size of the
sets that they assign to type variables; the names of elements are irrelevant.) With a
fixed finite size for every set denoted by a type variable, every set denoted by a type then
has a finite size: clearly |D(B)| = 2, and |D(σ1 → σ2)| = |D(σ2)||D(σ1)|. Our task now

29

is to find a variable assignment A with [[φ]]AD = >. (To generate a countermodel, we can
either consider ¬φ, or – equivalently – search for a variable assignment A with [[φ]]AD =
⊥.) At this point we can already view bounded model generation as a generalization of
satisfiability checking, where the search tree is not necessarily binary, but still finite.

3.1 Translation into Propositional Logic

The input formula φ is translated into a propositional formula that is satisfiable if
and only if such a variable assignment exists. Propositional formulas are given by the
following grammar:

ϕ ::= True |False | p | ¬ϕ |ϕ ∨ ϕ |ϕ ∧ ϕ,

where p ranges over a countably infinite set of Boolean variables. The translation is by
induction over terms and types. As an intermediate data structure, trees of propositional
formulas are used. A tree of height 1 and width m corresponds to a term whose type
is a type variable (denoting a set of size m) or B (for m = 2), while an n-ary function
or predicate is given by a tree of height n + 1. Application and λ-abstraction can be
“lifted” from the term level to this intermediate data structure.

To define the translation more precisely, several auxiliary functions are needed. The
translation TD from terms to trees of propositional formulas is given by the following
rules.

create(B) = [(v), (v)],
create(α) = [(v), . . . , (v)] of length |Dα|,

create(σ1 → σ2) = [create(σ2), . . . , create(σ2)] of length |D(σ1)|,

TT = [True,False],
FF = [False,True],

δn
k =

{
True if n = k
False otherwise

,

uvn
k = [δk

1 , . . . , δ
k
n],

consts(B) = [TT,FF],

consts(α) = [uv|Dα|
1 , . . . ,uv|Dα|

|Dα|],

consts(σ1 → σ2) = pick([consts(σ2), . . . , consts(σ2)︸ ︷︷ ︸
|D(σ1)|

]),

∆n
k =

{
TT if n = k
FF otherwise

,

UVn
k = [∆k

1, . . . ,∆
k
n],

apply([t], [ϕ]) = treemap((λϕ′. ϕ′ ∧ ϕ), t),
apply([t1, t2, . . . , tn], [ϕ1, ϕ2, . . . , ϕn]) = merge(∨, apply([t1], [ϕ1]),

apply([t2, . . . , tn], [ϕ2, . . . , ϕn])),

30

all([ϕ1, . . . , ϕn]) = ϕ1 ∧ . . . ∧ ϕn,

enum([ϕ1, . . . , ϕn]) = [ϕ1, . . . , ϕn],
enum([t1, . . . , tn]) = map(all,pick([enum(t1), . . . , enum(tn)])),

T B
D (xσ) =

{
B(xσ) if xσ ∈ domB
create(σ) otherwise

,

T B
D (=⇒ B→B→B) = [[TT,FF], [TT,TT]],

T B
D (=σ′→σ′→B) = [UV|D(σ′)|

1 , . . . ,UV|D(σ′)|
|D(σ′)|],

T B
D ((tσ′→σ t

′
σ′)σ) = apply(T B

D (tσ′→σ), enum(T B
D (t′σ′))),

T B
D ((λxσ1 . tσ2)σ1→σ2) = [T B[xσ1 7→d1]

D (tσ2), . . . , T
B[xσ1 7→d|D(σ1)|]

D (tσ2)],
where [d1, . . . , d|D(σ1)|] = consts(σ1).

Some explanations are in order. (v) is a placeholder for a fresh Boolean variable, i.e.
different occurrences of (v) are replaced by different variables. We use Boolean variables
in a unary rather than in a binary fashion. This means that we need n variables to
represent an element of a set of size n, rather than dlog2 ne variables. However, exactly
one of these variables must later be set to True (which keeps the search space for
the SAT solver small), and this encoding allows for a relatively simple translation of
application. To ensure that exactly one of the Boolean variables p1, . . . , pn is set to
True, a propositional formula

wf [p1,...,pn] =

(
n∨

i=1

pi

)
∧

n∧
i,j=1

i6=j

(¬pi ∨ ¬pj)

is constructed and later conjoined with the result of the translation.
TT and FF are trees corresponding to > and ⊥, respectively. consts(σ) returns a

list with one tree for each element in D(σ). pick([x1, . . . , xn]) – where each xi is again
a list – is an auxiliary function that returns a list containing all possible choices of one
element from each list xi. For the special case x1 = . . . = xn, this corresponds to all
functions from an n-element set to elements of x1.

The translation is parameterized by a partial assignment B of trees to bound vari-
ables. Initially this partial assigment is equal to ∅, and it is extended whenever the
translation descends into the body of a λ-abstraction.

treemap(f, t) applies the function f to every propositional formula in the tree t,
thereby returning a new tree. merge(f, t1, t2) merges two trees t1 and t2 by applying f
to corresponding propositional formulas in t1 and t2. Here f is a function that takes 2
propositional formulas as arguments and returns one propositional formula. Hence the
result is again a single new tree. t1 and t2 must have the same “structure”, i.e. differ at
most in the formulas that they contain (but not in their height or width). enum(t), for
t a tree representing an element of D(σ), computes propositional formulas ϕ1, . . . , ϕn

expressing that t represents the first, . . . , n-th element of D(σ). map(f, l) simply applies
f to every element in a list l.

The rule for T B
D ((tσ′→σ t

′
σ′)σ) suggests that the translations of tσ′→σ and t′σ′ are

completely independent of each other. This is not quite true. We require variables that

31

occur free in both subterms to be replaced by the same tree each time. To this end a
mapping from free variables to trees of Boolean variables is built during the translation.
For the sake of simplicity this is not shown in the above rules. The same mapping is
later used to convert a Boolean assignment, returned by the SAT solver, to a variable
assignment for φ.

Since φ is a term of type B, the result T ∅
D(φ) of the translation must be a tree of the

form [T ∅
D(φ)>, T ∅

D(φ)⊥] for some propositional formulas T ∅
D(φ)>, T ∅

D(φ)⊥.

Proposition 3.1 Soundness, Completeness. Let ∗ ∈ {>,⊥}, and let WF be the con-
junction of all wf-formulas constructed during the translation. Then [[φ]]AD = ∗ for some
variable assignment A if and only if WF ∧ T ∅

D(φ)∗ is satisfiable.

The theorem can be proved by generalization from formulas to terms of arbitrary
types, followed by structural induction over the term. We omit the details.

3.2 Finding a Satisfying Assignment

Satisfiability can be tested with an off-the-shelf SAT solver. To this end translations into
DIMACS SAT and DIMACS CNF format [6] have been implemented. The translation
into SAT format is trivial, whereas CNF format (supported by zChaff [13], BerkMin [7]
and other state-of-the-art solvers) requires the Boolean formula to be in conjunctive
normal form. To avoid an exponential blowup at this stage, we translate into definitional
CNF, introducing auxiliary Boolean variables where necessary.

Isabelle/HOL runs on a number of different platforms, and installation should be
as simple as possible. Therefore we have also implemented a naive DPLL-based [5, 19]
SAT solver in Isabelle. This solver is not meant to replace the external solver for serious
applications, but it has proved to be efficient enough for small examples, and hence
allows users to experiment with the countermodel generation without them having to
worry about the installation of an additional tool.

If the SAT solver cannot find a satisfying assigment, the translation is repeated for
a larger environment. The user can specify several termination conditions: a maximal
size for sets in the environment, a limit on the number of Boolean variables to be used,
a runtime limit. The stepwise extension of the environment guarantees that if the SAT
solver is complete, a model will be found that is minimal w.r.t. its size. Of course this
is not necessarily true for incomplete (e.g. stochastic) SAT solvers.

3.3 Example Translation

Consider the formula φ = ((λxα. xα)α→α =(α→α)→(α→α)→B yα→α)B. Its only type vari-
able is α, and its only free variable is yα→α. In an environment D with |Dα| = 2 (and
hence |D(α→ α)| = 22 = 4), the subterms of φ are translated into the following trees:

T ∅
D((λxα. xα)α→α) = [[True,False], [False,True]],

T ∅
D(=(α→α)→(α→α)→B) = [UV4

1,UV4
2,UV4

3,UV4
4],

T ∅
D(yα→α) = [[y0, y1], [y2, y3]]

32

with four Boolean variables y0, y1, y2, y3. Using the translation rule for application, we
then obtain (Boolean formulas equivalent to)

T ∅
D(φ)> = y0 ∧ y3

and
T ∅

D(φ)⊥ = (y0 ∧ y2) ∨ (y1 ∧ y2) ∨ (y1 ∧ y3).

Additionally two wf-formulas are constructed, namely

wf [y0,y1] = (y0 ∨ y1) ∧ (¬y0 ∨ ¬y1)

and
wf [y2,y3] = (y2 ∨ y3) ∧ (¬y2 ∨ ¬y3).

3.4 Some Extensions: Sets, ε, and Datatypes

Several extensions to the logic described in Section 2 can straightforwardly be integrated
into our framework. The type σ set of sets with elements from σ is isomorphic to σ → B.
Set membership x ∈ P becomes predicate application P x, and set comprehension {x. P}
can be translated simply as P .

Hilbert’s choice operator, ε, is a polymorphic constant of type (σ → B) → σ, satis-
fying the axiom

φε :
∃x. P x
P (εP)

.

Similarly, The, also a constant of type (σ → B) → σ, satisfies

φThe : (The x. x = a) = a,

and arbitrary is a completely unspecified polymorphic constant. For the purpose of our
translation TD, we can treat these logical constants just like free variables, and introduce
Boolean variables that determine their interpretation. For ε and The, we then translate
the conjunction of the original formula φ with the relevant axiom (i.e. φε∧φ or φThe ∧φ,
respectively, or φε ∧ φThe ∧ φ if both ε and The occur in φ). Type variables in φε (or
φThe) are instantiated to match the type of ε (or The) in φ.

Isabelle/HOL allows the definition of inductive datatypes [2]. In general, inductive
datatypes with free constructors require an infinite model. We are currently working
on their integration into this framework – e.g. by considering only finite fragments of
the datatype. However, many important datatypes are non-recursive, and for these, the
situation is simpler. Examples are the type σ option, which augments a given type σ by
a new element, product types σ1 × σ2, and sum types σ1 + σ2. The general syntax of a
non-recursive datatype definition is given by

(α1, . . . , αn)σ ::= C1 σ
1
1 . . . σ

1
m1

| . . . |Ck σ
k
1 . . . σ

k
mk
,

where the Ci are the datatype’s constructors, the σi
j specify their argument types, and

all σi
j only refer to previously defined types and type variables from α1, . . . , αn. Such a

datatype can be interpreted in a finite model; its size is equal to S :=
∑k

i=1

∏mi
j=1 |D(σi

j)|.
Hence an element of this datatype can be represented by a tree of height 1 and width S,
and a datatype constructor Ci is a function of type σi

1 → . . . → σi
mi

→ (α1, . . . , αn)σ,
representable by a tree of height mi + 1.

33

3.5 Some Optimizations

We briefly describe some optimizations in the implementation of the translation TD.
None of them affect soundness or completeness of the algorithm.

Variables of a type with size 1 can be represented by [True], using no Boolean
variable at all (instead of one Boolean variable x together with a wf [x]-formula x).
Similarly variables of a type with size 2, including variables of type B, can be represented
by a tree of the form [x,¬x], rather than by a tree [x0, x1] and a wf [x0,x1]-formula
(x0 ∨ x1) ∧ (¬x0 ∨ ¬x1).

The Boolean formulas that are constructed during the translation process are sim-
plified as much as possible, using basic laws of ¬, ∨, ∧, True and False. Closed HOL
formulas simply become True or False. The SAT solver is used only to search for an
interpretation of free variables.

More importantly, we avoid unfolding the definition of logical constants (i.e. TrueB,
FalseB, ¬B→B, ∧B→B→B, ∨B→B→B, ∀(σ→B)→B, ∃(σ→B)→B) as λ-terms as far as possible.
Instead these constants are replaced directly by their counterparts in propositional logic.
Since every type is finite, quantifiers of arbitrary order can be replaced by a finite
conjunction or disjunction.

The latter suggests a more general optimization technique, applicable also to other
functions and predicates (including e.g. equality): namely specialization of the rule for
function application to particular functions. While any given function can be represented
by a tree, it is often more efficient to implement a particular function’s action on its
arguments, assuming these arguments are given as trees already, than to use the general
translation rule and apply it to the tree representing the function. For =σ→σ→B this
avoids creating a tree whose size is proportional to |D(σ)|2, and instead uses a function
that operates on trees representing elements of D(σ), their size possibly proportional to
log |D(σ)| only.

3.6 Examples

Table 1 shows some examples of formulas for which our algorithm can automatically find
a countermodel. Type annotations are suppressed, and functions in the countermodel
are given by their graphs. The main purpose of these examples is to illustrate the
expressive power of the underlying logic. The countermodels are rather small, and were
all found within a few milliseconds.

4 Conclusions and Future Work

We have presented a translation from higher-order logic to propositional formulas, such
that the resulting propositional formula is satisfiable if and only if the HOL formula
has a model of a given finite size. A working implementation of this translation, con-
sisting of roughly 2,800 lines of code written in Standard ML [12], is available in the
Isabelle/HOL theorem prover. A standard SAT solver can be used to find a satisfying
assignment for the propositional formula, and if such an assignment is found, it can be
transformed into a model for the HOL formula. This allows for the automatic gener-
ation of finite countermodels for non-theorems in Isabelle/HOL. A similar translation

34

Property/Formula Countermodel
”Every function that is onto is invertible.“ Dα = {a0, a1}, Dβ = {b0}
(∀y.∃x. f x = y) =⇒ (∃g.∀x. g (f x) = x) f = {(a0, b0), (a1, b0)}
”There exists a unique choice function.“ Dα = {a0}, Dβ = {b0, b1}
(∀x.∃y. P x y) =⇒ (∃!f.∀x. P x (f x)) P = {(a0, {(b0,True), (b1,True)})}
”The transitive closure of A ∩B is equal to Dα = {a0, a1}
the intersection of the transitive closures of A = {(a0, a1), (a1, a0), (a1, a1)}
A and B.“ B = {(a0, a0), (a1, a0), (a1, a1)}

Table 1: Examples

has been discussed before [11]; the main contributions of this paper are its extension
to higher-order logic and the seamless integration with a popular interactive theorem
prover.

So far we have applied the technique only to relatively small examples. The ap-
plicability of the algorithm is limited by its non-elementary complexity. We believe
that the algorithm can still be useful for practical purposes, since many formulas have
small models. To substantiate this claim, and to further evaluate the performance of
our approach, we plan to carry out some larger case studies, possibly from the area of
cryptographic protocol verification [15, 16].

