
Programming and Reasoning with Infinite Structures
Using Copatterns and Sized Types

Andreas Abel

Department of Computer Science and Engineering
Chalmers and Gothenburg University, Sweden

7. Arbeitstagung Programmiersprachen
Kiel, Deutschland
26. Februar 2014

This is joint work with Brigitte Pientka.

Abel (Chalmers) Coinduction Via Copatterns ATPS’14 1 / 19

Introduction

Agda

Purely functional programming language (Haskell family)
with dependent types

Types may mention values and programs

Propositions-as-types: Types can include specifications

Proofs-as-programs: Properties can be proven by terminating
functions

Agda 2 developed since 2006 (mostly at Chalmers)

Formalization of algorithms, logics, lambda-caculus, function reactive
programming etc.

Abel (Chalmers) Coinduction Via Copatterns ATPS’14 2 / 19

Introduction

Productivity Checking

Coinductive structures: streams, processes, servers, continuous
computation. . .

Productivity: each request returns an answer after some time.

Request on stream: give me the next element.

Dependently typed languages have a productivity checker:

nats = 0 :: map (1 +) nats

Rejected by Coq and Agda’s syntactic guardedness check.

Abel (Chalmers) Coinduction Via Copatterns ATPS’14 3 / 19

Introduction

Fibonacci Stream

Recurrence for Fibonacci numbers:

adds

0 1 1 2 3 5 8 . . .
0 1 1 2 3 5 8 13 . . .

0 1 1 2 3 5 8 13 21 . . .

Elegant implementation:

fib = 0 :: 1 :: adds fib (fib.tail)

Rejected by guardedness check.

Abel (Chalmers) Coinduction Via Copatterns ATPS’14 4 / 19

Introduction

Coinduction and Dependent Types

Consider the corecursively defined stream a :: a :: a :: . . .

repeat a = a :: repeat a

A dilemma:

Checking dependent types needs strong reduction.
Corecursion needs lazy evaluation.

The current compromise (Coq, Agda):

Corecursive definitions are unfolded only under elimination.

repeat a 6−→
(repeat a).tail −→ (a :: repeat a).tail −→ repeat a

Reduction is context-sensitive.

Abel (Chalmers) Coinduction Via Copatterns ATPS’14 5 / 19

Introduction

Issues with Context-Sensitive Reduction

Subject reduction is lost (Giménez 1996, Oury 2008).

The Fibonacci stream is still diverging:

fib = 0 :: 1 :: adds fib (fib.tail)

fib.tail −→ 1 :: adds fib (fib.tail)
−→ 1 :: adds fib (1 :: adds fib (fib.tail))
−→ . . .

At POPL 2013, we presented a solution:

A. Abel, B. Pientka, D. Thibodeau, and A. Setzer.
Copatterns: Programming infinite structures by observations.
In POPL’13, pages 27–38. ACM, 2013.

Abel (Chalmers) Coinduction Via Copatterns ATPS’14 6 / 19

Copatterns

Copatterns — The Principle

Define infinite objects (streams, functions) by observations.

A function is defined by its applications.

A stream by its head and tail.

repeat a .head = a
repeat a .tail = repeat a

These equations are taken as reduction rules.

repeat a does not reduce by itself.

No extra laziness required.

Abel (Chalmers) Coinduction Via Copatterns ATPS’14 7 / 19

Copatterns

Deep Observations

Any covering set of observations allowed for definition:

fib.head = 0
fib.tail.head = 1
fib.tail.tail = adds fib (fib.tail)

Now fib.tail is stuck. Good!

Depth 0 1 2 . . .

Observations id .head .tail.head . . .
.tail .tail.tail . . .

Abel (Chalmers) Coinduction Via Copatterns ATPS’14 8 / 19

Productivity

Stream Productivity

Definition (Productive Stream)

A stream is productive if all observations on it converge.

Example of non-productiveness:

bla = 0 :: bla.tail

Observation bla.tail diverges.

This is apparent in copattern style...

bla .head = 0
bla .tail = bla .tail

Abel (Chalmers) Coinduction Via Copatterns ATPS’14 9 / 19

Productivity

Proving Productivity

Theorem (repeat is productive)

repeat a .tailn converges for all n ≥ 0.

Proof.

By induction on n.

Base (repeat a).tail0 = repeat a does not reduce.

Step (repeat a).tailn+1 = (repeat a).tail.tailn −→ (repeat a).tailn which
converges by induction hypothesis.

Abel (Chalmers) Coinduction Via Copatterns ATPS’14 10 / 19

Productivity

Productive Functions

Definition (Productive Function)

A function on streams is productive if it maps productive streams to
productive streams.

(adds s t).head = s.head + t.head
(adds s t).tail = adds (s.tail) (t.tail)

Productivity of adds not sufficient for fib!

Malicious adds:

adds′ s t = t.tail
fib.tail.tail −→ adds′ fib (fib.tail)

−→ fib.tail.tail −→ . . .

Abel (Chalmers) Coinduction Via Copatterns ATPS’14 11 / 19

Productivity

i -Productivity

Definition (Productive Stream)

A stream s is i-productive if all observations of depth < i converge.
Notation: s : Streami .

Lemma

adds : Streami → Streami → Streami for all i .

Theorem

fib is i -productive for all i .

Proof, case i + 2: Show fib is (i + 2)-productive.

