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ien
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hnology, P.O.Box 513, 5600MB, Eindhoven, The NetherlandsAbstra
tThis paper fo
uses on how to use Po
klington's 
riterion to produ
e eÆ-
ient formal proof-obje
ts for showing primality of large positive numbers.First, we des
ribe a formal development of Po
klington's 
riterion, doneusing the proof assistant Coq. Then we present an algorithm in whi
h
omputer algebra software is employed as ora
le to the proof assistantto generate the ne
essary witnesses for applying the 
riterion. Finally,we dis
uss the implementation of this approa
h and ta
kle the proof ofprimality for some of the largest numbers expressible in Coq.1. Introdu
tionThe problem of showing whether a positive number is prime or 
ompositeis histori
ally re
ognized to be an important and useful problem in arith-meti
. Sin
e Eu
lid's times, the interest in prime numbers has only beengrowing. For today's appli
ations, primality testing is 
entral to publi
 key
ryptography and for this reason is still heavily investigated in numbertheory [32℄.Although the problem is 
learly de
idable, the trivial algorithm, derivedfrom the de�nition, that 
he
ks for every number q su
h that q � pnwhether qjn, is far too ineÆ
ient for pra
ti
al purposes. There exist sev-eral alternative methods to 
he
k primality however in this paper we dealex
lusively with proofs obtained by a 
lassi
al 
riterion due to Po
klingtonin 1914 [31℄. Our interest is motivated by the fa
t that in order to produ
ea proof of primality the 
riterion needs to �nd numbers that verify 
ertainalgebrai
 equalities. These numbers are easily generated by a 
omputer al-gebra ora
le, for instan
e the systems GAP, Magma, or Pari [21, 29, 5℄ dealwell with number theoreti
al questions. From the 
omputer algebra point�During this work, the author was supported by the OpenMath Esprit proje
t 249691
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ient primality proofs 2of view, it has already been shown how an informal textual proof of pri-mality generated by GAP 
an be turned into an intera
tive mathemati
aldo
ument [13℄ in natural language in whi
h the algebrai
 assertions 
anbe intera
tively veri�ed using a 
omputational ba
k-engine. Instead, theapproa
h of this paper is from the theorem proving point of view and themain problem is eÆ
iently 
onstru
ting a formal, veri�able proof-obje
t(a lambda term) representing a proof of primality. This proof-obje
t 
anthen be visualized as an intera
tive mathemati
al do
ument in the senseof [13, 12℄.Noti
e that the 
ooperation of theorem provers with 
omputer algebrais essential for being able to solve this task. Theorem provers are verylimited on the amount and type of 
omputations they 
an perform [3℄,however, they are very well suited for organizing the logi
al steps of aproof. On the other hand, although 
omputer algebra systems have algo-rithms for de
iding whether a number is prime or not, it is hard for themto produ
e a proof of primality, let alone one that is formally veri�ableby a theorem prover. Additionally, in 
ertain systems, the algorithms em-ployed to test primality (or 
ompositeness) of large primes behave prob-abilisti
ally and there is a slight possibility that the returned answer isnot true. Thus, the winning strategy is to 
ombine both kinds of system.There is a wide amount of literature both on the subje
t of 
ombiningsystems for problem solving and on spe
i�
 
ase studies, among many seefor instan
e [22, 9, 8, 6, 19, 7, 14℄.Computer algebra has been in
orporated in theorem proving followingthree approa
hes, based on the level of trust, that range from believing,through skepti
al, to autarki
 [25, 3, 15℄. The believing approa
h trusts
ompletely the results given by a 
omputer algebra system and treatsthem as axioms [1℄. The skepti
al approa
h does not trust 
ompletely theresults given by a 
omputer algebra ora
le and treats them as witnessesthat require formal veri�
ation [24, 28, 34℄. This approa
h presupposesthat the 
hosen ora
le is good at �nding the witnesses. The autarki
approa
h refuses to 
onsult any ora
le and does all the 
omputationsinside the theorem prover.This paper extends the initial work presented in [11℄ on how Po
k-lington's 
riterion 
an be employed in a skepti
al approa
h to produ
eeÆ
ient formal proof-obje
ts that show primality of large positive num-bers in a proof assistant su
h as Coq [4℄. The 
laim of formality relieson the 
omplete development and proof of Po
klington's 
riterion withinCoq whi
h has been restated in a variant that allows to use integers in-stead of natural numbers. The 
laim of eÆ
ien
y y is sustained by thefa
t that we have been able, for instan
e, to 
onstru
t and verify theproof of primality of Ferrier's prime, a 44-digits long prime number (thelongest one found before the 
omputer age) arbitrarily 
hosen among theones listed in [26℄. The implementation is geared toward the possibilityof swit
hing to a di�erent 
omputer algebra engine if need arises: for in-yIntended in the 
ontext of theorem proving.