We also plan to incorporate further optimizations [4, 17], and to extend the transla-
tion to other Isabelle/HOL constructs: most notably the full language of HOL, including
type operators [8], but also inductive datatypes, axiomatic type classes [18], inductively
defined sets, and recursive functions.

References

[1] Peter B. Andrews. An Introduction to Mathematical Logic and Type Theory: To
Truth Through Proof, volume 27 of Applied Logic Series. Kluwer Academic Pub-
lishers, second edition, July 2002.

[2] Stefan Berghofer and Markus Wenzel. Inductive datatypes in HOL - lessons learned
in formal-logic engineering. In Y. Bertot, G. Dowek, A. Hirschowitz, C. Paulin,
and L. Théry, editors, Theorem Proving in Higher Order Logics, 12th International
Conference, TPHOLs’99, volume 1690 of Lecture Notes in Computer Science, pages
19–36. Springer, 1999.

[3] Alonzo Church. A formulation of the simple theory of types. Journal of Symbolic
Logic, 5:56–68, 1940.

[4] Koen Claessen and Niklas Sörensson. New techniques that improve MACE-style
finite model finding. In CADE-19, Workshop W4, Model Computation – Principles,
Algorithms, Applications, 2003.

[5] M. Davis, G. Logemann, and D. Loveland. A machine program for theorem proving.
Communications of the ACM, 5:394–397, 1962.

35

[6] DIMACS satisfiability suggested format, 1993. Available from
ftp://dimacs.rutgers.edu/pub/challenge/satisfiability/doc.

[7] E. Goldberg and Y. Novikov. BerkMin: A fast and robust sat solver. In Design
Automation and Test in Europe (DATE), pages 142–149, 2002.

[8] M. J. C. Gordon and T. F. Melham, editors. Introduction to HOL: a theorem
proving environment for higher order logic. Cambridge University Press, 1993.

[9] M. J. C. Gordon and A. M. Pitts. The HOL logic and system. In J. Bowen, editor,
Towards Verified Systems, volume 2 of Real-Time Safety Critical Systems Series,
pages 49–70. Elsevier, 1994.

[10] Leon Henkin. Completeness in the theory of types. Journal of Symbolic Logic,
15(2):81–91, 1950.

[11] Daniel Jackson. Automating first-order relational logic. In Proc. ACM SIGSOFT
Conf. Foundations of Software Engineering, pages 130–139, San Diego, November
2000.

[12] Robin Milner, Mads Tofte, Robert Harper, and David MacQueen. The Definition
of Standard ML - Revised. MIT Press, May 1997.

[13] M. Moskewicz, C. Madigan, Y. Zhao, L. Zhang, and S. Malik. Chaff: Engineering
an efficient sat solver. In Proc. of the 38th Design Automation Conference, Las
Vegas, June 2001.

[14] Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel. Isabelle/HOL – A
Proof Assistant for Higher-Order Logic, volume 2283 of Lecture Notes in Computer
Science. Springer, 2002.

[15] Larry C. Paulson. The inductive approach to verifying cryptographic protocols.
J. Computer Security, 6:85–128, 1998.

[16] Graham Steel, Alan Bundy, and Ewen Denney. Finding counterexamples to in-
ductive conjectures and discovering security protocol attacks. AISB Journal, 1(2),
2002.

[17] Tanel Tammet. Finite model building: improvements and comparisons. In CADE-
19, Workshop W4, Model Computation – Principles, Algorithms, Applications,
2003.

[18] Markus Wenzel. Type classes and overloading in higher-order logic. In Elsa L.
Gunter and Amy P. Felty, editors, Theorem Proving in Higher Order Logics, 10th
International Conference, TPHOLs’97, volume 1275 of Lecture Notes in Computer
Science, pages 307–322. Springer, 1997.

[19] L. Zhang and S. Malik. The quest for efficient boolean satisfiability solvers. In
Andrei Voronkov, editor, Proceedings of the 8th International Conference on Com-
puter Aided Deduction (CADE 2002), volume 2392 of Lecture Notes in Computer
Science. Springer, 2002.

36

Reducing Symmetries to Generate Easier SAT Instances

Jian Zhang∗

Laboratory of Computer Science
Institute of Software, Chinese Academy of Sciences

Beijing 100080, China
Email: zj@ios.ac.cn

June 2004

Abstract

Finding countermodels is an effective way of disproving false conjectures. In
first-order predicate logic, model finding is an undecidable problem. But if a finite
model exists, it can be found by exhaustive search. The finite model generation
problem in the first-order logic can also be translated to the satisfiability problem
in the propositional logic. But a direct translation may not be very efficient. This
paper discusses how to take the symmetries into account so as to make the resulting
problem easier, and reports some experimental results.

1 Introduction

Compared with theorem proving, the subject of disproving false conjectures has been
less studied. But it is actually very important, since for open questions, you do not
know whether the conjecture holds or not. If you give a false conjecture to a typical
resolution-based theorem prover, the prover either runs forever or terminates without
producing any useful information. When this happens, you do not know whether it is
because the conjecture is false or the inference rules are not enough or the prover is not
so efficient.

An effective way of disproving such conjectures is to find a suitable countermodel,
namely, a model of the axioms in which all the premises hold but the conjecture does
not. However, for first-order predicate logic, determining the existence of models is
an undecidable problem in general. Fortunately, in many cases, finite models exist for
satisfiable formulas, and we can first try to find a finite model. If we succeed, the
conjecture is disproved by the countermodel; but if we fail, we can not say that the
conjecture is false or true.

Currently, there are roughly two main approaches to finite model generation in the
first-order logic. The first approach translates the problem into a satisfiability (SAT)
problem in the propositional logic, and uses a SAT algorithm (e.g., the DPLL algorithm)
to solve it. See for example, [5, 7, 4]. The second approach treats the problem as a

∗Supported in part by K.C. Wong Education Foundation (Hong Kong) and NSFC under grant no.
60125207.

37

constraint satisfaction problem, and uses backtracking search to find the interpretations
of the functions/predicates directly. Tools like FINDER [10], FALCON [12], SEM [14]
and Mace4 [8] are based on this approach.

Each of the above two approaches has some benefits and weaknesses. For example,
the translation approach may generate too many propositional formulas, and the con-
straint solving (or direct search) approach may not be so efficient on some problems.
But using the first-order clauses directly leads to larger reasoning steps and also gives
us opportunity to eliminate symmetrical subspaces.

We have been studying how to combine the two approaches. One way is to improve
the direct search procedure by incorporating successful techniques developed in the SAT
community [3]. Alternatively, we can also improve the translation approach by com-
bining it with first-order model searchers [13]. This paper compares different ways of
exploiting symmetries in the problem specification, so that the resulting SAT problem
instances are easier. Some examples and experimental results will be given. The exper-
iments were carried out on a Dell desktop computer (Optiplex GX270, Pentium 4, 2.8
GHz, 2G memory).

2 Finite Model Searching

The finite model generation problem can be stated as follows. Given a set of first
order formulas and a non-empty finite domain, find an interpretation of all the function
symbols and predicate symbols appearing in the formulas such that every formula is
true under this interpretation. Such an interpretation is called a model. Usually we also
assume that the formulas are all clauses, and every variable in a clause is (implicitly)
universally quantified.

We do not consider many-sorted formulas in this paper. Without loss of generality,
an n-element domain is assumed to be Dn = { 0, 1, . . . , n− 1 }. The Boolean domain
is { FALSE, TRUE }. If the arity of each function/predicate symbol is at most 2, a
finite model can be conveniently represented by a set of multiplication tables, one for
each function/predicate. For example, a 3-element model of the clause f(x, x) = x is
like the following:

f 0 1 2
0 0 1 0
1 1 1 0
2 0 1 2

Here f is a binary function symbol and its interpretation is given by the above 2-
dimensional matrix. Each entry in the matrix is called a cell.

A finite model generation problem may be translated to a propositional satisfiability
problem. A model can be represented by a set of assignments to propositional variables.
Suppose there are m cells (c0, c1, . . . , cm−1) in the multiplication tables of the functions.
We can introduce mn propositional variables: pij (0 ≤ i < m, 0 ≤ j < n), where pij

is true if and only if the i’th cell ci has the value j. In addition, we also need one
propositional variable for each cell in the predicates’ multiplication tables. The first-
order clauses can be translated into propositional clauses accordingly. For more details,
see for example, [5, 7].

38

Alternatively, we can also search for the values of the cells directly. A finite model
generation problem may also be regarded as a constraint satisfaction problem (CSP),
which has been studied by many researchers in Artificial Intelligence. The variables of
the CSP are the cell terms (i.e., ground terms like f(0, 0), f(0, 1), etc.). The domain of
each variable is Dn (except for predicates, whose domain is the Boolean domain). The
constraints are the set of ground instances of the input clauses. The goal is to find a set
of assignments to the cells (e.g., f(0, 1) = 2) such that all the ground clauses hold.

Typically backtracking search is used to solve the above problem. The basic idea of
the search procedure is roughly like the following: Repeatedly extend a partial model
(denoted by Pmod) until it becomes a complete model (in which every cell gets a value).
Initially Pmod is empty. Pmod is extended by selecting an unassigned cell and trying
to find a value for it. Of course, when no value is appropriate for the cell, backtracking
is needed and Pmod becomes smaller. Such a procedure may be depicted as a search
tree. Each edge of the tree corresponds to choosing a value for some cell.

As mentioned in the Introduction, each of the translation approach and the direct
search approach has benefits and weaknesses.

The propositional satisfiability (SAT) problem has been studied for more than 40
years. Many theoretical results have been obtained, and many efficient algorithms have
been designed. In recent years, more and more highly efficient SAT solvers are being
developed, such as zChaff [9] and BerkMin [2].

On the other hand, the direct search approach works on first-order clauses, and may
employ some structural information to speed up the search process. One technique that
has been proved to be very useful is the so-called Least Number Heuristic (LNH in short)
[12, 14]. It is based on the observation that in typical benchmark problems, most of
the domain elements are “equivalent” when search begins. So we need only choose a
few representative values to assign to the cells, and many branches of the search tree
can be skipped. The LNH is more effective at the first few levels of the search tree.
On many problems, it can reduce the search space significantly, and yet the overhead is
negligible. In contrast, few good methods are known to discover and use symmetries in
propositional clauses.

It is certainly desirable to combine the benefits of the two approaches, so that more
problems can be easily solved.

3 A Motivating Example

Let us look at an example, i.e., finding ortholattices [6]. The axioms (and lemmas) are
as follows:

m(x,y) = m(y,x). j(x,y) = j(y,x).
j(j(x,y),z) = j(x,j(y,z)).
c(c(x)) = x. j(x,m(x,y)) = x.
m(x,y) = c(j(c(x),c(y))).
m(x,x) = x. j(x,x) = x.
j(c(x),x) = 1. m(c(x),x) = 0.
j(1,x) = 1. j(x,1) = 1. m(1,x) = x. m(x,1) = x.
m(0,x) = 0. m(x,0) = 0. j(0,x) = x. j(x,0) = x.

39

When asked to find a 13-element model of the above formulas, MACE 2.2 [7] takes 9.34
seconds to conclude that such a model does not exist. Most of the time is spent on SAT
solving rather than obtaining the propositional clauses (DPLL time: 9.09 seconds). If
we add the following two clauses to the input:

c(0) = 1. c(2) = 3.

the execution time will be 1.14 seconds (DPLL time: 0.89 seconds). The reduction is
significant.

These two clauses represent the initial two steps taken by SEM [14]. Note that in
the first step, there is only one branch, i.e., SEM decides that only the value 1 can be
assigned to c(0). Similarly, in the second step, there is also one choice. So adding the
two clauses does not change the satisfiability of the original problem.

4 Adding Formulas to Eliminate Symmetrical Subspaces

When solving the quasigroup problems, Fujita et al. [1, 11] add a few clauses which
eliminate quite many symmetrical subspaces. This greatly reduces the search time.
But the additional constraints are domain-specific, namely, they can only be applied to
quasigroup problems and other similar problems.

MACE [7] has an option (‘-c’) which allows the user to impose the constraint that the
constants are different from each other. It is quite helpful when finding counterexamples,
because the negation of the conjecture usually contains Skolem constants. It is also
useful when, for instance, finding non-commutative groups. But that option may miss
some solutions, in which two constants are assigned the same domain element. For
example, when this option is used, MACE fails to find a 10-element countermodel which
shows that some equation (i.e., the equation E1 in [6]) does not hold for ortholattices.
MACE has another option (‘-z’) which adds isomorphism constraints to the generated
propositional formula. But it applies only to constants.

As a more general method, we can simulate the LNH by adding certain constraints.
For simplicity, we assume that no domain elements appear in the input and that there
is only one binary function symbol f. SAGE [4] adds the following constraints:

f(0,0)=0 | f(0,0)=1.
f(0,1)=0 | f(0,1)=1 | f(0,1)=2.
f(1,0)=0 | f(1,0)=1 | f(1,0)=2 | f(1,0)=3.
...

Of course, these are only an approximation to the LNH. Some combinations actually
need not be considered. For example, when f(0,0) = 0 and f(0,1) = 1, we should
not consider the case f(1,0) = 3. But it still prunes the search tree greatly, since we
now need to examine only 2 (instead of n) values for f(0,0), only 3 (instead of n) values
for f(0,1), and so on.

To get an understanding of its effectiveness, let us look at the QG5 problem. It has
only one binary function symbol ‘f’ whose multiplication table should be a quasigroup.
In addition to this property, it has the following axioms:

40

f(x,x) = x.
f(f(f(y,x),y),y) = x.
f(y,f(f(x,y),y)) = x.
f(f(y,f(x,y)),y) = x.

Suppose we try to find all of its models. If we do not use any method for eliminating
isomorphism, there are 120 models of size 7, and 720 models of size 8. If we add the
above three formulas to the input, there are 24 models of size 7, and 24 models of size
8. But when we use the LNH, there is only one model of size 7, and one model of size
8. We see that the method is helpful, but it is not good enough.

Here there is some tradeoff between the number of additional clauses and the effect
of pruning. In general, to be more effective, we need to add more clauses. We are
currently experimenting with different kinds of additional clauses.

5 Generating Multiple SAT Problems Dynamically

As mentioned in Section 2, a backtracking search method works by extending partial
models. It is also mentioned that the LNH is more effective at the first few levels of
the search tree. Below certain levels, the domain elements are no longer “equivalenet”
and the heuristic is not effective. On the other hand, for many problems, propositional
reasoning is more efficient at most nodes of the search tree.

Naturally one may think of combining first-order model searching with SAT solving,
as demonstrated by the example in Section 3.

In [13], we propose a scheme for combining the two approaches, and report some
experiences with SEM and MACE. The scheme looks like the following:

r
�

��

@
@@r r

�
�

@
@r r �

�
@

@r rr
SAT

At the first few levels of the search, we use SEM with the LNH. Below certain levels
(e.g., when every domain element is distinct), the search is tranfered to a SAT solver.
The borderline can be decided by the user.

