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Abstract
Intuitionistic truth table natural deduction (ITTND) by Geuvers and Hurkens (2017), which is
inherently non-confluent, has been shown strongly normalizing (SN) using continuation-passing-style
translations to parallel lambda calculus by Geuvers, van der Giessen, and Hurkens (2019). We
investigate the applicability of standard model-theoretic proof techniques and show (1) SN of detour
reduction (β) using Girard’s reducibility candidates, and (2) SN of detour and permutation reduction
(βπ) using biorthogonals. In the appendix, we adapt Tait’s method of saturated sets to β, clarifying
the original proof of 2017, and extend it to βπ.
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1 Introduction

Recently, Geuvers and Hurkens [13] have observed that, departing from the truth table of a
logical connective, one can in a schematic way construct introduction and elimination rules
for that connective both for intuitionistic and classical natural deduction. For each line in
the truth table where the connective computes to true one obtains an introduction rule, and
for the false lines one obtains an elimination rule. It is shown that these truth table natural
deduction (TTND) calculi are equivalent to Gentzen’s original calculi [12] in the sense that
the same judgements can be derived. However, the schematic rules are sometimes unwieldy
and unintuitive—for instance, in TTND there are three introduction rules for implication
since A → B is true for three out of four valuations of (A, B). As a remedy, Geuvers and
Hurkens show how the original TTND rules can be optimized in a systematic way. In this
article, we shall confine ourselves to the schematic, unoptimized rules of intuitionistic TTND
(ITTND).

When studying proof terms and proof normalization for ITTND, one can observe that β-
reduction—the reduction of detours, i.e., introductions followed directly by eliminations1—is
essentially non-deterministic and even non-confluent. Non-confluence poses some challenges

1 Geuvers and Hurkens call detour redexes direct intuitionistic cuts [13] or a-redexes [14] and with van
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to the proof that reduction is terminating, the so-called strong normalization (SN) property.
In the original presentation [13], the authors confine the SN proof to ITTND with a single
but universal connective if-then-else and the optimized inference rules for if-then-else which
yield confluent and standardizing β-reduction. The proof follows the saturated sets method
pioneered by Tait [30] which is known to rely on standardization by using deterministic weak
head reduction.2

In subsequent work [14], the authors attack SN for full ITTND with non-confluent β-
reduction, introducing elements of Girard’s technique of reducibility candidates (RCs) [17, 19].
However, this innovative mix of Tait and Girard is not without pitfalls, as we shall investigate
in Section 4.2. We tread on safer grounds by returning to Girard’s original definition of RCs
in Section 4. Our proof in Section 4.1 relies on impredicativity and could not be formalized in
a predicative metatheory such as Martin-Löf Type Theory [24]. We thus give in Section 4.3
a variant that replaces the use of impredicativity by inductive definitions.

However, β-reduction is not the only form of proof optimization in ITTND. The schematic
elimination rules of ITTND have the flavor of disjunction elimination which does not pose any
restriction on the formula on the right. Likewise, eliminations in ITTND have an arbitrary
target. In such settings, one eliminates a hypothesis to directly prove the desired conclusion.
Eliminating into an intermediate conclusion which is then eliminated again is thus considered
a detour. Joachimski and Matthes [20] call such a detour a permutation redex or π-redex3

—in the context of intuitionistic sequent calculus restricted to implication. Permutation
reduction for ITTND by itself is terminating [14], and in loc. cit. it is shown that the free
combination with β-reduction, βπ, is weakly normalizing. Strong normalization was left
open until the joint work of Geuvers and Hurkens with van der Giessen [16], where SN was
established via a continuation-passing-style (CPS) translation to the parallel simply-typed
lambda calculus (parallel STLC).4

The change of proof strategy begs the question whether the usual model-theoretic SN
proofs could not work also for βπ-reduction. While the saturated sets method applied in a
similar situation by Joachimski and Matthes [20] seems not applicable due to non-confluence
of β, Girard’s RCs do not cover π. However, there is a third popular method, (bi)orthogonals,
that has been developed to prove SN for classical lambda-calculi which are essentially non-
confluent. 5 Biorthogonals have been successfully applied by Lindley and Stark [22] to
prove SN for Moggi’s “monadic metalanguage”, that is STLC with introduction, elimination,
and permutation rules for the monad. We show in Section 6 that biorthogonals, putting
elimination sequences at the center of attention, can show SN for βπ of ITTND. Finally, in
the Appendix A, we demonstrate how the the saturated sets method can also be adapted.

While we limit our presentation on the implicational fragment of ITTND for didactic
purposes and convenience of exposition, our techniques scale immediately to the general case.

Overview

In Section 2 we recapitulate Geuvers and Hurkens’ construction of intuitionistic inference
rules from truth tables and the associated β-rules. In Section 3 we present a common

der Giessen D-redexes [16]. We follow Joachimski and Matthes [20] and call detour reductions simply
β-reductions, as these are a generalization of the β-reduction of λ-calculus.

2 Weak head reduction is sometimes called key reduction in the context of saturated sets.
3 Geuvers and Hurkens call π-redexes b-redexes [14] and, with van der Giessen, P-redexes [16].
4 In a first approximation, one can think of parallel STLC as STLC with explicit non-determinism.
5 Early applications of orthogonality can be found in the works of Parigot [27, 28] and Barbanera and

Berardi [4].
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structure of model-theoretic SN proofs. This structure is instantiated to RCs in Section 4
and we present the two ways of constructing the interpretation of the connectives: via the
elimination rules (Section 4.1) and via the introduction rules (Section 4.3). Further, we
take a critical look at the proof of Geuvers and Hurkens [14] in Section 4.2. In Section 5
we turn to π-reduction, laying some foundation for the SN proof for βπ using orthogonality
(Section 6), which is the main contribution of this paper. We conclude with a short discussion
in Section 7.

2 Intuitionistic Truth Table Natural Deduction

Geuvers and Hurkens [13] introduced a method to derive natural deduction proof rules from
truth tables of logical connectives. For instance, consider the truth table for implication:

A B A → B

0 0 1
0 1 1
1 0 0
1 1 1

For each line where A → B holds, e.g., the second line, an introduction rule is created where
0-valued (or negative) operands A become premises Γ.A ⊢ A → B and 1-valued (or positive)
operands B become premises Γ ⊢ B. Lines like the third where A → B is false become
elimination rules with a conclusion Γ ⊢ C for an arbitrary formula C. The premises of this
elimination rule are, besides the principal premise Γ ⊢ A → B, a premise Γ ⊢ A for each
1-valued operand A, and a premise Γ.B ⊢ C for each 0-valued operand B. This yields the
following four rules of judgement t : Γ ⊢ A :6

t : Γ.A ⊢ A → B u : Γ.B ⊢ A → B

in00
→(t, u) : Γ ⊢ A → B

t : Γ.A ⊢ A → B b : Γ ⊢ B

in01
→(t, b) : Γ ⊢ A → B

f : Γ ⊢ A → B a : Γ ⊢ A t : Γ.B ⊢ C

f · el10
→(a, t) : Γ ⊢ C

a : Γ ⊢ A b : Γ ⊢ B

in11
→(a, b) : Γ ⊢ A → B

As seen from these instances, we preferably use letters t, u, v for terms with a distinguished
hypothesis and letters a, b, c, d, e, f for terms without such. Replacing the distinguished
hypothesis, i.e., the 0th de Bruijn index, in term t by a term a is written t[a]. We use letter
I for introduction terms, i.e., such with “in” at the root, and letter E for an elimination in
term f · E, i.e., the “el” part. Heads h are either variables x or introductions I, and each
term can be written in spine form h · E1 · · · · · En. This may be written h · E⃗.