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ient primality proofs 3stan
e when fa
torization of large integers is required the user may easily
hoose a more powerful engine as ora
le. Additionally, the user may de�neat whi
h level of belief the proof should be produ
ed, from total trust inea
h algebrai
 result 
oming from the ora
le to total skepti
ism.The stru
ture of this paper is as follows. The formalization of Po
kling-ton's 
riterion is des
ribed in Se
tion 2. Se
tion 3 gives the ar
hite
turaldetails for using it to produ
e formal proofs of primality with the aidof 
omputer algebra ora
les. Our implementation of the algorithm andtimings for some ben
hmarks are dis
ussed in Se
tion 4 and the paper's
on
lusions are in Se
tion 5.2. FormalizationThe Po
klington 
riterion is one of many number theoreti
al results thatare useful for verifying primality of a positive number n, see for in-stan
e [32℄ for more examples. This se
tion des
ribes the developmentof a formal proof of the 
riterion in Coq, starting with the informalproof. Su
h a formalization is a prerequisite ne
essary before produ
ingprimality proof-obje
ts that 
an be automati
ally 
he
ked for 
orre
tness.The work presented in this se
tion is a follow-up of [20℄, where the use ofPo
klington's Criterion in a formal setting was �rst investigated.Lemma 2.1 (Po
klington's Criterion):Let n 2 N, n > 1 with n �1 = q � m su
h that q = q1 � � � qt for 
ertain primes q1; : : : ; qt. Supposethat a 2 Z satis�es an�1 = 1 (mod n) and g
d(an�1qi � 1; n) = 1 for alli = 1; : : : ; t. If q � pn, then n is a prime.Proof: 1 Let pjn and Prime(p), put b = am.2 Then bq = amq = an�1 = 1 (mod n).3 So bq = 1 (mod p).4 Now q is the order of b in Z�p, be
ause:5 Suppose b qqi = 1 (mod p), then amqqi = an�1qi = 1 (mod p).6 There exist �; � 2 Z su
h that �(an�1qi � 1) + �n = 1 (mod p).7 So, �(1� 1) + �0 = 1 (mod p). Contradi
tion.8 By Fermat's little theorem: bp�1 = 1 (mod p),9 therefore q � p� 1, so pn � q < p.10 Hen
e for every prime divisor p of n: p > pn.11 Therefore Prime(n). 2Although the proof is easy from a mathemati
al viewpoint, the exer
iseof formalizing it in Coq is not a straightforward one.The Coq system is a logi
al system based on typed lambda 
al
ulus [2℄.Propositions 
an either be assumed as axioms, or they 
an be proven by
onstru
ting a formal proof-obje
t. A 
omplete formalization of Po
k-lington's 
riterion amounts to �nding a proof-obje
t, i.e. a lambda term,whi
h inhabits the type 
orresponding to the statement of the 
riterion.
