
SPASSInput Syntax
Version 1.5

Christoph Weidenbach
Max-Planck-Institut für Informatik

Stuhlsatzenhausweg 85
66123 Saarbrücken

weidenb@mpi-sb.mpg.de

Abstract

This document introduces the SPASS input syntax. It came out of the DFG syntax format that was thought to be a
format that can easily be parsed such that it forms a compromise between the needs of the different groups.

1 Introduction

The language proposed in the following is intended to be a common exchange format for logic problem settings. It is
thought to be a format that can easily be parsed such that it forms a compromise between the needs of the different groups.
Therefore, it is keptas simple as possible, in particular, the grammar of the language can be easily processed by some
automatic parser-generator.

In any case it will be necessary to provide tools that transform files from the present syntax into other standard formats
(e.g., Otter [6] or TPTP [9]) and vice versa. Currently we can(partly) transform Otter input files to DFG-Syntax files and
vice versa.

2 Notation

For the grammar defining the syntax, terminals are always underlined while non-terminals and meta-symbols are not.
Braces come in different variants and have the following meaning:

{ } optional
{ }∗ arbitrarily often
{ }+ at least once

3 Problems

The unit of information we can describe are problems. A problem may not only contain formulae or clauses but also
information on parameter settings.

problem ::= begin problem(identifier).
description
logical part
{settings}∗

end problem.

Note that the description part as well as the logical part aremandatory.

1

4 Descriptions

The description part should help to understand what the problem is about. In particular, the logic part is mandatory, if
non-standard quantifiers or operators are used.

description ::= list of descriptions.
name({* text *}).
author({* text *}).
{version({* text *}).}
{logic({* text *}).}
status(log state).
description({* text *}).
{date({* text *}).}
end of list.

log state ::= satisfiable | unsatisfiable | unknown

5 The Logical Parts

Any non-predefined signature symbol used in a problem has to be defined in the declaration part. Then the logical part
may provide a formulation of the problem by formulae as well as by some clause normal forms. In addition, proofs for
the conjecture stated by the formulae (clauses) may be contained.

logical part ::= {symbol list}
{declaration list}
{formula list}∗

{clause list}∗

{proof list}∗

As mentioned before, non-predefined signature symbols haveto be declared in advance. Since the current scope of the
syntax only covers first-order logic, we are concerned with function and predicate symbols. The usual first-order operators
and quantifiers are predefined. In addition, there is a uniquesymbol for equality, see below.

symbol list ::= list of symbols.
{functions[fun sym | (fun sym,arity)

{, fun sym | (fun sym,arity)}∗].}
{predicates[pred sym | (pred sym,arity)

{, pred sym | (pred sym,arity)}∗].}
{sorts[sort sym {,sort sym}∗].}
end of list.

All declared symbols have to be different from each other andfrom all terminal and predefined symbols.
We support a rich sort language that may be introduced by a declaration part. We do not allow free variables in term

declarations, but polymorphic sorts.

2

declaration list ::= list of declarations.
{declaration}∗

end of list.
declaration ::= subsort decl | term decl | pred decl | gen decl

gen decl ::= sort sort sym {freely} generated by func list.
func list ::= [fun sym {,fun sym}∗]

subsort decl ::= subsort(sort sym,sort sym).
term decl ::= forall(term list,term). | term.
pred decl ::= predicate(pred sym{,sort sym}+).
sort sym ::= identifier
pred sym ::= identifier
fun sym ::= identifier

Concerning the term declarations, we assume that all terms in term list are variables or expressions of the form
sort sym(variable).