6 Additional information for the reader unfamiliar with natural deduction and proof terms:
Natural deduction asserts the truth of a proposition A under a list of assumed propositions Γ, a context,
via the judgement Γ ⊢ A. Derivations of such judgements form proof trees where nodes are labeled by the
name of the applied proof rule and the ordered subtrees correspond to the premises of that rule. Leaves
are either applications of a rule that has no premises or references to one of the hypotheses in Γ.
We write ε for empty lists. The list Γ can be extended on the right by a proposition A using the notation
Γ.A. Following de Bruijn [11], we number the hypotheses from the right starting with zero. A reference to
a hypothesis—a so-called de Bruijn index— is a non-negative number i strictly smaller than the length
of Γ. For example, de Bruijn index zero, written x0, refers to proposition A in context Γ.A. We write
x : Γ ⊢ A to denote a de Bruijn index x pointing to proposition A in context Γ.
In general, we use the notation t : Γ ⊢ A to state that t is a valid proof tree, also called proof term, whose
conclusion is the judgement Γ ⊢ A. We will only refer to terms t that correspond to a valid proof tree,
thus, we consider terms as intrinsically typed [3, 5]. This choice however affects neither presentation nor
results in this article very much; they apply the same to extrinsic typing.

TYPES 2020
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Detour or β reductions can fire when an introduction is immediately eliminated, i.e., on
well-typed subterms of the form I ·E. For the case of implication, there are three introduction
rules that can be paired with the only elimination rule. There are two ways in which a β

redex can fire: Either, a positive premise (1) of the introduction matches a negative premise
(0) of the elimination. For the case of implication, the second premise of the elimination el10

→
is negative, and it can react with the positive second premise of in01

→ and in11
→:

in_1
→ (_, b) · el10

→(_, t) 7→β t[b]

The other reaction is between a negative premise of the introduction and a matching positive
premise of the elimination. In this case, the elimination persists, but the introduction is
replaced with an instantiation of its respective negative premise. In the case of implication,
the first premise of in00

→ and in01
→ can be instantiated with the first premise of el10

→:

in0_
→ (u, _) · el10

→(a, t) 7→β u[a] · el10
→(a, t)

The case of implication already demonstrates the inherent non-confluence of β-reduction:
the reducts of in01

→(u, b) · el10
→(a, t) form the critical pair (t[b], u[a] · el10

→(a, t)) which can in
general not be joined. Non-confluence excludes some techniques to show strong normalization,
e.g., those that rely on deterministic weak head reduction. However, Girard’s reducibility
candidates accommodate non-confluent reduction, thus, his technique may be adapted to the
present situation.

3 Model-theoretic proofs of strong normalization

In this section we explain the general format of a model-theoretic proof of strong normalization.
We will instantiate this framework to two techniques later: reducibility candidates (Section 4)
and orthogonality (Section 6).

3.1 Preliminaries
We work with sets Γ ⊢ A of nameless well-typed terms. De Bruijn indices are written
xn : Γ.A.∆ ⊢ A where ∆ has length n. Instead of full-fledged renaming, we confine to
weakening under order-preserving embeddings (OPE) τ : ∆ ≤ Γ . Here, τ witnesses that
and how Γ is a subsequence of ∆. Then, ⇑ τ : ∆.B ≤ Γ.B be the lifted OPE. Further,
↑ : Γ.B ≤ Γ is the OPE for weakening by one variable, and OPEs form a category with
identity 1 : Γ ≤ Γ and composition (Γ ≤ ∆) → (∆ ≤ Φ) → (Γ ≤ Φ) written as juxtaposition.
If a : Γ ⊢ A then weakening aτ : ∆ ⊢ A is defined in the usual way. In particular, ⇑ is used
to traverse under binders, for instance, in01

→(t, b)τ = in01
→(t(⇑ τ), bτ).

Substitutions σ : ∆ ⊢ Γ are defined as lists of terms σ = ε.b1. · · · .b|Γ| typed by list Γ
under context ∆. Parallel substitution aσ : ∆ ⊢ A for a : Γ ⊢ A is defined as usual. OPEs
τ : ∆ ≤ Γ are silently coerced to substitutions ∆ ⊢ Γ consisting only of de Bruijn indices.
Substitutions form a category, and we reuse 1 for identity and juxtaposition for substitution.
Like for OPEs, we have lifting ⇑ : (∆ ⊢ Γ) → (∆.B ⊢ Γ.B) to push substitutions under
binders. Single substitution t[b] is an instance of parallel substitution tσ for substitution
σ = 1.b : (Γ ⊢ Γ.B) obtained from b : Γ ⊢ B.

Reduction a −→ a′ , which is defined using single substitution, acts on same-typed terms
a, a′ : Γ ⊢ A by definition. It is closed under weakening and substitution. It is even closed
under anti-weakening, i.e., if aτ −→ a′τ then also a −→ a′. (Not so for substitution: it is
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not closed under anti-substitution, of course.) Further, reduction commutes with weakening:
If aτ −→ b′ then there is b with a −→ b and b′ = bτ .

Via the parallel substitution operation, the family _ ⊢ A of terms of type A is a
contravariant functor (i.e., presheaf) targeting the category Set of sets and functions. Its
source is the category of substitutions, and thus also its subcategory OPE. We will work a lot
with presheaves of the latter kind, especially with families of predicates PΓ ⊆ (Γ ⊢ A) closed
under weakening, meaning if a ∈ PΓ and τ : ∆ ≤ Γ then aτ ∈ P∆. We call such predicates
term set families. We may simply write a ∈ P instead of a ∈ PΓ if Γ is fixed but arbitrary or
can be determined by the context.

Our prime example of a term set family are the strongly normalizing terms SN given
inductively by rule

(a −→ _) ⊆ SN
a ∈ SN .

While it is formally a family of inductive predicates on well-typed terms a : Γ ⊢ A, we mostly
write a ∈ SN instead of a ∈ SN(Γ ⊢ A) for simplicity. The set SN is closed under weakening,
i.e., if τ : ∆ ≤ Γ then aτ ∈ SN as well. This follows easily from anti-weakening for reduction.

3.2 Semantic types and normalization proofs
A typical model-theoretic proof of strong normalization will interpret types A by families
A = JAK of strongly normalizing terms of type A. To work smoothly for open terms, a
further requirement on such semantic types A is that they contain the variables, i.e., if
x : Γ ⊢ A then x ∈ AΓ.

To obtain a compositional interpretation of types, each type constructor such as implication
A → B is interpreted by a suitable operation A → B on semantic types. For pure implicational
truth table natural deduction, types are formed from uninterpreted base types o (propositional
variables) and function space: A, B ::= o | A → B. Types are interpreted as the following
semantic types:

JoKΓ = SN(Γ ⊢ o)
JA → BKΓ = (JAK → JBK)Γ

The main structure of the normalization proof then proceeds as follows: Contexts Γ are
interpreted as families of sets of substitutions.

JεK∆ = ∆ ⊢ ε ( = {σ | σ : ∆ ⊢ ε})
JΓ.AK∆ = {σ.a | σ ∈ JΓK∆ and a ∈ JAK∆}

Thanks to the requirement that the variables inhabit the semantic types, each context can
be valuated by the identity substitution:

▶ Lemma 1 (Identity substitution). 1 ∈ JΓKΓ.

Proof. By induction on Γ. In case Γ.A, we have 1 ∈ JΓKΓ by induction hypothesis, thus, by
weakening, ↑ ∈ JΓKΓ.A. Further, the 0th de Bruijn index x0 ∈ JAKΓ.A. Thus (↑.x0) = 1 ∈
JΓ.AKΓ.A. ◀

The main theorem shows that each well-typed term inhabits the corresponding semantic
type:

▶ Theorem 2 (Fundamental theorem of logical predicates). If a : Γ ⊢ A and σ ∈ JΓK∆ then
aσ ∈ JAK∆.

TYPES 2020
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Normalization is then a direct consequence:

▶ Corollary 3 (Strong normalization). If a : Γ ⊢ A then a ∈ SN.

Proof. By Theorem 2 with Lemma 1, a1 = a ∈ JAKΓ, thus, a ∈ SN since each semantic type
contains only strongly normalizing terms. ◀

The definition of the semantic types such as A → B needs be crafted such as to allow us
to prove Theorem 2. In the next section we identify the necessary properties.