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ient primality proofs 4Our development of the 
riterion is a full formalization, meaning thatno lemma is assumed as axiom. Building the formal proof from the basi
lambda primitives requires a lot of work. However, the Coq proof assis-tant is equipped with a library of de�ned 
on
epts 
on
erning standardmathemati
al theories in
luding natural numbers, integers, relations, andlists. Furthermore, it has a powerful language of ta
ti
s whi
h allows theuser to spe
ify proofs as abstra
t ta
ti
 s
ripts instead of 
on
rete lambdaterms.Formalization starts with identifying those mathemati
al 
on
epts usedin the proof that are not yet in the standard library. Many notions that arepart of the repertoire of any mathemati
ian are not (yet) in the standardlibrary. The most prominent of the 
on
epts ne
essary are division andprimality on the naturals, equality modulo n, greatest 
ommon divisor,exponentiation, and the order of an element b in the multipli
ation groupZ�p. They are formalized in the natural way by the following de�nitions.De�nition Divides(n;m) = 9q : N :(m = n � q)De�nition Prime(n) = (n > 1) ^ 8q : N :(qjn! (q = 1 _ q = n))De�nition Mod(a; b; n) = 9q : Z:(a = b+ n � q)De�nition G
d(a; b; 
) = 
ja ^ 
jb ^ 8d : N :((dja ^ djb)! (d � 
))Fixpoint � Exp(a; 0) = 1Exp(a; n+ 1) = a � Exp(a; n)De�nition Order(b; q; p) = (0 < q) ^ bq = 1 (mod p)^8d : N :(((0 < d) ^ bd = 1 (mod p)))! (q < d)The de�nition of Exp is a so-
alled �xpoint de�nition, whi
h means thatExp is de�ned by well-founded re
ursion. In pra
ti
e this means thatExp(a; n) is 
onvertible to an for 
on
rete values a and n, and for example�nding an inhabitant for the statement Exp(2; 3) = 8 is as easy as �ndingan inhabitant for 8 = 8. The de�nitions of Divides and Mod do not havethis 
omputational behavior, in order to prove for example Divides(2; 8),one has to provide the witness q = 4. For brevity Divides(n;m) is denotedas njm, Mod(a; b; n) is denoted as a = b (mod n), and Exp(a; n) is denotedas an.The de�nition of 
on
epts alone is not enough. Many trivial (and lesstrivial) lemmata about the 
on
epts have to be proven so that they 
an beused in the 
ourse of proving the 
riterion. The de�nitions together withthe lemmata are grouped together in Coq modules representing mathe-mati
al theories. In this way, the theories 
an be reused when formalizingother parts of mathemati
s, for instan
e similar 
riteria. Figure 1 gives anoverview of the di�erent modules developed to prove Po
klington's 
rite-rion. For the modules that are not part of the standard library, the size isgiven. The modules are Coq verna
ular �les and are available online [18℄.The Arith and ZArith modules are provided by Coq to support basi
arithmeti
 on the natural and integer numbers respe
tively. The naturalnumbers are implemented indu
tively with 
onstru
tors for zero elementand su

essor fun
tion. This unary representation makes these natural
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Figure 1: The modules of the formalization.numbers very ineÆ
ient for 
omputation on 
on
rete instan
es. The in-teger numbers are also implemented indu
tively but with a binary repre-sentation whi
h is mu
h more suited for 
on
rete 
omputations. However,when reasoning about abstra
t numbers, for example to prove results byindu
tion, the binary representation 
an be
ome a hindran
e. To over-
ome these diÆ
ulties, Coq results are available, that allow to 
onvertbetween the slow naturals and the fast integers. We developed some morein the natZ module. This allows swit
hing between the two representa-tions in the proof of the 
riterion. When the 
riterion is applied in the nextse
tion to generate 
on
rete primality proofs, the binary representation isused ex
lusively.The natZ module is part of a layer of modules built on top of the arith-meti
 modules. This layer develops some mathemati
al tools, it 
onsistsof data-stru
tures and lemmata to allow a slightly higher level of rea-soning later on. The module lemmas 
olle
ts the additional lemmata onelementary arithmeti
s whi
h were needed during the development. Thetheory of �nite lists is in the list module; it is heavily used in reasoningabout prime fa
torization and in the proof of Fermat's little theorem. Thede
 theory 
ontains lemmata useful for proving de
idability of predi
atesin general. De
idability of a predi
ate P in the 
ontext of 
onstru
tivetheorem provers like Coq means that the prin
iple of the ex
luded mid-dle, P (n) _ :P (n), holds. One may 
arry out a formalization in Coqin 
lassi
al logi
 by assuming the prin
iple of the ex
luded middle as anaxiom holding for any proposition. Instead, our formalization of Po
k-
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riterion is done fully 
onstru
tive. The de
 module starts withsome de
idability proofs for simple predi
ates.Lemma eqde
 : 8n;m : N :(n = m _ :(n = m))Lemma lede
