
Termination Checking: Comparing Structural

Recursion and Sized Types by Examples

David Thibodeau

Decemer 3, 2011

Abstract

Termination is an important property for programs and is necessary
for formal proofs to make sense. In order to make sure that a program
using recursion is terminating, one can use a termination checker that will
use some strategy to verify the termination of a given program. Two very
common strategies are structural recursion that makes an analysis on the
structure of terms and sized types that use size annotation in the types.
In this paper, we compare the two approaches to identify their strengths
and limitations and to see how one can proceed to prove termination using
each of the strategies. This analysis is done on different examples: a series
of functions on the natural numbers and a mergesort algorithm. We also
discuss the use of each of the approaches in the cases of proofs.

1 Introduction

In order to ensure correctness, one needs to check that termination is achieved.
One major, but unfortunate, result of computability theory is that the halt-
ing problem is undecidable. To enforce it, one can restrict its semantics to a
normalizing calculus so that no non-terminating function can be written. As
this approach prohibits the use of recursion, this limits greatly what programs
can be implemented. For most purposes, this is inadequate. Instead, we allow
recursion and pass a termination checker on the program. Such termination
checker will make sure that the recursive calls are made on smaller arguments
with respect to a wellfounded order. There are two main approaches that are
used to implement termination checkers. These two approaches are structural
recursion, which is used by systems such as Twelf [PS02] and Agda [AA02]; and
sized types, used in MiniAgda [Abe10] and ATS [Xi04].

Structural recursion defines an order on the structure of terms. A term
M is usually said to be smaller than a term N if we obtain N by applying
one or more constructors C on M . The ordering appears directly by the use
of pattern matching on the argument. Termination checking on the functions
can be done without having to annotate function with extra information. The

1

ordering is infered from the terms themselves and wellfoundedness is infered
from the constructors.

With sized types, as it is presented in [Abe10], types are annotated with a
size argument that determines an upper bound for term. The size annotation
of a term represents the maximal height of a tree with nodes as constructors of
the term. The size argument is a natural number or an ordinal since the height
of the tree can be transfinite. The use of subtyping allows the use of different
upper bounds for a term. Then, there is quantification over size variable in the
type of a function definition and size arguments are passed through recursive
calls, making sure each time that they get smaller. It is also possible to define
size variables satisfying constraints such as defining a variable j such that j < i
for some predefined i. Then termination is ensured by well-foundedness of the
natural numbers.

In this paper, we will study the use of structural recursion and sized types
for termination checking. We wish to make a comparison between the two
approaches to see how they work, what are their strengths and what are their
limitations.

A priori, the biggest advantage of structural recursion is that the process is
done in background: assuming that the termination checker can find a suitable
ordering on terms, there should be little overhead for the user, thus simplifying
the code. Programmers would then be able to use such checker without having
to modify their original code. However, this approach has its limitations. The
termination checker could, in principle, be not able to assert the termination of
a function because it is not obvious for the checker that the recursive calls are
made on arguments that are strictly smaller. We also wish to analyse when this
does happen. On the other side, it seems that sized types would shine by their
flexibility and power: since more information is tracked through the program,
it would probably be easier for sized types to identify that a function is indeed
terminating. However, we would have to pay some cost, namely, having to carry
around size annotations. We wish to verify if these preconceptions hold and, if
so, to what extend.

To do this, we will go through some examples of functions and test how do
we achieve to obtain, for each approach, an implementation that is accepted.
To study structural recursion, we will use the functional programming language
Agda that uses the termination checker Foetus [AA02]. To study sized types, we
will use MiniAgda [Abe10]. In section 2, we will have a look at different functions
on the natural numbers such as the minus function, the division function and the
Euclidean algorithm. In section 3, we will go through the merge sort algorithm.
In section 4, we will discuss of the use of termination checkers for proofs.

2 Functions on Natural Numbers

We first need to define our natural numbers within Agda and MiniAgda respec-
tively. The definition is inductive, using zero and a successor function. In Agda,
the representation is the following.

2

data Nat : Set where

zero : Nat

succ : Nat -> Nat

In MiniAgda, we define the natural numbers with size annotation

sized data SNat : Size -> Set

{ zero : [i : Size] -> SNat ($ i)

; succ : [i : Size] -> SNat i -> SNat ($ i)

}

We note that in MiniAgda, size arguments must be provided explicitely to the
constructors. The reason is that MiniAgda is an experimental system whose
goal is to investigate sized types which does not have reconstruction. Accord-
ing to [Abe10], in a mature system such as Agda, sized annotation would be
reconstructed during runtime. This point is important for our analysis: size
annotation will make the code more complicated and so harder to read, but size
reconstruction would account for that problem. This raises several questions
such as can all size annotations be reconstructed or would some size annota-
tions still be required, and how would that affect the classe of programs that
can be certified to be terminating.