Now there are two types of formulae: Axiom formulae and conjecture formulae. If the status of the problem (see
below) states “unsatisfiable” it refers to the clause normalform resulting from the conjunction of all axiom formulae and
the negation of the disjunction of all conjecture formulae.Of course, “satisfiable” means that the overall formula has a
model.

formula list ::= list of formulae(origin type).
{formula({term}{,label}).}∗

end of list.
origin type ::= axioms | conjectures

label ::= identifier

We assume that all formulae are closed, so we do not allow freevariables inside a formula expression.
Quantifiers always have two arguments: A term list and the subformulae. The term list is assumed to be a variable

list (or a list of variables annotated with a sort) for the usual first-order quantifiers, however, one could easily imagine
non-classical quantifiers, where “quantification” over real terms makes sense.

term ::= quant sym(term list,term) | symbol |
symbol(term{,term}∗)

term list ::= [term{,term}∗]
quant sym ::= forall | exists | identifier

symbol ::= equal | true | false | or | and | not | implies |
implied | equiv | identifier

We support disjunctive normal form as well as clause normal form. Even clauses have to be written as their corre-
sponding formulae, in particular all variables have to be bound by the leading quantifier. Our experience with problems
stated by a set of clauses shows that this helps to detect flaws, e.g., if accidentally it was forgotten to declare some constant
that would then be considered as a variable. Since free variables are not allowed, this case is detected in our syntax.

clause list ::= list of clauses(origin type,clause type).
{clause({cnf clause | dnf clause}{,label}).}∗

end of list.
clause type ::= cnf | dnf
cnf clause ::= forall(term list,cnf clause body) | cnf clause body
dnf clause ::= exists(term list,dnf clause body) | dnf clause body

cnf clause body ::= or(term{,term}∗)
dnf clause body ::= and(term{,term}∗)

In case ofcnf clause body anddnf clause body we assume all subterms generated forterm to be literals.
The alphabet allowed to compose identifiers is restricted toletters, digits and the underscore symbol.

3

begin problem(Pelletier57).

list of descriptions.
name({* Pelletier’s Problem No. 57 *}).
author({* Christoph Weidenbach *}).
status(unsatisfiable).
description({* Problem taken in revised form from the "Pelletier Collection",

Journal of Automated Reasoning, Vol. 2, No. 2, pages 191-216 *}).
end of list.

list of symbols.
functions[(f,2), (a,0), (b,0), (c,0)].
predicates[(F,2)].
end of list.

list of formulae(axioms).
formula(F(f(a,b),f(b,c))).
formula(F(f(b,c),f(a,c))).
formula(forall([U,V,W],implies(and(F(U,V),F(V,W)),F(U,W)))).
end of list.

list of formulae(conjectures).
formula(F(f(a,b),f(a,c))).
end of list.

end problem.

Figure 1: Pelletier’s Problem No. 57

identifier ::= {letter | digit | special symbol}+

letter ::= a–z | A–Z
arity ::= -1 | number

number ::= {digit}+

digit ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
special symbol ::=

5.1 Examples

We start with a complete description of Pelletier’s [7] problem No. 57 that can be found in Figure 1. The syntax for the
description part is explained in Section 4.

Our second example, Figure 2, uses the language features provided for the declaration of sorts.

6 Proofs

We also define a first, simple proof format. Basically a proof consists of a sequence of “simple” steps. The semantics of
step is that the introduced formula is a logical consequenceof the formulae pointed to by the list of parents.

We already have implemented some scripts that can be used to automatically check resolution proofs. Here, the idea
is to be able to check complicated, tedious, long proofs found by some prover automatically by using a different prover.

4

begin problem(Sorts).

list of descriptions.
name({* Sorts and Plus *}).
author({* Christoph Weidenbach *}).
status(satisfiable).
description({* Defines plus over successor and zero. *}).
end of list.

list of symbols.
functions[plus,s,zero].
sorts[even,nat].
end of list.

list of declarations.
subsort(even,nat).
even(zero).
forall([nat(x)],nat(s(x))).
forall([nat(x),nat(y)],nat(plus(x,y))).
forall([even(x),even(y)],even(plus(x,y))).
forall([even(x)],even(s(s(x)))).
forall([nat(y)],even(plus(y,y))).
end of list.

list of formulae(axioms).
formula(forall([nat(y)],equal(plus(y,zero),y))).
formula(forall([nat(y),nat(z)],equal(plus(y,s(z)),s(plus(y,z))))).
end of list.

end problem.