3.3 Modelling the inference rules
To formulate the properties that allow us to prove Theorem 2 we introduce an auxiliary
construction C[A] , “abstraction”, given semantic types A and C, where A classifies terms
of type A and C terms of type C.

C[A]Γ = {t ∈ Γ.A ⊢ C | t(τ.a) ∈ C∆ for all τ : ∆ ≤ Γ and a ∈ A∆}.

The abstraction7 C[A] is a presheaf via the weakening with the lifted OPE:

▶ Lemma 4. If τ : ∆ ≤ Γ and t ∈ C[A]Γ then t(⇑ τ) : C[A]∆.

Proof. Assume τ ′ : Φ ≤ ∆ and a ∈ AΦ and show t(⇑ τ)(τ ′.a) ∈ CΦ. Since (⇑ τ)(τ ′.a) = ττ ′.a

this follows by definition of t ∈ C[A]Γ. ◀

Using abstraction, the properties of the semantic connective can be mechanically obtained
from the inference rules for the syntactic connective. In the formulation of these properties, a
judgement a : Γ ⊢ A turns into statement a ∈ AΓ and a judgement t : Γ.A ⊢ C into t ∈ C[A]Γ.
In case of semantic implication A → B, we obtain the following four requirements, one for
each rule:

(in00
→) If t ∈ (A → B)[A] and u ∈ (A → B)[B] then in00

→(t, u) ∈ A → B.
(in01

→) If t ∈ (A → B)[A] and b ∈ B then in01
→(t, b) ∈ A → B.

(in11
→) If a ∈ A and b ∈ B then in11

→(a, b) ∈ A → B.
(el10

→) If f ∈ A → B and a ∈ A and t ∈ C[B] then f · el01
→(a, t) ∈ C.

Given these properties of semantic implication, we can show that semantic types model
the inference rules:

Proof of Theorem 2. By induction on t : Γ ⊢ C, prove tσ ∈ JCK∆ for all σ ∈ JΓK∆. In case
of a variable t = x, we have xσ ∈ JΓ(x)K∆ by assumption on σ.

The other cases are covered by the assumptions on semantic implication. For instance,
consider:

t : Γ.A ⊢ A → B b : Γ ⊢ B

in01
→(t, b) : Γ ⊢ A → B

By induction hypothesis (2) bσ ∈ JBK∆ and (1) t(στ.a) ∈ JA → BKΦ for arbitrary τ : Φ ≤ ∆
and a ∈ JAKΦ, since then στ ∈ JΓKΦ. Hence, t(⇑ σ) ∈ (JA → BK)[JAK]∆ by definition of
abstraction. By property (in01

→), it follows that in01
→(t, b)σ = in01

→(t(⇑ σ), bσ) ∈ JA → BK∆. ◀

This completes the description of our framework for strong normalization proofs. We
now turn our attention to ways how to instantiate this framework.

7 Matthes [25, Sec. 6.2] uses the notation Sx(A, C) for abstraction (in a setting with named variables x).
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3.4 Flavors of semantic types
We are familiar with three principal methods how to construct semantic types for strong
normalization proofs.
1. Saturated sets following Tait [30], see e.g. the exposition by Luo [23]. This technique

requires semantic types to be closed under weak head expansion and is only known
to work for deterministic weak head reduction. While it has been applied [13] to the
if-then-else instance of ITTND with optimized rules, it does not cover the general case of
TTND with non-deterministic and even non-confluent weak head reduction.

2. Reducibility candidates following Girard [17, 19]. We apply this method in Section 4. It
covers β-reduction but not βπ.

3. Biorthogonals that have been used in SN proofs for λ-calculi for classical logic, e.g. by
Parigot [27], and in SN proofs for the monadic meta-language by Lindley and Stark [22].
These cover even βπ, and we shall turn to these in Section 6.

4 Reducibility Candidates

Girard’s reducibility candidates are a flavor of semantic types that can show strong nor-
malization also for non-confluent rewrite relations such as reduction in truth-table natural
deduction.

When defining the semantic versions of the logical connectives such as A → B, we have
the choice to base the definition either on the introduction rules or the elimination rules.8 We
will study both approaches, but first, we recapitulate the definition of reducibility candidates.

Let Intro be the term set of introductions, i.e., the terms of the form inb⃗
c(⃗t). This set is

clearly closed under weakening and anti-weakening.
A reducibility candidate A for a type A is a term set family with the following properties:
CR1 AΓ ⊆ SN.
CR2 If a ∈ AΓ and a −→ a′ then a′ ∈ AΓ.
CR3 For a : Γ ⊢ A, if a ̸∈ Intro and (a −→ _) ⊆ AΓ, then a ∈ AΓ.

We write A ∈ CR if A is a term set family satisfying CR1-3. It is easy to see that SN ∈ CR.
If A satisfies only CR1/2, it shall be called a precandidate.

Term set abstraction operates on precandidates:

▶ Lemma 5 (Abstraction). Let AΓ be inhabited for any Γ. If C is a precandidate, so is C[A].

Proof. CR1 holds by non-emptiness of A: Given t ∈ C[A]Γ and arbitrary a ∈ AΓ we have
t[a] ∈ CΓ. In particular, t[a] ∈ SN, and thus, t ∈ SN.

CR2 relies on the closure of reduction under substitution: Assume C[A]Γ ∋ t −→ t′ and
τ : ∆ ≤ Γ and a ∈ A∆. To show t′(τ.a) ∈ C∆ observe that t(τ.a) ∈ C∆ and that CR2 holds
for C. ◀

▶ Remark 6 (On emptiness of RCs). In untyped presentations of RCs, CR3 guarantees non-
emptiness of any A ∈ CR, since automatically all variables will inhabit A by virtue of CR3.
In our case, AΓ may be empty since there may be no variables x : Γ ⊢ A of the correct type
A. We thus have to be a bit careful when carrying over the textbook proofs [19] to our
intrinsically-typed setting.

8 See Matthes’ [25, Section 6.2] systematic exposition of introduction-based vs. elimination-based definition
of semantic types (in the context of the saturated sets method).

TYPES 2020
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4.1 Elimination-based approach
Geuvers and Hurkens [14] base the semantic definition of the logical connective on the
elimination rules. A term inhabits a semantic type if it can be soundly eliminated by all
possible eliminations for that type. In case of implication,

f ∈ (A → B)Γ ⇐⇒ ∀C ∈ CR, τ : ∆ ≤ Γ, a ∈ A∆, t ∈ C[B]∆. fτ · el10
→(a, t) ∈ C∆.

Due to our intrinsic typing, in contrast to Geuvers and Hurkens [14], we need Kripke-style
function space, i.e., quantify over all extensions ∆ of Γ with their respective embeddings
τ : ∆ ≤ Γ. Still, this definition can be mechanically derived from the elimination rules of
implication, which is the single rule:

f : Γ ⊢ A → B a : Γ ⊢ A t : Γ.B ⊢ C

f · el10
→(a, t) : Γ ⊢ C

In case of several elimination rules, the definition of the semantic type has to require the
closure under all rules [14].

Note the impredicative quantification over all reducibility candidates C, which requires an
impredicative meta-theory to formalize this definition. Such an impredicative quantification
is not required in the introduction-based approach that we study in Section 4.3.

The elimination-based approach gives us the soundness of the elimination rules for free.

▶ Lemma 7 (Elimination). If f ∈ A → B and a ∈ A and t ∈ C[B] then f · el10
→(a, t) ∈ C.

(Property (el10
→).)

Proof. By definition of A → B using τ = 1. ◀

Soundness of the introduction rules requires some work.

▶ Lemma 8 (Introduction). Properties (in00
→), (in01

→) and (in11
→) hold for A → B.

Proof. We show property (in01
→), the others are analogous. Assume t ∈ (A → B)[A] and

b ∈ B and show in01
→(t, b) ∈ A → B. To this end, assume C ∈ CR and τ : ∆ ≤ Γ and a ∈ A∆

and u ∈ C[B]∆ and show v := in01
→(t, b)τ · el10

→(a, u) ∈ C∆ by induction on t(⇑ τ), bτ, a, u ∈ SN
(obtained by CR1).