Let us look at the QG5 problem again. Its axioms are given at the end of the previous
section. For this problem, the first 3 steps of SEM’s search tree is like the following:

f(0,1) = 2; f(2,0) = 3; f(2,1) = 4.

At each step, SEM concludes – using the LNH and through various kinds of reasoning
– that there is only one value that can be assigned to the corresponding cell. If we add
these three equations to the input, and ask SEM to find all the models, without using
the LNH, SEM will find that there are 2 models of size 7, 6 models of size 8. This is
not too far away from the optimal numbers (1 model of size 7 and 1 model of size 8).

41

Table 1: Number of Partial Models for Various Problems

size 7 8 9 10 11 12 13
QG5 1 1 5 12 26 70 217
OL 23 54 849 6501 >10000 >10000 >10000

NCG 7 16 31 57 79 223 210

Thus adding the above constraints is quite helpful for eliminating isomorphic sub-
spaces. Of course, we can ask SEM to go beyond the 3 steps and more subspaces can be
eliminated. In general, more than one SAT instances are generated using this approach.

Is there any overhead? Yes. The main overhead will be the translation time (the time
for obtaining propositional clauses from first-order ones), and perhaps reading/writing
files. That will be significant if many SAT instances are generated. On the other hand,
if the problem is difficult, the nodes of SEM’s search tree are not so many, and the
majority of work will be done by a SAT solver. The translation time is not so much, if
compared with the searching time. In that case, the combination will be very helpful.

We have slightly modified SEM so that it backtracks when the LNH is no longer
effective (i.e., when no domain elements are “equivalent”). We ask the modified program
to count how many partial models it generates. Table 1 gives the number of partial
models generated by SEM, on several problems. In addition to QG5 and ortholattice
(OL) mentioned earlier, we have tested the program on the non-commutative group
(NCG) problem. The first line of the table gives the size of the model, while the other
lines give the corresponding numbers of partial models. We can see that, for NCG and
QG5, there are not too many partial models. But OL has many partial models. This is
probably because that the problem is too easy or has too many solutions.

We have also tried several other problems. Some of them are too easy, and some are
too hard. For example, the combinatory logic problem cl_BM is already quite difficult
when the size of the model is 6. So the results are not included in the above table.
When the size is 6, 1599 partial models are generated; and when the size is 7, 49438
partial models are generated.

One way to reduce the number of partial models is to ask SEM to backtrack earlier
(e.g., when there are still some “equivalent” domain elements). But then the symmetries
are not exploited fully. Another way is to ask SEM to solve the easier subproblems, in
which many cells are assigned values.

6 Concluding Remarks

As many highly efficient SAT solvers are being developed in recent years, it becomes
more interesting to use them to find finite models and counter-examples in the first-
order logic. If we take symmetries into account when generating propositional clauses,
easier SAT instances may be obtained. In this paper, we have discussed two different
approaches. One is static, which adds some formulas to the input and then gets a set
of propositional clauses in the conventional way. The other is dynamic, which uses
a first-order model searcher to derive some partial models, and then gets a number

42

of SAT instances (each corresponding to a partial model). Some issues are discussed,
and experimental results are reported, using existing tools (or variations of them). We
believe that the combination of first-order model searching and SAT solving is very
promising for finding large models and counterexamples.

References

[1] M. Fujita, J. Slaney and F. Bennett, Automatic generation of some results in finite
algebra, Proc. 13th Int’l Joint Conf. on Artificial Intelligence (IJCAI), 52–57, 1993.

[2] E. Goldberg and Y. Novikov, BerkMin: A fast and robust SAT solver, Design,
Automation, and Test in Europe (DATE’02), 142–149, 2002.

[3] Z. Huang, H. Zhang and J. Zhang, Improving first-order model searching by propo-
sitional reasoning and lemma learning, Proc. 7th Int’l Conf. on Theory and Appli-
cations of Satisfiability Testing, 2004.

[4] Z. Huang and J. Zhang, Generating SAT instances from first-order formulas, J. of
Software, to appear.

[5] S. Kim and H. Zhang, ModGen: Theorem proving by model generation, Proc. 12th
AAAI , 162–167, 1994.

[6] W. McCune, Automatic proofs and counterexamples for some ortholattice identi-
ties, Information Processing Letters, 65(6): 285–291, 1998.

[7] W. McCune, MACE 2.0 reference manual and guide, Technical Memorandum
ANL/MCS-TM-249, Argonne National Laboratory, Argonne, IL, USA, May 2001.

[8] W. McCune, Mace4 reference manual and guide, Technical Memorandum No. 264,
Argonne National Laboratory, Argonne, IL, USA, Aug. 2003.

[9] M. Moskewicz et al, Chaff: Engineering an efficient SAT solver, Proc. 38th Design
Automation Conference, 530–535, 2001.

[10] J. Slaney, FINDER: Finite domain enumerator – system description, Proc. CADE-
12 , 798–801, 1994.

[11] J. Slaney, M. Fujita and M. Stickel, Automated reasoning and exhaustive search:
Quasigroup existence problems, Computers and Mathematics with Applications
29(2): 115–132, 1995.

[12] J. Zhang, Constructing finite algebras with FALCON, J. Automated Reasoning
17(1): 1–22, 1996.

[13] J. Zhang, Automatic symmetry breaking method combined with SAT, Proc. ACM
Symp. on Applied Computing, 17–21, 2001.

[14] J. Zhang and H. Zhang, SEM: a system for enumerating models, Proc. 14th IJCAI ,
298–303, 1995.

43

44

Finding and Using Counter-Examples

Alan Bundy
Centre for Intelligent Systems and their Applications

School of Informatics
University of Edinburgh, Scotland

Email: a.bundy@ed.ac.uk

June 2004

Abstract

Disproving conjectures, either by finding counterexamples or by refuta-
tion, is a neglected part of automated reasoning compared to proving theo-
rems. Despite this neglect, it is an extremely important part of reasoning.
For instance, in formal methods, initial implementations are notoriously er-
ror prone, and seldom meet their specifications. Moreover, industrial users
of formal verification tools are much more likely to be impressed that a pre-
viously unsuspected, but important, bug was discovered than they are with
a proof that a system is bug-free, especially when bugs are subsequently
revealed during unanticipated uses of the system or when it is coupled to
other components. It is time to reverse this neglect and give disproof the
attention it deserves.

In this talk I will survey recent work in my research group on the de-
tection and use of counter-examples to conjectures. This will include the
automatic detection of counter-examples by the analysis of failed proofs,
the use of refutation complete provers and testing against standard models.
We will describe how these counterexamples can be used, for instance, to
automatically generate attacks on security protocols, including previously
unknown attacks on group protocols. Counterexamples can also be used to
prevent theorem proving systems from wasting time proving false subgoals.
Finally, we will discuss how counterexamples can be used automatically to
correct faulty conjectures. The work reported is joint with Raul Monroy,
Louise Dennis, Simon Colton, Alison Pease and Graham Steel.

45

46

The Use of Proof Planning Critics to Diagnose Errors in the

Base Cases of Recursive Programs∗

Louise A. Dennis

School of Computer Science and Information Technology, University of Nottingham,

lad@cs.nott.ac.uk

June 16, 2004

Abstract

This paper reports the use of proof planning to diagnose errors in program
code. In particular it looks at the errors that arise in the base cases of recursive
programs produced by undergraduates. It describes two classes of error that arise
in this situation. The use of test cases would catch these errors but would fail to
distinguish between them. The system adapts proof critics, commonly used to patch
faulty proofs, to diagnose such errors and distinguish between the two classes. It
has been implemented in λClam, a proof planning system, and applied successfully
to a small set of examples.

The use of mathematical proof to show that a computer program meets its specifica-
tion has a long history in Computer Science (e.g. [14, 13]). Considerable time and effort
has been invested in creating computer-based tools to support the process of proving
programs correct (e.g. [15, 8]). However the technique and tools are only used in very
specialised situations in industry where programmers generally rely on testing and bug
reports from users to assess the extent to which a program meets its specification.

There are several reasons why there is such poor uptake of the use of proof in
industry. One is that the final proof will tell you if the program is correct, but failing to
find a proof does not, on immediate inspection, help in locating errors. This problem can
be particularly severe when using automated proof techniques which generally produce
no proof trace in the case of failure. Many cases have been reported where the process
of attempting a proof by hand has highlighted an error, for instance Paulson’s discovery
of new attacks against security protocols [16]. Anecdotal evidence suggests that errors
are located by examining and reflecting on the process of the failed proof attempt.

It is worth noting the comparative success of model checking techniques (e.g. [11]).
Model checkers are automated (though they require an expert user to convert the prob-
lem into an appropriate form) and return counterexamples when they fail. This confirms
the analysis that automated support for error discovery is valuable and might aid a more
widespread uptake of theorem proving technology.

This paper reports preliminary work using the proof planning paradigm (in particular
the concept of proof critics) to diagnose the errors in program code. I focus on two classes

∗This research was funded by EPSRC grant GR/S01771/01

47

of error that can arise in the base case of a recursive program and show how a proof
critic can be written to distinguish between these two situations.

1 Proof Planning

Proof planning [1] is an Artificial Intelligence based technique for the automation of
proof. One aspect of proof planning is the inspection of failed proof attempts by means
of proof critics [10] which attempt to patch the proof.

Proof planners use AI-style planning techniques to generate proof plans. A proof
plan is a proof of a theorem at some level of abstraction. The main planning operators
used by a proof planner are called proof methods.

The first proof planner, Clam [3], focused on proof by mathematical induction using
the rippling heuristic (a form of rewriting constrained to be terminating by meta-logical
annotations) [2]. λClam [19, 5], which I used for this work, is a higher-order descendant
of Clamwhich incorporates both a hierarchical method structure and proof critics.

λClam works by using depth-first planning with proof methods. Each node in the
search tree is a subgoal under consideration at that point. The planner checks the
preconditions for the available proof methods at each node and applies those whose
preconditions succeed to create the child nodes. The plan produced is then a record
of the sequence of method applications that lead to a trivial subgoal. λClam’s proof
methods are believed to be sound although they are not currently reducible to sequences
of inference rule applications. This means that while λClam outputs something that
can be considered a proof in a similar way to a pen-and-paper correctness proof it does
not produce a fully-formal proof.

1.1 Proof Methods

Proof method application is governed by preconditions (which may be either legal or
heuristic in nature) and by a proof strategy (or compound method) which restricts the
methods available depending on the progress through the proof. For instance we may
wish to simplify a goal as much as possible by applying a rewriting method exhaustively
before considering other procedures such as checking for tautologies.

In λClam a proof method can be atomic or compound. If it is compound then it is a
sub-strategy built up from other methods and methodicals1 [18]. Methodicals exist for
repeats, sequencing methods, creating or choices etc. and so complex proof strategies
for controlling the search for a proof can be created.

1.1.1 The Proof Strategy for Induction

The proof strategy for induction can be seen in figure 12. The diagram shows a top
level repeat which attempts a disjunction of methods (in λClam these are attempted

1Analogous to a tactical in an LCF style theorem prover.
2There is no clear semantics for the use of diagrams to represent proof strategies. In this case boxes

are used to indicate methods (both atomic and compound) and arrows to indicate method sequencing.
Methods within methods indicate the method hierarchy, arrows that branch show OR choices and
methods with more than one exit arrow indicate that they produce several goals which are treated
differently.

48

Symbolic EvaluationOther Methods...

Induction_top_meth

(Base Cases) (Step Cases)

Ind_strat

Induction_meth

step_case

Rippling

Figure 1: The Proof Strategy for Induction

from right to left, the planner backtracking out of failed choices). These include basic
tautology checking, generalisation of common subterms and also symbolic evaluation
and the induction strategy (ind strat). Within the induction strategy, the induction
method chooses an induction scheme and produces subgoals for base and step cases.

The top level strategy is reapplied to the base cases. The step cases are handled
using rippling. The details of rippling are not important to the work described here and
so are omitted from discussion. The results are then passed out to the top level strategy
again. The process terminates when all subgoals have been reduced to true.

This proof strategy is used as the basis of the system for diagnosing errors in recursive
programs discussed in this paper.

1.2 Proof Critics

A proof strategy provides a guide to which proof methods should be chosen at any
given stage of the proof. Knowing which method is expected to apply gives additional
information should the system generating the plan fail to apply it. Proof critics can
be employed to analyse the reasons for failure and propose alternative choices. Critics
are expressed in terms of preconditions and patches. The preconditions examine the
reasons why the method has failed to apply. The proposed patch suggests some change
to the proof plan or strategy. It may choose to propagate this change back through the
plan and then continue from the current point, jump back to a previous point in the
proof plan, or modify the current strategy being used by the planner, for instance by
introducing new methods for consideration at that point.

In λClamv4, used for this work, critics can be built up into strategies using criti-

49

cals [9] in the same way that method strategies can be developed.

1.3 Related Work

Monroy [12] has already used proof planning to examine faulty conjectures. He follows
work by Franova and Kodratoff [7] and Protzen [17] and attempts to synthesize a cor-
rective predicate in the course of proof. The idea is that the corrective predicate will
represent the theorem that the user intended to prove. This predicate is represented
by a meta-variable, P , such that P → G where G is the original (non)theorem. P

is instantiated during the course of a proof planning attempt. This approach assumes
that, in some sense, the error arose because the original conjecture was too general.

The work reported here does not attempt to generate a corrective predicate. It
seeks simply to diagnose the point in the code which is causing proof failure and allow
a user to determine the appropriate modification. This allows for a more general class
of errors to be identified beyond over-generalisations. Clearly there are advantages and
disadvantages to both approaches and ideally they might at some point be combined
into a system which both diagnosed the error and suggested a modification.

2 Novice Programs

In order to exploit the proof planning paradigm it is necessary to identify common
patterns of proof in order to structure the proof strategy. In the case of faulty conjectures
this would include identifying common patterns of proof failure which in turn requires
the collection of a large body of data containing errors in order to observe the patterns
of failure involved.

I have opted to study the programs produced by novice programmers, specifically
undergraduates working on functional programming modules. It is relatively easy to
acquire a large number of such programs and they are also likely to be well suited
to proof by mathematical induction for which a mature proof strategy already exists
(described above). On the downside such programs may not have a clear specification.
Also, such programs may not contain the sort of bugs which we would expect to be
generated by real programmers.

2.1 Errors in the Base Cases of Recursive Programs

I analysed a corpus of ML programs produced by students at the University of Edin-
burgh. This was a large set of approximately 150 scripts (attempting up to 4 problems)
of which half were examined (the remainder being kept aside for later testing). These
programs were all recursive in nature and a number of errors were identified and classi-
fied. This paper focuses specifically on errors occurring in the base cases of recursions.

An obvious approach to such problems is to filter the programs through test cases (in
fact this is the approach adopted by many practitioners). However my analysis revealed
two different ways in which errors may appear – these two different circumstances would
not be distinguished by a counter-example alone.

The student programs contained some technical challenges for rippling which pre-
vented the production of the proof plans showing that the step cases were correct. In

50

the rest of this paper I use a manufactured example in which the errors are duplicated
but in which the basic problem is altered.