Figure 2: Example with Sort Declarations

5

proof list ::= list of proof{(proof type{,assoc list})}.
{step(reference,result,rule appl,parent list{,assoc list}).}∗

end of list.
reference ::= term | identifier | user reference

result ::= term | user result
rule appl ::= term | identifier | user rule appl

parent list ::= [parent{,parent}∗]
parent ::= term | identifier | user parent

assoc list ::= [key:value{,key:value}∗]
key ::= term | identifier | user key

value ::= term | identifier | user value
proof type ::= identifier | user proof type

All user non-terminals of the grammar must be compatible with the already defined non-terminals. For example, a
user key must be aterm or anidentifier.

6.1 SPASS Proofs

Here is the instantiation of the general proof schema for SPASS style proofs that are supported by our proof checker.

user reference ::= number
user result ::= cnf clause

user rule appl ::= GeR | SpL | SpR | EqF | Rew | Obv | EmS | SoR | EqR
|
MPm | SPm | OPm | SHy | OHy | URR | Fac | Spt | Inp
|
Con | RRE | SSi | ClR | UnC | Ter

user parent ::= number
user proof type ::= SPASS

user key ::= splitlevel
user value ::= number

The association list as well as the key/value list is not used. Figure 3 shows an example for a DFG-problem together
with a SPASS style resolution proof. The rule application identifiers name the SPASS inference/simplification/reduction
rules general resolution (GeR), superposition left (SpL), superposition right (SpR), equality factoring (EqF), rewriting
(Rew), obvious reduction (Obv) and clause reduction (ClR). Clauses are labelled with numbers and references inside of
proof steps refer to these numbers.

7 Settings

The idea to include settings into the problem file format is toenable people to reproduce specific proofs that depend on
particular input settings of the respective prover.

settings ::= list of general settings {setting entry}+ end of list.
|
list of settings(setting label). {* text *} end of list.

setting entry ::= hypothesis[label {,label}∗].
setting label ::= KIV | LEM | OTTER | PROTEIN | SATURATE | 3TAP |

SETHEO | SPASS

The labels name the following systems: KIV [8], LEM [4], OTTER [6], PROTEIN [1], SATURATE [3],3TAP [2],
SETHEO [5], SPASS [10]. For example, to specify the precedence for SPASS and to direct SPASS to print a proof, we
include the following settings:

6

begin problem(ProofDemo).

list of descriptions.
name(*test.dfg*).
author(*SPASS*).
status(unsatisfiable).
description(*File generated by SPASS containing a proof.*).
end of list.

list of symbols.
functions[(skf1, 1)].
predicates[(P, 2)].
end of list.

list of clauses(conjectures, cnf).
clause(forall([U],or(P(U,skf1(U)))),1).
clause(forall([U],or(not(P(skf1(U),U)))),2).
clause(forall([V,U,W],or(equal(U,V),equal(V,W),equal(W,U))),3).
end of list.

list of proof(SPASS).
step(10,forall([V,U,W],or(equal(U,V),equal(V,skf1(W)),P(W,U))),SpR,[3,1]).
step(36,forall([V,U],or(equal(U,V),equal(V,skf1(skf1(U))))),GeR,[10,2]).
step(43,forall([V,U],or(equal(U,V),P(skf1(U),V))),SpR,[36,1]).
step(58,forall([V,U],or(not(P(U,skf1(V))),equal(V,U))),SpL,[36,2]).
step(86,forall([V,U],or(equal(U,skf1(V)),equal(V,skf1(U)))),GeR,[43,58]).
step(87,forall([U],or(not(equal(U,U)),equal(skf1(U),U))),EqF,[86,86]).
step(124,forall([U],or(equal(skf1(U),U))),Obv,[87]).
step(129,forall([U],or(P(U,U))),Rew,[124,1]).
step(130,forall([U],or(not(P(U,U)))),Rew,[124,2]).
step(213,or(false),ClR,[129,130]).
end of list.

end problem.