We first present a minus function in Agda

minus : Nat -> Nat -> Nat

minus zero y = zero

minus x zero = x

minus (succ x) (succ y) = minus x y

and in MiniAgda

fun minus : [i : Size] -> SNat i -> SNat # -> SNat i

{ minus i (zero (i > j)) y = zero j

; minus i (succ (i > j) x) (zero .#) = succ j x

; minus i (succ (i > j) x) (succ .# y) = minus j x y

}

Both of these implementation are accepted by the termination checker. By
striping off the constructor succ from each of the two arguments, we make a
recursive call on an argument that is structurally smaller. It is also captured
by the size argument. Since the size annotation represents the height of the
derivation of our natural number, when we extract x from the equation succ x,
we reduce the height of the derivation by one.

Then, we present a division function for MiniAgda.

fun div : [i : Size] -> SNat i -> SNat # -> SNat i

{ div i (zero (i > j)) y = zero j

; div i (succ (i > j) x) y = succ j (div j (minus j x y) y)

}

3

Here, we call recursively the division function with argument x − y instead of
(succ x) − (succ y) Since the output of the minus function is of size as big as
the first argument, the output will be smaller than the input argument succ x.
Thus, the recursive call is made on smaller arguments. One cannot use the
same idea with structural recursion since the termination checker has no way to
identify if the result of minus x y is indeed smaller than succ x.

In order to write a division function that is accepted by the termination
checker, one needs to do more. The strategy that we present here is described
in [BD09]. We will add a third argument to the division function. This argument
must be a proof term of a domain predicate that expresses that for a given pair
of natural numbers the division terminates. We define this predicate in the
following way.

data DivDom : Nat -> Nat -> Set where

div-dom-lt : (m n : Nat) -> n > m -> DivDom m n

div-dom-geq : (m n : Nat) -> n ≤ m -> DivDom (m - n) n ->

DivDom m n

The division function becomes

div : (m n : Nat) -> DivDom m n -> Nat

div .m .n (div-dom-lt m n p) = zero

div .m .n (div-dom-geq m n p q) = (succ zero) + (div (m - n) n q)

and is accepted by the termination checker since the proof term gets structurally
smaller at each recursive call.

While this provides a way to prove termination with structural recursion,
in its current form it requires us to provide a proof term each time we want
to use the function. This is unpractical. To not have to do that, we need to
prove that for all m and all n > 0, there is a DivDom m n. Then, instead
of giving a proof term, we invoke this theorem. Proving that DivDom holds
for all natural numbers is not trivial. In addition, we have to consider how
this approach scales with the complexity of the problem. For this example,
the predicate was quite simple, it is believable that as the algorithms grow in
complexity, the predicate will also grow in complexity since it must account for
all the cases. In comparison, sized types did not need to provide such predicate
and prove that they hold for all input and so appears to be more practical.

We wish to see if these observations hold for a more complicated example.
We now have a look to the Euclidean algorithm.

2.1 Greatest Common Divisor

The Euclidean algorithm is the standard algorithm to find the greatest common
divisor of two numbers. To get gcd(a, b), we first assume that a ≥ b. If it is
not the case, we can always swap a and b. We compute the remainder of the
division of a by b and write a = x0b+ r0, where x0 is the quotient and r0 is the
remainder. Then, we compute gcd(b, r0), that is, we write b = x1r0 + r1. We

4

continue this process until we get rn−1 = xn+1rn + rn+1 and rn = xn+2rn+1

so that rn+1 divides exactly rn. Then, since rn+1 divides both rn+1 and rn, it
must also divide rn−1. And it also divide ri for all 0 ≤ i ≤ n+ 1 so that it must
also divide b and a. By construction, it is the greatest common divisor.

To implement it in Agda, one might want to proceed in the following fashion.

gcd : Nat -> Nat -> Nat

gcd zero y = y

gcd x zero = x

gcd x y = if (y ≤ x)

then (gcd (x - y) y)

else (gcd y x)

The two first cases handle special cases. The first one will actually be used
at the last recursive call. Let us analyse what this code does. Supposing that
x and y are not zero, we verify if y is smaller than x. It is the case, we call gcd
again with argument x − y and y. Instead of using a division with remainder,
we substract successively y from x until we obtain an x′ strictly smaller than
y. When x′ is strictly smaller than y, it corresponds to the remainder of the
division of x by y. At this point, we compute the greatest common divisor of y
and x′. If we get to the point that x′ = y, x′ − y = 0 is sent as first argument
of the function, the function will return y.