 : 8n;m : N :(n � m _ :(n � m))Lemma ltde
 : 8n;m : N :(n < m _ :(n < m))Lemma gede
 : 8n;m : N :(n � m _ :(n � m))Lemma gtde
 : 8n;m : N :(n > m _ :(n > m))Other lemmata in de
 serve as tools for proving de
idability for 
ompoundpredi
ates. De
idability is preserved by the propositional 
onne
tives.Lemma notde
 : 8P : Prop:(P _ :P ! :P _ ::P )Lemma andde
: 8P;Q : Prop:(P _ :P )! (Q _ :Q)!(P ^Q) _ :(P ^Q)Lemma orde
 : 8P;Q : Prop:(P _ :P )! (Q _ :Q)!(P _Q) _ :(P _Q)Lemma impde
: 8P;Q : Prop:(P _ :P )! (Q _ :Q)!(P ! Q) _ :(P ! Q)It is also preserved by bounded versions of the quanti�ers. This meansthat proving de
idability of predi
ates like Divides and Prime redu
es toproving that the quanti�ers in the de�ning terms 
an be bounded.Lemma allde
: 8P : N ! Prop:8N : N :(8n : N :(Pn) _ :(Pn))!8x : N :(x < N ! (Px)) _ :8x : N :(x < N ! (Px))Lemma exde
 : 8P : N ! Prop:8N : N :(8n : N :(Pn) _ :(Pn))!9x : N :(x < N ^ (Px)) _ :9x : N :(x < N ^ (Px))Having developed the meta theory so far, it is possible to build the realmathemati
al theory needed for Po
klington's 
riterion. The divides,prime, mod, g
d, exp, and order modules de�ne the mathemati
al no-tions introdu
ed in the de�nitions given above and 
ontain many usefullemmata with proofs about these 
on
epts. For instan
e, the main resultin the module 
on
erning prime numbers is the theorem stating that inorder to prove primality of a natural number n it is enough to 
he
kdivisibility by all the primes up to pn:Lemma primepropdiv:8n : N :(n > 1) ^ (8p : N :Prime(p) ^ pjn! (p > pn))! Prime(n)The modprime module 
ontains some results about modulo arithmeti
where the modulus is prime. The 
ombination of the modprime and ordermodules 
ould be repla
ed with additional e�ort by more abstra
t grouptheory modules. The fermat module 
ontains Fermat's little theorem.Finally, the top module po
k in Figure 1 
ontains the formal proof ofLemma 2.1. The proof pro
eeds using several te
hni
al lemmata whi
hmimi
 the high level reasoning of the informal proof. These te
hni
al lem-mata are ne
essary for two reasons. First of all, the informal proof usesforward reasoning whereas the Coq system, being a goal dire
ted theo-rem prover, uses ba
kward reasoning. In the ba
kward reasoning style oftheorem proving, the user is presented with a goal to prove and works
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k to the assumptions on whi
h this goal depends by meansof ta
ti
s. The informal proof, however, pro
eeds by 
ontradi
tion intro-du
ing an arbitrary prime divisor p of n. It shows that p > pn, and fromthis it 
on
ludes that n must be prime. This forward style of reasoning
an be simulated in Coq by �rst proving the lemma primepropdiv, 
itedabove, and applying it to the 
urrent goal, Prime(n). Doing so, the goalis repla
ed by new obligations to prove that n > 1 and p > pn for allprime divisors p of n. The appli
ation of the lemma 
orresponds to lines1,10, and 11 of the proof of Lemma 2.1.The se
ond reason for using te
hni
al lemmata in the 
onstru
tion ofthe proof of Po
klington's 
riterion is to 
apture high level reasoning. Infa
t, the steps in the informal proof are large steps. Look for example atline 4 of the informal proof. In order to show that q is the order of b inZ�p, a 
ontradi
tion is derived from the assumption that b qqi = 1 (mod p)for some prime fa
tor qi of q. This follows from a number of non-trivialte
hni
al lemmata su
h as:Lemma order ex :8p : N :Prime(p)! 8b : Z:9d : N :(Order(b; d; p))Lemma order div:8b : Z:8x : N :8p : N :Order(b; x; p)!8y : N :(y > 0 ^ (by = 1 (mod p))! xjy)Lemma tlemma3:8a; b : N :0 < a < b ^ ajb! 9qi : N :(qijb ^ Prime(qi) ^ aj bqi )The full formalization of Po
klington's result gives us a way to generateproofs of primality that are formal and a

eptable by the most skepti
alapproa
h.3. Generating Primality ProofsThis se
tion des
ribes how Po
klington's Criterion 
an be used to produ
ea formal and eÆ
ient primality proof for a relatively bigz prime number. Ina skepti
al approa
h one invokes an outside ora
le to supply the theoremprover with the ne
essary witnesses for applying Po
klington's 
riterion.It is natural to think of 
omputer algebra systems a
ting as ora
les whenalgebrai
 equalities have to be veri�ed. For example, when a = b (mod n)needs to be proved the 
omputer algebra system 
an provide q 2 Z su
hthat a = b+ qn. For the skepti
al approa
h to work, a 
omputer algebrasystem must be able to supply both a fast de
ision for the primality ofa positive number n and in the aÆrmative 
ase the ability to provideadditional extra information for building a proof-obje
t.To realize the automati
 generation of primality proofs exploiting 
om-puter algebra systems, we implemented a Java applet whi
h 
an 
ommu-ni
ate both with a 
omputer algebra ora
le and with Coq, see Figure 2for an overview of the overall ar
hite
ture. This implementation makeszSee the next se
tion for a dis
ussion on the size of the prime.