Since v is not an introduction we shall utilize CR3 for C. Therefore, we have to show
that all reducts of v are already in C∆.

If reduction happens in subterm bτ , so bτ −→ b′, we can apply the induction hypothesis
on b′ ∈ SN, since b′ ∈ B∆ by CR2. Reduction in one of the other subterms t, a, u of v is
treated analogously.

It remains to cover the β-reductions at the root, which are v −→ u[bτ ] and v −→ t(τ.a) ·
el10

→(a, u). We have u[bτ ] ∈ C∆ by assumptions on u and b. Further, since t(τ.a) ∈ (A → B)∆,
by definition t(τ.a) · el10

→(a, u) ∈ C∆. ◀

Let us not forget to verify that A → B is indeed a reducibility candidate.

▶ Lemma 9 (Function space). If A, B ∈ CR then (A → B) ∈ CR.

Proof. First, A → B needs to be a term set family. This is facilitated by the Kripke-
style definition of the function space: Assume f ∈ (A → B)Γ and τ : ∆ ≤ Γ and show
fτ ∈ (A → B)∆. To this end assume C ∈ CR and τ ′ ∈ Φ ≤ ∆ and a ∈ AΦ and t ∈ C[B]Φ and
show fττ ′ · el10

→(a, t) ∈ CΦ. This follows from the assumption on f with OPE ττ ′ : Φ ≤ Γ.
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For CR1, assume f ∈ (A → B)Γ and show f ∈ SN. Let C = A (this choice is simplest,
but any RC would do) and ∆ = Γ.A. Clearly a := (x0 : ∆ ⊢ A) ∈ A∆ and t := (x1 : ∆.B ⊢
A) ∈ C[B]∆. Thus fτ · el10

→(a, t) ∈ C∆ ⊆ SN. This implies f ∈ SN.
Closure under reduction (CR2) follows because reduction is closed under weakening and

elimination.
For CR3, assume f : Γ ⊢ A → B that is not an introduction and whose reducts are

in (A → B)Γ. To show f ∈ (A → B)Γ, assume C ∈ CR and τ : ∆ ≤ Γ and a ∈ A∆ and
t ∈ C[B]∆ and show fτ · E ∈ C∆ where E = el10

→(a, t). We proceed by CR3 for C, exploiting
that fτ · E is not an introduction either. It is sufficient to show that all reducts of fτ · E are
in C∆. We proceed by induction on a, t ∈ SN. Since f is not an introduction, we can only
reduce in f or in E. Reductions in f are covered by the assumption on f . Reductions in E

are either a −→ a′ or t −→ t′ and covered by the respective induction hypothesis, since a′

and t′ stay in their respective RCs by virtue of CR2. ◀

Strong normalization now follows according to Section 3.

4.2 A gap in the original proof by Geuvers and Hurkens, and its fix
In their elimination-based SN proof, Geuvers and Hurkens [14, Section 6.1] use for semantic
types saturated sets with the expansion closure modified to liken CR3. To explain their
approach, let us first introduce weak head reduction9 I · E · E⃗ ▷β v · E⃗ where β-redex I · E

contracts to v and the elimination sequence E⃗ is arbitrary (can be empty). Any SN term
that is neither an introduction nor a ▷β-redex is called neutral (set Neut).

In Def. 57.3 [14] a set of terms X is defined to be saturated (X ∈ SAT) if
a. (SAT1) X ⊆ SN,
b. (SAT2) Neut ⊆ X , and
c. (SAT3′) X is closed under ▷β-expansion, namely if t ∈ SN and (t ▷β _) ⊆ X (*) then

t ∈ X .
In the original formulation (SAT3) of the saturated sets method,10 the requirement (*) is
that (t▷β _) ∩ X is inhabited, meaning that t is the weak-head expansion of some term that
is already in X . In the new formulation the requirement is that all weak-head reducts of
t are in X . It is easy to see that now SAT2 is subsumed under SAT3′, since neutrals have
no weak-head reducts, and the condition (*) is trivially satisfied. The modification of SAT3
towards CR3-style SAT3′ was perhaps undertaken to account for the non-determinism of ▷β

in ITTND.
Unfortunately, with SAT3′ it is not clear how to show the equivalent of Lemma 9,

(A → B) ∈ SAT [14, Lemma 58]. In the formulation based on untyped terms, A → B is
defined by

f ∈ (A → B) ⇐⇒ ∀C ∈ SAT, a ∈ A, t ∈ C[B]. f · el10
→(a, t) ∈ C.

To attempt to show SAT3′ for A → B, assume f ∈ SN with (f ▷β _) ⊆ A → B and derive
f ∈ A → B. To this end, assume C ∈ SAT and a ∈ A and t ∈ C[B] and show f · E ∈ C with
E = el10

→(a, t). Since C is arbitrary, we have to rely on SAT3′ to introduce elements into C.
Thus, we need to show (1) f · E ∈ SN and (2) t′ ∈ C whenever f · E ▷β t′. For both goals we
need to analyze the reducts of f · E. The problem is that f could be an introduction and,

9 Weak head reduction is called key reduction in loc. cit..
10 See for instance the exposition by Luo [23].
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4:10 SN for Truth-Table ND

hence, f · E a β-redex reducing to some v. We lack assumptions to show v ∈ C and even
v ∈ SN, since v is not of the same form as f · E. Were it either f ′ · E (with f −→ f ′) or f · E′

(with E −→ E′) there would be some hope to use the assumptions, in particular f, E ∈ SN.
Note that with the original SAT3 the relevant part of the proof goes in the other direction,

we can exploit the closure of weak head reduction under elimination, namely if f ▷β f ′ then
f · E ▷β f ′ · E. It seems that this direction is employed in the proof sketch [14, Lemma 58.c],
not matching the new requirement SAT3′.

Pointed to the gaps in their argument Geuvers and Hurkens published a revision [15]
with two amendments to the definitions:
1. Closure condition SAT3′ now applies only to weak head redexes t. Only strongly normal-

izing weak head redexes t whose weak head reducts are in saturated set X are forced into
X . The thus relativized SAT3′ no longer subsumes SAT2 which forces neutrals into X .

2. The semantic connectives are relativized to SN terms. E.g., f ∈ (A → B) stipulates also
f ∈ SN.

The second amendment fixes a problem with connectives that have no eliminations, like truth,
but does not add anything for connectives with at least one elimination, like A → B.

Yet the first amendment allows us now to analyse the reducts of f · E in the proof of
SAT3′ for A → B. Since f is not an introduction, the only weak head redexes of f · E are of
the form f ′ · E with f ▷β f ′. To show (f · E ▷β _) ⊆ C, we can thus utilize the assumption
(f ▷β _) ⊆ A → B. This repairs the proof; in Appendix A.1 we will see a variant of the
amended proof be spelled out in detail.

In the following section, we can get rid of the impredicative definition of A → B and
use an inductive definition instead. We study this introduction-based approach to type
interpretation in the context of Girard’s method, but conjecture that it could be utilized in
the arguably more structured method of Geuvers and Hurkens as well.

4.3 Introduction-based approach
Instead of the impredicative elimination-based definition of semantic types like A → B,
we can base their definition on the introduction rules. The rough idea is that elements
of A → B can be introduced by any of in00

→, in01
→, and in11

→—this is a union of reducibility
candidates. However, since the first two of these need already the implication they introduce,
the construction of a least fixed-point is required.

Note that the union A ∪ B of two reducibility candidates A and B preserves CR1/2, but
not CR3. However, property CR3 can be forced by the following closure operation A on a
term set A ⊆ (Γ ⊢ A).

emb a ∈ A
a ∈ A

exp a : Γ ⊢ A a ̸∈ Intro (a −→ _) ⊆ A
a ∈ A

The closure operation lifts pointwise to families AΓ ⊆ Γ ⊢ A of term sets.

▶ Lemma 10. If a ∈ AΓ and τ : ∆ ≤ Γ then aτ ∈ A∆.