This function is terminating. If we want to prove that informally, we observe
that if y ≤ x and y > 0, the first argument will pass from x to x − y and so
will get smaller and the second argument, y, will stay constant. But if y > x,
then the second argument passes from y to x and so gets smaller by assumption
and the first argument grows because it passes from x to y. Therefore, either
the second argument decreases or it stays constant while the first argument
decreases. Thus, the function is recursively called on smaller arguments with
respect to a lexicographic order bases on the second argument.

However, while we have that the arguments get smaller, they do not get
structurally smaller as x − y and y are not structurally smaller than x. Thus,
Agda’s termination checker cannot assert that the function is terminating.

To obtain termination, we can use a domain predicate for the algorithm as
we did for the division function. However, there exists another similar method
that one can use to obtain termination with structural recursion. It consists
of writing an accessibility predicate on a binary relation and defining a set of
elements that have no infinite descending sequences with respect to this rela-
tion. We say that these elements are accessible. One can find a more detailed
treatment of the accessibility predicate in [Nor88]. In Agda, we can define the
accessibility predicate as follow.

data acc {A} (gt : A -> A -> Set) (n : A) : Set where

nacc : (∀ {m} -> gt n m -> acc gt m) -> acc gt n

To prove the termination of our algorithm, we append a proof term that the
input is accessible. In spirit, this method is very similar to the domain predicate

5

method: we create a proof term and this proof term will get structurally smaller
at each recursive call. In our case, the binary relation is the relation > (greater
than) for natural numbers. We note again that in order to not have to construct
each time a proof that each of the input are accessible, we must prove that for
all natural number n, there is a term acc > n. This proof can easily be done
by strong induction. Then, we can use it to obtain the following code.

gcd : (n : Nat) -> acc _>_ n -> (m : Nat) -> acc _>_ m -> Nat

gcd x p y p2 with islessthan? y x

gcd x (nacc y0) zero p2 | less y’ = x

gcd x (nacc y0) (succ y) p2 | less y’ =

gcd (x - (succ y)) (y0 (lem4 y’)) (succ y) p2

gcd zero p y (nacc y1) | greater y’ = y

gcd (succ x) (nacc p) y (nacc y1) | greater y0 =

gcd y (nacc y1) (succ x) (y1 y0)

This code is accepted by the termination checker. It has a lot of overhead; we
pass two additional proofs of accessibility of n and m. Termination is ensured
using these arguments. We also need to prove several lemmas including that
if x > y then x > (x − succ y), which make the algorithm more difficult to
implement. This approach has the advantage that we can reuse the accessibility
predicate for other functions with natural numbers such that the division func-
tion. However, it requires to prove that the argument that you use is indeed
smaller than the one before.

Let us have a look to the Euclidean algorithm in MiniAgda. We can write
the following algorithm.

fun gcd : [i : Size] -> [j : Size] -> SNat i ->

SNat j -> SNat (max i j)

{ gcd i j (zero (i > k)) y = y

; gcd i j (succ (i > k) x) (zero (j > l)) = succ k x

; gcd i j (succ (i > k) x) (succ (j > l) y) =

branch (max i j) (isSmaller (max i j) x y)

(gcd i l (succ k x) (minus l y x))

(gcd k j (minus k x y) (succ l y))

}

This algorithm is very similar to what we have presented at first. There is
one distinction. We made the two branches somewhat symmetric and used the
minus function on the two arguments with their successor constructed striped.
Since at each recursive calls, one of the two arguments gets smaller.

It is important to note that we could not have swapped the two arguments
as we cannot verify that the size of one is indeed smaller than the other. To
our knowledge, there is no way to obtain a proof that i < j given that x < y
for x and y, natural numbers of size i and j respectively. The reason for this
is that in MiniAgda, sizes live on another level. While this did not appear to
cause problem here, one might find this limitating. However, this is specific

6

of MiniAgda: ATS [Xi04] asks that one provides a metric to every function to
indicate what is the argument that gets smaller. In the case of natural numbers,
one would use the system defined natural numbers and would provide as a metric
one or both of the arguments. Then, by doing the computation that x < y, we
obtain that the size is indeed smaller since there is no distinction between the
two. Also, one would be able to know that x − y < x for x, y > 0 since such
constraint will be solved using the system’s constraint solver. More details of
this approach can be found in [Xi01].

