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Formal and eÆient primality proofs by useof Computer Algebra oralesOlga Caprotti�1 and Martijn Oostdijk21RISC-Linz Researh Institute for Symboli Computation, Johannes KeplerUniversity, A-4020 Linz, Austria2Department of Mathematis and Computer Siene, Eindhoven University ofTehnology, P.O.Box 513, 5600MB, Eindhoven, The NetherlandsAbstratThis paper fouses on how to use Poklington's riterion to produe eÆ-ient formal proof-objets for showing primality of large positive numbers.First, we desribe a formal development of Poklington's riterion, doneusing the proof assistant Coq. Then we present an algorithm in whihomputer algebra software is employed as orale to the proof assistantto generate the neessary witnesses for applying the riterion. Finally,we disuss the implementation of this approah and takle the proof ofprimality for some of the largest numbers expressible in Coq.1. IntrodutionThe problem of showing whether a positive number is prime or ompositeis historially reognized to be an important and useful problem in arith-meti. Sine Eulid's times, the interest in prime numbers has only beengrowing. For today's appliations, primality testing is entral to publi keyryptography and for this reason is still heavily investigated in numbertheory [32℄.Although the problem is learly deidable, the trivial algorithm, derivedfrom the de�nition, that heks for every number q suh that q � pnwhether qjn, is far too ineÆient for pratial purposes. There exist sev-eral alternative methods to hek primality however in this paper we dealexlusively with proofs obtained by a lassial riterion due to Poklingtonin 1914 [31℄. Our interest is motivated by the fat that in order to produea proof of primality the riterion needs to �nd numbers that verify ertainalgebrai equalities. These numbers are easily generated by a omputer al-gebra orale, for instane the systems GAP, Magma, or Pari [21, 29, 5℄ dealwell with number theoretial questions. From the omputer algebra point�During this work, the author was supported by the OpenMath Esprit projet 249691



Caprotti and Oostdijk: Formal and eÆient primality proofs 2of view, it has already been shown how an informal textual proof of pri-mality generated by GAP an be turned into an interative mathematialdoument [13℄ in natural language in whih the algebrai assertions anbe interatively veri�ed using a omputational bak-engine. Instead, theapproah of this paper is from the theorem proving point of view and themain problem is eÆiently onstruting a formal, veri�able proof-objet(a lambda term) representing a proof of primality. This proof-objet anthen be visualized as an interative mathematial doument in the senseof [13, 12℄.Notie that the ooperation of theorem provers with omputer algebrais essential for being able to solve this task. Theorem provers are verylimited on the amount and type of omputations they an perform [3℄,however, they are very well suited for organizing the logial steps of aproof. On the other hand, although omputer algebra systems have algo-rithms for deiding whether a number is prime or not, it is hard for themto produe a proof of primality, let alone one that is formally veri�ableby a theorem prover. Additionally, in ertain systems, the algorithms em-ployed to test primality (or ompositeness) of large primes behave prob-abilistially and there is a slight possibility that the returned answer isnot true. Thus, the winning strategy is to ombine both kinds of system.There is a wide amount of literature both on the subjet of ombiningsystems for problem solving and on spei� ase studies, among many seefor instane [22, 9, 8, 6, 19, 7, 14℄.Computer algebra has been inorporated in theorem proving followingthree approahes, based on the level of trust, that range from believing,through skeptial, to autarki [25, 3, 15℄. The believing approah trustsompletely the results given by a omputer algebra system and treatsthem as axioms [1℄. The skeptial approah does not trust ompletely theresults given by a omputer algebra orale and treats them as witnessesthat require formal veri�ation [24, 28, 34℄. This approah presupposesthat the hosen orale is good at �nding the witnesses. The autarkiapproah refuses to onsult any orale and does all the omputationsinside the theorem prover.This paper extends the initial work presented in [11℄ on how Pok-lington's riterion an be employed in a skeptial approah to produeeÆient formal proof-objets that show primality of large positive num-bers in a proof assistant suh as Coq [4℄. The laim of formality relieson the omplete development and proof of Poklington's riterion withinCoq whih has been restated in a variant that allows to use integers in-stead of natural numbers. The laim of eÆieny y is sustained by thefat that we have been able, for instane, to onstrut and verify theproof of primality of Ferrier's prime, a 44-digits long prime number (thelongest one found before the omputer age) arbitrarily hosen among theones listed in [26℄. The implementation is geared toward the possibilityof swithing to a di�erent omputer algebra engine if need arises: for in-yIntended in the ontext of theorem proving.



