Article Submitted to Journal of Symbolic Computation

Formal and efficient primality proofs by use
of Computer Algebra oracles

OLGA CAPROTTI*' AND MARTIIN QOSTDIJK?

LRISC-Linz Research Institute for Symbolic Computation, Johannes Kepler
University, A-4020 Linz, Austria

2Department of Mathematics and Computer Science, Eindhoven University of
Technology, P.O.Boz 513, 5600MB, FEindhoven, The Netherlands

Abstract

This paper focuses on how to use Pocklington’s criterion to produce effi-
cient formal proof-objects for showing primality of large positive numbers.
First, we describe a formal development of Pocklington’s criterion, done
using the proof assistant C0Q. Then we present an algorithm in which
computer algebra software is employed as oracle to the proof assistant
to generate the necessary witnesses for applying the criterion. Finally,
we discuss the implementation of this approach and tackle the proof of
primality for some of the largest numbers expressible in C0Q.

1. Introduction

The problem of showing whether a positive number is prime or composite
is historically recognized to be an important and useful problem in arith-
metic. Since Euclid’s times, the interest in prime numbers has only been
growing. For today’s applications, primality testing is central to public key
cryptography and for this reason is still heavily investigated in number
theory [32].

Although the problem is clearly decidable, the trivial algorithm, derived
from the definition, that checks for every number ¢ such that ¢ < /n
whether ¢|n, is far too inefficient for practical purposes. There exist sev-
eral alternative methods to check primality however in this paper we deal
exclusively with proofs obtained by a classical criterion due to Pocklington
in 1914 [31]. Our interest is motivated by the fact that in order to produce
a proof of primality the criterion needs to find numbers that verify certain
algebraic equalities. These numbers are easily generated by a computer al-
gebra oracle, for instance the systems GAP, Magma, or Pari [21, 29, 5] deal
well with number theoretical questions. From the computer algebra point

*During this work, the author was supported by the OpenMath Esprit project 24969

Caprotti and Oostdijk: Formal and efficient primality proofs

of view, it has already been shown how an informal textual proof of pri-
mality generated by GAP can be turned into an interactive mathematical
document [13] in natural language in which the algebraic assertions can
be interactively verified using a computational back-engine. Instead, the
approach of this paper is from the theorem proving point of view and the
main problem is efficiently constructing a formal, verifiable proof-object
(a lambda term) representing a proof of primality. This proof-object can
then be visualized as an interactive mathematical document in the sense
of [13, 12].

Notice that the cooperation of theorem provers with computer algebra
is essential for being able to solve this task. Theorem provers are very
limited on the amount and type of computations they can perform [3],
however, they are very well suited for organizing the logical steps of a
proof. On the other hand, although computer algebra systems have algo-
rithms for deciding whether a number is prime or not, it is hard for them
to produce a proof of primality, let alone one that is formally verifiable
by a theorem prover. Additionally, in certain systems, the algorithms em-
ployed to test primality (or compositeness) of large primes behave prob-
abilistically and there is a slight possibility that the returned answer is
not true. Thus, the winning strategy is to combine both kinds of system.
There is a wide amount of literature both on the subject of combining
systems for problem solving and on specific case studies, among many see
for instance [22, 9, 8, 6, 19, 7, 14].

Computer algebra has been incorporated in theorem proving following
three approaches, based on the level of trust, that range from believing,
through skeptical, to autarkic [25, 3, 15]. The believing approach trusts
completely the results given by a computer algebra system and treats
them as axioms [1]. The skeptical approach does not trust completely the
results given by a computer algebra oracle and treats them as witnesses
that require formal verification [24, 28, 34]. This approach presupposes
that the chosen oracle is good at finding the witnesses. The autarkic
approach refuses to consult any oracle and does all the computations
inside the theorem prover.

This paper extends the initial work presented in [11] on how Pock-
lington’s criterion can be employed in a skeptical approach to produce
efficient formal proof-objects that show primality of large positive num-
bers in a proof assistant such as CoqQ [4]. The claim of formality relies
on the complete development and proof of Pocklington’s criterion within
CoqQ which has been restated in a variant that allows to use integers in-
stead of natural numbers. The claim of efficiency ' is sustained by the
fact that we have been able, for instance, to construct and verify the
proof of primality of Ferrier’s prime, a 44-digits long prime number (the
longest one found before the computer age) arbitrarily chosen among the
ones listed in [26]. The implementation is geared toward the possibility
of switching to a different computer algebra engine if need arises: for in-

tIntended in the context of theorem proving.

Caprotti and Oostdijk: Formal and efficient primality proofs

stance when factorization of large integers is required the user may easily
choose a more powerful engine as oracle. Additionally, the user may define
at which level of belief the proof should be produced, from total trust in
each algebraic result coming from the oracle to total skepticism.

The structure of this paper is as follows. The formalization of Pockling-
ton’s criterion is described in Section 2. Section 3 gives the architectural
details for using it to produce formal proofs of primality with the aid
of computer algebra oracles. Our implementation of the algorithm and
timings for some benchmarks are discussed in Section 4 and the paper’s
conclusions are in Section 5.

2. Formalization

The Pocklington criterion is one of many number theoretical results that
are useful for verifying primality of a positive number n, see for in-
stance [32] for more examples. This section describes the development
of a formal proof of the criterion in CoQ, starting with the informal
proof. Such a formalization is a prerequisite necessary before producing
primality proof-objects that can be automatically checked for correctness.
The work presented in this section is a follow-up of [20], where the use of
Pocklington’s Criterion in a formal setting was first investigated.