With these examples in mind, it appears that sized types capture more
naturally the termination of algorithms dealing with natural numbers. In the
next section, we study how termination checking scales for lists and for the
merge sort algorithm.

3 Merge Sort

Let us now look at the merge sort algorithm on lists of natural numbers. Merge
sort works in two parts, it first splits recursively the list in two lists of about
equal length, then merges the two lists into one ordered list. Our lists are defined
in Agda in the following way:

data List : Set where

[] : List

:: : Nat -> List -> List

While we define them in the following way for MiniAgda

sized data List (Nat : Set) : Size -> Set

{ nil : [i : Size] -> List Nat $i

; cons : [i : Size] -> Nat -> List Nat i -> List Nat $i

}

We implement the mergesort algorithm in Agda as presented in figure 1.
Let us look at what this code does. The merge function calls itself recursively,

but at each call, one of the argument gets smaller since we remove a cons
operator. it is accepted by the termination checker.

For the mergesort function, we use a split function to split the list in two
parts of about the same size. Then, we call mergesort on each of these two lists.
The function terminates since it is applied to arguments that are by construction
smaller than the original ones. However, this assumes that the split function
outputs a pair of lists of size smaller than the original one. Since the original
list has at least 2 elements, we know it is the case. However, the termination
checker has no information about the length of the output split and so cannot
assert termination. To convince the termination checker, one would have to
provide a proof that split actually reduces the size of the list.

We now observe how one would implement the algorithm in MiniAgda. The
implementation appears in figure 2. If we exclude size annotations and specifics
constructs such as the case pattern, we observe that the implementation is very

7

merge : List -> List -> List

merge [] ys = ys

merge xs [] = xs

merge (x :: xs) (y :: ys) =

if x ≤ y

then (x :: (merge xs (y :: ys))

else (y :: (merge (x :: xs) ys))

mergesort : List -> List

mergesort [] = []

mergesort (x :: []) = x :: []

mergesort (x :: (y :: xs)) with split (x :: (y :: xs))

mergesort (x :: (y :: xs)) | pair a b =

merge (mergesort a) (mergesort b)

Figure 1: Merge sort algorithm implemented in Agda

fun merge : [i : Size] -> List Nat i -> List Nat i -> List Nat #

{ merge i (nil .Nat (i > k)) b = b

; merge i a (nil .Nat (i > k)) = a

; merge i (cons .Nat (i > k) a as) (cons .Nat (i > l) b bs) =

case (isSmaller a b)

{ true -> cons Nat # a (merge i as (cons Nat l b bs))

; fale -> cons Nat # b (merge i (cons Nat k a as) bs)

}

}

fun mergesort : [i : Size] -> List Nat i -> List Nat #

{ mergesort i (nil .Nat (i > j)) = nil Nat j

; mergesort i (cons .Nat (i > j) x (nil .Nat (j > k))) =

(cons Nat j x (nil Nat k))

; mergesort i (cons .Nat (i > j) x (cons .Nat (j > k) y zs)) =

case split k zs

{ (pair .(List Nat k) .(List Nat k) xs ys) ->

merge # (mergesort j (cons Nat k x xs))

(mergesort j (cons Nat k y ys))

}

}

Figure 2: Merge sort algorithm implemented in MiniAgda

8

similar to the one that we presented above for Agda. This code is accepted by
MiniAgda’s termination checker. The reason for that lies in the type of the split
function which is

fun split : [i : Size] -> List Nat i ->

Pair (List Nat i) (List Nat i)

It asserts that the size of each of the lists in the output is at most the size of
the input list. Then, when we case analyse on the list zs, which has size k, we
obtain two lists that xs and ys that have size at most k. We then call recursively
mergesort on the list cons x xs and cons y ys which have both size j and then
merge the two lists. Since our original list had size i and i > j, our recursive
calls are decreasing. Thus, the termination checker accepts the program.