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Figure 2: Overall Ar
hite
ture.no 
laim of being a generi
 ta
ti
 
reation framework. It was initiatedas a 
ase study to help build tool support for 
ombining mathemati-
al servi
es provided by external engines, libraries and proto
ols su
has [27, 10, 35, 33, 23℄.The applet allows the user to input a number n and generates (if nis prime) Coq ta
ti
s that show the primality of n. The proof des
ribedby these ta
ti
s applies Po
klington's 
riterion to the 
orre
t instantia-tion of the parameters. The parameters are witnesses retrieved from the
omputer algebra system. Communi
ation with the 
hosen 
omputer al-gebra system takes pla
e using OpenMath [17, 16℄, a language for sharingmathemati
al obje
ts between 
omputer algebra systems, therefore any
ompliant 
omputer algebra system 
an be used [10℄. The possibility ofswit
hing to a di�erent engine is 
ru
ial sin
e ea
h 
omputer algebra sys-tem is able to deal with arbitrary long integers under 
ertain restri
tions.These restri
tions vary, in parti
ular the bounds on the probabilisti
 testsfor primality and fa
torization are di�erent. Depending on the 
hosen or-a
le, one is able to obtain witnesses for small (e.g. up 10 digits like in ourJava implementation of the 
omputer algebra ora
le), big (e.g. up to 500digits), or even bigger primes (e.g more than 500 digits). The generatedta
ti
s are sent to Coq and a formal proof-obje
t is returned.The applet 
an be seen as a prototype intera
tive mathemati
al do
u-ment. The user 
an in
uen
e the presentation of the do
ument in severalways. The prime number n 
an be set by the user, there are several 
om-puter algebra systems to 
hoose from, and the user 
an spe
ify to whi
hextend the theorem prover should trust the witnesses provided by the
omputer algebra ora
le. The latter 
hoi
e is made by sele
ting a belieflevel ranging from skepti
al (level 1) to believing (level 5). More pre
isely,we have sele
ted the following 
lasses of assertions within ea
h belief level:1.Believe nothing. All generated sub-goals are proved.2.Believe simple modular equations. As above, but modular equationsof the form a = b (mod n), that are proved dire
tly by �nding awitness, are assumed as axioms instead.3.Believe modular equations. As above, but modular equations of the
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klingtonC (n;T )Input: n a prime number.Output: T a ta
ti
 s
ript for proving primality of n by Po
klington's 
riterion.(1)[Find witnesses.℄Let a be the primitive root mod n. Choose q and m su
h that n = qm + 1, q � 0, m � 0.Compute the prime fa
torization of q in q1 � : : : � qt(2)[Re
ursion Step℄Apply re
ursively Po
klingtonC (qi;Si) for i = 1; : : : ; t to every prime fa
tor qi in thefa
torization of q, thus obtaining ta
ti
 s
ripts S1; : : : ; St.(3)[Apply Po
klington's℄Apply Po
klington's 
riterion using the parameters a, q, q1, : : :, qt, and m in order to provePrime(n).(4)[Prove the sub-goals℄Provide the ta
ti
 s
ripts Sa, Sb, and S
 for proving the sub-goals 
orresponding to thehypotheses of Po
klington's 
riterion.(a)an�1 = 1(mod n) is shown by a divide and 
onquer strategy in whi
h the exponentgets smaller until the 
omputation is trivial.(b)g
d(an�1qi � 1; n) = 1, i = 1; : : : ; t is shown by proving that 1 is a linear 
ombinationof an�1qi � 1 and n (mod n).(
)n � q2 is shown trivially.(3)[Output℄ Assemble the ta
ti
 s
ripts S1, : : :, St, Sa, Sb, and S
 in the ta
ti
 s
ript T forproving Prime(n). Figure 3: Po
klington Criterion Algorithmform am = b (mod n), that are proved using the divide and 
onquermethod outlined below, are assumed as axioms instead.4.Believe modular equations and linear 
ombinations. As above, butalso sub-goals of the form 9�; �:(�x+ �x = 
 (mod n)) are assumedas axioms.5.Believe everything. Any sub-goal may be assumed as an axiom.In prin