Show fib.tail.tail is i-productive.
IH: fib is (i + 1)-productive, so fib is i-productive. (Subtyping!)
IH: fib is (i + 1)-productive, so fib.tail is i-productive.
By Lemma, adds fib (fib.tail) is i-productive.

Abel (Chalmers) Coinduction Via Copatterns ATPS’14 12 / 19

Type System

Type System for Productivity

“Church Fω with inflationary and deflationary fixed-point types”.

Coinductive types = deflationary iteration:

StreamiA =
⋂
j<i

(A× StreamjA)

Bidirectional type-checking:

Type inference Γ ` r ⇒ A and checking Γ ` t ⇔ A .

Γ ` r ⇒ StreamiA

Γ ` r .tail ⇒ ∀j<i .StreamjA Γ ` a < i

Γ ` r .tail a : StreamaA

Abel (Chalmers) Coinduction Via Copatterns ATPS’14 13 / 19

Type System

Conclusions

A unified approach to termination and productivity: Induction.

Recursion as induction on data size.
Corecursion as induction on observation depth.

Adaption of sized types to deep (co)patterns:

Shift to in-/deflationary fixed-point types.
Bounded size quantification.

Implementations:

MiniAgda: ready to play with!
Agda (with James Chapman): in development version, planned for next
release (2.3.4).

Andreas Abel and Brigitte Pientka.
Wellfounded recursion with copatterns:
A unified approach to termination and productivity.
International Conference on Functional Programming (ICFP 2013).

Abel (Chalmers) Coinduction Via Copatterns ATPS’14 14 / 19

Type System

Some Related Work

Sized types: many authors (1996–)

Inflationary fixed-points: Dam & Sprenger (2003)

Observation-centric coinduction and coalgebras: Hagino (1987),
Cockett & Fukushima (Charity, 1992)

Focusing sequent calculus: Zeilberger & Licata & Harper (2008)

Form of termination measures taken from Xi (2002)

Abel (Chalmers) Coinduction Via Copatterns ATPS’14 15 / 19

Type System

Copattern typing

Fibonacci again (official syntax with explicit sizes).

fib : ∀i . |i | ⇒ StreamiN
fib i .head j = 0
fib i .tail j .head k = 1
fib i .tail j .tail k = adds k (fib k) (fib j .tail k)

Copattern inference ∆ | A ` ~q ⇒ C (linear).

· | StreamkN ` · ⇒ StreamkN
k<j | ∀k<j . StreamkN ` k ⇒ StreamkN
k<j | StreamjN ` .tail k ⇒ StreamkN

j<i , k<j | ∀j<i . StreamjN ` j .tail k ⇒ StreamkN
j<i , k<j | StreamiN ` .tail j .tail k ⇒ StreamkN

Type of recursive call fib : ∀i ′<i . Streami ′N
Abel (Chalmers) Coinduction Via Copatterns ATPS’14 16 / 19

Type System

Pattern typing rules

∆; Γ `∆0 p ⇔ A Pattern typing (linear).

In: ∆0, p,A with ∆0 ` A. Out: ∆, Γ with ∆0,∆; Γ ` p ⇔ A.

·; x :A `∆0 x ⇔ A ·; · `∆0 () ⇔ 1

∆1; Γ1 `∆0 p1 ⇔ A1 ∆2; Γ2 `∆0 p2 ⇔ A2

∆1,∆2; Γ1, Γ2 `∆0 (p1, p2) ⇔ A1 × A2

∆; Γ `∆0 p ⇔ ∃j<a↑. Sc (µjS)

∆; Γ `∆0 c p ⇔ µaS

∆; Γ `∆0,X :κ p ⇔ F @κ X

X :κ,∆; Γ `∆0
Xp ⇔ ∃κF

Abel (Chalmers) Coinduction Via Copatterns ATPS’14 17 / 19

Type System

Copattern typing rules

∆; Γ | A `∆0
~q ⇒ C Pattern spine typing. In: ∆0,A, ~q with ∆0 ` A.

Out: ∆, Γ,C with ∆0,∆; Γ ` C and ∆0,∆; Γ, z :A ` z ~q ⇒ C .

·; · | A `∆0 ·⇒ A

∆1; Γ1 `∆0 p ⇔ A ∆2; Γ2 | B `∆0
~q ⇒ C

∆1,∆2; Γ1, Γ2 | A→ B `∆0 p ~q ⇒ C

∆; Γ | ∀j<a↑.Rd (ν jR) `∆0
~q ⇒ C

∆; Γ | νaR `∆0 .d ~q ⇒ C

∆; Γ | F @κ X `∆0,X :κ ~q ⇒ C

X :κ,∆; Γ | ∀κF `∆0 X ~q ⇒ C

Abel (Chalmers) Coinduction Via Copatterns ATPS’14 18 / 19

Type System

Semantics

Reduction:

~e / ~q ↘ σ

λ{~q → t}~e ~e ′ 7→ tσ~e ′
λDk ~e 7→ t

f ~e 7→ t
(f :A = ~D) ∈ Σ

Types are reducibility candidates A:

A is a set of strongly normalizing terms.
A is closed under reduction.
A is closed under addition of well-behaved neutrals (redexes and
terminally stuck terms).
A is closed under simulation:
r is simulated by r1..n if r ~e 7→ t implies rk ~e 7→ t for some k.

Abel (Chalmers) Coinduction Via Copatterns ATPS’14 19 / 19

	Introduction
	Copatterns
	Productivity
	Type System