Consider the reverse function on lists3 commonly defined as:

reverse(nil) = nil,

reverse(X :: XS) = reverse(XS) <> (X :: nil).

The two errors that appeared to arise in student code were when either the base case
of the recursion was incorrect in some way or it was omitted. A typical incorrect base
case would be:

reverse(nil) = X :: XS.

The object of the research reported here was to distinguish between these two problems
based on the failed proof attempt.

2.2 The Proof Strategy

The first challenge was to develop some sort of specification for the program. In this
case I assume that the tutor has provided a “correct” version of the program and that
the system is attempting to prove their equivalence4. In this case the initial proof goal
is

∀l. student reverse(l) = tutor reverse(l).

Hand proofs of these equivalences suggest that the proof stalls in the base case of the
induction at either

X :: XS = nil

when the base case is incorrect or

student reverse(nil) = nil

when the base case is missing.
In the case of the incorrect base case both the goal has been reduced to a falsehood

(assuming a free constructor specification).
In the second case (missing base case) we have two inequal terms, one of which has

been reduced to variables and type constructors while the other still contains a defined
term.

2.3 Critics for missing and incorrect base cases

This analysis suggested that there should be a critic on the symbolic evaluation method.
Symbolic Evaluation is, in fact, a compound method consisting of repeated applications
of a rewrite method and is shown in figure 2. I implemented a modification to this
method so that a critic strategy is called if the rewrite method fails. This is shown
in figure 35. The critic strategy calls an atomic critic, check equalities. This is

3In what follows we use nil to indicate the empty list, :: to indicate the cons function that joins
an element to the front of a list and <> to indicate a built-in append function which joins two lists
together.

4Obviously this scenario is unlikely in an industrial setting but was sufficient for the problem at hand.
5A dashed line is used here to indicate that the critic is invoked if the method fails.

51

sym_eval

rewrite

Figure 2: The Symbolic Evaluation Method

sym_eval

rewrite sym_eval_crit

Check Equalities

stop_meth

modify strategy

Figure 3: The Symbolic Evaluation Method and Base Case Diagnosis Critic

shown in figure 4 however I have chosen to present this in terms of preconditions and
effects rather than patches since the critic does not patch the proof (or the theorem).
The “known to be false” precondition checks a small internal list of non-theorems for
a match – these assume a free constructor specification (ie. they contain ¬(0 = s(N))
where N is a variable) there are clearly some issues with this assumption and an obvi-
ous area for improving the critic is in making the implementation of this precondition
more rigorous for instance by using I-Axiomatizations [4]. If its preconditions succeed
then check equalities processes its effects which in this case prints out an appropriate
diagnosis message. If the critic succeeds the current strategy is changed so instead of
proceeding as normal a method called stop meth is invoked which closes the current
proof branch immediately. Other proof branches are left open to be explored, poten-
tially finding additional errors in the program (e.g. in the case where two base cases
are incorrect or missing both are diagnosed – this occurs in some examples using the
definition of even). If check equalities fails then the system returns to the normal
proof plan for induction.

52

Preconditions

Case 1 The current goal is known to be false.

OR

Case 2 The current goal is an equality and exactly one side of the equality is a simple
term.

Effects

Case 1 Diagnose an incorrect base case.

Case 2 Diagnose a missing base case.

Figure 4: The Base Case Diagnosis Critic

3 Results

There are two sorts of results for the implementation of the base case diagnosis system.
Firstly the system should correctly classify errors and secondly it should not diagnose
actual theorems as faulty6.

A handful of student programs were converted into λClam’s input format (modifying
the programs in some cases because of the problems they posed to the step case proofs
though preserving the errors) all of these were correctly diagnosed by the system. The
student and tutor programs used are listed as an appendix to this paper. It should be
noted that where a student has chosen and alternative base case, say 1 rather than 0, the
program still diagnoses a missing base case since the two programs are not equivalent
for 0 as input. It could be argued that this is instead an instance of an incorrect base
case or even that it has arisen from an insufficiently well-defined specification on the
part of the tutor. At the moment the system ignores these distinctions though it might
be possible to extend it to identify rewrite rules defined from the student program that
were not used in the proof.

The system was also run on λClam’s benchmark sets of theorems on lists and natural
numbers – the new critic did not cause any of these to be incorrectly classified as faulty.
The system can also prove the equivalence of the student program to the tutor one if if
they have chosen a more complex form of recursion (eg. in the case of reverse having
two base cases, one for the empty and one for the one element list and then a recursive
case which removes two elements from the head of the list at a time).

6Within reason, I make no claims that this is a decision procedure which can never conclude that a
true theorem has a flaw, however I want to be assured that the critic heuristic is usually correct.

53

4 Further Work

There is a risk that a proof has failed to go through because of some missing lemma,
or inference rule. For instance suppose that constructors are not free but the system is
unable to simplify s(p(X)) to X. In this case a falsehood could be detected where none
exists. There are some obvious improvements which can be implemented to the existing
falsehood detection system (already discussed above) but it would also be useful to link
a counter-example generator into the system since the existence of an example where
each program gave a different answer would guarantee that the student program was
incorrect while the diagnosis system could provide additional information and guidance
about the nature of the error.

Similarly in the detection of missing base cases it is possible that the student has
supplied a base case which has been rewritten but to some term about which the system
can not reason further (most obviously they may have used some built-in function
which is not represented in the proof system). Tight integration between the student
programming environment and the proof system would help overcome this but it would
also be useful to detect whether the student side of the equation had been rewritten at
all (in which case they have supplied some sort of base case in the program) or whether
it was simply irreducible from the moment the goal was set up. It is also possible that
they have implicitly made use of some equality between built-in functions which is not
represented in the rewrite rules of the system. Once again the ability to generate a
counter-example would provide a useful sanity check here.

My immediate intention is to port the existing proof plan and critic for base case
diagnosis to IsaPlanner [6]. This is a newly developed proof planner containing much
of the existing work on induction but also containing a wider knowledge base of rewrite
rules, theorems and non-theorems and providing a more robust implementation base
than λClam. Within this framework I hope to implement the more sophisticated ideas
detecting falsehood and missing base cases discussed above. I also hope to investigate
a wider set of examples and to use the actual programs produced by the students as
the basis for theorems rather than porting their errors to functions more amenable to
rippling.

4.1 Incorrect Step Cases

An obvious extension to this work is to look at errors occurring in the recursive case of
functional programs. Several examples of these are also present in the data set. When
the proof fails in these cases it takes place in the “tidying up” phase that follows the
use of the step case method, once again failing during symbolic evaluation.

This will raise more serious issues about false positives since in a number of existing
proof plans symbolic evaluation fails at this point, the method is backtracked out of and
a subsidiary induction attempted7.

7Lucas Dixon (personal communication) has suggested that a lemma speculation critic (already
implemented in IsaPlanner) could solve this problem and would be called before the failure of symbolic
evaluation.

54

5 Conclusion

This paper reported preliminary work to investigate the use of proof critics to diagnose
program errors. It shows that, in principle at least, proof critics can be used to diagnose
such errors and that they can be used to distinguish between different classes of error that
would be picked up by the same counter-example. Potentially proof planning provides
more information to a user about the nature of program error than a counter-example
generator alone could.

References

[1] A. Bundy. A science of reasoning. In J.-L. Lassez and G. Plotkin, editors, Com-
putational Logic: Essays in Honor of Alan Robinson, pages 178–198. MIT Press,
1991.

[2] A. Bundy. The automation of proof by mathematical induction. In A. Robinson
and A. Voronkov, editors, Handbook of Automated Reasoning, volume 1. Elsevier,
2001.

[3] A. Bundy, F. van Harmelan, C. Horn, and A. Smaill. The oyster-clam system.
In M. E. Stickel, editor, 10th International Conference on Automated Deduction,
volume 449 of Lecture Notes in Artificial Intelligence, pages 647–648. Springer,
1990.

[4] H. Comon and R. Nieuwenhuis. Induction = I-axiomatization + first-order consis-
tency. Information and Computation, 159(1–2), 2000.

[5] L. A. Dennis and J. Brotherston. λclam v4: User/Developer’s Manual. Mathemat-
ical Reasoning Group, Division of Informatics, University of Edinburgh, 2002.

[6] L. Dixon and J. D. Fleuriot. IsaPlanner: A prototype proof planner in Isabelle. In
F. Baader, editor, 19th International Conference on Automated Deduction, volume
2741 of Lecture Notes in Computer Science, pages 279–283. Springer, 2003.

[7] M. Franova and Y. Kodratoff. Predicate synthesis from formal specification. In
B. Neumann, editor, 10th European Conference on Artificial Intelligence, pages
97–91. John Wiley and Sons, 1992.

[8] M. J. C. Gordon and T. F. Melham. Introduction to HOL: A Theorem Proving
Environment for Higher Order Logic. Cambridge University Press, 1993.

[9] J. Gow. The Dynamic Creation of Induction Rules Using Proof Planning. PhD
thesis, Centre for Intelligent Systems and their Applications, School of Informatics,
University of Edinburgh, 2004.

[10] A. Ireland and A. Bundy. Productive use of failure in inductive proof. Journal of
Automated Reasoning, 16(1–2):79–111, 1996.

[11] K. L. McMillan. Symbolic Model Checking. Kluwer Academic Publisher, 1993.

55

[12] R. Monroy. Predicate synthesis for correcting faulty conjectures: The proof plan-
ning paradigm. Automated Software Engineering, 10(3):247–269, 2003.

[13] F. L. Morris and C. B. Jones. An early program proof by Alan Turing. Annals of
the History of Computing, 6:139–143, 1984.

[14] P. Naur. Proof of algorithms by general snapshots. BIT, 6:310–316, 1966.

[15] L. C. Paulson. Isabelle: A Generic Theorem Prover. Springer, 1994.

[16] L. C. Paulson. The inductive approach to verifying cryptographic protocols. Journal
of Computer Security, 6:85–128, 1998.

[17] M. Protzen. Patching faulty conjectures. In M. A. McRobbie and J. K. Slaney,
editors, 13th Conference on Automated Deduction, volume 1104 of Lecture Notes
in Artificial Intelligence, pages 77–91. Springer, 1996.

[18] J. D. C. Richardson and A. Smaill. Continuations of proof strategies. In M. P.
Bonancina and B. Gramlich, editors, 4th International Workshop on Strategies in
Automated Deduction (STRATEGIES 2001), Sienna, Italy, June 2001. Available
from http://www.logic.at/strategies/strategies01/.

[19] J. D. C. Richardson, A. Smaill, and I. Green. System description: Proof planning
in higher-order logic with lambda-clam. In C. Kirchner and H. Kirchner, editors,
15th International Conference on Automated Deduction, volume 1421 of Lecture
Notes in Computer Science, pages 129–133. Springer, 1998.

6 Appendix

6.1 Tutor Programs

Insert Everywhere inserteverywhere(N, nil) = (N :: nil) :: nil

inserteverywhere(N, X :: XS) =
(N :: (X :: XS)) :: map(λl.(X :: l), inserteverywhere(N, XS))

Reverse reverse(nil) = nil

reverse(X :: XS) = reverse(XS) <> (X :: nil)

Even even(0) = T

even(s(0)) = F

even(s(s(N)) = even(N)

56

6.2 Student Programs

Insert Everywhere

Version 1 inserteverywhere(N, nil) = nil :: nil

inserteverywhere(N, X :: XS) =
(N :: (X :: XS)) :: map(λl.(N :: l), inserteverywhere(N, XS))

Version 2 inserteverywhere(N, nil) = nil

inserteverywhere(N, X :: XS) =
(N :: (X :: XS)) :: map(λl.(N :: l), inserteverywhere(N, XS))

Version 3 inserteverywhere(N, X :: XS) =
(N :: (X :: XS)) :: map(λl.(N :: l), inserteverywhere(N, XS))

Reverse

Version 1 reverse(nil) = X :: XS

reverse(X :: XS) = reverse(XS) <> (X :: nil)

Version 2 reverse(X :: XS) = reverse(XS) <> (X :: nil)

Even

Version 1 even(0) = F

even(s(0)) = F

even(s(s(N)) = even(N)

Version 2 even(s(0)) = F

even(s(s(N)) = even(N)

Version 3 even(0) = T

even(s(s(N)) = even(N)

Version 4 even(s(s(N)) = even(N)

57

58

WoD 2004 Preliminary Version

Resource Graphs and Countermodels in
Resource Logics

Didier Galmiche and Daniel Méry 1

LORIA UMR 7503 - Université Henri Poincaré
Campus Scientifique, BP 239

54506 Vandœuvre-les-Nancy, France

Abstract
In this abstract we emphasize the role of a semantic structure called resource graph in order
to study the provability in some resource-sensitive logics, like the Bunched Implications
Logic (BI) or the Non-commutative Logic (NL). Such a semantic structure is appropriate
for capturing the particular interactions between different kinds of connectives (additives
and multiplicatives in BI, commutatives and non-commutatives in NL) that occur during
proof-search and is also well-suited for providing countermodels in case of non-provability.
We illustrate the key points with a tableau method for BI and present tools, namely BILL
and CheckBI, which are respectively dedicated to countermodel generation and verification
in this logic.

Key words: resources, proof-search, semantics, labels, countermodels.