LEMMA 2.1 (POCKLINGTON’S CRITERION):Let n € N, n > 1 with n —

1 = q-m such that ¢ = q1---q for certain primes qi,...,q. Suppose
n—1

that a € 7 satisfies a” ! = 1 (mod n) and ged(a % — 1,n) = 1 for all

i=1,...,t. If ¢ > /n, then n is a prime.

Proof:1 Let p|n and Prime(p), put b = a™.
> Then b9 = @™ = a" ! = 1 (mod n).
3 So b? =1 (mod p).
4 Now ¢ is the order of b in Z;, because:
5 Suppose ba =1 (mod p), then 0t = anq_il = 1 (mod p).
6 There exist a, 8 € Z such that oz(anTz‘1 — 1)+ pn =1 (mod p).
7 So, a(1 — 1) + 0 =1 (mod p). Contradiction.
s By Fermat’s little theorem: b»~! = 1 (mod p),
o therefore ¢ <p—1, 50 v/n < g < p.
10 Hence for every prime divisor p of n: p > /n.
11 Therefore Prime(n).

O

Although the proof is easy from a mathematical viewpoint, the exercise
of formalizing it in C0OQ is not a straightforward one.

The CoQ system is a logical system based on typed lambda calculus [2].
Propositions can either be assumed as axioms, or they can be proven by
constructing a formal proof-object. A complete formalization of Pock-
lington’s criterion amounts to finding a proof-object, i.e. a lambda term,
which inhabits the type corresponding to the statement of the criterion.

Caprotti and Oostdijk: Formal and efficient primality proofs

Our development of the criterion is a full formalization, meaning that
no lemma is assumed as axiom. Building the formal proof from the basic
lambda primitives requires a lot of work. However, the CoQ proof assis-
tant is equipped with a library of defined concepts concerning standard
mathematical theories including natural numbers, integers, relations, and
lists. Furthermore, it has a powerful language of tactics which allows the
user to specify proofs as abstract tactic scripts instead of concrete lambda
terms.

Formalization starts with identifying those mathematical concepts used
in the proof that are not yet in the standard library. Many notions that are
part of the repertoire of any mathematician are not (yet) in the standard
library. The most prominent of the concepts necessary are division and
primality on the naturals, equality modulo n, greatest common divisor,
exponentiation, and the order of an element b in the multiplication group
Zy,. They are formalized in the natural way by the following definitions.

Definition Divides(n,m) = 3¢ : N.(m = n * q)
Definition Prime(n) = (n > 1) AVq: N.(gln —» (¢ =1V qg=n))
Definition Mod(a, b,n) = 3q: Z.(a = b+ n * q)
Definition Ged(a,b,c) = cla A ¢[b AVd: N.((d|a A d|b) — (d < ¢))
L Exp(a,0 =1
Fixpoint { ExpEa,n)-l— 1) = axExp(a,n)
Definition Order(b,q,p) = (0 < g¢) Ab? =1 (mod p)A
Vd: N.(((0 < d) Ab? =1 (mod p))) — (¢ < d)

The definition of Exp is a so-called fixpoint definition, which means that
Exp is defined by well-founded recursion. In practice this means that
Exp(a, n) is convertible to a" for concrete values a and n, and for example
finding an inhabitant for the statement Exp(2,3) = 8 is as easy as finding
an inhabitant for 8 = 8. The definitions of Divides and Mod do not have
this computational behavior, in order to prove for example Divides(2, 8),
one has to provide the witness ¢ = 4. For brevity Divides(n,m) is denoted
as n|m, Mod(a, b,n) is denoted as a = b (mod n), and Exp(a,n) is denoted
as a”.

The definition of concepts alone is not enough. Many trivial (and less
trivial) lemmata about the concepts have to be proven so that they can be
used in the course of proving the criterion. The definitions together with
the lemmata are grouped together in COQ modules representing mathe-
matical theories. In this way, the theories can be reused when formalizing
other parts of mathematics, for instance similar criteria. Figure 1 gives an
overview of the different modules developed to prove Pocklington’s crite-
rion. For the modules that are not part of the standard library, the size is
given. The modules are CoQ vernacular files and are available online [18].

The Arith and ZArith modules are provided by CoQ to support basic
arithmetic on the natural and integer numbers respectively. The natural
numbers are implemented inductively with constructors for zero element
and successor function. This unary representation makes these natural

Caprotti and Oostdijk: Formal and efficient primality proofs

pock
8KB

prime modprime ferma orde
? 7KB ? 7KB -ZOKB -4KB
divid mod gcd exp
14KB 15KB 8KB 4KB

f f f f

lemm dec natZ list
10KB 9KB 6KB 16KB

i i i i

Arith ZArith

f f

Coq (nat,logic,etc.)

Figure 1: The modules of the formalization.

numbers very inefficient for computation on concrete instances. The in-
teger numbers are also implemented inductively but with a binary repre-
sentation which is much more suited for concrete computations. However,
when reasoning about abstract numbers, for example to prove results by
induction, the binary representation can become a hindrance. To over-
come these difficulties, CoQ results are available, that allow to convert
between the slow naturals and the fast integers. We developed some more
in the natZ module. This allows switching between the two representa-
tions in the proof of the criterion. When the criterion is applied in the next
section to generate concrete primality proofs, the binary representation is
used exclusively.