iple the proof-obje
t returned by Coq 
ould be parsed and pre-sented using the tools developed in [30℄ leading to a real intera
tive math-emati
al do
ument in the sense of [12℄.Now we des
ribe in detail the algorithm based on Po
klington's 
rite-rion whi
h redu
es the proof of primality of a positive integer n to theproof of a number of algebrai
 identities. The Po
klingtonC algorithmsummarized in Figure 3 takes as input a prime number n and produ
esa Coq ta
ti
 s
ript for 
onstru
ting a proof-obje
t for Prime(n). Intera
-tion with 
omputer algebra ora
les takes pla
e mostly in Step (1), wherethe witnesses are found, and (4), where the algebrai
 identities are shown.When the 
omputer algebra software is given a positive number n,it �rst tests whether the number is indeed prime. If not, it returns the
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an 
ompute thenumbers a, q and m as follows. For a take the primitive root (mod n),namely an element a su
h that an�1 = 1; (mod n) and ai 6= 1; (mod n)for i = 1; : : : ; n � 2. For q, 
onsider the prime fa
torization n � 1 =q1 : : : qt : : : qk, where q1 � : : : � qt � : : : � qk, and take q = q1 : : : qt forthe smallest t su
h that q � pn. Finally, form take m = (n�1)=q. All theoperations to 
ompute the appropriate a, q = q1 : : : qt, and m are 
arriedout by the 
omputer algebra pa
kage upon re
eiving the prime number n.Noti
e that these witnesses, 
omputed as des
ribed, satisfy the hypothesesof Po
klington's 
riterion. Sub-goals (4)(a) and (4)(
) are 
learly true.Condition (4)(b) is true be
ause n is prime and g
d(an�1qi � 1; n) 
annotbe n. If it was n, then an�1qi = 1 (mod n) for an exponent n�1qi < n � 1.However, this is not possible be
ause a is the primitive root (mod n).The 
omputer algebra ora
le is also 
alled in Step (4)(b). It 
omputesthe 
oeÆ
ients for the linear 
ombinations generated by the g
d proof obli-gations using a straightforward extension of the Eu
lidean g
d algorithm.Most 
omputer algebra systems provide this algorithm as primitive. Theora
le also 
omputes the result of the exponentiation for an�1 (mod n)and an�1qi and for all the intermediate steps in the divide and 
onquerpro
edure outlined below. Intermediate obligations are of the form xm =y (mod n) where all variables are 
on
rete instan
es su
h that x; y � n.Although �nding the witness z 2 Z su
h that xm = y + z � n is easy forthe 
omputer algebra system, the 
omputations involved in proving theequality dire
tly are too expensive for Coq as xm gets large. Instead, thegoal is 
hanged by repla
ing the exponent m as follows.xm = y (mod n)( ( xm2 = z (mod n); zz = y (mod n) if m evenxm�12 = z (mod n); xzz = y (mod n) if m oddThe 
omputer algebra ora
le is used to 
ompute z su
h that 0 � z <n. The resulting goal involving x is solved by re
ursively applying thispro
edure, the other goal 
an be proved dire
tly as all numbers are small.Note that this solution again relies on the 
omputer algebra ora
le to �ndwitnesses.To summarize the overall pi
ture, the algorithm Po
klingtonC 
an beused to produ
e a Coq ta
ti
 s
ript that generates a proof-obje
t for theprimality of a positive number. The only requirements on the 
omputeralgebra systems used as ora
les is the ability to perform integer 
omputa-tions like prime testing, fa
torization, g
d 
omputation and some modulararithmeti
. Sin
e the 
ommuni
ation uses the OpenMath standard, the ar-
hite
ture allows for multiple 
omputer algebra ora
les, see Figure 2. Theta
ti
s view of the applet presents the generated ta
ti
 s
ript to the user,see Figure 4.All responses of Coq 
an be predi
ted, so the ta
ti
 s
ript 
an be
omposed without 
onsulting Coq. On
e the s
ript is generated, the user
an send it to Coq whi
h returns a proof-obje
t. The proof-obje
t ispresented in the proof-obje
t view, see Figure 5.
