On Typed Lambda Definability and Normalization by Evaluation

Andreas Abel¹

¹Department of Computer Science and Engineering Chalmers and Gothenburg University, Sweden

IFIP 1.3 Meeting 2018 Royal Holloway University, London, UK 6 July 2018

Strong Typing

- Typing allows correct instruction selection (compilation).
- Typing prevents basic runtime errors.

```
Well-typed programs don't go wrong.
(Robin Milner, 1978)
```

But there is more...

Free Theorems from Typing

- Reynolds 1974, Wadler 1989: Theorems for free!
 Polymorphic functions preserve all relations.
- Free theorems from linearity:

Theorem

Every function List $A \rightarrow \text{List } A$ is a permutation. (For an abstract type A.)

- Free theorems proven by logical relations.
- What about free theorems from simple typing?

Theorem

In STLC with the only constants true, false: Bool, boolean negation is not definable.

STLC-Definability

- Given a function f of some type, is it definable in STLC?
 (Replace simply-typed lambda calculus (STLC) by your favorite type theory.)
- Extended question: Can we decide whether f is STLC-definable?
- Trivial answer to original question:

```
f STLC-definable \iff \exists t. (|t|) = f
```

 Modified question: Can we characterize the STLC-definable functions without referencing STLC-syntax?

A Universe of Types

To talk about typed functions, we need a language of types.

```
\iota : Base base type S, T, U : Ty ::= \iota \mid U \Rightarrow T simple type hierarchy
```

• Interpretation (\bot) : Ty \rightarrow Set.

```
 \begin{array}{lll} (|\iota|) & = & \textit{parameter} \\ (|U \Rightarrow T|) & = & (|U|) \rightarrow (|T|) & \text{full (meta-theoretic) function space} \end{array}
```

• Constants $c : T_c$ need to satisfy $(c) : (T_c)$.

Contexts

Types of argument lists (contexts).

```
\Gamma, \Delta : Cxt ::= \emptyset empty context \Gamma.U context extension
```

• Interpretation (): $Cxt \rightarrow Set$.

```
(\emptyset) = 1 unit set (\Gamma.U) = (\Gamma) \times (U) cartesian product
```

Contexts as Worlds

• Context thinning $\Gamma \rightarrow \Delta$.

$$\frac{\tau : \Gamma \twoheadrightarrow \Delta}{\operatorname{id}_{\Gamma} : \Gamma \twoheadrightarrow \Gamma} \qquad \frac{\tau : \Gamma \twoheadrightarrow \Delta}{\operatorname{weak}_{U} \, \tau : \Gamma . U \twoheadrightarrow \Delta} \qquad \frac{\tau : \Gamma \twoheadrightarrow \Delta}{\operatorname{lift}_{U} \, \tau : \Gamma . U \twoheadrightarrow \Delta . U}$$

- Makes the category of contexts and order-preserving embeddings.
- Interpretation $(\bot) : (\Gamma \to \Delta) \to (\Gamma) \to (\Delta)$ as sublist projection.

```
\begin{array}{llll} (\operatorname{id}_{\Gamma}) & = & \operatorname{id}_{(\Gamma)} & : & (\Gamma) \to (\Gamma) \\ (\operatorname{weak}_U \tau) & = & (\tau) \circ \pi_1 & : & (\Gamma.U) \to (\Delta) \\ (\operatorname{lift}_U \tau) & = & (\tau) \times \operatorname{id}_{(U)} & : & (\Gamma.U) \to (\Delta.U) \end{array}
```

Kripke predicates in the world of contexts

- Predicate $f \in [\![T]\!]_{\Gamma}$ on $f : (\![\Gamma]\!] \to (\![T]\!]$ needs to satisfy
 - $\textbf{ (Monotonicity:) If } f \in \llbracket T \rrbracket_{\Gamma} \text{ and } \tau : \Delta \twoheadrightarrow \Gamma \text{ then } f \circ (\![\tau]\!] \in \llbracket T \rrbracket_{\Delta}.$
 - ② (Kripke function space:) $f \in \llbracket U \to T \rrbracket_{\Gamma}$ iff $f \stackrel{\tau}{\cdot} d \in \llbracket T \rrbracket_{\Delta}$ for all $\tau : \Delta \twoheadrightarrow \Gamma$ and $d \in \llbracket U \rrbracket_{\Delta}$. Herein: $(f \stackrel{\tau}{\cdot} d) \delta = f(f \mid T) \delta (d \mid \delta)$.
 - **3** $(c) \in [T_c]_{\emptyset}$ for all constants c.
- Base case $[\![\iota]\!]_{\Gamma}$ is parameter (must be monotone!).