Caprotti and Oostdijk: Formal and eÆient primality proofs 3stane when fatorization of large integers is required the user may easilyhoose a more powerful engine as orale. Additionally, the user may de�neat whih level of belief the proof should be produed, from total trust ineah algebrai result oming from the orale to total skeptiism.The struture of this paper is as follows. The formalization of Pokling-ton's riterion is desribed in Setion 2. Setion 3 gives the arhiteturaldetails for using it to produe formal proofs of primality with the aidof omputer algebra orales. Our implementation of the algorithm andtimings for some benhmarks are disussed in Setion 4 and the paper'sonlusions are in Setion 5.2. FormalizationThe Poklington riterion is one of many number theoretial results thatare useful for verifying primality of a positive number n, see for in-stane [32℄ for more examples. This setion desribes the developmentof a formal proof of the riterion in Coq, starting with the informalproof. Suh a formalization is a prerequisite neessary before produingprimality proof-objets that an be automatially heked for orretness.The work presented in this setion is a follow-up of [20℄, where the use ofPoklington's Criterion in a formal setting was �rst investigated.Lemma 2.1 (Poklington's Criterion):Let n 2 N, n > 1 with n �1 = q � m suh that q = q1 � � � qt for ertain primes q1; : : : ; qt. Supposethat a 2 Z satis�es an�1 = 1 (mod n) and gd(an�1qi � 1; n) = 1 for alli = 1; : : : ; t. If q � pn, then n is a prime.Proof: 1 Let pjn and Prime(p), put b = am.2 Then bq = amq = an�1 = 1 (mod n).3 So bq = 1 (mod p).4 Now q is the order of b in Z�p, beause:5 Suppose b qqi = 1 (mod p), then amqqi = an�1qi = 1 (mod p).6 There exist �; � 2 Z suh that �(an�1qi � 1) + �n = 1 (mod p).7 So, �(1� 1) + �0 = 1 (mod p). Contradition.8 By Fermat's little theorem: bp�1 = 1 (mod p),9 therefore q � p� 1, so pn � q < p.10 Hene for every prime divisor p of n: p > pn.11 Therefore Prime(n). 2Although the proof is easy from a mathematial viewpoint, the exeriseof formalizing it in Coq is not a straightforward one.The Coq system is a logial system based on typed lambda alulus [2℄.Propositions an either be assumed as axioms, or they an be proven byonstruting a formal proof-objet. A omplete formalization of Pok-lington's riterion amounts to �nding a proof-objet, i.e. a lambda term,whih inhabits the type orresponding to the statement of the riterion.