The natZ module is part of a layer of modules built on top of the arith-
metic modules. This layer develops some mathematical tools, it consists
of data-structures and lemmata to allow a slightly higher level of rea-
soning later on. The module lemmas collects the additional lemmata on
elementary arithmetics which were needed during the development. The
theory of finite lists is in the 1ist module; it is heavily used in reasoning
about prime factorization and in the proof of Fermat’s little theorem. The
dec theory contains lemmata useful for proving decidability of predicates
in general. Decidability of a predicate P in the context of constructive
theorem provers like CoQ means that the principle of the excluded mid-
dle, P(n) V =P(n), holds. One may carry out a formalization in C0Q
in classical logic by assuming the principle of the excluded middle as an
axiom holding for any proposition. Instead, our formalization of Pock-

Caprotti and Oostdijk: Formal and efficient primality proofs

lington’s criterion is done fully constructive. The dec module starts with
some decidability proofs for simple predicates.

Lemma eqdec: Vn,m: N.(n = m V =(n = m))
Lemma ledec: Vn,m: N.(n < mV =(n < m))
Lemma ltdec: Vn,m: N.(n < mV =(n < m))
Lemma gedec: Vn,m: N.(n > mV =(n > m))
Lemma gtdec: Vn,m: N.(n > m V =(n > m))

Other lemmata in dec serve as tools for proving decidability for compound
predicates. Decidability is preserved by the propositional connectives.

Lemma notdec: VP: Prop.(PV —-P — =PV —=P)
Lemma anddec: VP, Q: Prop.(PV =P) = (Q V -Q) —
(PAQ)V—=(PAQ)

Lemma ordec: VP, Q: Prop.(PV —P) = (Q V —Q) —
(PVQ)V=(PVQ)

Lemma impdec: VP, Q: Prop.(P V -P) = (Q V -Q) —
(P=Q)V~-(P—=Q)

It is also preserved by bounded versions of the quantifiers. This means
that proving decidability of predicates like Divides and Prime reduces to
proving that the quantifiers in the defining terms can be bounded.

Lemma alldec: VP: N — Prop.YN: N.(Vn : N.(Pn) V =(Pn)) —
Vz:N.(z < N — (Pz)) V-Vz:N.(z < N = (Px))

Lemma exdec: VP: N — Prop.VN: N.(Vn : N.(Pn) V =(Pn)) —
dz:N.(z < N A (Px))V—-3z: N.(z < N A (Px))

Having developed the meta theory so far, it is possible to build the real
mathematical theory needed for Pocklington’s criterion. The divides,
prime, mod, gcd, exp, and order modules define the mathematical no-
tions introduced in the definitions given above and contain many useful
lemmata with proofs about these concepts. For instance, the main result
in the module concerning prime numbers is the theorem stating that in
order to prove primality of a natural number n it is enough to check
divisibility by all the primes up to /n:

Lemma primepropdiv:
Vn:N.(n > 1) A (Vp: N. Prime(p) A p|n — (p > /n)) — Prime(n)

The modprime module contains some results about modulo arithmetic
where the modulus is prime. The combination of the modprime and order
modules could be replaced with additional effort by more abstract group
theory modules. The fermat module contains Fermat’s little theorem.

Finally, the top module pock in Figure 1 contains the formal proof of
Lemma 2.1. The proof proceeds using several technical lemmata which
mimic the high level reasoning of the informal proof. These technical lem-
mata are necessary for two reasons. First of all, the informal proof uses
forward reasoning whereas the CoQ system, being a goal directed theo-
rem prover, uses backward reasoning. In the backward reasoning style of
theorem proving, the user is presented with a goal to prove and works

Caprotti and Oostdijk: Formal and efficient primality proofs

his way back to the assumptions on which this goal depends by means
of tactics. The informal proof, however, proceeds by contradiction intro-
ducing an arbitrary prime divisor p of n. It shows that p > /n, and from
this it concludes that » must be prime. This forward style of reasoning
can be simulated in C0oQ by first proving the lemma primepropdiv, cited
above, and applying it to the current goal, Prime(n). Doing so, the goal
is replaced by new obligations to prove that n > 1 and p > /n for all
prime divisors p of n. The application of the lemma corresponds to lines
1,10, and 11 of the proof of Lemma 2.1.

The second reason for using technical lemmata in the construction of
the proof of Pocklington’s criterion is to capture high level reasoning. In
fact, the steps in the informal proof are large steps. Look for example at
line 4 of the informal proof. In order to show that ¢ is the order of b in
Z,, a contradiction is derived from the assumption that bs = 1 (mod p)
for some prime factor ¢; of ¢. This follows from a number of non-trivial
technical lemmata such as:

Lemma order_ex:
Vp: N. Prime(p) — Vb: Z.3d: N.(Order (b, d, p))
Lemma order_div:
Vb: ZNz: N.Vp: N.Order(b, z,p) —
Vy:N.(y > 0A (Y =1 (mod p)) = z|y)
Lemma tlemmad:
Va,b: N.0 < a < bAalb— Jg;: N.(¢;|b A Prime(q;) A a|£)

The full formalization of Pocklington’s result gives us a way to generate
proofs of primality that are formal and acceptable by the most skeptical
approach.

3. Generating Primality Proofs

This section describes how Pocklington’s Criterion can be used to produce
a formal and efficient primality proof for a relatively big! prime number. In
a skeptical approach one invokes an outside oracle to supply the theorem
prover with the necessary witnesses for applying Pocklington’s criterion.
It is natural to think of computer algebra systems acting as oracles when
algebraic equalities have to be verified. For example, when ¢ = b (mod n)
needs to be proved the computer algebra system can provide ¢ € Z such
that a = b + gn. For the skeptical approach to work, a computer algebra
system must be able to supply both a fast decision for the primality of
a positive number n and in the affirmative case the ability to provide
additional extra information for building a proof-object.