Theorem

A function $f: (\Gamma) \to (T)$ is STLC-definable iff it satisfies all Kripke predicates, i.e., $f \in [\![T]\!]_{\Gamma}$ no matter how $[\![\iota]\!]$ is chosen.

```
⇒ If t: (\Gamma \vdash T) then (t) \in [T]_{\Gamma} (fundamental theorem of LR).

\Leftarrow \Sigma t: (\Gamma \vdash T). (t) = f is a Kripke predicate f \in [T]_{\Gamma} (term model).
```

Application: Refuting STLC-definability

Theorem

Boolean negation is not definable in STLC equipped with true, false: Bool.

- ullet Proof 1: Look at possible normal forms of type Bool o Bool.
- Proof 2: Construct a Kripke countermodel.
 - Let $f \in [Bool]_{\Gamma}$ iff f is constant true/false or a projection from (Γ) .
 - This is a Kripke model for STLC with true, false : Bool.
 - Negation is neither constant nor a projection.
- By the connection between STLC-definability and normalization, these two proofs are somewhat "the same".

Theorem (Peirce not inhabited)

There is not closed STLC-term of type $((A \Rightarrow B) \Rightarrow A) \Rightarrow A$ for some types A, B.

Proof: Exercise!

Syntax and Interpretation of STLC

• Variables: index x : Var Γ T into the context.

$$\frac{\mathsf{v}_i : \mathsf{Var}\; \Gamma. T\; T}{\mathsf{v}_0 : \mathsf{Var}\; \Gamma. T\; T} \qquad \frac{\mathsf{v}_i : \mathsf{Var}\; \Gamma\; T}{\mathsf{v}_{i+1} : \mathsf{Var}\; \Gamma. U\; T}$$

• Interpretation (1): Var Γ $T \to (\Gamma) \to (T)$ as projections.

• Terms $t : \Gamma \vdash T$.

$$\frac{x: \operatorname{Var} \Gamma \ T}{x: \Gamma \vdash T} \qquad \frac{t: \Gamma.U \vdash T}{\lambda t: \Gamma \vdash U \Rightarrow T} \qquad \frac{t: \Gamma \vdash U \Rightarrow T \quad u: \Gamma \vdash U}{t u: \Gamma \vdash T}$$

• Interpretation (\bot) : ($\Gamma \vdash T$) \rightarrow (Γ) \rightarrow (T).

$$\begin{array}{lll} (\!\! | \lambda t |\!\!) &=& \operatorname{curry} (\!\! | t |\!\!) & \operatorname{curry} f (\gamma, d) = f \gamma d \\ (\!\! | t u |\!\!) &=& \operatorname{S} (\!\! | t |\!\!) (\!\! | u |\!\!) & \operatorname{S} f g \gamma &=& f \gamma (\!\! | g \gamma) \\ \end{array}$$

Fundamental theorem

• Extension to environments: $\rho \in \llbracket \Gamma \rrbracket_{\Delta}$ for $\rho : (\![\Delta]\!]) \to (\![\Gamma]\!]$.

$$\begin{array}{lll} \rho \in \llbracket \emptyset \rrbracket_\Delta & \Longleftrightarrow & \mathsf{true} \\ \rho \in \llbracket \Gamma.U \rrbracket_\Delta & \Longleftrightarrow & \pi_1 \circ \rho \in \llbracket \Gamma \rrbracket_\Delta \; \mathsf{and} \; \pi_2 \circ \rho \in \llbracket U \rrbracket_\Delta \end{array}$$

Monotonicity: If $\rho \in \llbracket \Gamma \rrbracket_{\Delta}$ and $\tau : \Delta' \twoheadrightarrow \Delta$ then $\rho \circ (\![\tau]\!] \in \llbracket \Gamma \rrbracket_{\Delta'}$.