Caprotti and Oostdijk: Formal and eÆient primality proofs 4Our development of the riterion is a full formalization, meaning thatno lemma is assumed as axiom. Building the formal proof from the basilambda primitives requires a lot of work. However, the Coq proof assis-tant is equipped with a library of de�ned onepts onerning standardmathematial theories inluding natural numbers, integers, relations, andlists. Furthermore, it has a powerful language of tatis whih allows theuser to speify proofs as abstrat tati sripts instead of onrete lambdaterms.Formalization starts with identifying those mathematial onepts usedin the proof that are not yet in the standard library. Many notions that arepart of the repertoire of any mathematiian are not (yet) in the standardlibrary. The most prominent of the onepts neessary are division andprimality on the naturals, equality modulo n, greatest ommon divisor,exponentiation, and the order of an element b in the multipliation groupZ�p. They are formalized in the natural way by the following de�nitions.De�nition Divides(n;m) = 9q : N :(m = n � q)De�nition Prime(n) = (n > 1) ^ 8q : N :(qjn! (q = 1 _ q = n))De�nition Mod(a; b; n) = 9q : Z:(a = b+ n � q)De�nition Gd(a; b; ) = ja ^ jb ^ 8d : N :((dja ^ djb)! (d � ))Fixpoint � Exp(a; 0) = 1Exp(a; n+ 1) = a � Exp(a; n)De�nition Order(b; q; p) = (0 < q) ^ bq = 1 (mod p)^8d : N :(((0 < d) ^ bd = 1 (mod p)))! (q < d)The de�nition of Exp is a so-alled �xpoint de�nition, whih means thatExp is de�ned by well-founded reursion. In pratie this means thatExp(a; n) is onvertible to an for onrete values a and n, and for example�nding an inhabitant for the statement Exp(2; 3) = 8 is as easy as �ndingan inhabitant for 8 = 8. The de�nitions of Divides and Mod do not havethis omputational behavior, in order to prove for example Divides(2; 8),one has to provide the witness q = 4. For brevity Divides(n;m) is denotedas njm, Mod(a; b; n) is denoted as a = b (mod n), and Exp(a; n) is denotedas an.The de�nition of onepts alone is not enough. Many trivial (and lesstrivial) lemmata about the onepts have to be proven so that they an beused in the ourse of proving the riterion. The de�nitions together withthe lemmata are grouped together in Coq modules representing mathe-matial theories. In this way, the theories an be reused when formalizingother parts of mathematis, for instane similar riteria. Figure 1 gives anoverview of the di�erent modules developed to prove Poklington's rite-rion. For the modules that are not part of the standard library, the size isgiven. The modules are Coq vernaular �les and are available online [18℄.The Arith and ZArith modules are provided by Coq to support basiarithmeti on the natural and integer numbers respetively. The naturalnumbers are implemented indutively with onstrutors for zero elementand suessor funtion. This unary representation makes these natural
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Figure 1: The modules of the formalization.numbers very ineÆient for omputation on onrete instanes. The in-teger numbers are also implemented indutively but with a binary repre-sentation whih is muh more suited for onrete omputations. However,when reasoning about abstrat numbers, for example to prove results byindution, the binary representation an beome a hindrane. To over-ome these diÆulties, Coq results are available, that allow to onvertbetween the slow naturals and the fast integers. We developed some morein the natZ module. This allows swithing between the two representa-tions in the proof of the riterion. When the riterion is applied in the nextsetion to generate onrete primality proofs, the binary representation isused exlusively.The natZ module is part of a layer of modules built on top of the arith-meti modules. This layer develops some mathematial tools, it onsistsof data-strutures and lemmata to allow a slightly higher level of rea-soning later on. The module lemmas ollets the additional lemmata onelementary arithmetis whih were needed during the development. Thetheory of �nite lists is in the list module; it is heavily used in reasoningabout prime fatorization and in the proof of Fermat's little theorem. Thede theory ontains lemmata useful for proving deidability of prediatesin general. Deidability of a prediate P in the ontext of onstrutivetheorem provers like Coq means that the priniple of the exluded mid-dle, P (n) _ :P (n), holds. One may arry out a formalization in Coqin lassial logi by assuming the priniple of the exluded middle as anaxiom holding for any proposition. Instead, our formalization of Pok-