To realize the automatic generation of primality proofs exploiting com-
puter algebra systems, we implemented a JAVA applet which can commu-
nicate both with a computer algebra oracle and with CoQ, see Figure 2
for an overview of the overall architecture. This implementation makes

See the next section for a discussion on the size of the prime.

Caprotti and Oostdijk: Formal and efficient primality proofs

OpenMath

ffffffffffff

Proof Verified
Tactics Proof

Object] Maple

Coq

ffffffffffff

Figure 2: Overall Architecture.

no claim of being a generic tactic creation framework. It was initiated
as a case study to help build tool support for combining mathemati-
cal services provided by external engines, libraries and protocols such
as [27, 10, 35, 33, 23].

The applet allows the user to input a number n and generates (if n
is prime) CoOQ tactics that show the primality of n. The proof described
by these tactics applies Pocklington’s criterion to the correct instantia-
tion of the parameters. The parameters are witnesses retrieved from the
computer algebra system. Communication with the chosen computer al-
gebra system takes place using OpenMath [17, 16], a language for sharing
mathematical objects between computer algebra systems, therefore any
compliant computer algebra system can be used [10]. The possibility of
switching to a different engine is crucial since each computer algebra sys-
tem is able to deal with arbitrary long integers under certain restrictions.
These restrictions vary, in particular the bounds on the probabilistic tests
for primality and factorization are different. Depending on the chosen or-
acle, one is able to obtain witnesses for small (e.g. up 10 digits like in our
JAVA implementation of the computer algebra oracle), big (e.g. up to 500
digits), or even bigger primes (e.g more than 500 digits). The generated
tactics are sent to CoQ and a formal proof-object is returned.

The applet can be seen as a prototype interactive mathematical docu-
ment. The user can influence the presentation of the document in several
ways. The prime number n can be set by the user, there are several com-
puter algebra systems to choose from, and the user can specify to which
extend the theorem prover should trust the witnesses provided by the
computer algebra oracle. The latter choice is made by selecting a belief
level ranging from skeptical (level 1) to believing (level 5). More precisely,
we have selected the following classes of assertions within each belief level:

1.Believe nothing. All generated sub-goals are proved.

2.Believe simple modular equations. As above, but modular equations
of the form ¢ = b(mod n), that are proved directly by finding a
witness, are assumed as axioms instead.

3.Believe modular equations. As above, but modular equations of the

Caprotti and Oostdijk: Formal and efficient primality proofs 9

PocklingtonC (n; T')
Input: n a prime number.

Output: T a tactic script for proving primality of n by Pocklington’s criterion.

(1)[Find witnesses.]
Let a be the primitive root mod n. Choose ¢ and m such that n = gm + 1, ¢ > 0, m > 0.
Compute the prime factorization of ¢ in g1 - ... ¢

(2)[Recursion Step]
Apply recursively PocklingtonC (¢;;S;) for i = 1,...,t to every prime factor ¢; in the

factorization of ¢, thus obtaining tactic scripts Sy, ..., S:.

(3)[Apply Pocklington’s]
Apply Pocklington’s criterion using the parameters a, ¢, g1, - - -, ¢, and m in order to prove
Prime(n).

(4)[Prove the sub-goals]
Provide the tactic scripts S,, Sp, and S, for proving the sub-goals corresponding to the
hypotheses of Pocklington’s criterion.
(a)a™ ! = 1(mod n) is shown by a divide and conquer strategy in which the exponent
gets smaller until the computation is trivial.
(b)gcd(anfT'1 —1,n)=1,i=1,...,t is shown by proving that 1 is a linear combination
of ai —1andn (mod n).
(c)n < ¢? is shown trivially.
(3)[Output] Assemble the tactic scripts Si, ..., St, Sa, Sy, and S, in the tactic script T for
proving Prime(n).

Figure 3: Pocklington Criterion Algorithm

form a™ = b(mod n), that are proved using the divide and conquer
method outlined below, are assumed as axioms instead.

4.Believe modular equations and linear combinations. As above, but
also sub-goals of the form Ja, f.(ax + Bz = ¢ (mod n)) are assumed
as axioms.

5.Believe everything. Any sub-goal may be assumed as an axiom.

In principle the proof-object returned by CoQ could be parsed and pre-
sented using the tools developed in [30] leading to a real interactive math-
ematical document in the sense of [12].

Now we describe in detail the algorithm based on Pocklington’s crite-
rion which reduces the proof of primality of a positive integer n to the
proof of a number of algebraic identities. The PocklingtonC algorithm
summarized in Figure 3 takes as input a prime number n and produces
a CoQ tactic script for constructing a proof-object for Prime(n). Interac-
tion with computer algebra oracles takes place mostly in Step (1), where
the witnesses are found, and (4), where the algebraic identities are shown.

