Normalization by Evaluation in the Delay Monad:
An Extended Case Study for Coinduction
Via Copatterns and Sized Types

Andreas Abel'*and James Chapman?!

! Institute of Cybernetics, Tallinn
2 Gothenburg University

Abstract

In this paper, we present an Agda formalization of a normalizer for simply-typed lambda terms and
its accompanying normalization proof. The normalizer consists of two coinductively defined functions
in the delay monad: One is a standard evaluator of lambda terms to closures, the other a type-directed
reifier from values to eta-long beta-normal forms. Their composition, normalization-by-evaluation, is
shown to be a total function a posteriori, using a standard logical-relations argument. This paper builds
on our workshop paper|Abel and Chapman| [2014] which presented only the normalizer and termination
proof. Here we also show soundness and completeness of the normalizer, thus completing the normal-
ization proof. The complete formalization serves as a proof-of-concept for coinductive programming
and reasoning using sized types and copatterns, a new and presently experimental feature of Agda.

1 Introduction

In dependently typed programming languages such as Agda |AgdaTeam| 2014], recursively
defined functions must be structurally recursive. This requirement has the effect of fusing the
program and its termination proof. It is very convenient if the function is naturally structurally
recursive as there is no extra proof effort. However, it is inconvenient when the structure on
which the function is structurally recursive is not visible or its comprehension is beyond the
capabilities of the termination checker. Whilst there is nothing wrong with writing algorithms
that are a priori structurally recursive (indeed, it should be encouraged), we would also like
to support a more step-by-step process of development where the user can write an program
that is not structural and prove termination later. Yet languages based on the Curry-Howard-
Isomorphism, such as Coq [INRIA} [2012] and Agda, forbid definitions that do not denote total
functions, as they can be exploited to prove false theorems. However, rather than writing
a terminating recursive function in the first instance, one can write a productive corecursive
function. A potential recursive function f : A — B that would be rejected by the termination
checker can be written as a corecursive function f : A — Delay B, where the type Delay B
represents values that can arrive after a possibly infinite delay [Caprettal [2005]. Showing
termination amounts to proving that such a delay is in fact only finite: 3b. fa { b. By combining
the corecursive function and its termination proof one gets a terminating recursive function. In
this paper we demonstrate this approach on an canonical normalization-by-evaluation (NBE)
style normalizer for simply typed lambda calculus that is not structurally recursive. Its main
difference from standard NBE is that it uses first-order closures as semantic values.

*Andreas Abel acknowledges support by Vetenskapsradet grant 254820104 given to Thierry Coquand.

fJames Chapman has been supported by the ERDF funded Estonian CoE project EXCS and ICT National
Programme project “Coinduction”, the Estonian Ministry of Research and Education target-financed research
theme no. 0140007512 and the Estonian Science Foundation grant no. 9219.

NBE in the Delay Monad A. Abel and J. Chapman

2 Delay Monad

The type Delay A of possibly non-terminating computations of type A is the greatest fixed-point
of the functor F(X) = A+ X. In Agda, the Delay type can be represented as a mutual definition
of an inductive datatype and a coinductive record. The record ooDelay is a coalgebra and one
interacts with it by using its single observation (copattern) force. Once forced we get an element
of the Delay datatype which we can pattern match on to see if the value is available now or later.
If it is later, then we get an element of eoDelay which we can force again, and so forth. In Agda
syntax, this is expressed as follows:

mutual data Delay (A : Set) : Set where
now : A — Delay A
later : ooDelay A — Delay A

record coDelay (A : Set) : Set where
coinductive
field force : Delay A

We define convergence a? | a as a relation between delayed computations of type Delay A and
values of type A. If a? U a, then the delayed computation a? eventually yields the value a.
This is a central concept in this paper, as we will write a (productive) normalizer that produces
delayed normal forms and then prove that all such delayed normal forms converge to a value,
yielding termination of the normalizer. Notice that convergence is an inductive relation defined
on coinductive data.
data U {A :Set}: (a? : Delay A) (a: A) — Set where
nowd V{a} - nowa Ua
laterll : Y{a} {aco : coDelay A} — force aso I a4 — later a0 U a

3 Normalization

We construct a normalization function nf that takes a well-typed term ¢ and returns a potentially
delayed normal form.

nf: Y{[a}(¢: Tm " a) — Delay (Nf [" a)

The termination proof states that for any term ¢, there exists a normal form n such that the
result of normalization nf¢ converges to n after a finite delay.

normalize : V {I a}(t:TmFa)—)EI/\n—>nftUn

Soundness of the normalizer states that any two terms ¢ and ¢’ that are related in the equational
theory ¢ ~ t' have equal normal forms. The normal form n is obtained as the existential witness
(first projection fst) of a run of the normalization proof normalize t.

sound: VI a{tt:TmI a — t~t — fst (normalize) = fst (normalize t)

The main work in the completeness proof is to conclude that any term ¢ is related in the
equational theory to its normal form.

complete-lemma : V' I' a (t: Tm I" a) — ¢t ~ emb (fst (normalize {))
Having proved soundness and complete-lemma, completeness follows as a corollary.
complete : VI a{tt : Tm I a} — fst (normalize) = fst (normalize ') — t ~ t’

NBE in the Delay Monad A. Abel and J. Chapman

4 Conclusion

Our case study suggests that encoding partial functions via the delay monad is a viable alter-
native to encoding via inductive functional relations even for non-trivial functions such as an
evaluator. In future work, we would like to investigate whether the technique is beneficial in
the daunting task of a formalized semantics of dependent type theory [Chapman| [2009].

References

Andreas Abel and James Chapman. Normalization by evaluation in the delay monad: A case
study for coinduction via copatterns and sized types. In Paul Levy and Neel Krishnaswami,
editors, Proceedings 5th Workshop on Mathematically Structured Functional Programming,
Grenoble, France, 12 April 2014, volume 153 of Electronic Proceedings in Theoretical Com-
puter Science, pages 51-67. Open Publishing Association, 2014.

AgdaTeam. The Agda Wiki, 2014. URL http://wiki.portal.chalmers.se/agda.

Venanzio Capretta. General recursion via coinductive types. Logical Methods in Computer
Science, 1(2), 2005.

James Chapman. Type theory should eat itself. Flectronic Notes in Theoretical Computer
Science, 228:21-36, 2009. Proceedings of the International Workshop on Logical Frameworks
and Metalanguages: Theory and Practice (LEMTP 2008).

INRIA. The Coq Proof Assistant Reference Manual. INRIA, version 8.4 edition, 2012. URL
http://coq.inria.fr/.

http://wiki.portal.chalmers.se/agda
http://coq.inria.fr/

	Introduction
	Delay Monad
	Normalization
	Conclusion