Figure 3: A SPASS Style Resolution Proof

7

list of settings(SPASS).
{∗

set flag(DocProof,1).
set precedence(a,b,c,f,F).

∗}
end of list.

8 Miscellaneous

8.1 Comments

After the% symbol the rest of line is ignored. The comment symbols{* and*} are only allowed at the places defined
above.

8.2 Conventions

We suggest the following conventions concerning suffixes offile names:

.dfg For general problem files, including formulae, clauses, proofs at the same time.

.frm For problem files containing at least lists of formulae.

.cnf For problem files containing at least lists of clauses in conjunctive normal form.

.dnf For problem files containing at least lists of clauses in disjunctive normal form.

.prf For problem files containing at least lists of proofs.

Acknowledgements

We would like to thank all members of the German “SchwerpunktDeduktion” group who contributed to previous versions
of this paper. Special thanks to Michael Christen, Enno Keen, Andreas Nonnengart and Dalibor Topić who proof-read
several versions of this paper.

References

[1] Peter Baumgartner and Ulrich Furbach. Protein: Aprover with atheoryextensioninterface. In A. Bundy, editor,
12th International Conference on Automated Deduction,CADE-12, volume 814 ofLNAI, pages 769–773. Springer,
1994. Available in the WWW, URL:http://www.uni-koblenz.de/ag-ki/Systems/PROTEIN/.

[2] Bernhard Beckert, Reiner Hähnle, Peter Oel, and MartinSulzmann. The tableau-based theorem prover 3tap, version
4.0. In M.A. McRobbie and J.K. Slaney, editors,13th InternationalConference on Automated Deduction, CADE-13,
volume 1104 ofLNCS, pages 303–307. Springer, 1996.

[3] Harald Ganzinger and Robert Nieuwenhuis. The saturate system 1994. http://www.mpi-
sb.mpg.de/SATURATE/Saturate.html, 1994.

[4] Birgit Heinz. Anti-Unifikation modulo Gleichungstheorie und deren Anwendung zur Lemmagenerierung. Disserta-
tion, TU Berlin, Dec 1995.

[5] Reinhold Letz, Johann Schumann, S. Bayerl, and WolfgangBibel. Setheo: A high-performance theorem prover.
Journal of Automated Reasoning, 8(2):183–212, 1992.

[6] William McCune. Otter 3.0 reference manual and guide. Technical Report ANL-94/6, Argonne National Laboratory,
1994.

[7] Francis Jeffry Pelletier. Seventy-five problems for testing automatic theorem provers.Journal of Automated Rea-
soning, 2(2):191–216, 1986. Errata:Journal of Automated Reasoning, 4(2):235–236,1988.

8

[8] Wolfgang Reif. The kiv-approach to software verification. In Manfred Broy and Stefan Jähnichen, editors,KORSO:
Methods, Languages, and Tools for the Construction of Correct Software – Final Report, volume 1009 ofLNCS,
pages 339–368. Springer, 1995.

[9] Geoff Sutcliffe, Christian B. Suttner, and Theodor Yemenis. The TPTP problem library. In Alan Bundy, editor,
Twelfth International Conference on Automated Deduction,CADE-12, volume 814 ofLecture Notes in Artificial
Intelligence, LNAI, pages 252–266, Nancy, France, June 1994. Springer.

[10] Christoph Weidenbach, Uwe Brahm, Thomas Hillenbrand,Enno Keen, Christian Theobald, and Dalibor Topic.
SPASS version 2.0. In Andrei Voronkov, editor,Proceedings of the 18th International Conference on Automated
Deduction (CADE-18), volume 2392 ofLecture Notes in Artificial Intelligence, pages 275–279, Kopenhagen, Den-
mark, 2002. Springer.

9