Proof. By induction on a ∈ AΓ. In case a ∈ AΓ (emb) use the functoriality of A and emb. In
case exp, i.e., a ∈ SN(Γ ⊢ A)\Intro and (a −→ _) ⊆ A∆ we first have aτ ∈ SN(∆ ⊢ A)\Intro.
If aτ −→ b′ then there is b with a −→ b and b′ = bτ , and by induction hypothesis bτ ∈ A∆.
Thus aτ ∈ A∆ by exp. ◀

▶ Lemma 11 (Saturation). A is a reducibility candidate for any precandidate A.
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Proof. CR3 is forced by the closure operation. Closure under reduction (CR2) and preserva-
tion of SN (CR1) are proven by induction on a ∈ A, the latter using that a ∈ SN when all of
a’s reducts are. ◀

We may now define a notion of function space on reducibility candidates based on the
introduction rules for implication. Since introduction rules are “recursive” in general, i.e.,
may mention the principal formula in the subsequent of a premise, we need to employ the
least fixed-point operation µ for monotone operators on the lattice of reducibility candidates.
We define A → B = µF where

F(X )Γ = {in00
→(t, u), in01

→(t, b), in11
→(a, b) | a ∈ AΓ, b ∈ BΓ, t ∈ X [A]Γ, u ∈ X [B]Γ}

This operation acts on reducibility candidates:

▶ Lemma 12 (Function space). If A and B are reducibility candidates, so is A → B.

Proof. It is sufficient to show that F acts on reducibility candidates. Since CR3 is forced,
it is sufficient that F(X ) is a precandidate for any candidate X , and this follows mostly
from Lemma 5 and the candidateship of A and B. CR1 follows since any reduction of an
introduction needs to happen in one of the arguments of in, which are SN. CR2 follows by
the same observation. ◀

By definition, A → B models the introduction rules for implication: properties (in00
→),

(in01
→) and (in11

→). For the elimination rule, property (el10
→), we have to do a bit of work.

▶ Lemma 13 (Function elimination). Let A, B, C be candidates. If f ∈ A → B and a ∈ A
and u ∈ C[B] then f · E ∈ C where E = el10

→(a, u).

Proof. By main induction on f ∈ A → B.

Case (exp) f ̸∈ Intro and f −→ f ′ implies f ′ ∈ A → B: We show f · E ∈ C by side
induction on E ∈ SN via CR3. First, f · E ̸∈ Intro. Assume f · E −→ c. Since f is not a
introduction, we have either f −→ f ′ or E −→ E′. In the first case, by main induction
hypothesis, f ′ · E ∈ C. In the second case, f · E′ ∈ C by side induction hypothesis. In any
case, c ∈ C. Since c was arbitrary, f · E ∈ C by CR3.

Case f = in00
→(t1, t2) where t1 ∈ (A → B)[A] and t2 ∈ (A → B)[B]. We show f · E ∈ C by

side induction on t1, t2, E ∈ SN via CR3. Given f · E −→ c, there are three cases. Either
c = f ′ · E with f −→ f ′ or c = f · E′ with E −→ E′ or c = t1[a] · E. The first two cases
are handled by the side induction hypotheses, the last case by main induction hypothesis
on t1[a] ∈ A → B.

Case f = in01
→(t1, b) where t ∈ (A → B)[A] and b ∈ B. We show f ·E ∈ C by side induction

on t, b, E ∈ SN via CR3. Given f · E −→ c, there are four cases. Either c = f ′ · E with
f −→ f ′ or c = f · E′ with E −→ E′ or c = t[a] · E or c = u[b]. The first two cases are
handled by the side induction hypotheses, the but-last case by main induction hypothesis
on t[a] ∈ A → B, and the last case by assumption u ∈ C[B].

Case f = in11
→(a′, b) where a′ ∈ A and b ∈ B. We show f · E ∈ C by side induction on

a′, b, E ∈ SN via CR3.
Given f · E −→ c, there are three cases. Either c = f ′ · E with f −→ f ′ or c = f · E′ with
E −→ E′ or c = u[b]. The first two cases are handled by the side induction hypotheses
and the last case by assumption u ∈ C[B]. ◀
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The pattern outlined here for implication generalizes to arbitrary connectives given by
truth tables. Each connective is interpreted as an operation on candidates, using the least
fixed-point of the closure of the term set generated by the introductions. Each elimination
then has to be proven sound in a lemma similar to Lemma 13.

This concludes our study of reducibility candidates to show SN for ITTND. In the
remaining technical sections, we study the extension of the normalization argument to
permutations.

5 Permutation Reductions

In previous sections, we have studied the reduction β of detours I · E stemming from an
elimination E of a via I just introduced connective. In ITTND, even an elimination E

followed by another elimination E′, thus, a term of the form f · E · E′, constitutes a detour
and can be π-reduced.

For the sake of defining and studying π-reduction, let us introduce eliminations E and
evaluation contexts E⃗, aka spines, as syntactic classes separate from terms. Eliminations E

from type A into type C are typed by judgement E : Γ | A ⊢ C . In the case of implication,
we have:

a : Γ ⊢ A u : Γ.B ⊢ C

el10
→(a, u) : Γ | A → B ⊢ C

Sequences of eliminations form spines E⃗, where we denote the empty spine as id and spine
construction by a centered dot.

id : Γ | A ⊢ A

E : Γ | A ⊢ B E⃗ : Γ | B ⊢ C

E · E⃗ : Γ | A ⊢ C

Spine construction straightforwardly extends to spine concatenation E⃗ · E⃗′. Weakening E⃗τ

and substitution E⃗σ are defined in the obvious way.
Since the target type C of an elimination can be freely chosen, one can structure a proof

to always eliminate a hypothesis x : A directly into the goal C. Thus, a sequence x · E · E′ of
two eliminations E : Γ | A ⊢ B and E′ : Γ | B ⊢ C, going via an intermediate formula B, can
be considered a detour.

This detour is removed by a permutation contraction E · E′ 7→π E{E′} that shifts
(“permutes”) the outer elimination E′ into the negative branches of the inner elimination E.
The composition11 E{E′} of eliminations moves a weakened version of E′ to the negative
branches of E. In the case of implication, we have

el10
→(a, u){E′} = el10

→(a, u · E′↑) (1)

where E′↑ shall denote the weakening of elimination E′ by ↑ : Γ.B ≤ Γ. In particular,
el10

→(a′, u′)↑ = el10
→(a′↑, u′(⇑ ↑)).

▶ Remark 14. If in Equation (1) term u is an introduction, it may β-react with E′ to eliminate
further detours. Thus, π-reductions can lead to significant further normalization.

11 The notation E{E′} is due to Joachimski and Matthes [20].
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Now a one-step π-reduction t −→π t′ shall be a π-contraction in some spine within term

t. Let us further define spine reduction E⃗ ▷π E⃗′ as π-contraction within a spine at the root,
i.e., inductively by the axiom

E⃗ · E1 · E2 · E⃗′ ▷π E⃗ · E1{E2} · E⃗′.

Since a spine reduction shortens the length of the spine by 1, spine reduction is SN. For
π-reduction, the situation is slightly more complicated since a π-reduction can create new
π-redexes: for instance, if in Equation (1) the term u is an elimination. However, these
π-redexes have moved deeper into the term, thus, by ranking π-redexes by their depth we
can easily construct a termination order. Consequently, π-reduction alone is also SN [14,
Thm. 55]. Since elimination composition is associative, i.e., (E1{E2}){E3} = E1{E2{E3}},
spine and π-reduction are confluent.

5.1 Permutations are harmless
For β-reduction alone, we have the following closure property of SN: If all proper sub-terms
and all ▷β-reducts of a term are β-SN, so is the term itself. This is Lemma 2.3. of Geuvers
and Hurkens’ addendum [15]. We reprove it here for βπ-SN. Note that the requirements
are not extended to include the ▷π-reducts! So, the addition of permutation reduction is
actually “harmless”.

From now, let “reduction” be βπ-reduction and SN be understood w.r.t. this reduction
relation.