When the computer algebra software is given a positive number n,
it first tests whether the number is indeed prime. If not, it returns the

Caprotti and Oostdijk: Formal and efficient primality proofs

number. If the number n is prime, then the system can compute the
numbers a, ¢ and m as follows. For a take the primitive root (mod n),
namely an element a such that ¢! = 1, (mod n) and a’ # 1, (mod n)
for ¢+ = 1,...,n — 2. For ¢, consider the prime factorization n — 1 =
qi---G¢---qg, Where g1 > ... > q > ... > qg, and take ¢ = g1 ...q; for
the smallest ¢ such that ¢ > /n. Finally, for m take m = (n—1)/q. All the
operations to compute the appropriate a, ¢ = ¢y ... g, and m are carried
out by the computer algebra package upon receiving the prime number n.
Notice that these witnesses, computed as described, satisfy the hypotheses
of Pocklington’s criterion. Sub-goals (4)(a) and (4)(c) are clearly true.
-1

Condition (4)(b) is true because n is prime and gcd(a % —1,n) cannot

be n. If it was n, then a = =1 (mod n) for an exponent . L<n—1.
However, this is not possible because a is the primitive root (mod n).
The computer algebra oracle is also called in Step (4)(b). It computes
the coefficients for the linear combinations generated by the ged proof obli-
gations using a straightforward extension of the KEuclidean gcd algorithm.
Most computer algebra systems provide this algorithm as primitive. The
oracle also computes the result of the exponentiation for a”~' (mod n)

n—1

and a % and for all the intermediate steps in the divide and conquer
procedure outlined below. Intermediate obligations are of the form 2™ =
y (mod n) where all variables are concrete instances such that z,y < n.
Although finding the witness z € Z such that 2™ = y + z x n is easy for
the computer algebra system, the computations involved in proving the
equality directly are too expensive for CoQ as =" gets large. Instead, the
goal is changed by replacing the exponent m as follows.
xm:y(modn)¢{xﬁlzz(modn) zz =y (mod n) %fmeven

z 2 =z(mod n), zzz =y (mod n) if m odd
The computer algebra oracle is used to compute z such that 0 < 2z <
n. The resulting goal involving x is solved by recursively applying this
procedure, the other goal can be proved directly as all numbers are small.
Note that this solution again relies on the computer algebra oracle to find
witnesses.

To summarize the overall picture, the algorithm PocklingtonC can be
used to produce a COQ tactic script that generates a proof-object for the
primality of a positive number. The only requirements on the computer
algebra systems used as oracles is the ability to perform integer computa-
tions like prime testing, factorization, gcd computation and some modular
arithmetic. Since the communication uses the OpenMath standard, the ar-
chitecture allows for multiple computer algebra oracles, see Figure 2. The
tactics view of the applet presents the generated tactic script to the user,
see Figure 4.

All responses of CoQ can be predicted, so the tactic script can be
composed without consulting CoQ. Once the script is generated, the user
can send it to CoQ which returns a proof-object. The proof-object is
presented in the proof-object view, see Figure 5.

10

Caprotti and Oostdijk: Formal and efficient primality proofs

[(Tactic fProoff Object |
Prime ((40093 | »

lAxiom m odeq_exp _3_40098_1_40099: (ZMod (ZExp "3" "40098") " 1" ~4009

>

Axiom lincombm od_40099_6683_6_3_41_41_163: (ZLinCanbMod "1" {Zmin
Axiom lincombm od_40099_6683_6_3_163_41_163: (ZLinCombMod "1" (Zmin

LemlFa zprime40099; (ZPrime ~40099").
Proof.
Apply (Zpocklington “40099° "6683° "6° "3" (Cons Z "41” {Cons Z " 163
Unfold Zgt. Simpl. Reflexivity.
Unfold Zle. Simpl. Discrimin ate.
Unfold Zle. Simpl. Discrimin ate.
Change ~40099=40099" . Reflexivity.
Change ~6683=6683". Reflexivity.
Unfold allPrime. Simpl.
Split. Exact zprime4l.
Split. Exact zprimel63.
Simpl. Trivial.
Replace (Zminus “40099" ~17) with ~40098".
Exact modeq_exp_3_40098_1_40099.
Chg\]l‘g‘e ‘310098:40‘098‘; Reflexivity.
Oracle: l l

LI

2 Internal
w External GAP w sarver|lccalhest |part4zez

Believe: madeqs & lincombs v‘

Figure 4: Tactics view of applet.

actic fProoff Object |

zprimel63

w
™
c
5
In}
o
3
=
z
s
2
i
=
I

“(zZExp 2 (6%
(zmultDrop 3 (Cons 2 3 (Cons Z 3 (Cons Z 3 (Nil 2))0))-1"
T163° T1637),

q:
(ZLinCombMod ~1°
“(ZExp 2 (6*
{2multDrop q (Cons Z 3 {(Cons 2 3 (Cons Z 3 (NIl Z00m-17
T163° T1637) (Cons 2 3
{lincombmod 163 27_§ 2 5
(<(ZLinCombMod " 1°
“(ZExp 2 (6*
(zmultDrop 3 (Cons Z 3 (Cons 23 [Cons Z 3 (NIl ZDM-1"
T163° T1637),

=il 2
333

Galllist z
[a:2] o
(ZLinCombMod "1
T(ZExp 2 (6%
{zmultDrop g {Cons Z 3 (Cons Z 3 (Cons Z 3 (Nil ZN-
17 T163° T1837) (Nil 2=

[H:(INFERIEUR=SUPERIELIR)]
(LET False False [HO:Falsel(False_ind False HO)
teq_ind relation INFERIEUR
[ee:relation]
Cases ee of
EGAL => False
| INFERIEUR => True
| SUPERIEUR => False
end | SUPERIEUR H))
(ZPrime "1637)

Submit

Figure 5: Proof-object view of applet.

4. Results

Our implementation of the architecture described above consists of a JAVA
application in which the user enters a positive integer n and selects a com-
puter algebra package running on a remote server. If the number is prime,
the computer algebra package is repeatedly invoked for a concrete value
of n and for the subsequent recursive calls of the factors. The application
then generates a COQ tactic script that can be sent automatically to CoQ
when proving the goal Prime(n).