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Figure 4: Ta
ti
s view of applet.

Figure 5: Proof-obje
t view of applet.4. ResultsOur implementation of the ar
hite
ture des
ribed above 
onsists of a Javaappli
ation in whi
h the user enters a positive integer n and sele
ts a 
om-puter algebra pa
kage running on a remote server. If the number is prime,the 
omputer algebra pa
kage is repeatedly invoked for a 
on
rete valueof n and for the subsequent re
ursive 
alls of the fa
tors. The appli
ationthen generates a Coq ta
ti
 s
ript that 
an be sent automati
ally to Coqwhen proving the goal Prime(n).In pra
ti
e, the algorithm outlined in Se
tion 3 has to take into a

ountlimitations on the size of the prime number n. Computer algebra software,
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 and return aprobable prime. For instan
e, testing numbers with several hundreds digitsis quite feasible in GAP4 using IsPrimeInt or IsProbablyPrimeIntx.Con
erning fa
torization, Fa
torsInt is guaranteed to �nd all fa
torsless than 106 and will �nd most fa
tors less than 1010.We tested the generated ta
ti
 s
ripts for all primes between 2 and 7927(the �rst 1000 primes) and measured the time needed by Coq to run theta
ti
 s
ript and 
he
k the resulting proof-obje
t on a Unix workstation.{Obviously the general trend is that larger primes need more time. How-ever, some numbers are mu
h harder due to an unfortunate prime fa
tor-ization of q. Some examples of easy and hard primes are given in 
olumn1 in Table 1 followed by the number of re
ursive 
alls, and the se
ondsneeded to prove primality using a believing and a skepti
al approa
h.Table 1: Easy and hard primes.n Re
ursive 
alls Believing Skepti
al2939 3; 7; 113 5 254111 17; 137 4 257829 17; 103 4 282039 3; 7; 127; 509; 1019 8 454079 3; 7; 127; 509; 1019; 2039 9 617727 3; 193; 1931; 3863 7 52For example when proving Prime(2039), the algorithm is for
ed to
hoose q = 1019, sin
e the prime fa
torization of 2038 is 2 � 1019. Now,1018 in its turn has as prime fa
torization 2 � 509. In the end re
ursive
alls for 3, 7, 127, 509, and 1019 are needed to prove Prime(2039), andit takes about 45 se
onds to verify the proof. In 
ontrast to verify theproof generated for n = 2939 only needs re
ursive 
alls for 3, 7, and 113and only takes about 25 se
onds. The number of primes required in there
ursion steps for the �rst 1000 primes are plotted in Figure 6. Numbersof the form 2n + 1 require no re
ursive 
all (they are 3, 5, 17, 257, : : :).Next best are primes of the form p+1 where the fa
torization of p involvesprimes of the form 2n + 1 above (they are 7, 11, 13, 19, 37, 41, : : :), andso on. In general, given a number n, the worst 
ase is that there will bedlog2 n+13 e primes to be 
he
ked re
ursively. This trend shows also in theplot of the size of the 
ontext used in the primality proof (number of lem-mata about modular equations, linear 
ombinations, and primes) as givenin Figure 7. The 
omplete run-time results for the �rst 1000 primes areplotted in Figure 8. The timings (in se
onds) for the believing approa
hxIt remains to see whether, for su
h titani
 primes, Coq su

eeds in 
he
king the generatedproofs.{The ma
hine used for the tests is a Sun Ultra 10 with 333Mhz Spar
 pro
essor and 128MBmemory. The Coq version used is 6.3.1.