▶ Lemma 15 (Weak head expansion). Assume a, b, t, u, a′, u′ ∈ SN, where mentioned. Let
E = el10

→(a′, u′).
1. If t[a′] · E · E⃗ ∈ SN then in00

→(t, u) · E · E⃗ ∈ SN.
2. If t[a′] · E · E⃗ ∈ SN and u′[b] · E⃗ ∈ SN then in01

→(t, b) · E · E⃗ ∈ SN.
3. If u′[b] · E⃗ ∈ SN then in11

→(a, b) · E · E⃗ ∈ SN.

Proof. We demonstrate statment 2 in detail, the others are similar. For in01
→(t, b) ·el10

→(a′, u′) ·
E⃗ ∈ SN, we show that all its one-step reducts are SN. To this end, we induct on our two
main hypotheses (i) and (ii). The induction on (i) t[a′] · E · E⃗ ∈ SN immediately covers
reductions in t, E, and E⃗, and the induction on (ii) u′[b] · E⃗ ∈ SN covers the remaining inner
reductions, namely in b.

Besides inner reductions, we have two ▷β-reductions, yet they are directly implied by
our two main hypotheses. It remains to show that the π-contraction of E · E⃗ is also benign,
meaning I · E′ · E⃗′ ∈ SN, where I = in01

→(t, b) and E′ = el10
→(a′, u′ · E1 ↑) and E⃗ = E1 · E⃗′. To

tackle this by induction hypothesis, we need to show the two new main hypotheses, which
are now (i’) t[a′] · E′ · E⃗′ ∈ SN and (ii’) (u′ · E1 ↑)[b] · E⃗′ ∈ SN. But (i’) is just a π-reduct of
(i), and (ii’) is identical to (ii), once we distribute the substitution [b]. The inductive step is
thus justified by the first induction hypothesis.

Statement 1 is very similar, only that the second induction is on (u, u′) ∈ SN, to cover
reductions in u and u′.

Statement 3 needs a main induction on the length of E⃗ to cover the case of ▷π-reduction.
Further side inductions are needed on a, a′ ∈ SN. ◀

Similar arguments to Lemma 15 can be found in the work of Joachimski and Matthes [21,
Sect. 5 and 6]. I have also formalized that argument in Agda, albeit for a simpler case:
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simply-typed combinatory algebra with conditionals.12

5.2 Failure of the CR method for βπ

Our goal is now a model-theoretic proof of the SN of βπ-reduction. Unfortunately, just
throwing permutation reductions into the mix and replaying the CR proof for SN-β does not
work, despite the “harmless” character of permutations. The proof of Lemma 13 relies on the
fact that if f · E −→ c and f ̸∈ Intro then either f −→ f ′ or E −→ E′, and the structure of
the elimination f · E is preserved. However, with permutations, in case f = f0 · E0 it could
be that c = f0 · E0{E}, changing the structure of the elimination. Such reductions are not
covered by any of the induction hypotheses.

We cannot arbitrarily tighten the restriction _ ̸∈ Intro in the formulation of CR3, since
CR3 is used in Lemma 13 to introduce terms of the shape f ·E into a reducibility candidate C.
Such terms need to satisfy the restriction, therefore we cannot exclude π-redexes in general:
a priori, f · E could be a π-redex.

6 Orthogonality

Since the reducibility candidate method does not immediately extend to permutations, we
turn to a more powerful technique: (bi)orthogonals [6, 29, 8, 18, 32, 1]. Lindley and Stark
[22] have observed that biorthogonals (“⊤⊤-lifting”) deal well with the permutation reduction
for the monadic bind in a strong normalization proof for the monadic meta-language. We
shall thus adapt this technique, although it is more demanding on our meta-theory, requiring
greatest fixed-points of non-strictly positive operators. This is covered by Knaster and
Tarski’s fixed-point theorem [31], but not readily available in type-theoretic proof assistants
like Coq [7] and Agda [2].

In the following, when we speak of context-indexed families, we implicitly assume that
the family is closed under weakening.

Semantic types A shall now be context-indexed families of sets of spines E⃗, and we write
a ⊥ AΓ to characterize a term a : Γ ⊢ A as classified by semantic type A. The orthogonality

relation ⊥ is defined as

a ⊥ AΓ :⇐⇒ a ∈ A⊥
Γ :⇐⇒ a · E⃗ ∈ SN for all E⃗ ∈ AΓ.

We demand of semantic types that they contain the empty spine id and only contain
strongly normalizing spines. Reductions E⃗ −→ E⃗′ in spines E⃗ can either be βπ-reductions
in the subterms of the eliminations or can be π-contractions along the spine.

More formally, a semantic type AΓ for syntactic type A at context Γ is a set of pairs
(C, (E⃗ : Γ | A ⊢ C)). Then a ⊥ AΓ is defined as a · E⃗ ∈ SN(Γ ⊢ C) for all (C, E⃗ : Γ | A ⊢ C) ∈
AΓ. However, we typically suppress the type component C which is implicitly determined by
E⃗.

▶ Lemma 16 (Semantic types). Let A be a semantic type for A.
1. If x : Γ ⊢ A is a variable, then x ⊥ AΓ.
2. A⊥ ⊆ SN.
3. A⊥ is closed under reduction.

12 https://github.com/andreasabel/truthtable/blob/1a7a01fd28ffb327e9c91a3722e49b467d05a79d/
agda/SK-Bool-ortho.agda

https://github.com/andreasabel/truthtable/blob/1a7a01fd28ffb327e9c91a3722e49b467d05a79d/agda/SK-Bool-ortho.agda
https://github.com/andreasabel/truthtable/blob/1a7a01fd28ffb327e9c91a3722e49b467d05a79d/agda/SK-Bool-ortho.agda
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Proof.
1. Given (C, E⃗) ∈ AΓ show x · E⃗ ∈ SN. This holds since the only reductions are in E⃗, which

is required to be SN by definition of semantic types.
2. Given t ⊥ AΓ show t ∈ SN. Since id ∈ AΓ, we have t · id = t ∈ SN.
3. Given t ⊥ AΓ and t −→ t′ and E⃗ ∈ AΓ we have t′ · E⃗ ∈ SN since t · E⃗ ∈ SN and

t · E⃗ −→ t′ · E⃗. ◀

Symmetrically to A⊥, given a set of terms TΓ ⊆ (Γ ⊢ A) we define

T ⊥
Γ = {(C, (E⃗ : Γ | A ⊢ C)) | a · E⃗ ∈ SN(Γ ⊢ C) for all a ∈ TΓ}.

Taking the orthogonal T ⊥ of a non-empty SN term set T is one way to construct a semantic
type:

▶ Lemma 17 (Orthogonals are semantic types). If T is a family of non-empty sets of strongly
normalizing terms of type A, then T ⊥ is a semantic type for type A.

Proof. First, id ∈ T ⊥ since T ⊆ SN. Then T ⊥ ⊆ SN since T is non-empty. ◀

By definition, orthogonality gives rise to the Galois connection

T ⊥ ⊇ A ⇐⇒ T ⊆ A⊥

(both sides of ⇐⇒ expand to the same statement ∀t ∈ T , E⃗ ∈ A. t · E⃗ ∈ SN). As a
consequence, biorthogonality _⊥⊥ is a closure operator both on sets of terms, T ⊆ T ⊥⊥,
and evaluation contexts, A ⊆ A⊥⊥.

The abstraction type X [A] is now defined by

X [A]Γ = {(C, (E⃗ : Γ.A | X ⊢ C)) | E⃗(τ.a) ∈ X∆ for all τ : ∆ ≤ Γ and a ⊥ A∆}.

Abstraction operates on semantic types:

▶ Lemma 18 (Abstraction, revisited). If A and X are semantic types for A and X, then
X [A] is a semantic type for X.

Proof. We first show that (X, (id : Γ.A | X ⊢ X)) ∈ X [A]Γ. To this end, assume τ : ∆ ≤ Γ
and a ∈ A∆ and show id(τ.a) ∈ X∆. This is trivial, since id(τ.a) = id and X is a semantic
type.