In practice, the algorithm outlined in Section 3 has to take into account
limitations on the size of the prime number n. Computer algebra software,

11

Caprotti and Oostdijk: Formal and efficient primality proofs 12

like GAP, is able to test primality for integers that are up to 13 digits
long. For bigger integers, the primality test are probabilistic and return a
probable prime. For instance, testing numbers with several hundreds digits
is quite feasible in GAP4 using IsPrimeInt or IsProbablyPrimeInt®.
Concerning factorization, FactorsInt is guaranteed to find all factors
less than 105 and will find most factors less than 10'°.

We tested the generated tactic scripts for all primes between 2 and 7927
(the first 1000 primes) and measured the time needed by CoQ to run the
tactic script and check the resulting proof-object on a Unix workstation. ¥
Obviously the general trend is that larger primes need more time. How-
ever, some numbers are much harder due to an unfortunate prime factor-
ization of ¢. Some examples of easy and hard primes are given in column
1 in Table 1 followed by the number of recursive calls, and the seconds
needed to prove primality using a believing and a skeptical approach.

Table 1: Easy and hard primes.

n Recursive calls Believing Skeptical
2039 3,7,113 5 25
4111 17,137 4 25
7829 17,103 4 28
2039 3,7,127,509,1019 8 45
4079 3,7,127,509,1019,2039 9 61
7727 3,193,1931, 3863 7 52

For example when proving Prime(2039), the algorithm is forced to
choose ¢ = 1019, since the prime factorization of 2038 is 2 - 1019. Now,
1018 in its turn has as prime factorization 2 - 509. In the end recursive
calls for 3, 7, 127, 509, and 1019 are needed to prove Prime(2039), and
it takes about 45 seconds to verify the proof. In contrast to verify the
proof generated for n = 2939 only needs recursive calls for 3, 7, and 113
and only takes about 25 seconds. The number of primes required in the
recursion steps for the first 1000 primes are plotted in Figure 6. Numbers
of the form 2" 4+ 1 require no recursive call (they are 3, 5, 17, 257, ...).
Next best are primes of the form p+1 where the factorization of p involves
primes of the form 2™ 4+ 1 above (they are 7, 11, 13, 19, 37, 41, ...), and
so on. In general, given a number n, the worst case is that there will be
[logsy ”T"'l'\ primes to be checked recursively. This trend shows also in the
plot of the size of the context used in the primality proof (number of lem-
mata about modular equations, linear combinations, and primes) as given
in Figure 7. The complete run-time results for the first 1000 primes are
plotted in Figure 8. The timings (in seconds) for the believing approach

§It remains to see whether, for such titanic primes, CoQ succeeds in checking the generated
proofs.

9The machine used for the tests is a Sun Ultra 10 with 333Mhz Sparc processor and 128MB
memory. The CoQ version used is 6.3.1.

Caprotti and Oostdijk: Formal and efficient primality proofs

8 T T T T T T T
7r + + + + ++ ++ o+ o+ o
6 B i sl L e |

3 HrHH e i A]

2 A+ o+ + + -

1 ! ! ! ! ! ! !
0 1000 2000 3000 4000 5000 6000 7000 8000

Figure 6: Recursion calls for the first 1000 primes.

160 T T T e T T T
.
140 | + + +

120 - + oo R

+ o+ +
++f¢—r +
T e A 4 o+

+ F +.

o f:+ gg; S g R T @*# ST

80 |- R e AT +
R P B LB
P g ey T e e P

g + o+ + ot A e *
i, :* 4 kT TR
60'+ﬁ+¢+++§ F T . + % 4 * + + + oA
+ +

Y
40 Pri A4 i

20 F + 4

0 L L L L L L L
0 1000 2000 3000 4000 5000 6000 7000 8000

Figure 7: Context size for the first 1000 primes.

(belief level 4 on page 9, where sub-goals to prove modular equations and
linear combinations are not proved) and for the skeptical approach (belief
level 1 on page 8, where all sub-goals are proved) are given. The results
in Figure 8 show that the current implementation significantly improves
the implementation discussed in [11]. This is due to the fact that the cur-
rent implementation avoids the unary represented numbers completely,
whereas the generated tactic script in [11] still used unary represented
numbers in some places. In [11] the time complexity of the algorithm

13

Caprotti and Oostdijk: Formal and efficient primality proofs 14

70 T T T T T

T
skeptical ~ +
believing X

60 [+ .

0 1000 2000 3000 4000 5000 6000 7000 8000

Figure 8: CoQ timings (in seconds) for the first 1000 primes.

seemed to be worse than linear, while Figure 8 shows a logarithmic time
complexity.

Some large primes that were tested are listed in Table 2. For several
of them, GAP issues a warning that a probabilistic primality test is used.
The last columns lists the time CoQ needed to check the proof-object
produced by the skeptical approach.

Table 2: Some large primes verified skeptically.

n Digits Time
1234567891 10 245
T4747474747474747 17 767
1111111111111111111 19 1471
9026258083384996860449366072142307801963 40 12404
20988936657440586486151264256610222593863921 44 29060

5. Conclusions

We have shown how by combining computer algebra oracles and theorem
provers it is possible to automatically produce proofs of primality that are
efficiently and formally verifiable. The primality proofs are obtained ac-
cording to Pocklington’s criterion that has been formally proven in CoQ.
The formal development has been carried out constructively and is now
available as contributed library of C0Q, it consists of 260 smaller lemmata
taking approximately 5000 lines of code.