Caprotti and Oostdijk: Formal and eÆient primality proofs 6lington's riterion is done fully onstrutive. The de module starts withsome deidability proofs for simple prediates.Lemma eqde : 8n;m : N :(n = m _ :(n = m))Lemma lede : 8n;m : N :(n � m _ :(n � m))Lemma ltde : 8n;m : N :(n < m _ :(n < m))Lemma gede : 8n;m : N :(n � m _ :(n � m))Lemma gtde : 8n;m : N :(n > m _ :(n > m))Other lemmata in de serve as tools for proving deidability for ompoundprediates. Deidability is preserved by the propositional onnetives.Lemma notde : 8P : Prop:(P _ :P ! :P _ ::P )Lemma andde: 8P;Q : Prop:(P _ :P )! (Q _ :Q)!(P ^Q) _ :(P ^Q)Lemma orde : 8P;Q : Prop:(P _ :P )! (Q _ :Q)!(P _Q) _ :(P _Q)Lemma impde: 8P;Q : Prop:(P _ :P )! (Q _ :Q)!(P ! Q) _ :(P ! Q)It is also preserved by bounded versions of the quanti�ers. This meansthat proving deidability of prediates like Divides and Prime redues toproving that the quanti�ers in the de�ning terms an be bounded.Lemma allde: 8P : N ! Prop:8N : N :(8n : N :(Pn) _ :(Pn))!8x : N :(x < N ! (Px)) _ :8x : N :(x < N ! (Px))Lemma exde : 8P : N ! Prop:8N : N :(8n : N :(Pn) _ :(Pn))!9x : N :(x < N ^ (Px)) _ :9x : N :(x < N ^ (Px))Having developed the meta theory so far, it is possible to build the realmathematial theory needed for Poklington's riterion. The divides,prime, mod, gd, exp, and order modules de�ne the mathematial no-tions introdued in the de�nitions given above and ontain many usefullemmata with proofs about these onepts. For instane, the main resultin the module onerning prime numbers is the theorem stating that inorder to prove primality of a natural number n it is enough to hekdivisibility by all the primes up to pn:Lemma primepropdiv:8n : N :(n > 1) ^ (8p : N :Prime(p) ^ pjn! (p > pn))! Prime(n)The modprime module ontains some results about modulo arithmetiwhere the modulus is prime. The ombination of the modprime and ordermodules ould be replaed with additional e�ort by more abstrat grouptheory modules. The fermat module ontains Fermat's little theorem.Finally, the top module pok in Figure 1 ontains the formal proof ofLemma 2.1. The proof proeeds using several tehnial lemmata whihmimi the high level reasoning of the informal proof. These tehnial lem-mata are neessary for two reasons. First of all, the informal proof usesforward reasoning whereas the Coq system, being a goal direted theo-rem prover, uses bakward reasoning. In the bakward reasoning style oftheorem proving, the user is presented with a goal to prove and works



Caprotti and Oostdijk: Formal and eÆient primality proofs 7his way bak to the assumptions on whih this goal depends by meansof tatis. The informal proof, however, proeeds by ontradition intro-duing an arbitrary prime divisor p of n. It shows that p > pn, and fromthis it onludes that n must be prime. This forward style of reasoningan be simulated in Coq by �rst proving the lemma primepropdiv, itedabove, and applying it to the urrent goal, Prime(n). Doing so, the goalis replaed by new obligations to prove that n > 1 and p > pn for allprime divisors p of n. The appliation of the lemma orresponds to lines1,10, and 11 of the proof of Lemma 2.1.The seond reason for using tehnial lemmata in the onstrution ofthe proof of Poklington's riterion is to apture high level reasoning. Infat, the steps in the informal proof are large steps. Look for example atline 4 of the informal proof. In order to show that q is the order of b inZ�p, a ontradition is derived from the assumption that b qqi = 1 (mod p)for some prime fator qi of q. This follows from a number of non-trivialtehnial lemmata suh as:Lemma order ex :8p : N :Prime(p)! 8b : Z:9d : N :(Order(b; d; p))Lemma order div:8b : Z:8x : N :8p : N :Order(b; x; p)!8y : N :(y > 0 ^ (by = 1 (mod p))! xjy)Lemma tlemma3:8a; b : N :0 < a < b ^ ajb! 9qi : N :(qijb ^ Prime(qi) ^ aj bqi )The full formalization of Poklington's result gives us a way to generateproofs of primality that are formal and aeptable by the most skeptialapproah.3. Generating Primality ProofsThis setion desribes how Poklington's Criterion an be used to produea formal and eÆient primality proof for a relatively bigz prime number. Ina skeptial approah one invokes an outside orale to supply the theoremprover with the neessary witnesses for applying Poklington's riterion.It is natural to think of omputer algebra systems ating as orales whenalgebrai equalities have to be veri�ed. For example, when a = b (mod n)needs to be proved the omputer algebra system an provide q 2 Z suhthat a = b+ qn. For the skeptial approah to work, a omputer algebrasystem must be able to supply both a fast deision for the primality ofa positive number n and in the aÆrmative ase the ability to provideadditional extra information for building a proof-objet.To realize the automati generation of primality proofs exploiting om-puter algebra systems, we implemented a Java applet whih an ommu-niate both with a omputer algebra orale and with Coq, see Figure 2for an overview of the overall arhiteture. This implementation makeszSee the next setion for a disussion on the size of the prime.