4 Proofs

We now want to talk about using termination checking for proofs instead of
programs. For this, we will use a proof that small-step semantics for numbers
is deterministic. The implementation of the proof in Agda was written by Prof.
Brigitte Pientka. We first define our semantics.

data Tm : Set where

z : Tm

succ : Tm -> Tm

pred : Tm -> Tm

Since the definition is similar for MiniAgda, we omit it. We note that since we
will not be using functions on these terms directly, we do not need to annotate
them with sizes. Then, we define our reductions:

data Step : Tm -> Tm -> Set where

s_succ : {n : Tm} -> {m : Tm} ->

Step n m -> Step (succ n) (succ m)

s_pred_zero : Step (pred z) z

s_pred_succ : {m : Tm} -> Num_Value m ->

Step (pred (succ m)) m

s_pred : {n : Tm} -> {m : Tm} ->

Step n m -> Step (pred n) (pred m)

In MiniAgda, we annotate them with sizes:

sized data Step : (i : Size) -> (n, m : Tm) -> Set

{ s_succ : [i : Size] -> [n, m : Tm] ->

Step i n m -> Step $i (succ n) (succ m)

; s_pred_zero : [i : Size] -> Step $i (pred z) z

; s_pred_succ : [i : Size] -> [n : Tm] ->

Step $i (pred (succ n)) n

; s_pred : [i : Size] -> [n, m : Tm] -> Step i n m ->

9

Step $i (pred n) (pred m)

}

We note that in the MiniAgda implementation, the rule s pred succ does not
take a term of type Num Value n. The reason for it is that in the Agda proof, we
let Agda reconstruct that term. Since MiniAgda does not do any reconstruction,
we could not write this rule in the proof as we did not find a way to write it
explicitely. Since this is a limitation of MiniAgda that is not related to the
termination checker, we chose to modify slightly the semantics to be able to
write a proof.

Now, let us have a look to the proof per se. We first start with the Agda
implementation.

det : {m : Tm} -> {n1 : Tm} -> {n2 : Tm} ->

Step m n1 -> Step m n2 -> Eq n1 n2

det (s_succ t) (s_succ t’) with det t t’

... | ref = ref

det (s_pred_zero) (s_pred_zero) = ref

det (s_pred_succ _) (s_pred_succ _) = ref

det (s_pred t) (s_pred t’) with det t t’

... | ref = ref

-- Impossible cases for pred

det (s_pred t) (s_pred_succ nv) with values_dont_step t (v_s nv)

... | ()

det (s_pred_succ nv)(s_pred t) with values_dont_step t (v_s nv)

... | ()

det (s_pred ()) (s_pred_zero)

det (s_pred_zero) (s_pred ())

This proof is accepted by the termination checker because at each recursive
call, the term is struturally smaller. This kind of proof is done inductively.
When these proofs are encoded in a program, a recursive call corresponds to
the use of the induction hypothesis. Our terms being defined inductively with
constructors, the induction hypothesis is on terms that are structurally smaller
by construction. In this setting, structural recursion appears quite naturally.

Let us look at the MiniAgda implementation

fun det : [i : Size] -> [n, m1, m2 : Tm] ->

Step i n m1 -> Step i n m2 -> Eq m1 m2

{ det i .(succ n) .(succ m1) .(succ m2)

(s_succ (i > k) .n m1 t) (s_succ (i > l) n m2 t’) =

cong_succ m1 m2 (det (max k l) n m1 m2 t t’)

; det i .(pred z) .z .z (s_pred_zero (i > k))

(s_pred_zero (i > l)) = ref z

; det i .(pred (succ n)) .n .n (s_pred_succ (i > k) n)

(s_pred_succ (i > l) .n) = ref n

; det i .(pred n) .(pred m1) .(pred m2)

10

(s_pred (i > k) .n m1 t) (s_pred (i > l) n m2 t’) =

cong_pred m1 m2 (det (max k l) n m1 m2 t t’)

We left out the impossible cases since, as MiniAgda does not check for totality,
there is no construct to indicate the empty pattern. We note that instead of
using a case on det (max k l) n m1 m2 t t′ then using reflexivity, we call a
function cong succ (or cong pred). This function is defined in the following way

fun cong_succ : [n, m : Tm] -> Eq n m -> Eq (succ n) (succ m)

{ cong_succ .n .n (ref n) = ref (succ n)

}

and is used since pattern matching in MiniAgda, unlike Agda’s pattern match-
ing, it does not unify m1 and m2 to allow the use of reflexivity. If we omit
these specific distinctions between the two languages that are not related to
their termination checkers, the implementation of the proof in MiniAgda has
the same structure as the implementation in Agda. The only distinction is the
size annotations. While they do make the code more difficult to understand, as
we said before, we can assume that these would be hidden in a mature system.