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h (belieflevel 1 on page 8, where all sub-goals are proved) are given. The resultsin Figure 8 show that the 
urrent implementation signi�
antly improvesthe implementation dis
ussed in [11℄. This is due to the fa
t that the 
ur-rent implementation avoids the unary represented numbers 
ompletely,whereas the generated ta
ti
 s
ript in [11℄ still used unary representednumbers in some pla
es. In [11℄ the time 
omplexity of the algorithm
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onds) for the �rst 1000 primes.seemed to be worse than linear, while Figure 8 shows a logarithmi
 time
omplexity.Some large primes that were tested are listed in Table 2. For severalof them, GAP issues a warning that a probabilisti
 primality test is used.The last 
olumns lists the time Coq needed to 
he
k the proof-obje
tprodu
ed by the skepti
al approa
h.Table 2: Some large primes veri�ed skepti
ally.n Digits Time1234567891 10 24574747474747474747 17 7671111111111111111111 19 14719026258083384996860449366072142307801963 40 1240420988936657440586486151264256610222593863921 44 290605. Con
lusionsWe have shown how by 
ombining 
omputer algebra ora
les and theoremprovers it is possible to automati
ally produ
e proofs of primality that areeÆ
iently and formally veri�able. The primality proofs are obtained a
-
ording to Po
klington's 
riterion that has been formally proven in Coq.The formal development has been 
arried out 
onstru
tively and is nowavailable as 
ontributed library of Coq, it 
onsists of 260 smaller lemmatataking approximately 5000 lines of 
ode.
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hite
ture for using Po
klington's 
riterion relies on the useof 
omputer algebra ora
les. We implemented these ora
les by re-usingOpenMath mathemati
al servers providing 
omputational 
apabilities onthe network that we have developed previously. The Java appli
ationthat produ
es the ta
ti
 s
ript behaves as a 
lient to these servers. In thisgeneral view, our experiments are an example of how to use 
omputeralgebra in theorem proving and an investigation on the tools that arerequired to e�e
tively 
arry out the integration. We pro�ted greatly fromour former work in using the standard 
ommuni
ation language Open-Math to interfa
e to a variety of symboli
 
omputation systems. For someof the systems we used, we have developed our own small OpenMath in-terfa
e, available from http://
rystal.win.tue.nl/publi
/proje
ts,sin
e unfortunately most system do not yet support OpenMath (GAP isamong the few that a
tually do). It was extremely easy to extend thealready available OpenMath servers to handle the requests of the Po
k-lington's applet. In our experien
e, adding a new ora
le for the spe
i�
tasks of this 
ase study is quite straightforward: the fewOpenMath obje
tsused in the 
ommuni
ation are the only ones that need to be translated,together with the result. It should eventually be possible in future to in-tera
t with mathemati
al servers by a unique proto
ol without having toworry about syntax, lo
ation, or availability.We tested the 
urrent implementation with primes up to 44 digits. Be-sides the diÆ
ulty of 
omputing the witnesses required by the proof ofsu
h large numbers, another issue has been the time required to 
he
klarger proof-obje
ts. It is striking to see what 
an a
tually be a

om-plished by 
ombining powerful 
omputer algebra systems with Coq. Infa
t, we do not think that Ferrier's prime is the largest prime that 
an beta
kled by our approa
h although we have not yet attempted any biggerone. We are 
urrently adding interfa
es to Pari and to Magma whi
h willallow to ta
kle larger problemsk. For this appli
ation, adding 
omputeralgebra engines as ora
les is 
onsiderably simpler than 
hanging the proofassistant, whi
h would imply doing most of the formal development plusdesigning a new ad-ho
 ta
ti
 generator. It is our hope that 
ase stud-ies su
h as this one stimulate the developers of 
omputational softwarein building systems that provide mathemati
al servi
es in a standardizedway. This would greatly simplify this kind of investigations.A
knowledgments: The authors are very grateful to Henk Baren-dregt and to Arjeh Cohen for suggesting this 
ase study and for 
halleng-ing and inspiring them with proving bigger and bigger primes. HermanGeuvers has helped us with hints during many dis
ussions. A gratefulthanks to the anonymous referees for pointing out missing referen
es inthe initial version of the bibliography.kFor instan
e the primitive root of the prime 3141592653589793238462643383279528841 is
omputed without problems by Magma, whereas GAP 
omplains.
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