Caprotti and Oostdijk: Formal and efficient primality proofs 15

The architecture for using Pocklington’s criterion relies on the use
of computer algebra oracles. We implemented these oracles by re-using
OpenMath mathematical servers providing computational capabilities on
the network that we have developed previously. The JAVA application
that produces the tactic script behaves as a client to these servers. In this
general view, our experiments are an example of how to use computer
algebra in theorem proving and an investigation on the tools that are
required to effectively carry out the integration. We profited greatly from
our former work in using the standard communication language Open-
Math to interface to a variety of symbolic computation systems. For some
of the systems we used, we have developed our own small OpenMath in-
terface, available from http://crystal.win.tue.nl/public/projects,
since unfortunately most system do not yet support OpenMath (GAP is
among the few that actually do). It was extremely easy to extend the
already available OpenMath servers to handle the requests of the Pock-
lington’s applet. In our experience, adding a new oracle for the specific
tasks of this case study is quite straightforward: the few OpenMath objects
used in the communication are the only ones that need to be translated,
together with the result. It should eventually be possible in future to in-
teract with mathematical servers by a unique protocol without having to
worry about syntax, location, or availability.

We tested the current implementation with primes up to 44 digits. Be-
sides the difficulty of computing the witnesses required by the proof of
such large numbers, another issue has been the time required to check
larger proof-objects. It is striking to see what can actually be accom-
plished by combining powerful computer algebra systems with Coq. In
fact, we do not think that Ferrier’s prime is the largest prime that can be
tackled by our approach although we have not yet attempted any bigger
one. We are currently adding interfaces to Pari and to Magma which will
allow to tackle larger problems!. For this application, adding computer
algebra engines as oracles is considerably simpler than changing the proof
assistant, which would imply doing most of the formal development plus
designing a new ad-hoc tactic generator. It is our hope that case stud-
ies such as this one stimulate the developers of computational software
in building systems that provide mathematical services in a standardized
way. This would greatly simplify this kind of investigations.

Acknowledgments: The authors are very grateful to Henk Baren-
dregt and to Arjeh Cohen for suggesting this case study and for challeng-
ing and inspiring them with proving bigger and bigger primes. Herman
Geuvers has helped us with hints during many discussions. A grateful
thanks to the anonymous referees for pointing out missing references in
the initial version of the bibliography.

I'For instance the primitive root of the prime 3141592653589793238462643383279528841 is
computed without problems by Magma, whereas GAP complains.

Caprotti and Oostdijk: Formal and efficient primality proofs

References

[1]C. Ballarin, K. Homann, and J. Calmet. Theorems and Algorithms:
An Interface between Isabelle and Maple. In A.H.M. Levelt, editor,

Proceedings of International Symposium on Symbolic and Algebraic
Computation (ISSAC’95), pages 150-157. ACM Press, 1995.

[2]H. Barendregt. Lambda calculi with Types, volume 2 of Handbook of
Logic in Computer Science, chapter 2, pages 117-309. Oxford Science
Publications, 1992.

[3]H. P. Barendregt and E. Barendsen. Autarkic Computations in Formal
Proofs. Journal of Symbolic Computation, 2001. To appear.

[4]Bruno Barras et al. The Coq Proof Assistant Reference Manual, Ver-
sion 6.3.1. INRIA-Rocquencourt - CNRS-ENS Lyon, December 1999.
http://coq.inria.fr/doc/main.html.

[5]C. Batut, K. Belabas, D. Bernardi, H. Cohen, and M. Olivier. User’s
Guide to PARI/GP. Laboratoire A2X, Université Bordeaux I, Tal-
ence, France, 5 November 2000. http://www.parigp-home.de/.

[6]P. Bertoli, J. Calmet, F. Giunchiglia, and K. Homann. Specification
and Integration of Theorem Provers and Computer Algebra Systems.
In J. Calmet and J. Plaza, editors, Artificial Intelligence and Sym-
bolic Computation: International Conference AISC’98, volume 1476 of
Lecture Notes in Artificial Intelligence, Plattsburgh, New York, USA,
September 1998.

[7]B. Buchberger, T. Jebelean, F. Kriftner, M. Marin, E. Tomuta, and
D. Vasaru. A Survey of the Theorema Project. In Proceedings of
ISSAC’97, Maui, Hawaii, July 1997. ACM.

[8]J. Calmet and K. Homann. Towards the Mathematical Software Bus.
Journal of Theoretical Computer Science, 187(1-2):221-230, 1997.

[9]Jacques Calmet and Karsten Homann. Classification of Communica-
tion and Cooperation Mechanisms for Logical and Symbolic Compu-
tation Systems. In F. Baader and K.U. Schulz, editors, Proceedings
of First International Workshop ”Frontiers of Combining Systems”
(FroCoS’96), Applied Logic. Kluwer, 1996.

[10]O. Caprotti, A. M. Cohen, and M. Riem. JAVA Phrasebooks for
Computer Algebra and Automated Deduction. SIGSAM Bulletin,
34(2):33-37, June 2000. Special Issue on OpenMath.

[11]O. Caprotti and M. Oostdijk. How to formally and efficiently prove
prime(2999). In M. Kerber and M. Kohlhase, editors, Symbolic Com-
putation and Automated Reasoning (Calculemus’00), St. Andrews,
Scotland, August 2000. A K Peters, Ltd. (To appear).

Caprotti and Oostdijk: Formal and efficient primality proofs

[12]0. Caprotti and M. Oostdijk. On communicating proofs in interactive
mathematical documents. In J. A. Campbell and E. Roanes-Lozano,
editors, Proceedings of Artificial Intelligence and Symbolic Computa-
tion (AISC 2000), volume 1930 of Lecture Notes in Artificial Intelli-
gence, pages 53—-64, Madrid, Spain, July 2000. Springer Verlag.