1 Introduction

Over the past few years there has been an increasing amount of interest for resource-
sensitive logical systems. The notion of resource is a basic one in many fields, in-
cluding in computer science. The location, ownership, access to and, indeed, con-
sumption of, resources are central concerns in the design of systems, such as net-
works, and in the design of programs, which access memory and manipulate data
structures like pointers. Among so-called resource logics, we can mention Linear
Logic [11] (LL) with its resource consumption interpretation, and Bunched Impli-
cations logic (BI) [15,16] with its resource sharing interpretation but also order-
aware (non-commutative) logic (NL) [1]). As specification logics, they can repre-
sent features as interaction, resource distribution and mobility, non-determinism,
sequentiality or coordination of entities. For instance, BI has been recently used as
an assertion language for mutable data structures [12] and in this context it is impor-
tant to verify pre- or post-conditions expressed in this logic but mainly to discover

1 Email: galmiche@loria.fr, dmery@loria.fr
This is a preliminary version. The final version will be published in

Electronic Notes in Theoretical Computer Science
URL: www.elsevier.nl/locate/entcs

Galmiche and Mery

non-theorems and if possible to provide explanation about this non-provability by
generating readable and usable countermodels.
For the above mentioned resource logics, proof search is not trivial mainly because
of the management of context splitting and bunches in the related sequent calculi.
Moreover, the design of semantic-based methods is difficult because the seman-
tics of such logics (like Grothendieck topological semantics for BI), even if they
are complete, are not always manageable in the context of proving or disproving
formulae. Known methods, like tableaux or connections, dedicated to classical, in-
tuitionistic or linear logics by using prefixes [13] cannot be easily extended to other
resource logics. Therefore, in order to capture the particular interactions between
connectives, for instance additive and multiplicative connectives in BI or commu-
tative and non-commutative connectives in NL, our proposal is to start from a stan-
dard proof-search method like tableaux or connection and to define, for each logic,
specific labels and (label) constraints that allow to capture and to deal with the
underlying semantics. It leads to the design of new calculi with labelled signed for-
mulae and constraints from which we define a new characterization of provability
from standard notions, such as complementarity and closure conditions, extended
with specific conditions about constraint satisfaction with respect to a particular set
of constraints. This set is built during the proof-search process (tableau extensions
or connection search) and can be easily represented as a graph, called dependency
graph. It arises as the central syntactico-semantic structure from which the prov-
ability in some resource logics can be studied and allows us to generate counter-
models, for instance, in Grothendieck topological semantics that is complete for
BI. Another interesting point is to consider such a structure, with an appropriate
valuation attached to some nodes, directly as a countermodel.
The relationships between semantics and syntax (labels and constraints) used to
defined labelled calculi can be studied in both directions. For instance, in the case
of BI without ⊥, the labels and constraints directly reflect the elementary Kripke
semantics of the logic [8] and thus the relationships between semantics and de-
pendency graphs is clearly identified. In the case of BI (with ⊥), the labels and
constraints do not reflect the initial Grothendieck topological semantics, but con-
sidering the dependency (or resource) graph as the right representation of coun-
termodels leads us to define a new simple resource semantics that is complete for
BI [9] and for which the labelled calculus is a direct reflection of. A key point
to mention is that these notions of labels, constraints and resource graphs are not
exclusive to tableaux methods but can also be considered from the perspective of
connection-based proof methods. It emphasizes that the semantic knowledge nec-
essary to analyze provability is mainly covered by resource graphs built in parallel
with the standard proof search methods. As said before, the approach is not only
applicable for BI logic but also for Non-commutative logic (NL) for which we do
not initially have a useful resource semantics but only a bunched calculus not well
adapted to proof-search. In the case of NL, we are able to define a connection-based
method using appropriate labels and resource graphs that capture its particular se-
mantics [10]. Knowing that, in linear logics, connection methods and proof nets (a

60

Galmiche and Mery

standard semantic structure) are closely related, we then deduce an algorithm that
builds proof nets. In case of non-provability, the partial proof net under construc-
tion and the resource graph both provide some explanations about the non-validity.
Further work will be devoted in this context to build countermodels in the corre-
sponding phase semantics and also to define a new semantics in which the resource
graph can be seen as a countermodel.
In section 2 we focus on the notions of resource and dependency graph also called,
under some conditions, a resource graph. This new semantic structure is central
in the design of proof-search methods for resource logics like BI and allows us
to generate countermodels in order to analyze the non-validity. In section 3, we
emphasize the relationships between a resource logic, its semantics or its partic-
ular sequent calculus and the definition and construction of specific dependency
graphs from which provability and non-provability can be discussed. In order to
illustrate the main ideas and results about labels, constraints and resource graphs,
we consider here the BI logic with an approach based on tableaux, but similar ideas
can be applied to different resource logics such as MILL or NL and to different
proof-search methods such as connections or natural deduction. In section 4, we
describe the BILL system, an automated theorem prover for propositional BI that
implements the previous results and builds proofs or countermodels in this logi-
cal fragment. In section 4.2, we consider the possibility of verifying models or
countermodels through the description of a model-checker, called CheckBI. Fur-
ther work will be devoted to the improvement of proof-search in resource logics
by combining theorem-proving and model-checking approaches. For instance, we
could improve the BILL and CheckBI tools and study how to combine their use for
more efficient proving or disproving. Moreover, starting from these theoretical and
practical results, we expect to propose similar methods and tools with countermodel
generation for separation or spatial logics.

2 Resources and Resource Graphs

Let us formalize the notion of resource in an elementary way that is sufficient for
our purpose. We start with a set R of resources with some properties that appear as
characteristic: the existence of an initial resource or unit, denoted 1; the existence
of a composition operator · that combines two resources x and y into a new one
denoted x · y; the existence of an operator ≤ which compares two resources x and
y. At this level, our notion of resource is elementary because it does not consider
the location or the owner of a resource. Then, we may state additional conditions
on the comparison of resources, for instance, reflexivity (x ≤ x) and/or transitiv-
ity (x ≤ y and y ≤ z imply x ≤ z). We may also impose particular conditions
on resource-composition such as associativity (x · (y · z) = (x · y) · z), commu-
tativity (x · y = y · x), identity w.r.t. 1 (1 = 1 · x = x) or compatibility with ≤
(x ≤ y imply x · z ≤ y · z). Compatibility of resource-composition is a natural
property in many resource-settings.

61

Galmiche and Mery

Let us consider now what we call a resource graph. It is a directed graph G(N,E)
with N a set of nodes and E a set of edges between nodes that satisfies some spe-
cific properties.
The nodes of the graphs are labels. The labelling language consists of the following
symbols: a unit symbol 1, a binary function symbol ◦, a binary relation symbol ≤,
a countable set of constants c1, c2, Labels are inductively defined from the unit
1 and the constants as expressions of the form x ◦ y in which x and y are labels.
Atomic labels are labels which do not contain any ◦, while compound labels con-
tain at least one ◦. A sublabel of a label x is a subterm of x.
If we take ◦ to be monoidal then labels can be interpreted as multi-sets, 1 being
the empty-set and ◦ being multi-set union. We can therefore omit the symbol ◦
when writing labels, for instance, c2c2c5 represents the multi-set {c2, c2, c5} and
the composition of the labels c1c3c4 and c2c5 is the label c1c2c3c4c5. Moreover,
two labels are equivalent if they contain the same occurrences of constants. For
instance, c1c2c2, c2c1c2, 1c2c1c2, 11c1c2c2 denote the same label (1 is not a con-
stant). The notion of sublabel simply corresponds to the notion of sub-multi-set : y
is a sublabel of x (notation y ⊆ x) if the multi-set denoted by y is included in the
multi-set denoted by x. For instance, c1c3 is a sub-label of c1c2c3c4. Then, P(x)
represents the set of the sublabels of x.
Let G(N,E) a directed graph with the nodes of N labelled with the above defined
labels. We denote x→ y the oriented edge between the nodes x and y and x→∗ y

a path from x to y. From now on, we can consider that labels represent resources
and edges represent links between resources.
To be a resource graph, a directed graph G(N,E) must satisfy the following con-
ditions: (i) (∀x ∈ N)(P(x) ⊆ N) (closure by sublabel); (ii) If yz ∈ N and
x→ y ∈ E then xz ∈ N et xz → yz ∈ E (partial compatibility).
The first condition means that if a label is in the graph, its sublabels also are. The
second condition corresponds to a weak form of compatibility of the resource com-
position with respect to the order. Figure 1 presents examples of resource graphs.

1 c1

c2 c3c2c3

1 c2 c4c5 c4

c1 c2c3 c3c4c5 c3c4

c3 c3c5 c5

Figure 1. Examples of resource graphs

A resource graph is a graphical representation of a set of resources which can be
composed and which verifies some particular conditions. In this abstract, we fo-
cus on the central role played by the resource graph as a semantic structure for
proving and disproving formulae in resource-sensitive logics. It allows to generate
countermodels and explanations about non-provability.

62

Galmiche and Mery

ax
φ ` φ

Γ ` φ
∆ ≡ Γ

∆ ` φ
Γ(∆) ` φ

w
Γ(∆; ∆′) ` φ

Γ(∆; ∆) ` φ
c

Γ(∆) ` φ
∆ ` φ Γ(∆) ` ψ

cut
Γ(φ) ` ψ

⊥L⊥ ` φ
Γ(∅m) ` φ

IL
Γ(I) ` φ

IR∅m ` I

Γ(∅a) ` φ >L
Γ(>) ` φ

>R∅a ` >

Γ(φ, ψ) ` χ
∗L

Γ(φ ∗ ψ) ` χ
Γ ` φ ∆ ` ψ

∗R

Γ,∆ ` φ ∗ ψ
∆ ` φ Γ(ψ,∆′) ` χ

−∗L
Γ(∆, φ−∗ ψ,∆′) ` χ

Γ, φ ` ψ
−∗R

Γ ` φ−∗ ψ

Γ(φ;ψ) ` χ
∧L

Γ(φ ∧ ψ) ` χ
Γ ` φ ∆ ` ψ

∧R
Γ; ∆ ` φ ∧ ψ

∆ ` φ Γ(ψ; ∆′) ` χ→L

Γ(∆;φ→ ψ; ∆′) ` χ

Γ;φ ` ψ →R

Γ ` φ→ ψ

Γ(φ) ` χ ∆(ψ) ` χ
∨L

Γ(φ ∨ ψ); ∆(φ ∨ ψ) ` χ
Γ ` φi (i=1,2) ∨Ri
Γ ` φ1 ∨ φ2

Figure 2. The LBI sequent calculus

3 Proofs, Resource Graphs and Countermodels

Given a resource-aware logic, having (bunched or not) sequent calculi and related
semantics, the design of proof-search methods is not trivial because of the manage-
ment of formulae as resources (context splitting, interactions). We aim to illustrate
the relationships between the way resources are managed, in bunched calculi or in
semantics, and the definition of specific dependency or resource graphs from which
proving or disproving can be studied.
In order to illustrate the main ideas and results about labels, constraints and depen-
dency graphs, we consider here the BI logic with a tableau-based approach. But
it is important to notice they can be also applied in different resource logics like
MILL or NL and possibly with an alternative connection-based approach.

3.1 Resources and BI logic

The development of a mathematical theory of resource is one of the objectives of
the programme of study of the logic of bunched implications (BI) [15,16]. The
basic idea is to model directly the observed properties of resources and then to give
a logical axiomatization. This logic provides a logical analysis of a basic notion
of resource, quite different from linear logic’s “number-of-uses” reading, which
has proved rich enough to provide intuitionistic (i.e., the additives) “pointer logic”
semantics for programs which manipulate mutable data structures [12,14]. In this
context, proof-search methods are necessary and the generation of countermodels
in order to provide explanations of non-provability is very important.
The propositional language of BI consists of: a multiplicative unit I, the mul-

63

Galmiche and Mery

tiplicative connectives ∗, −∗, the additive units >, ⊥, the additive connectives
∧, →, ∨, a countable set L = p, q, . . . of propositional letters. P(L), the col-
lection of BI propositions over L, is given by the following inductive definition:
φ ::= p | I | φ ∗ φ | φ−∗ φ | > | ⊥ | φ ∧ φ | φ→ φ | φ ∨ φ.
The additive connectives correspond to those of intuitionistic logic (IL) whereas the
multiplicative connectives correspond to those of multiplicative intuitionistic linear
logic (MILL). The antecedents of logical consequences are structured as bunches,
in which there are two ways to combine operations that respectively display addi-
tive and multiplicative behavior.
Bunches are given by the grammar: Γ ::= φ | ∅a | Γ ; Γ | ∅m | Γ , Γ. Equivalence
of bunches, ≡, is given by commutative monoid equations for “,” and “;”, whose
units are ∅m and ∅a respectively, together with the evident substitution congruence
for sub-bunches. Γ(∆) denotes a subbunch ∆ of Γ. Judgements are expressions
of the form Γ ` φ, where Γ is a “bunch” and φ is a proposition. The LBI sequent
calculus is given on Figure 2. A proposition φ is a theorem iff ∅m ` φ is provable
in LBI.
BI has a natural semantics that is a Kripke-style semantics (interpretation of formu-
lae) combining the Kripke semantics of IL and Urquhart’s semantics of MILL [15].
This semantics deals with possible worlds, arranged as a commutative monoid and
justified in terms of “pieces of information”. It provides a way to read the formulae
as propositions that are true or false relative to a given world. BI’s Kripke semantics
may be adapted to take into account for ⊥ by moving from presheaves (elementary
semantics) to sheaves on a topological space, namely Grothendieck topological se-
mantics. Such a semantics considers an inconsistant world, at which ⊥ is forced,
together with the so-called indecomposable treatment of ∨: m |= φ ∨ ψ if and only
if m |= φ or m |= ψ.

3.2 Proof-search and Resource Graphs

Having in mind these results about completeness of BI’s semantics, we aim to
study the proof-theoretical foundations of (propositional) BI and to propose proof-
search methods that build proofs or countermodels. For that, the challenge is to
capture the interactions between connectives in the semantics or in the bunched
calculi, through labels in the spirit of labelled deductive systems [4]. A key step
in our semantic analysis is the use of so-called dependency graphs that are in fact
particular resource graphs.
Let us illustrate this point with the BI logic. We define labels and sublabels as in
section 2. Label constraints are expressions of the form x ≤ y, where x and y
are labels. We deal with partially defined labelling algebras, obtained from sets of
labels and constraints by reflexive, transitive and partial compatible closure. We
note K the closure of K, where K is a set of labels and constraints.
Having defined such labels and constraints, we can define new labelled calculi (se-
quent, tableaux or connections) such that, in parallel with the standard proof-search
process, one generates a resource graph (set of particular constraints), from which

64

Galmiche and Mery

F φ ∨ ψ : x

F φ : x
F ψ : x

T φ ∨ ψ : x
a
a

!
!

T φ : x T ψ : x

T φ ∧ ψ : x

T φ : x
T ψ : x

F φ ∧ ψ : x
a
a

!
!

F φ : x F ψ : x

F φ→ ψ : x

ass : x ≤ ci

T φ : ci
F ψ : ci

T φ ∗ ψ : x

ass : cicj ≤ x

T φ : ci
T ψ : cj

F φ−∗ ψ : x

T φ : ci
F ψ : xci

T I : x

ass : 1 ≤ x

where ci, cj are new constants

T φ→ ψ : x

req : x ≤ y
a
a

!
!

F φ : y T ψ : y

F φ ∗ ψ : x

req : yz ≤ x
a
a

!
!

F φ : y F ψ : z

T φ−∗ ψ : x
a
aa

!
!!

