
Logic and Language, Proposition and Types,
Proofs and Computation

The Particle Physics of Computer Science

Andreas Abel

Department of Computer Science and Engineering
Chalmers and Gothenburg University

Introduction for 1st year students
Lunch Seminar, HC2, Chalmers

21 April 2015

Andreas Abel (GU) Logic, Types, Computation Intro 1st year 1 / 15



Programming Logic

ProgLog group

Professors: Thierry Coquand, Peter Dybjer, Bengt Nordström

Permanent staff: Andreas Abel, Ana Bove, Nils Anders Danielsson,
Ulf Norell

Overall goal: Correctness of programs through logical means

Foundations of programming
Foundations of logics and mathematics

Andreas Abel (GU) Logic, Types, Computation Intro 1st year 2 / 15



Correctness of programs

Example: compiler correctness.

Produced JVM byte code should faithfully represent Java source code.

JAVA: y = x + 5

JVM: iload 1

bipush 5

iadd

istore 2

There are infinitely many possible Java programs; we cannot test the
compiler on all.

Andreas Abel (GU) Logic, Types, Computation Intro 1st year 3 / 15



Compiler correctness

Compiler is a function, inputs Java, outputs JVM.

compile : Java→ JVM

Correctness means that compilation preserves meaning of code.

Meaning of target: behavior of JVM code when run (executed in
bytecode interpreter).

Meaning of source: behavior of Java program when executed in an
interpreter.

∀(p : Java)→ interpret(p) = run(compile(p))

Andreas Abel (GU) Logic, Types, Computation Intro 1st year 4 / 15



Compiler correctness

What is a Java program, mathematically?

A sentence (string) following the Java grammar. [Languages,
grammars, parsing]
Representable as abstract syntax tree. [Data structures, recursion]

What is JVM code, mathematically?

What is the meaning of a Java program? [Interpreter, semantics]

What is the meaning of JVM code? [Machines, execution]

What does “equal behavior” mean? [Relations, models of
computation]

How can we prove something for all Java programs? [Logic, induction]

How can we be sure our proof is correct? [Proof theory,
machine-assisted verification]

Andreas Abel (GU) Logic, Types, Computation Intro 1st year 5 / 15



A simpler example

Say we have a list l of natural numbers.

i 0 1 2 . . . i . . . n − 1

l 2 3 5 . . . lookup l i . . . lookup l (n − 1)
incr l 3 4 6 . . . 1 + lookup l i . . . 1 + lookup l (n − 1)

The following two should be equivalent.
1 Making a copy of the list with each element increased by 1 (incr) and

then taking the ith element (lookup).
2 Taking the ith element (lookup) and increase it by 1 (suc).

∀(l : ListN)(i : N)→ lookup (incr l) i ≡ suc (lookup l i)

Andreas Abel (GU) Logic, Types, Computation Intro 1st year 6 / 15



Modelling our example

Data structures: natural numbers and lists
[choice, composition, recursion]

Functions: traversing a list
[case distinction, recursion]

Logic: proof of universal (∀) statement
[induction = case distinction + recursion]

Andreas Abel (GU) Logic, Types, Computation Intro 1st year 7 / 15



Curry-Howard-Isomorphismus

Proposition ∼= Set
proof ∼= program/data

Discovered in 1950s.

Logic inspires programming language research.

Programming language constructs find logical interpretations.

Andreas Abel (GU) Logic, Types, Computation Intro 1st year 8 / 15



Particles of Computer Science

A logical approach to information and computation.

With quotes from L. & A. Wachowski,
The Matrix Reloaded

Andreas Abel (GU) Logic, Types, Computation Intro 1st year 9 / 15



Causality (Implication)

Merovingian: You see, there is only one constant, one universal,
It is the only real truth: causality.

Action. Reaction.
Cause and effect.

Functions. Transforming input to output.
Implication. Conclusions from premises.

incr : ListN→ ListN

lookup-incr : (l : ListN)(i : N)→ lookup (incr l) i ≡ suc (lookup l i)

(Even(n) ∧ Prime(n))→ n ≡ 2

Andreas Abel (GU) Logic, Types, Computation Intro 1st year 10 / 15



Structure (Conjunction)

Keymaker: The system is based on the rules of a building.
One system built on another.

If one fails, all fail.

Tuples: several things put together.
E.g. the cons of lists, pairing head (1st element) and tail (rest).
Conjunction: 2 is an odd prime number.

(1, 2)
head :: tail
Odd(2) ∧ Prime(2)

Andreas Abel (GU) Logic, Types, Computation Intro 1st year 11 / 15



Choice (Disjunction)

The Oracle: We can never see past the choices we don’t understand.

Morpheus: Everything begins with choice.

Neo: Choice. The problem is choice.

Bits: false or true, zero or successor, empty list or cons.
Each natural number is either even or odd.

bit 0 1
Bool false true
N zero suc
List [] ::

Even(n) ∨ Odd(n)

Andreas Abel (GU) Logic, Types, Computation Intro 1st year 12 / 15



Recursion

Agent Jackson: You.
Smith: Yes me. Me, me, me!

Agent Jackson/Smith: Me too!

Smith: Go ahead, shoot. The best thing about being me—
there’s so many me.

Recursive data types (e.g. lists).
Recursive functions (e.g. incr, lookup).
Recursive proofs (induction, e.g. lookup-incr).

(n : N) :: (l : ListN) : ListN
lookup (n :: l) (suc i) = lookup l i

Andreas Abel (GU) Logic, Types, Computation Intro 1st year 13 / 15



Agda

Haskell-like programming language

Based on the Curry-Howard-Isomorphismus

Agda 2 developed at Chalmers since 2006

Precursors since 1980s (ALF, Half, Alfa, Agda)

Andreas Abel (GU) Logic, Types, Computation Intro 1st year 14 / 15



ProgLog Courses

DAT060 Logic in computer science (Coquand)

Proof calculi, applications of logic

TMV027 Finite automata and formal languages (Bove)

Grammars, parsing

DAT140 Types for proofs and programs (Dybjer)

Programming language theory
Type theory and Agda

TDA183 Models of computation (Nordström)

Lambda calculus, Turing machines
Undecidability

Andreas Abel (GU) Logic, Types, Computation Intro 1st year 15 / 15


