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Introduction

Introduction

@ Given a function f of some type, is it definable in STLC?
(Replace simply-typed lambda calculus (STLC) by your favorite type

theory.)
o Extended question: Can we decide whether f is STLC-definable?

@ Trivial answer to original question:

f STLC-definable < 3t. (t) =f

@ Modified question: Can we characterize the STLC-definable functions
without referencing STLC-syntax?
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A Universe of Types

@ To talk about typed functions, we need a language of types.

L . Base base type
S,T,U : Ty == | U= T simple type hierarchy

o Interpretation () : Ty — Set.

(¢) = parameter
(U=T) = (U)—(T) full (meta-theoretic) function space

@ Our type language is parametrized by Base types and their
interpretation.
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Introduction

Contexts

@ Types of argument lists (contexts).

A : Cxt == 0 empty context
| .U context extension

@ Interpretation () : Cxt — Set.

(0) =1 unit set
(r.U) = () x(U) cartesian product
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Introduction

Contexts as Worlds

o Context thinning [ < A.

@ For the sake of consistency with (record) subtyping (and to confuse
the audience) | consider longer contexts as smaller.

T: T <A T: <A
dr: T <Tr weakyT: .U <A lifty7:T.U <A.U

o Makes the category of contexts and order-preserving embeddings.

@ Interpretation () : I < A — () — (A] as sublist projection.

(idr) = idyn) c (M) — (1)
(weaky ) = (1) om s (r.uU) — (A)
(lifty7) = (7) xidgyy = (I.U) — (A.U)
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Introduction

Kripke predicates in the world of contexts

o We define predicate f € [T] on f : (I[') = (T) such that
@ (Monotonicity:) If f € [T] and 7: A <T then fo () € [T]A-
@ (Kripke function space:) f € [U — T] iff f - d € [T], for all
7:A<T and d e [U],.

Herein: (f ° d)d = f ((7) 6) (dd).

@ Base case [.] is parameter (must be monotone!).

Theorem

A function f : ([) — (T| is STLC-definable iff it satisfies all Kripke
predicates, i.e., f € [T] no matter how [.] is chosen.

= If t: (TF T) then (t) € [T]; (fundamental theorem of LR).
< Xt: (I = T).(t) = fis a Kripke predicate f € [T] (term model).
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Application: Refuting STLC-definability

Theorem
Boolean negation is not definable in STLC equipped with true, false : Bool.

@ Proof 1: Look at possible normal forms of type Bool — Bool.
@ Proof 2: Construct a Kripke countermodel.

o Let f € [[Bool] iff f is constant true/false or a projection from ().
e This is a Kripke model for STLC with true, false : Bool.
o Negation is neither constant nor a projection.

@ By the connection between STLC-definability and normalization,
these two proofs are somewhat “the same”.

Theorem (Peirce not inhabited)

There is not closed STLC-term of type ((A = B) = A) = A for some
types A, B.

Proof: Exercise!
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Syntax and Interpretation of STLC
@ Variables: index x : Var [ T into the context.
vi:Var T
vo:Varl.T T vip1:VarT.U T
@ Interpretation () : Var [ T — () — (T) as projections.

(vo) = m
(Vit1) = (vijem
o Terms t: [ F T.
x:Var T t:T'UFRT t:TFU=T u:T U
x: =T AM:THU=T tu:T T

@ Interpretation () : (T = T) — () — (7).

(\t) = curry (t) curry f (y,d) = f~yd
(tu) = S(t) (u) Sfegn =fv(g7)
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Fundamental theorem

e Extension to environments: p € [, for p: (A) — (I).

p € [0]A < true
pelUlp, <= mope[l]pandmopelU]a

Monotonicity: If p € [[]5 and 7: A" < A then po (7)) € [/

Theorem (Fundamental theorem of logical relations)
Ift:(T'ET)andpe[l, then (t)op e [T]A- J

@ Prove this first for x : Var [ T (easy).
@ Then prove by inductionon t: I = T.

o Case At : [ = U = T: Show curry(t) o p € [U= T],.
(Needs monotonicity!)

@ Case tu:I F T: Show (S (t) (u))ope[T]x-
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Term model

o Define f € [i]r as Xt : (I F¢). (t) =f.
Theorem (Reflect/reify)

Q I/ft:T =T then (t) € [T] (reflect).
@ Iff €[T] then (t) = f for somet: T = T (reify).

@ Prove simulateneously by induction on T.

@ Discovery: does not introduce 3-redexes!
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Introduction

Normal forms

o Define simultaneously t : Ne ' T (neutral) and ¢ : Nf ' T (normal).

x:Var[ T t:Nel(U=T) u:NfI"U
x:Nel' T tu:Nel T

t:Nel T t:NFFUT
t:NFFT  A:NF[(U=T)

o Define f € 1] as X(t: Nel ¢). (t) = f.
Theorem (Reflect/reify)

Q /ft:Nel T then (t) € [T] (reflect).
Q Iff €[T] then (t) = f for somet : Nf [ T (reify).
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Introduction

Normalization by Evaluation

o Show idir) € [l (reflection!).

@ Assume t: [ = T.

e By the fundamental theorem, (t|) o id : [T].
e By reification, (t) = (v) for some v : Nf I T.
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Introduction

Conclusions

@ Proof-relevant version of completeness proof of IPL.

@ Implemented in Agda with a tiny bit of --rewriting.
https://github.com/andreasabel/lambda-definability/
tree/master/src-stlc

@ Extension to sum types in progress:

o Need Beth models to represent case trees.
o Need lots of --rewriting.

@ Extension to dependent types: still figuring out stuff.

Related to McBride's Outrageous But Meaningful Coincidences?!
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Related Work

@ None of this is originally by me!
e Friedman / Plotkin: Logical relations.
@ Jung, Tiuryn (TLCA 1993): More or less this formulation.

o Fiore et al. / Altenkirch, Dybjer, Hofmann, Scott: Extension to
disjoint sum types.

@ Altenkirch Kaposi 2016: Extension to [l-types.
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