[13]Olga Caprotti and Arjeh Cohen. On the role of OpenMath in inter-
active mathematical documents. Journal of Symbolic Computation,
Special Issue on the Integration of Computer algebra and Deduction
Systems, To appear.

[14]E. Clarke and X. Zhao. Analytica - a theorem prover in Mathematica.
In D. Kapur, editor, 11th Conference on Automated Deduction, volume
607 of Lecture Notes in Computer Science, pages 761-765. Springer
Verlag, 1992.

[15]Arjeh Cohen and Henk Barendregt. Electronic Communication of
Mathematics, interacting Computer Algebra Systems and Proof As-
sistants. Journal of Symbolic Computation, 2001.

[16]The OpenMath Consortium. The OpenMath Standard. OpenMath
Deliverable 1.3.4a, OpenMath Esprit Consortium, http://www.nag.
co.uk/projects/0OpenMath.html, February 2000. O. Caprotti, D. P.
Carlisle and A. M. Cohen Eds.

[17]S. Dalmas, M. Gaétano, and S. Watt. An OpenMath 1.0 Implementa-
tion. In Proceedings of ISSAC 97, pages 241-248. ACM Press, 1997.

[18]Pocklington development files. http://coq.inria.fr/contribs/
pocklington.html.

[19]Martin Dunstan, Tom Kelsey, Steve Linton, and Ursula Martin.
Lightweight Formal Methods for Computer Algebra Systems. In
O. Gloor, editor, ISSAC’98: International Symposium on Symbolic
and Algebraic Computation, Rostock, Germany, August 1998. ACM
Press.

[20]Hugo Elbers. Connecting Informal and Formal Mathematics. PhD
thesis, Eindhoven University of Technology, Eindhoven, The Nether-
lands, May 1998.

[21]The GAP Group, Aachen, St Andrews. GAP -
Groups, Algorithms, and Programming, Version 4.2, 2000.
(http://www-gap.dcs.st-and.ac.uk/"gap).

[22]Fausto Giunchiglia, Paolo Pecchiari, and Carolyn Talcott. Reasoning
Theories: Towards an Architecture for Open Mechanized Reasoning
Systems. In F. Baader and K.U. Schulz, editors, ”Frontiers of Com-
bining Systems - First International Workshop” (FroCoS’96), Applied

17

Caprotti and Oostdijk: Formal and efficient primality proofs

Logic Series, pages 157-174, Munich, Germany, 26-29 March 1996.
Kluwer.

[23]M. Gobel, W. Kiichlin, S. Miiller, and A. Weber. Extending a
Java Based Framework for Scientific Software-Components. In V. G.
Ganzha, E. W. Mayr, and E. V. Vorozhtsov, editors, Computer Al-
gebra in Scientific Computing (CASC ’99), pages 202-222, Munich,
Germany, June, 1999. Springer.

[24]J. Harrison and L. Théry. Extending the HOL Theorem Prover with a
Computer Algebra System to Reason About the Reals. In J. J. Joyce
and C.-J. H. Seger, editors, Higher Order Logic Theorem Proving and
its Applications: 6th International Workshop, HUG’93, volume 780 of
Lecture Notes in Computer Science, pages 174—-184, Vancouver, B.C.,
August 11-13 1993. Springer-Verlag.

[25]J. Harrison and L. Théry. A Sceptic’s Approach to Combining HOL
and Maple. Journal of Automated Reasoning, 21:279-294, 1998.

[26]G. L. Honaker. Prime curios! http://www.utm.edu/research/
primes/curios/, 2000.

[27]JavaMath — Internet Accessible Mathematical Services, February
2001. http://javamath.sourceforge.net.

[28]Manfred Kerber, Michael Kohlhase, and Volker Sorge. Integrating
computer algebra into proof planning. Journal of Automated Reason-
ing, 21(3):327-355, 1998.

[29]The Magma Computational Algebra System, February 2001. Avail-
able at http://www.maths.usyd.edu.au:8000/u/magma.

[30]M. Oostdijk. An interactive viewer for mathematical content based on
type theory. Technical Report 00-15, Eindhoven University of Tech-
nology, September 2000.

[31]H. C. Pocklington. The determination of the prime or composite na-
ture of large numbers by Fermat’s theorem. Proc. Cambridge Philo-
sophical Society, 18(6):29-30, 1914.

[32]Paulo Ribenboim. The New Book of Prime Number Records. Springer
Verlag, 1996.

[33]Andrew Solomon, Craig A. Struble, Alan Cooper, and
Stephen A. Linton. The JavaMath API: An Architecture
for Internet Accessible Mathematical Services, 2001. Avail-
able at http://www.illywhacker.net/papers/javamath.ps and
http://javamath.sourceforge.net.

18

Caprotti and Oostdijk: Formal and efficient primality proofs

[34]Volker Sorge. Non-Trivial Computations in Proof Planning. In Hélene
Kirchner and Christophe Ringeissen, editors, Frontiers of combining
systems : Third International Workshop, FroCoS 2000, volume 1794
of Lecture Notes in Computer Science, pages 121-135, Nancy, France,
22-24 March 2000. Springer Verlag, Berlin, Germany.

[35]Paul Wang. Design and Protocol for Internet Accessible Mathemat-
ical Computation. In Sam Dooley, editor, ISSAC’99 International
Symposium on Symbolic and Algebraic Computation, pages 291-298,
Vancouver, Canada, July 28-31, 1999. ACM, New York.

19