F φ : y T ψ : xy

where y, z, xy are defined labels

Figure 3. The tableau expansion rules

we can analyze the provability. We illustrate the main points with a tableau method
that is well-adapted for a direct generation of countermodels. Compared to the
standard method we consider signed formulae Sg φ : l with Sg (∈ {F, T}) being
the sign of the formula φ and l its label. Then we define a labelled calculus that
consists of the expansion rules of Figure 3.
Building a labelled tableau for an initial signed formula F φ : 1, by application of
the above expansion rules, the key problem is to define some branch closure con-
ditions such that either the tableau is closed and then φ is valid or there exists an
open branch and then φ is not valid [5]. Moreover, in the latter case, we aim to
build a countermodel of φ from an open branch. The example of Figure 4 illus-
trates the parallel construction of a tableau and a resource graph related to the set
of assertions. We observe that we have πα rules that introduce constraints called
assertions (including F−∗ for which the assertion ci ≤ ci is implicit) and πβ rules
that introduce constraints called requirements. Let us note that πα rules create new
(atomic) labels while πβ have to reuse ones that already exist in the resource graph
associated to a branch.
In order to define how to close a tableau branch B we define the resource graph of
a branch DG(B) as the directed graph such the nodes are the labels in B and there
is an edge x→ y iff there is an assertion x ≤ y in Ass(B).
In this context we say that two signed formulae T φ : x, F φ : y are complementary
in a branch B if and only if x ≤ y ∈ Ass(B), i.e., there is a path from x to y

in DG(B). This definition can be seen as an extension of the standard notion of
complementarity in standard labelled deductive systems. In order to define the

65

Galmiche and Mery

√
1 F (p −∗ (q ∨ r)) −∗ ((p −∗ q) ∨ (p −∗ r)) : 1

√
7,5 T p −∗ (q ∨ r) : c1√

2 F (p −∗ q) ∨ (p −∗ r) : c1
√

3 F p −∗ r : c1√
4 F p −∗ q : c1

T p : c2
F r : c1c2

T p : c3
F q : c1c3

````̀

ÃÃÃÃÃ

F p : c3

×

√
6 T q ∨ r : c1c3

````̀

ÃÃÃÃÃ

T q : c1c3

×

T r : c1c3
X
X
XX

»
»

»»

F p : c2

×

√
8 T q ∨ r : c1c2

P
PP

³
³³

T q : c1c2 T r : c1c2

×

1

1 c1

1 c1 c2

c1c2

1 c1 c2 c3

c1c2 c1c3

Figure 4. Tableau for (p −∗ (q ∨ r)) −∗ ((p −∗ q) ∨ (p −∗ r))

closure conditions for our labelled calculus, we need also to deal with units with a
particular difficulty for the unit of ∨ denoted ⊥. For that, we introduce the notion
of inconsistent label in a tableau branch. We say that a label x is inconsistent in B
if there exists a label y such that y ≤ x ∈ Ass(B) and a sublabel z in of y, such
that T⊥ : z occurs in B. More details are given in [9]. To complete the closure
conditions, we impose that the requirements of a branch B should be instantiated in
such a way that they are verified in Ass(B). To summarize, we have the following
definition:
A tableau t is closed iff each branch B in t satisfies the following conditions:

(i) (1) B contains two complementary formulae T φ : x and F φ : y, or
(2) B contains a formula F> : x, or
(3) B contains a formula F I : x with 1 ≤ x ∈ Ass(B), or
(4) B contains a formula F φ : x with x inconsistent in B ;

(ii) ∀x ≤ y ∈ Req(B), x ≤ y ∈ Ass(B).

If we suppress, in the above definition, the condition (4) in (i) then we have the
closure conditions that fit well with BI without ⊥ and its elementary Kripke se-
mantics. We can also show that, with this additional condition, we can cope with
BI and its Grothendieck topological semantics.
Coming back to our example of Figure 4, we observe that the tableau has four
closed branches (marked with a cross ×) because of complementarity but also an
open branch. Thus, we can conclude that the BI formula is not provable. In the

66

Galmiche and Mery

next subsection, we explain how to generate a countermodel from this open branch
and the associated resource graph.

3.3 Completeness and Countermodel Generation

First, we can show that the resource tableau method is sound with respect to the
Grothendieck topological semantics.

Theorem 3.1 (soundness) Let φ be a proposition of BI, if there exists a closed
tableau T for φ then φ is valid.

Details of the proof are given in [9]. It is not a simple extension of the proof of [8]
because, with ⊥, we have to deal with Grothendieck topological semantics.
In order to prove the completeness of the method, we have to define how to build a
countermodel of φ from an open branch in a labelled tableau and the resource graph
for φ, which represents the reflexive, transitive and partial compatible closure of the
assertions.
Therefore, if a formula φ happens to be unprovable, we should have enough in-
formation in the resource graph of an open branch to extract a countermodel for φ.
The idea behind the countermodel construction is to regard the resource graph itself
as the desired countermodel, thereby considering it as a central semantic structure.
For that, we consider the nodes (labels) of the graph as the elements of a monoid
whose multiplication is given by the label composition.
The key point is that, since the closure operator induces a partially defined labelling
algebra, the resource graph only deals with those pieces of information (resources)
that are relevant for deciding provability. Therefore, the monoidal product should
be completed with suitable values for those compositions which are undefined. The
problem of undefinedness is then solved by the introduction of a particular element,
denoted π, to which all undefined compositions are mapped.
More precisely, in order to transform the resource graph G(N,E) into a resource
monoid 〈R, ·, 1,≤〉, we add a special node π to N , i.e., R

def

= N ∪ {π}. Then, the
monoidal product · is given by x · y def

= xy if xy ∈ N and x · y def

= π otherwise.
Notice that any composition with something undefined is itself undefined. The pre-
ordering relation is given by the arrows of the graph as follows: x ≤ y if and only if
x→∗ y or y = π, π being the greatest element. Finally, the forcing relation simply
reflects the signed formulae of the open branch.

Theorem 3.2 (completeness) Let φ be a proposition of BI, if φ is valid then there
exists a closed tableau T for φ.

The proof is detailed in [9] in which we also deduce the decidability and the finite
model property for propositional BI as main results [9].
Returning to our example of Figure 4, we build a countermodel from the open
branch B by considering the signed formulae of B of the form TAt : x where
At is an atom. The set of labels attached to At is considered as its valuation and
we complete the resource graph with, at each node or label, the corresponding

67

Galmiche and Mery

atoms. Thus, we have the valuation v such that v(p) = {c2, c3}, v(q) = {c1c2} and
v(r) = {c1c3} and then represent the following resource graph:

1 c1 c2 c3

c1c2 c1c3

p p

q r

We show that the node 1 does not force the formula φ, i.e.,G, 1 6|=v φ. We have both
(i) c1 |= p−∗ (q ∨ r) and (ii) c1 6|= (p−∗ q) ∨ (p−∗ r). Then, as we have 1c1 = c1,
we can deduce by definition of−∗ that 1 6|= (p−∗ (q ∨ r))−∗ ((p−∗ q) ∨ (p−∗ r)).
Let us show now (i) and (ii). For (i), we observe that c1c2 |= q ∨ r since c1c2 |= q
and that c1c3 |= q ∨ r since c1c3 |= r. The nodes c2 and c3 that force p can be com-
bined with c1 to provide c1c2 and c1c3. As we have c1c2 |= q ∨ r and c1c3 |= q ∨ r,
by definition of −∗, we deduce c1 |= p−∗ (q ∨ r). For (ii), we have c1 6|= p−∗ q
since c3 |= p and c1c3 6|= q. We also have c1 6|= p−∗ r since c2 |= p and c1c2 6|= r.
Thus, we have neither c1 |= p−∗ q, nor c1 |= p−∗ r, i.e., c1 6|= (p−∗ q) ∨ (p−∗ r).

The previous results and examples illustrate the central role played by resource
graphs for the countermodel generation. Thus, we can extract, from the resource
graph, a countermodel in the related semantics, i.e., in the Kripke elementary se-
mantics for BI without ⊥ (our example) but also in the Grothendieck topological
semantics for BI with ⊥ [9]. As said before, for a resource logic like BI, we can
relate a resource graph with a given complete semantics like Grothendieck topo-
logical semantics. But an interesting question arises: is it possible to deduce a new
resource semantics from a deeper analysis of a given resource graph ? In the case
of BI, the answer is yes. By considering resource graphs directly as countermod-
els, we have recently proposed a new semantics based on partially defined monoids
(in which the composition is partial) that reflects the natural treatment of ⊥ in a
resource graph generated by our approach. The existence of such a semantics that
generalizes the models of BI pointer logic [12] was an open question and it is clear
that resource graph is the central notion allowing to give a positive answer [9].

3.4 A General Methodology for Resource Logics

Here we have extended the standard labelled tableau method [4] with (label) con-
straints related to resource semantics. It is based on two parallel processes: a syn-
tactic decomposition of the formula to prove and a semantic construction of labels
and constraints and then of a resource graph from which provability can be deter-
mined. Thus, we extend standard conditions (here closure of branches) with labels
management and from this new semantic structure one can prove or disprove for-
mulae and then generate proofs or countermodels.
A similar approach based on labels, constraints and resource graphs has been used
in order to define a connection-based method for propositional BI [7]. It empha-
sizes that we propose a general methodology based on the construction of resource

68

Galmiche and Mery

graphs associated to standard proof-search methods such as tableaux or connec-
tions.
But a question arises: is this methodology restricted to BI logic ? A first answer
comes from the fact that BI is conservative over intuitionistic logic (IL) and multi-
plicative intuitionistic linear logic (MILL) [15,16], our new proof-search methods
can be restricted to both logics. It provides a new method for IL in which pre-
fixes and unification [13] are replaced by constraints and resolution. Moreover, it
is well adapted to the generation of countermodels. Further works will be devoted
to deeper comparisons from the efficiency and countermodel construction perspec-
tives. In addition, we obtain the first tableau (and connection) method for MILL
that well illustrates the power of resource graphs for such resource logics. Knowing
the relationships between connections and proof nets in linear logics [6], our results
lead to a new algorithm for automated construction of MILL proof nets. Moreover,
from the semantic point of view, the impact of these results will be analyzed and
compared with previous proposals for models and countermodels analysis.
The previously mentioned resource logics are directly related to BI but we can also
consider other resource logics like non-commutative logic (MNL), that is a con-
servative extension of both commutative (MLL) and non-commutative or cyclic
(MCyLL) linear logic [1]. Specific labels, constraints and resource graphs can
be defined in order to capture the interactions between commutative and non-
commutative connectives (and thus its phase semantics) in this logic. They allow
to define connection-based characterization of provability in MNL [10] and a re-
lated proof-search method. Finally, we aim to extend our results to proof-search
and verification in separation logics [12,17] and spatial logics [2,3].

4 Countermodel Generation and Verification

Let us now consider first the proof-search approach and its implementation, the
BILL system, that shows that this formula φ is not valid and thus generates a coun-
termodel. Then, we complete it with a model-checking approach and its imple-
mentation, the CheckBI system, that verifies that the above resource graph is a
countermodel of the formula φ.

4.1 BILL and Countermodel Generation

BILL is a prover for propositional BI (http://www.loria.fr/˜dmery/BILL), written
in CAML, that is able to decide whether a BI formula is provable or not and thus
to build a countermodel under the form of a particular graph representation, that
is a resource graph. In its current version, BILL can export the generated counter-
models as GDL (Graph Description Language) files, GDL being a variant of XML
adapted to graph descriptions. Thus, starting with a non-provable BI formula φ, a
user can obtain, in a GDL file, a resource graph that is a countermodel for φ.
Let us describe the BILL prover and its main characteristics. It can be seen as an
interpreter with simple commands. Its main command is check <formula>,

69

Galmiche and Mery

Figure 5. Example of a BILL session

that allows to decide the validity of <formula>. This <formula> parameter
is written with the following syntax: the additive conjunctive unit is 1; the ad-
ditive disjunctive unit is 0; the multiplicative unit is I; the additive connectives
are: ^ (and), v (or), -> (implication); the multiplicative connectives are * (star),
-* (magicwand); the propositional variables are alphabetic characters, (p,q,...),
except I, reserved for the multiplicative unit, and v, reserved for the additive dis-
junction. The command stat gives informations about proof search, for instance
the time (in seconds) to decide the formula and the number of recursive calls of
the proof-search loop. In case of non-validity, BILL can generate a countermodel
from with commands tex cm-<fichier> and gdl cm-<fichier>. The
first one generates a LATEX file that describes and explain the semantic structure of
the countermodel. The second one generates a countermodel as a resource graph
with the GDL format. Such a graph can be exploited by graph manipulation tools
such that aiSee ou xvcg.
Figure 5 illustrates the use of the BILL system. The bill command starts a BILL
session and the BILL> prompt indicates that the user can write commands. With
the help command we obtain a brief summary of the formula syntax and of the
available commands. Then, with the command check, the user asks for validity
of the given parameter that is the formula (p −∗ (q ∨ r)) −∗ ((p −∗ q) ∨ (p −∗ r)).
Then, BILL reply that it is not valid and the stat command display the time and
the number of recursive calls, necessary to conclude.
As the formula is not valid, we aim to generate a countermodel both as a LATEX file

70

Galmiche and Mery

Figure 6. A Countermodel in a Latex file

ans as a GDL resource graph. We do so using the commands tex cm-formule
and gdl cm-formule that respectively provide the files cm-formule.tex
and cm-formule.gdl.
Figure 6 shows what we obtain after the treatment of cm-formule.tex by
LATEX. The document contains the resource graph that is a countermodel with a
list of worlds, and for each world, the lists of its immediate successors. We can
observe that BILL has generated the resource graph described in section 3. More-
over the document provides the explanations of the non-validity of the formula by
describing, for each subformula, what are the worlds for which it is verified and

71

Galmiche and Mery

falsified. Then, we recover the proof given in section 3.

4.2 CheckBI and Countermodel Verification

Another tool, called checkBI and written in Java, implements a dual functionality:
from a resource graph encoded in GDL and a BI formula φ, to verify if the graph is a
countermodel of φ. We aim to study how to combine model-checking and theorem
proving appraoches in BI, i.e., to combine proof-search and countermodel-search,
in order to have efficient decision procedures with countermodel generation.
Let us consider a resource graph G(N,E), a valuation v and a formula φ, checkBI
verifies if the given formula is true for the graph G with the valuation v, i.e., if we
have G, 1 |=v A. Thus we have the following command: The <graph> parameter
corresponds to a file containing the GDL specification of the graph. The command
verifies that this specification corresponds to a resource graph that is a graph that
respects the conditions described in section 2. The <formula> parameter is a
file that contains a BI formula written with the syntax used in BILL. Finally, the
<valuation> parameter specifies the distribution of the formula atoms on the
nodes of the graph under the form of a list of pairs (node, list of atomes forced by
the node). This parameter is optional and if it is not present, it means that, for each
node, there is no atom related to the node.
We illustrate the use of this tool with the countermodel generated by BILL for our
example. If this resource graph correspond to a countermodel, the checkBI tool
must verify that the graph falsifies the formula.
Figure 7 shows the contents of the cm-formule.gdl file, that is the specification
in GDL of the resource graph. We observe that it is the graph described in section
§ 3. The formule.txt file contains the formula (p −∗ (q ∨ r)) −∗ ((p −∗ q) ∨
(p−∗ r)) and the affec.aff file describes the valuation v(p) = {c2, c3}, v(q) =
{c1c2} and v(r) = {c1c3} we previously mentioned. The result is obtained with the
command checkBI cm-formule.gdl formule.txt affec.aff and is
the one that is expected.