Theorem (Fundamental theorem of logical relations)

If
$$t: (\Gamma \vdash T)$$
 and $\rho \in \llbracket \Gamma \rrbracket_{\Delta}$ then $(t) \circ \rho \in \llbracket T \rrbracket_{\Delta}$.

- Prove this first for x : Var Γ T (easy).
- Then prove by induction on $t : \Gamma \vdash T$.
- Case $\lambda t : \Gamma \vdash U \Rightarrow T$: Show curry $(t) \circ \rho \in [\![U \Rightarrow T]\!]_{\Delta}$. (Needs monotonicity!)
- Case $t u : \Gamma \vdash T$: Show $(S (t) (u)) \circ \rho \in [T]_{\Delta}$.

Term model

• Define $f \in \llbracket \iota \rrbracket_{\Gamma}$ as $\Sigma t : (\Gamma \vdash \iota)$. (t) = f.

Theorem (Reflect/reify)

- **1** If $t : \Gamma \vdash T$ then $(t) \in [\![T]\!]_{\Gamma}$ (reflect).
- 2 If $f \in [T]_{\Gamma}$ then (t) = f for some $t : \Gamma \vdash T$ (reify).
 - Prove simulateneously by induction on T.
 - Discovery: does not introduce β -redexes!

Normal forms

• Define simultaneously $t : Ne \Gamma T$ (neutral) and $t : Nf \Gamma T$ (normal).

$$\frac{x : \text{Var } \Gamma \ T}{x : \text{Ne } \Gamma \ T} \qquad \frac{t : \text{Ne } \Gamma \ (U \Rightarrow T) \qquad u : \text{Nf } \Gamma \ U}{t \ u : \text{Ne } \Gamma \ T}$$

$$\frac{t : \text{Ne } \Gamma \ T}{t : \text{Nf } \Gamma \ T} \qquad \frac{t : \text{Nf } \Gamma . U \ T}{\lambda t : \text{Nf } \Gamma \ (U \Rightarrow T)}$$

• Define $f \in \llbracket \iota \rrbracket_{\Gamma}$ as $\Sigma(t : \text{Ne } \Gamma \iota)$. (t) = f.

Theorem (Reflect/reify)

- If $t : \text{Ne } \Gamma \ T \ \text{then } (|t|) \in [\![T]\!]_{\Gamma} \ \text{(reflect)}.$
- 2 If $f \in [T]_{\Gamma}$ then (t) = f for some $t : Nf \Gamma T$ (reify).

Normalization by Evaluation

- Show $id_{(\Gamma)} \in \llbracket \Gamma \rrbracket_{\Gamma}$ (reflection!).
- Assume $t : \Gamma \vdash T$.
- By the fundamental theorem, $(t) \circ id : [T]_{\Gamma}$.
- By reification, (t) = (v) for some $v : Nf \Gamma T$.

Conclusions

- Proof-relevant version of completeness proof of IPL.
- Implemented in Agda with a tiny bit of --rewriting. https://github.com/andreasabel/lambda-definability/ tree/master/src-stlc
- Extension to sum types:
 - Use Beth models to incorporate case trees.
 - Need lots of --rewriting.
- Aspired future work: Extension to dependent types.

Related Work

- A. (habil. 2013): "Type-assignment NbE" for dependent and polymorphic types.
- What I presented here are classic results:
 - Friedman / Plotkin (1970s/80s): Logical relations.
 - ullet Catarina Coquand (1993): NbE for STLC σ using Kripke model
 - Jung, Tiuryn (TLCA 1993): More or less this formulation.
- Fiore, Simpson (TLCA 1999); Altenkirch, Dybjer, Hofmann, Scott (LICS 2001): Extension to disjoint sum types.
- Altenkirch Kaposi 2016: Extension to ∏-types.