Then, assume (C, (E⃗ : Γ.A | X ⊢ C)) ∈ X [A]Γ and show E⃗ ∈ SN. Choose τ = ↑ : Γ.A ≤ Γ
and a = x0 ∈ AΓ.A the 0th de Bruijn index, then E⃗(↑, x0) = E⃗ ∈ XΓ.A and hence SN. ◀

Given two semantic types A and B, the function space A → B is defined as the greatest
fixpoint νF⊥ of the pointwise orthogonal F⊥ of the operator

F(X )Γ = {in00
→(t, u), in01

→(t, b), in11
→(a, b) | a ⊥ AΓ, b ⊥ BΓ, t ⊥ X [A]Γ, u ⊥ X [B]Γ}.

In comparison with the reducibility candidate version in Section 4, the closure operation has
been replaced by biorthogonalization, and we converted µ(F⊥⊥) to (ν(F⊥))⊥. We dropped
the outer orthogonalization since we now compute sets of evaluation contexts, but note that
F applies orthogonalization on X . Due to the double “negation”, F⊥ is a non-strictly positive
operator which has a (greatest) fixpoint thanks to its monotonicity, yet, this fixpoint is not
directly obtainable in meta-theories that only accept strictly positive coinductive definitions,
such as the type theories of Agda [2] and Coq [7].
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▶ Lemma 19 (Function space, revisited). If A is a semantic type for A and B one for B,
then A → B is a semantic type for A → B.

Proof. Applying Lemma 17, it is sufficient to show that F(X ) is a family of non-empty sets
of SN terms for semantic types X . This is the case by assumptions on A, B, and X . ◀

▶ Lemma 20 (Function introduction). Given a ⊥ AΓ and b ⊥ BΓ and t ⊥ (A → B)[A]Γ and
u ⊥ (A → B)[B]Γ, we have in00

→(t, u), in01
→(t, b), in11

→(a, b) ⊥ (A → B)Γ.

Proof. For any of the mentioned introductions I we have I ∈ F(A → B)Γ by definition
of F . Since biorthogonalization is a closure operator, we have I ∈ F(A → B)⊥⊥

Γ and thus
I ⊥ F(A → B)⊥

Γ = (A → B)Γ, since A → B is a fixed point of F⊥. ◀

It seems now logical to prove the following soundness statement for eliminations:

▶ Lemma 21 (Function elimination, preliminary). Let A, B, C be semantic types for A, B, C,
resp. If a ⊥ AΓ and u ⊥ C[B]Γ then E = el10

→(a, u) ∈ (A → B)Γ.

However, such a lemma is not strong enough to justify the implication elimination rule, as
from f ⊥ (A → B)Γ and E ∈ (A → B)Γ we only get f · E ∈ SN, but we need the stronger
f · E ∈ CΓ. Thus, we prove the following stronger lemma.

▶ Lemma 22 (Function elimination, revisited). Let A, B, C be semantic types for A, B, C, resp.
If a ⊥ AΓ and u ⊥ C[B]Γ and E = el10

→(a, u) and E⃗ ∈ CΓ then E · E⃗ ∈ (A → B)Γ.

Proof. Let XΓ = {E · E⃗ | E = el10
→(a, u) for some a ⊥ AΓ and u ⊥ C[B]Γ, and E⃗ ∈ CΓ}. To

show X ⊆ A → B, by coinduction it is sufficient that X is a post-fixpoint of F⊥. So assume
E · E⃗ ∈ X and I ∈ F(X ) and show v := I · E · E⃗ ∈ SN by Lemma 15. To this end, we have
to show that all ▷β-redexes of v are SN. We distinguish the different introduction forms I.

Case I = in00
→(t, u′) with t ⊥ X [A]Γ and u′ ⊥ X [B]Γ. We have t[a] ⊥ XΓ by assumption

on t and E · E⃗ ∈ XΓ, thus, t[a] · E · E⃗ ∈ SN.
Case I = in11

→(a, b) with a ⊥ AΓ and b ⊥ BΓ. We have u[b] ⊥ CΓ and E⃗ ∈ CΓ, thus
u[b] · E⃗ ∈ SN.

Case I = in01
→(t, b). In this case we have two weak head β-redexes which we handle as in

the previous cases. ◀

Plugging these lemmata into the framework of Section 3, we obtain a new proof of βπ-SN
for ITTND.

7 Conclusion

We have successfully applied Girard’s method, in its original form, to prove β-SN of ITTND,
and the orthogonality method to prove βπ-SN. The applicability of established methods is
reassuring that ITTND does not offer a new form of computation asking for new theoretical
justifications.

Our proof using orthogonality places rather high demands on the meta-theory: non-
strictly positive coinductive definitions. Neither Coq nor Agda directly support those; in Coq,
though, we can always fall back to impredicativity to construct the necessary fixed-point in
the lattice of term or spine sets ordered by inclusion. In Martin-Löf Type Theory (MLTT)
[24], the basis of Agda, such backups do not exist. This begs the question whether non-strictly
positive (co)inductive types could be added in some form to MLTT without jeopardizing its
soundness.
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In the appendix (Appendix A), we investigate how the SN-method of Joachimski and
Matthes [21, 26] can be applied to ITTND to prove βπ-SN without the need for impredicativity
nor non-strict positivity nor CPS-translation. Whether even an arithmetical proof à la David
and Nour [9, 10] works for unoptimized ITTND is unclear, since already the introduction
rules for implication are recursive and thus make implication semantically an inductive type.

A further question is the computational content of the normalization arguments presented
here. The double negation on the meta level employed in the biorthogonals superficially
resembles the CPS translation by Geuvers, van der Giessen, and Hurkens [16], and perhaps
the latter can be extracted from our normalization proof.

Finally, the classical version of TTND has been little explored so far. It is unclear whether
it has a computational interpretation that enjoys the strong normalization property.
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A Saturated Sets

In this appendix, we show how to adapt the original saturated sets method to IITND, first
just for β-SN, then including π-reductions.

A.1 Saturated Sets for Computation Reductions
In the following, we adapt Tait’s method of saturated sets to show β-SN for ITTND. This is
a variation of the proof by Geuvers and Hurkens [14].

We first observe that the set SN contains a weak-head redex already when (1) all of its
reducts are SN and (2) its lost terms are SN, where a lost term is a subterm that could
get dropped by all of the weak-head reductions. This fact is made precise by the following
lemma:

▶ Lemma 23. The following implications, written as rules, are valid closure properties of
SN:

t1[a] · el10
→(a, u) · E⃗ ∈ SN t2 ∈ SN

in00
→(t1, t2) · el10

→(a, u) · E⃗ ∈ SN

t[a] · el10
→(a, u) · E⃗ ∈ SN u[b] · E⃗ ∈ SN b ∈ SN

in01
→(t, b) · el10

→(a, u) · E⃗ ∈ SN
u[b] · E⃗ ∈ SN a1, a2, b ∈ SN
in11

→(a1, b) · el10
→(a2, u) · E⃗ ∈ SN

(Spine E⃗ may be empty in all cases.)

Proof. Each of these implications is proven by induction on the premises, establishing that
the possible reducts of the term in the conclusion are SN. The weak-head reduct(s) are
covered by the premises in each case. Reductions in lost terms are covered by the extra SN
hypotheses. Reductions in preserved terms are covered by the main SN hypotheses. (This
includes reductions in the spine E⃗.)

For example, consider the case for in00
→: By induction on t1[a] · el10

→(a, u) · E⃗ ∈ SN and
t2 ∈ SN show t′ ∈ SN given in00

→(t1, t2) · el10
→(a, u) · E⃗ −→ t′.

Case t′ = t1[a] · el10
→(a, u) · E⃗. Then t′ ∈ SN by assumption.