5 Conclusion and Future Work

We presented four examples of programs implemented in Agda and MiniAgda
and studied how the termination checker of each of the systems react when trying
to assert their termination. These programs were a minus function, a division
function, a greatest common divisor algorithm and a merge sort algorithm. We
also implemented a proof that small-step semantics for numbers is deterministic
and discussed how termination checkers work when dealing with proofs.

While we were able to make MiniAgda’s termination checker accept all our
programs without too much effort, things were different for Agda’s termination
checker. Since x − y is not structurally smaller than x, both the division and
the greatest common divisor functions were not accepted by it. The merge sort
algorithm was also problematic for structural recursion since a split function
does not produce lists that are structurally smaller.

However, it was still possible to create implementations that were accepted.
It required to create a predicate that stating the wellfoundedness of the ordering
relation for the inputs or stating the termination of the algorithm on the input.
Then we had to provide to the function an appropriate proof term for this
predicate. To remove the necessity of constructing each time a proof term for
the input, one would typically want to prove that the predicate hold for the
entire domain of the function. This approach can be quite tedious and cause a
lot of overhead in the implementation.

When we studied the used of termination checkers on proofs, the situation
appeared to be different. In this setting, the use of structural recursion was
quite natural since recursive calls correspond to uses of the induction hypothesis.
Thus, one needs the induction hypothesis to apply on terms that are structurally

11

smaller than what you are trying to prove. Hence, the use of structural recursion
matches directly what you would expect in verifying a proof.

Using sized types did not cause problem either. They are also able to rep-
resent proofs without much effort since the sizes represent the height of the
derivations. Thus, if the size decreases, the argument is smaller and the induc-
tion hypothesis holds.

However, for proofs, it seemed that the size annotations were unnecessary
and were just making the code harder to read. We noted that, while in MiniAgda
the size annotations are explicit, one would expect that in a mature system, these
would be hidden and reconstructed automatically. One can therefore think that
the implementation of a proof would be identical for each of the two approaches.

While we have not investigated reconstruction, we believe that there would
be a trade of between the power a termination checker that uses sized types and
how much of the size annotations can be reconstructed. However, we believe
that a completely automatic sized assignment would still allow the termination
checker to accept programs that are accepted by a structural recursion anal-
ysis. The reason for that belief is that termination via structural recursion is
done by an untyped analysis on the terms, this analysis can be done during
reconstruction to infer the appropriate sizes for the terms.

We therefore conclude that in addition of being more powerful than struc-
tural recursion, sized types are more flexible. We think that sized types should
be prefered over structural recursion for termination checking.

We would, however, investigate these two approaches in the case of coinduc-
tion. Since coinductive structures are infinite, it might be difficult to use sized
types to represent coinductive structures. We would like to see if this would
cause problems that do not occur with structural recursion and, if so, if these
problems can be solved. This was not done here because this would require to
investigate more on coinduction.

If the investigation of the use of sized types for coinduction give positive
results, we would like to have a look to reconstruction. We would like to see
how it would be done and if there is indeed a trade-off between the power of
termination checker and how much of size annotations must be provided.

6 Acknowledgements

We would like to thank Andrew Cave for helping with the Agda code and Prof.
Andreas Abel for answering my questions about MiniAgda. Presenting termi-
nating algorithms for both Agda and MiniAgda would not have been possible
without them.

References

[AA02] Andreas Abel and Thorsten Altenkirch. A predicative analysis of struc-
tural recursion. J. Funct. Program., 12:1–41, January 2002.

12

[Abe10] Andreas Abel. MiniAgda: Integrating sized and dependent types. In
Workshop on Partiality And Recursion in Interactive Theorem Provers
(PAR), July 2010.

[BD09] Ana Bove and Peter Dybjer. Dependent Types at Work, pages 57–99.
Springer-Verlag, Berlin, Heidelberg, 2009.

[Nor88] B. Nordström. Terminating general recursion. BIT, 28:605–619, July
1988.

[PS02] Frank Pfenning and Carsten Schürmann. Twelf User’s Guide, 1.4 edi-
tion, December 2002. Available as Technical Report CMU-CS-98-173.

[Xi01] Hongwei Xi. Dependent types for program termination verification. In
Proceedings of the 16th Annual IEEE Symposium on Logic in Computer
Science, pages 231–, Washington, DC, USA, 2001. IEEE Computer
Society.

[Xi04] Hongwei Xi. Applied type system (extended abstract. In In post-
workshop Proceedings of TYPES 2003, pages 394–408, 2004.

13