5 Conclusion and Perspectives

The aim here is to focus on a semantic structure, called resource graph, that is well
adapted to design decision procedures for some propositional resource logics that
generate countermodels. This structure, with an additional valuation attached to
nodes, leads to a nice graphical representation of a countermodel and avoid rep-
resenting it in some semantics, like for instance topological semantics, that are
difficult to deal with. Such a resource graph arises from the definition of calculi in-
cluding labels and label constraints that allow to capture the semantic interactions
between connectives. This approach is well adapted to the treatment of “mixed”
resource logics in which connectives of different kinds cohabit. As BI is used
as an assertion logic for mutable data structures and is the logical kernel of so-
called separation logics, our results and their implementation in the BILL system

72

Galmiche and Mery

Figure 7. An Example of GDL Countermodel Verification

are important to support the development of correct programs with pointers or the
verification of properties for semi-structured data. In a practical perspective, the
graphical representation of countermodels provides helpful and usable information
for some failure analysis we will develop in further work. Another point to be stud-
ied is how to combine the theorem proving and model checking approaches in order

73

Galmiche and Mery

to improve the proof search process for our resource logics. It also means studying
how to mutually use the BILL and checkBI tools for efficient proving and disprov-
ing and also how to extend them to deal for instance with pointer logic or some
separation logics. The relationships between resource graphs and countermodels in
new resource semantics will also be more deeply explored.

References

[1] M. Abrusci and P. Ruet. Non-commutative logic I : the multiplicative fragment.
Annals of Pure and Applied Logic, 101:29–64, 2000.

[2] L. Caires and L. Cardelli. A spatial logic for concurrency (part I). In 4th Int.
Symposium on Theoretical Aspects of Computer Software, TACS 2001, LNCS 2215,
pages 1–37, Sendai, Japan, October 2001.

[3] L. Cardelli, P. Gardner, and G. Ghelli. A spatial logic for querying graphs. In Int.
Conference on Automata, Langages and Programming, ICALP’02, LNCS 2380, pages
597–610, 2002.

[4] M. D’Agostino and D.M. Gabbay. A Generalization of Analytic Deduction via
Labelled Deductive Systems. Part I: Basic substructural logics. Journal of Automated
Reasoning, 13:243–281, 1994.

[5] M. Fitting. First-Order Logic and Automated Theorem Proving. Texts and
Monographs in Computer Science. Springer Verlag, 1990.

[6] D. Galmiche. Connection Methods in Linear Logic and Proof nets Construction.
Theoretical Computer Science, 232(1-2):231–272, 2000.

[7] D. Galmiche and D. Méry. Connection-based proof search in propositional BI logic.
In 18th Int. Conference on Automated Deduction, CADE-18, LNAI 2392, pages 111–
128, 2002. Copenhagen, Danemark.

[8] D. Galmiche and D. Méry. Semantic labelled tableaux for propositional BI without
bottom. Journal of Logic and Computation, 13(5):707–753, 2003.

[9] D. Galmiche, D. Méry, and D. Pym. Resource Tableaux (extended abstract). In 16th
Int. Workshop on Computer Science Logic, CSL 2002, LNCS 2471, pages 183–199,
September 2002. Edinburgh, Scotland.

[10] D. Galmiche and J.M. Notin. Connection-based Proof Construction in Non-
commutative Logic. In 1Oth Int. Conference on Logic for Programming, Artificial
Intelligence, and Reasoning, LPAR’03, LNCS 2850, pages 422–436, September 2003.
Almaty, Kazakhstan.

[11] J.Y. Girard. Linear Logic: its Syntax and Semantics. In J.Y. Girard, Y. Lafont, and
L. Regnier, editors, Advances in Linear Logic, pages 1–42. Cambridge University
Press, 1995.

74

Galmiche and Mery

[12] S. Ishtiaq and P. O’Hearn. BI as an assertion language for mutable data structures. In
28th ACM Symposium on Principles of Programming Languages, POPL 2001, pages
14–26, London, UK, 2001.

[13] C. Kreitz and J. Otten. Connection-based theorem proving in classical and non-
classical logics. Journal of Universal Computer Science, 5(3):88–112, 1999.

[14] P. O’Hearn, J. Reynolds, and H. Yang. Local reasoning about programs that alter data
structures. In 15th Int. Workshop on Computer Science Logic, CSL 2001, LNCS 2142,
pages 1–19, Paris, France, 2001.

[15] P.W. O’Hearn and D. Pym. The Logic of Bunched Implications. Bulletin of Symbolic
Logic, 5(2):215–244, 1999.

[16] D.J. Pym. The Semantics and Proof Theory of the Logic of Bunched Implications,
volume 26 of Applied Logic Series. Kluwer Academic Publishers, 2002.

[17] J. Reynolds. Separation logic: A logic for shared mutable data structures. In IEEE
Symposium on Logic in Computer Science, pages 55–74, Copenhagen, Danemark, July
2002.

75

76

WoD 2004 Preliminary Version

Gödel-Dummett counter-models
through matrix computation

Dominique Larchey-Wendling 1

LORIA – CNRS
Vandœuvre-lès-Nancy, France

Abstract

We present a new method for deciding Gödel-Dummett logic. Starting from a
formula, it proceeds in three steps. First build a conditional graph based on the
decomposition tree of the formula. Then try to remove some cycles in this graph by
instantiating these boolean conditions. In case this is possible, extract a counter-
model from such an instance graph. Otherwise the initial formula is provable. We
emphasize on cycle removal through matrix computation, boolean constraint solving
and counter-model extraction.

Key words: Counter-models, conditional graphs and matrices.

1 Introduction

Gödel-Dummett logic LC is the intermediate logic (between classical logic and
intuitionistic logic) characterized by linear Kripke models. It was introduced
by Gödel in [10] and later axiomatized by Dummett in [6]. It is now one
of the most studied intermediate logics for several reasons: among those, it
is one of the simplest “many-valued” logics, whose semantics is captured by
truth functions over the unit interval. It is one of the candidates (under the
name “Gödel” logic) for use as a fuzzy logic [11]. With respect to decision
procedures for intermediate logics, it witnesses some advantages of sequent
calculi over hyper-sequent systems.

Proof-search in LC has benefited from the development of proof-search in
intuitionistic logic IL with two important seeds: the contraction-free calculus
of Dyckhoff [1,7,8] and the hyper-sequent calculus of Avron [2,14]. Two of the
most recent contributions propose a similar approach based on a set of local
and strongly invertible proof rules (for either sequent [13] or hyper-sequent [2]
calculus,) and a semantic criterion to decide irreducible (hyper)-sequents and
eventually build a counter-model.

1 Email: larchey@loria.fr
This is a preliminary version. The final version will be published in

Electronic Notes in Theoretical Computer Science
URL: www.elsevier.nl/locate/entcs

Larchey-Wendling

We have recently proposed a combination of proof-search in sequent cal-
culus and counter-model construction to provide a decision procedure for LC
which is based on a new principle: we are able to gather all the useful infor-
mation arising from all the proof-search branches into a semantic graph and
then we use an efficient counter-model search algorithm based on cycle detec-
tion. We have reduced the decision problem in LC to a combination of boolean
constraint solving and cycle detection. These results are presented in the up-
coming paper [12], and the present paper comes as a complement to it. We
will briefly recall the theoretical results, but we want to focus mainly on the
description of the decision procedure with an emphasis on the counter-model
generation algorithm.

Given a formula D of LC, the procedure proceeds in three steps at the
end of which one obtains a counter-model (in case D is not provable. 2) The
first step which is described in full details in section 3 consists in building a
particular bi-colored graph GD based on the decomposition tree of D. The
arrows of this graph may be indexed with boolean conditions. The second
step consists in searching for an instantiation of the boolean conditions on
arrows so that the instance graph has no remaining r-cycle. 3 This step is first
described informally in section 3.3; then we provide a decision algorithm for
this problem based on conditional matrix computation in section 4. For the
third step, described in section 5, given a particular instance Gv with no r-
cycle, we can extract a counter-model of D from this instance Gv by computing
a bi-height for it.

2 The syntax and semantics of Gödel-Dummett logic

The set of propositional formulae, denoted Form is defined inductively, starting
from a set of propositional variables denoted by Var and using the connectives
∧, ∨ and ⊃. 4 IL will denote the set of formulae that are provable in any in-
tuitionistic propositional calculus (see [7]) and CL will denote the classically
valid formulae. As usual an intermediate propositional logic [1] is a set of
formulae L satisfying IL ⊆ L ⊆ CL and closed under the rule of modus po-
nens and under arbitrary substitution. LC is the smallest intermediate logic
satisfying the axiom (X ⊃ Y) ∨ (Y ⊃X).

On the semantic side, LC is characterized by linear Kripke models. In this
paper, we will use the algebraic semantics characterization of LC [2] rather
than Kripke semantics. The algebraic model is the set of natural numbers
with its natural order 6, augmented with a greatest element ∞. An inter-
pretation of propositional variables [[·]] : Var → N is inductively extended to
formulae: the conjunction ∧ is interpreted by the minimum function denoted

2 As a decision procedure, it can also certify the validity of D in case it has a proof.
3 A kind of cycle described later in section 6.
4 We do not integrate the bottom ⊥ constant. A specific treatment for ⊥ is detailed in [13].
It can be easily integrated in the procedure described here.

78

Larchey-Wendling

∧, the disjunction ∨ by the maximum function ∨ and the implication ⊃ by the
operator _ defined by a_ b = if a 6 b then ∞ else b. A formula D is valid
for the interpretation [[·]] if the equality [[D]] = ∞ holds. This interpretation
is complete for LC. A counter-model of a formula D is an interpretation [[·]]
such that [[D]] <∞.

3 A decision procedure for LC

In [12], we have described a procedure to decide the formulae of LC and to
build a counter-model when a formula is not valid. The first step of this
procedure is to build a graph with two kinds of arrows. Then the decision
problem is reduced to the detection of particular cycles in this graph.

3.1 Conditional bi-colored graph construction

We introduce the exact notion of graph we use and then show how to build
such a graph given a formula of LC.

Definition 3.1 A bi-colored graph is a (finite) directed graph with to kinds
of arrows: green arrows denoted by → and red arrows denoted by ⇒.

Definition 3.2 A conditional bi-colored graph is a bi-colored graph where
arrows may be indexed with (propositional) boolean expressions.

We point out that we consider these boolean expressions up to classical
equivalence, i.e. we consider them as representatives for boolean functions
over atomic propositional variables. These variables can be instantiated by
{0, 1} with a valuation v and a boolean expression e gets a value ev ∈ {0, 1}
computed in the obvious way. We thus obtain an instance graph: an arrow
indexed with a boolean expression e belongs to this instance if and only if
ev = 1. The case of an unconditional (i.e. not indexed) arrow can be treated
by considering that it has an implicit boolean conditional which is a tautology
(and then always values 1) and non-existing arrows have an implicit boolean
condition that always values 0.

Definition 3.3 Given a conditional bi-colored graph G and a valuation v of
boolean variables in {0, 1}, we define the instance graph Gv as the bi-colored
graph that one obtains when one evaluates boolean expressions indexing ar-
rows and keeping exactly those whose valuation equals 1.

Given a LC formula D, we build a conditional bi-colored graph GD by the
following process. First, the nodes of GD are obtained by considering the set
of nodes of the decomposition tree of D, or equivalently, the set of occurrences
of subformulae.

• If F is an occurrence of a subformula of D, we denote by XF the correspond-
ing node. Nodes are signed starting from − at the root D− and propagating

79

Larchey-Wendling

D− ♦

V + V −

V

x x

∧−

A− B−

∨−

A− B− x

x x

x⊃−

A+ B−

♦

∧+

A+ B+

x x

∨+

A+ B+

x

x

⊃+

A− B+

Fig. 1. Counter-model search system for LC

signs as usual. 5 We may write X+
F or X−

F to emphasize the sign.

• To this set of nodes, we add a node denoted V for each propositional variable
V occurring in D. Hence, multiple occurrences of V only generate one node
V but generate several X+

V or X−
V nodes.

• We add one new node denoted by ♦.

Then, the edges of GD are obtained as follows: we describe the set of green and
red arrows linking those nodes together and the boolean expressions indexing
those arrows. We begin by unconditional arrows (i.e. arrows implicitly indexed
with the tautology 1) introduced independently of the internal structure of the
formula D:

• We add the (unconditional) red arrow X−
D ⇒♦ from the root node to ♦.

• For a negative occurrence V of a variable, we add the green arrow V →X−
V .

• For a positive occurrence V of a variable, we add the green arrow X+
V → V .

These three rules are summarized on the left part of figure 1. Now we consider
arrow introduction rules for internal nodes. First, the unconditional cases:

• For a positive occurrence C ≡ A ∧ B of a subformula, we add the two
following green arrows X+

C →X+
A and X+

C →X+
B .

• For a negative occurrence C ≡ A ∨ B of a subformula, we add the two
following green arrows X−

A →X−
C and X−

B →X−
C .

We continue with conditional arrows. These arrows are indexed with selectors,
i.e. boolean expressions of the form x or x where x is a boolean propositional
variable. For each occurrence of subformula, we introduce a new boolean
variable. 6

• For a negative occurrence C ≡ A∧B of a subformula, given a new boolean
variable x, we introduce the two conditional green arrows X−

A →x X−
C and

X−
B →x X−

C .

• For a positive occurrence C ≡ A ∨B of a subformula, given a new boolean
variable x, we introduce the two conditional green arrows X+

C →x X+
A and

X+
C →x X+

B .

5 The connectives ∧ and ∨ preserve signs and ⊃ preserves the sign on the right subformula
and inverses the sign of the left subformula.
6 Indexing these variables with the subformula occurrence is a way to ensure uniqueness.

80

Larchey-Wendling

• For a negative occurrence C ≡ A⊃B of a subformula, given a new boolean
variable x, we introduce the two following green arrows X−

B →x X−
C and

♦→x X−
C and the two following red arrows X−

B ⇒x X+
A and X−

B ⇒x ♦.

• For a positive occurrence C ≡ A⊃B of a subformula, given a new boolean
variable x, we introduce the two following green arrows X+

C →x X+
B and

X−
A →x X+

B .

All the rules introducing (un)conditional arrows for internal nodes (corre-
sponding to subformulae of D that are not atomic) are summarized on the
right part of figure 1.

Given this construction procedure, it should be clear that the construction
of the graph GD from a formula D take linear time as at most four arrows
are introduced for each instance of a subformula of D. The validity of D is
related to the existence of some particular cycles in instances of GD.

Definition 3.4 A r-cycle in a bi-colored graph is a cycle composed of either
green (→) or red (⇒) arrows, containing at least one red arrow. Equivalently,
it is a chain of the form l (→+⇒)?⇒ l.

Theorem 3.5 Let D be a formula of LC and G be its associated conditional
bi-colored graph, built from the process previously described. Then D is prov-
able in LC if and only if every instance graph Gv of G contains at least one
r-cycle.

This result is proved in [12]. So in order to refute D, we have to find an
instance graph Gv which does not contain any r-cycle. Let us proceed with an
example.

3.2 Graph construction example

We consider the case of the classically valid Peirce’s formula ((A⊃B)⊃A)⊃A.
It is not provable in any intermediate logic but classical logic, so in particular,
it should have a counter-model in LC.

We index this formula as follows:(
(A+

5 ⊃−3 B−
6)⊃+

1 A
+
4

)
⊃−0 A−2 . We construct

its associated conditional graph:

• We add the arrow ⊃−0 ⇒♦.