Case t′ = in00
→(t1, t′

2) · el10
→(a, u) · E⃗ where t2 −→ t′

2. Then t′ ∈ SN by induction hypothesis
t′
2 ∈ SN.

Case t′ = in00
→(t′

1, t2)·el10
→(a′, u′)·E⃗′ where (t1, a, u, E⃗) −→ (t′

1, a′, u′, E⃗′) (a single reduction
in one of these subterms). Then t1[a] · el10

→(a, u) · E⃗ −→+ t′
1[a′] · el10

→(a′, u′) · E⃗′ (several
steps possible, e.g., if reduction was in a and t1 mentions the 0th de Bruijn index). Thus,
t′ ∈ SN by induction hypothesis on t′

1[a′] · el10
→(a′, u′) · E⃗′ ∈ SN. ◀

Mimicking Lemma 23, the saturation A of a term set is—in the case of the implicational
fragment of ITTND— defined inductively as follows:

t ∈ AΓ

t ∈ AΓ

t1[a] · el10
→(a, u) · E⃗ ∈ AΓ t2 ∈ SN

in00
→(t1, t2) · el10

→(a, u) · E⃗ ∈ AΓ

t[a] · el10
→(a, u) · E⃗ ∈ AΓ u[b] · E⃗ ∈ AΓ b ∈ SN

in01
→(t, b) · el10

→(a, u) · E⃗ ∈ AΓ

u[b] · E⃗ ∈ AΓ a1, a2, b ∈ SN
in11

→(a1, b) · el10
→(a2, u) · E⃗ ∈ AΓ

▶ Lemma 24. SN ⊆ SN.

TYPES 2020
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Proof. We show t ∈ SN by induction on t ∈ SN, using Lemma 23. ◀

▶ Corollary 25. If A ⊆ SN then A ⊆ SN.

Proof. Since closure is a monotone operator, we have A ⊆ SN ⊆ SN by Lemma 24. ◀

A saturated set A ∈ SAT must fulfill the following three properties:
SAT1 A ⊆ SN (contains only SN terms).
SAT2 If E⃗ ∈ SN then x · E⃗ ∈ A (contains SN neutrals).
SAT3 A ⊆ A (closed under SN weak-head expansion).

Semantic implication can now be defined as:

f ∈ (A → B)Γ ⇐⇒ f ∈ SN and ∀C ∈ SAT, τ : ∆ ≤ Γ, a ∈ A∆, t ∈ C[B]∆. fτ ·el10
→(a, t) ∈ C∆.

▶ Lemma 26 (Function space on SAT). If A ⊆ SN and B ∈ SAT, then A → B ∈ SAT.

Proof. SAT1 holds by definition. SAT2 holds by SAT2 of B. SAT3 holds by SAT3 of B. ◀

The introductions rules for implication are indeed modeled for the SAT variant of semantic
function space. For instance, in01

→:

▶ Lemma 27 (Introduction (in01
→)). If t ∈ (A → B)[A]Γ and b ∈ BΓ then in01

→(t, b) ∈ (A →
B)Γ.

Proof. Assume C ∈ SAT and τ : ∆ ≤ Γ and a ∈ A∆ and u ∈ C[B]∆ and show in01
→(t, b)τ ·

el10
→(a, u) ∈ C∆. Using SAT3 on C, it is sufficient to show that (1) t(τ.a) · el10

→(a, u) ∈ C∆ and
(2) u[bτ ] ∈ C∆ and (3) bτ ∈ SN. Subgoals (2) and (3) follow since bτ ∈ B∆, and (1) holds
since t(τ.a) ∈ (A → B)∆. ◀

A.2 On Permutation Reductions
Ralph Matthes’ [26] formulation of saturated sets in the context of π-reductions can also be
adapted to ITTND.

First, we observe that Lemma 23 still holds if π-reductions are taken into account. This
is because any reduction in the spine of a conclusion can be simulated in the spine of at least
one of the premises.

Thus, SAT3 can remain in place, only SAT2 needs to be reformulated, since a neutral x ·E⃗
can be subject to a β-reduction after a π-reduction in E⃗ has created a new β-redex. Towards
a reformulation of SAT2, we observe the following closure properties of SN by neutral terms:

▶ Lemma 28 (Neutral closure of SN). The following implications, written as rules, are valid
closure properties of SN:

x ∈ SN
a ∈ SN u ∈ SN
x · el10

→(a, u) ∈ SN
x · E1{E2} · E⃗ ∈ SN E2 · E⃗ ∈ SN

x · E1 · E2 · E⃗ ∈ SN

The extra assumption E2 · E⃗ ∈ SN in the third implication is equivalent to y · E2 · E⃗ ∈ SN
for some variable y. In the implicational fragment, this assumption is redundant since the
composition el10

→(a, u){E2} = el10
→(a, u · E2↑) does not lose E2. In particular, any reduction in

E2 · E⃗ can be replayed in x · E1{E2} · E⃗. However, in general there can be eliminations with
only positive premises, such as el1¬(a) for negation, where composition el1¬(a){E2} = el1¬(a)
simply drops E2. This means that reductions in part E2 · E⃗ of x ·E1 ·E2 · E⃗ cannot necessarily
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be simulated in x · E1{E2} · E⃗. In particular, a reduction E2 · E3 −→π E2{E3} could lead to
new β-redexes which have no correspondence in E1{E2} · E3.

Mimicking Lemma 28, we extend the definition of saturation C of a semantic type C for
C by the following three clauses:

var x : Γ ⊢ C

x ∈ CΓ
el x : Γ ⊢ A → B a ∈ SN(Γ ⊢ A) u ∈ CΓ.B

x · el10
→(a, u) ∈ CΓ

pi

x : Γ ⊢ A E1 : Γ | A ⊢ B x · E1{E2} · E⃗ ∈ CΓ

τ : ∆ ≤ Γ y : ∆ ⊢ B y · (E2 · E⃗)τ ∈ C∆

x · E1 · E2 · E⃗ ∈ CΓ

Note that a premise such as y · (E2 · E⃗)τ ∈ SN would be too weak to show that semantic
function space is saturated.

We revise the definition of SAT such that SAT3 uses the extended definition of closure,
obsoleting SAT2.

▶ Lemma 29 (Function space on SAT). If A ⊆ SN and B ∈ SAT, then A → B ∈ SAT.

Proof. We shall focus on the new closure conditions for SAT:
var: Show x ∈ (A → B)Γ. Clearly x ∈ SN. Now assume C ∈ SAT and τ : ∆ ≤ Γ and
a ∈ A∆ and u ∈ C[B]∆ and show xτ · el10

→(a, u) ∈ C∆. By el, it is sufficient that a ∈ SN
and u ∈ C∆.B . By var we have x0 ∈ B∆.B , thus u(↑.x0) = u ∈ C∆.B .
el: Assume x : Γ ⊢ A0 → B0 and a0 ∈ SN(Γ ⊢ A0) and u0 ∈ A → BΓ.B0 and show
x · el10

→(a0, u0) ∈ A → BΓ. First, x · el10
→(a0, u0) ∈ SN.

Further, assume C ∈ SAT and τ : ∆ ≤ Γ and a ∈ A∆ and u ∈ C[B]∆ and show
(x · el10

→(a0, u0))τ · el10
→(a, u) ∈ C∆. Using pi, we first discharge the last subgoal x0 ·

el10
→(a, u)↑ ∈ C∆.(A→B) by el for C with a↑ ∈ A∆.(A→B) and u(⇑ ↑) ∈ C∆.(A→B).B .

It remains to show that xτ · el10
→(a0τ, u0(⇑ τ) · el10

→(a, u)↑) ∈ C∆. Again, we use el for
C. Clearly a0τ ∈ SN, so it remains to show that u0(⇑ τ) · el10

→(a↑, u(⇑ ↑)) ∈ C∆.B0 . Since
u0(⇑ τ) ∈ (A → B)∆.B0 and a↑ ∈ A∆.B0 and u(⇑ ↑) ∈ C[B]∆.B0 , this is the case by
definition of A → B.
pi: The case pi for A → B is shown by pi for C (what C refers to, see the previous
cases). This part is a bit tedious to spell out, but completely uninteresting, since just E⃗

is extended by another el10
→-elimination at the end. ◀

The soundness of the introductions carries over from the previous section (Lemma 27)
since the saturated sets are still closed by weak head expansion.

This concludes the βπ-SN proof for ITTND using saturated sets.
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