• We have two variables A and B for 4 oc-
currences, so we add A→ A−2 , A+

4 → A,
A+

5 → A and B→B−
6 .

• For the internal node ⊃−0 , we choose a
new boolean variable x and add the four
conditional arrows A−2 →x⊃−0 , ♦→x⊃−0 ,
A−2 ⇒x ⊃+

1 and A−2 ⇒x ♦.

⊃−0

⊃+
1 A−2

⊃−3 A+
4

A+
5 B−6

AB

♦

x

x
x

x

y

y

z

z

z

z

81

Larchey-Wendling

• For the internal node ⊃+
1 , we choose a new boolean variable y and add the

two conditional arrows ⊃+
1 →y A

+
4 and ⊃−3 →y A

+
4 .

• For the last internal node ⊃−3 , we choose a new boolean variable z and add
the four conditional arrows B−

6 →z⊃−3 , ♦→z⊃−3 , B−
6 ⇒z A

+
5 and B−

6 ⇒z♦.

3.3 Naive elimination of r-cycles

We now have to find a valuation vx, vy and vz in {0, 1} such that the corre-
sponding instance graph has no r-cycle. For this we identify all the r-cycles
and we try to find a valuation that simultaneously breaks each of the r-cycles.
We only have to consider r-cycles that do not repeat nodes because any r-cycle
contains at least one that does not repeat nodes. We find four such r-cycles:

⊃−0 ⇒♦→x ⊃−0
⊃−0 ⇒♦→z ⊃−3 →y A

+
4 → A→ A−2 →x ⊃−0

A−2 ⇒x ♦→z ⊃−3 →y A
+
4 → A→ A−2

A−2 ⇒x ⊃+
1 →y A

+
4 → A→ A−2

The first r-cycle is broken if and only if the condition x = 0 is satisfied,
which is equivalent to satisfy x. The second r-cycle is broken if and only if
the condition z + y + x is satisfied. 7 The third r-cycle is broken just in case
x+ z + y is satisfied and the last r-cycle is broken when x+ y is satisfied.

In order to break these four r-cycles in one valuation, we look for a valuation
v which satisfies x · (x + y + z) · (x + y + z) · (x + y). This gives us a unique
solution: vx = 1, vy = 0, vz = 1. Then, the reader could verify that the
instance graph Gv obtained from this valuation has no r-cycle. See section 5
for a representation of this graph and the associated counter-model of the
Peirce’s formula.

The naive procedure we have described for computing a valuation with no
r-cycles consists of searching all the possible r-cycles (without repeating nodes)
and solving a boolean constraint system associated with these cycles. Unfor-
tunately, such a procedure would be highly inefficient because there might be
exponentially many r-cycles for a given formula. This problem has also been
addressed in [12]. In the next section, we give a description of one possible
solution to the elimination of r-cycles.

4 Removing r-cycles in conditional bi-colored graphs

In section 3.1, we have introduced the notion of conditional bi-colored graph.
A natural way to represent a directed graph is by considering the matrix of
the underlying incidence relation. Usually, these matrices take there values

7 We denote by + the boolean disjunction and by · the boolean conjunction.

82

Larchey-Wendling

y

x

y

1
1

z

1
1

x z

0
1
2
3
4
5
6
A

B

♦

0 1 2 3 4 5 6 A B ♦→

1

x x

z z

0
1
2
3
4
5
6
A

B

♦

0 1 2 3 4 5 6 A B ♦⇒

Fig. 2. The conditional matrices for Peirce’s formula.

in the boolean algebra {0, 1} and a 1 in the cell (i, j) means that there is an
arrow from the node i to the node j.

4.1 Conditional matrices

To represent conditional bi-colored graphs, we use conditional matrices : the
cells of these matrices take their values from the set of boolean functions.
These functions are represented by boolean expressions built from the boolean
selectors introduced during the conditional graph construction.

Definition 4.1 A conditional matrix on set S of size k is a k × k-array with
values in the free boolean algebra over the set of selectors.

There are two incidence relations for a bi-colored graph corresponding to
the green (→) and red (⇒) arrows. So a conditional bi-colored graph is
represented by a pair of conditional matrices. We use the same denotation
for the (conditional) incidence relation and for its corresponding matrix. So
GD is represented by a pair (→,⇒) of conditional matrices. Figure 2 presents
the two matrices corresponding to the graph GD when D is the Peirce formula
of section 3.2. We only write the cells whose values are different from 0: the
matrices are sparse because the number of non-zero cells is linear whereas the
total number of cell is quadratic.

4.2 R-cycle removal as a trace computation

The boolean operator of conjunction (or multiplication) · and disjunction (or
sum) + extend naturally to conditional matrices. So we may consider the
sum → + ⇒, product → · ⇒ of conditional matrices and the reflexive and
transitive closure →? =

∑
i>0→i. We also introduce the trace of a matrix:

tr(M) =
∑

xMx,x. When boolean selectors are instantiated inside a condi-
tional matrix, we get a matrix with values in {0, 1} which is the incidence ma-

83

Larchey-Wendling

trix of the corresponding instance graph. Moreover, instantiation commutes
with algebraic operations on matrices. This leads to the following result:

Theorem 4.2 Let G = (→,⇒) be a conditional bi-colored graph represented
by a pair of conditional matrices. There exists a r-cycle in every instance Gv

of G if and only if tr
(
(→+⇒)?⇒

)
= 1 holds.

Moreover, when the boolean function tr
(
(→+⇒)?⇒

)
is not a tautology,

there exists a valuation v on selectors in {0, 1} such that this trace has value
0: tr

(
(→v +⇒v)

?⇒v

)
= 0. Then, the corresponding instance graph Gv has

no r-cycle.

Now, the problem is to compute this trace efficiently. Let us fix a size k > 0
of matrices. Let I denote the identity k × k matrix (Ix,x = 1 and Ix,y = 0
otherwise.) Let M be any conditional k × k matrix. Then M? = (I + M)k

(because any path of size k + 1 contains a sub-path of size k.) Moreover,
as I 6 I + M (cell-wise), I, I + M, (I + M)2 . . . is a (point-wise) increasing
sequence of conditional matrices which stabilizes in at most k steps.

In order to evaluate (→+⇒)?⇒, we compute α = I +→+⇒ and β = ⇒
and then the increasing sequence β, αβ, α2β, α3β, . . . until it stabilizes to α?β.
This can be done column by column on β. Let βi denote the column i of
β then α?βi is the column i of α?β. The computation of the column 1 for
Peirce’s formula is the following:

1
1

1
1

1
1

1
1

1
1

y

x

y

1
1

z

1
1

x z

1

x x

z z

0
1
2
3
4
5
6
A

B

♦

0 1 2 3 4 5 6 A B ♦α

x

β1

x

x

αβ1

x

x

x

x

α2β1

x.y

x

x.y

x

x

x.z

x

α3β1

x.y

x

x.y

x

x

x.z

x

x.z

x.y.z

α4β1

x.y.z

x.y

x

x.y

x

x

x.z

x

x.z

x.y.z

α?β1

Most of the columns of β contain only 0 in which case there is no need for
computation: the fixpoint is this zero column. In the Peirce example, only
column 1, 5 and ♦ contain values which are different from zero.

When evaluating the trace, it is possible to share computation between
the columns of β. Let T be the column matrix composed of 1 on each cells.
We consider the following sequence: t0 = 0 and ti =

[
α?(ti−1T + βi)

]
i

for
i = 1, . . . , k. Then tk = tr(α?β). For example, in the case of Peirce’s formula,
we get t0 = 0 and then t1 = x.y. Columns β2, β3 and β4 are empty (i.e. contain
only 0) so t2 = t3 = t4 = t1 = x.y. Then t5 =

[
α?(x.y.T +β5)

]
5

and we obtain

84

Larchey-Wendling

t5 = x.y. Then columns β6, βA and βB are empty and t6 = tA = tB = t5 = x.y.
Finally we compute t♦ =

[
α?(x.y.T + β♦)

]
♦. Let γ = x.y.T + β♦:

1
1

1
1

1
1

1
1

1
1

y

x

y

1
1

z

1
1

x z

1

x x

z z

0
1
2
3
4
5
6
A

B

♦

0 1 2 3 4 5 6 A B ♦α

1
x.y

x

x.y

x.y

x.y

x.y + z

x.y

x.y

x.y

γ

1
x.y

x

x.y

x.y

x.y

x.y + z

x

x.y + z

x+ x.y

αγ

1
x.y

x

x.y

x

x

x.y + z

x

x.y + z

x+ x.y

α2γ

1
x.y

x

x

x

x

x.y + z

x

x.y + z

x+ x.y

α3γ

1
x.y

x

x

x

x

x.y + z

x

x.y + z

x+ x.y + x.z

α?γ

and we obtain t♦ = x + x.y + x.z. This the trace of α?β = (→ + ⇒)?⇒
and it is not a tautology. The only valuation that falsifies this trace is vx =
1, vy = 0, vz = 1. This is of course the same valuation we obtained by hand
(by looking up for r-cycles) in section 3.3.

5 Counter-model extraction

Now we explain how to extract a counter-model from the corresponding in-
stance bi-colored graph Gv. The reader can easily check that it can be repre-
sented by:

⊃−0

⊃+
1

A−2

⊃−3 A+
4

A+
5

B−6

A

B

♦

In this graph, red arrows are always strictly climbing up and green arrows
never go down so no r-cycle could exist. The counter-model is very easy to
compute: give the variable A and B their height in this graph. So [[A]] = 1
and [[B]] = 0 is a counter-model to the Peirce’s formula which can be checked
by [[((A⊃B)⊃A)⊃A]] = ((1_ 0)_ 1)_ 1 = (0_ 1)_ 1 = ∞_ 1 = 1 <∞

Now we explain how to extract a counter-model out of an instance graph
lacking r-cycles in the general case. We give a characterization of the lack of
r-cycles based on the notion of bi-height :

Definition 5.1 Let G be a bi-colored graph. A bi-height is a function h :
G → N such that for any x, y ∈ G, if x→ y ∈ G then h(x) 6 h(y) and if
x⇒ y ∈ G then h(x) < h(y).

85

Larchey-Wendling

It is clear that the preceding graph has a bi-height given by h(B) =
h(B−

6) = h(⊃−3) = h(A+
4) = 0, h(A+

5) = h(A) = h(A−2) = h(⊃+
0) = 1 and

h(♦) = h(⊃+
1) = 2. In [12], you will find a constructive proof of the following

result which states the existence of a bi-height whenever no r-cycle exist:

Theorem 5.2 Let D be a formula of LC, G the corresponding conditional
bi-colored graph and v a valuation such that the instance graph Gv does not
contains any r-cycle. Then it is possible to compute a bi-height h for Gv in
linear time. 8 Moreover, if we define [[·]] : Var → N by [[V]] = h(V) for V
variable of D then [[·]] is a counter-model of D, i.e. [[D]] <∞.

6 Implementation remarks and conclusion

The procedure described throughout this paper has been implemented com-
pletely in the Objective Caml language and is accessible at

http://www.loria.fr/~larchey/LC

The reader interested in the proofs of the results presented here can also find
them there.

For the prototype implementation, we have chosen to represent conditional
matrices by sparse arrays. The boolean functions which compose them are rep-
resented by the nodes of a shared BDD [5] for efficient boolean computations
and extraction of boolean counter-models. The algorithm for the computation
of bi-heights is a slightly modified version of a depth first search procedure.

In further work, we will deeper investigate the relationships between the
notion of r-cycle and the G-cycles of [3] and analyze if our conditional graphs
also fit in the hyper-sequent setting. We will also investigate the relationships
between our parallel counter-model search and other approaches based for
example on parallel dialogue games [4,9].

References

[1] Alessendro Avellone, Mauro Ferrari, and Pierangelo Miglioli. Duplication-Free
Tableau Calculi and Related Cut-Free Sequent Calculi for the Interpolable
Propositional Intermediate Logics. Logic Journal of the IGPL, 7(4):447–480,
1999.

[2] Arnon Avron. A Tableau System for Gödel-Dummett Logic Based on a
Hypersequent Calculus. In TABLEAUX 2000, volume 1847 of LNAI, pages
98–111, 2000.

[3] Arnon Avron and Beata Konikowska. Decomposition Proof Systems for Gödel-
Dummett Logics. Studia Logica, 69(2):197–219, 2001.

8 Linearity is measured with respect to either the size of D or the number of nodes and
arrows of Gv.

86

Larchey-Wendling

[4] Matthias Baaz and Christian Fermüller. Analytic Calculi for Projective Logics.
In TABLEAUX’99, volume 1617 of LNCS, pages 36–50, 1999.

[5] Randal E. Bryant. Graph-based algorithms for Boolean function manipulation.
IEEE Transactions on Computers, C-35(8):677–691, 1986.

[6] Michael Dummett. A Propositional Calculus with a Denumerable matrix.
Journal of Symbolic Logic, 24:96–107, 1959.

[7] Roy Dyckhoff. Contraction-free Sequent Calculi for Intuitionistic Logic.
Journal of Symbolic Logic, 57(3):795–807, 1992.

[8] Roy Dyckhoff. A Deterministic Terminating Sequent Calculus for Gödel-
Dummett logic. Logical Journal of the IGPL, 7:319–326, 1999.

[9] Christian Fermüller. Parallel Dialogue Games and Hypersequents for
Intermediate Logics. In TABLEAUX 2003, volume 2796 of LNAI, pages 48–64,
2003.

[10] Kurt Gödel. Zum intuitionistischen Aussagenkalkül. In Anzeiger Akademie des
Wissenschaften Wien, volume 69, pages 65–66. 1932.

[11] Petr Hajek. Metamathematics of Fuzzy Logic. Kluwer Academic Publishers,
1998.

[12] Dominique Larchey-Wendling. Counter-model search in Gödel-Dummett logics.
To be published in the proceedings of IJCAR 2004.

[13] Dominique Larchey-Wendling. Combining Proof-Search and Counter-Model
Construction for Deciding Gödel-Dummett Logic. In CADE-18, volume 2392
of LNAI, pages 94–110, 2002.

[14] George Metcalfe, Nicolas Olivetti, and Dov Gabbay. Goal-Directed Calculi for
Gödel-Dummett Logics. In CSL, volume 2803 of LNCS, pages 413–426, 2003.

87

	Unsound Theorem Proving Christopher Lynch
	The TM System for Repairing Non-Theorems Simon Colton and Alison Pease
	Bounded Model Generation for Isabelle/HOL Tjark Weber
	Reducing Symmetries to Generate Easier SAT Instances Jian Zhang
	Finding and Using Counter-Examples (invited talk) Alan Bundy
	The Use of Proof Planning Critics to Diagnose Errors in the Base Cases of Recursive Programs Louise A. Dennis
	Resource Graphs and Countermodels in Resource Logics Didier Galmiche and Daniel Méry
	Gödel-Dummett counter-models through matrix computation Dominique Larchey-Wendling