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Figure 2: Overall Arhiteture.no laim of being a generi tati reation framework. It was initiatedas a ase study to help build tool support for ombining mathemati-al servies provided by external engines, libraries and protools suhas [27, 10, 35, 33, 23℄.The applet allows the user to input a number n and generates (if nis prime) Coq tatis that show the primality of n. The proof desribedby these tatis applies Poklington's riterion to the orret instantia-tion of the parameters. The parameters are witnesses retrieved from theomputer algebra system. Communiation with the hosen omputer al-gebra system takes plae using OpenMath [17, 16℄, a language for sharingmathematial objets between omputer algebra systems, therefore anyompliant omputer algebra system an be used [10℄. The possibility ofswithing to a di�erent engine is ruial sine eah omputer algebra sys-tem is able to deal with arbitrary long integers under ertain restritions.These restritions vary, in partiular the bounds on the probabilisti testsfor primality and fatorization are di�erent. Depending on the hosen or-ale, one is able to obtain witnesses for small (e.g. up 10 digits like in ourJava implementation of the omputer algebra orale), big (e.g. up to 500digits), or even bigger primes (e.g more than 500 digits). The generatedtatis are sent to Coq and a formal proof-objet is returned.The applet an be seen as a prototype interative mathematial dou-ment. The user an inuene the presentation of the doument in severalways. The prime number n an be set by the user, there are several om-puter algebra systems to hoose from, and the user an speify to whihextend the theorem prover should trust the witnesses provided by theomputer algebra orale. The latter hoie is made by seleting a belieflevel ranging from skeptial (level 1) to believing (level 5). More preisely,we have seleted the following lasses of assertions within eah belief level:1.Believe nothing. All generated sub-goals are proved.2.Believe simple modular equations. As above, but modular equationsof the form a = b (mod n), that are proved diretly by �nding awitness, are assumed as axioms instead.3.Believe modular equations. As above, but modular equations of the



Caprotti and Oostdijk: Formal and eÆient primality proofs 9PoklingtonC (n;T )Input: n a prime number.Output: T a tati sript for proving primality of n by Poklington's riterion.(1)[Find witnesses.℄Let a be the primitive root mod n. Choose q and m suh that n = qm + 1, q � 0, m � 0.Compute the prime fatorization of q in q1 � : : : � qt(2)[Reursion Step℄Apply reursively PoklingtonC (qi;Si) for i = 1; : : : ; t to every prime fator qi in thefatorization of q, thus obtaining tati sripts S1; : : : ; St.(3)[Apply Poklington's℄Apply Poklington's riterion using the parameters a, q, q1, : : :, qt, and m in order to provePrime(n).(4)[Prove the sub-goals℄Provide the tati sripts Sa, Sb, and S for proving the sub-goals orresponding to thehypotheses of Poklington's riterion.(a)an�1 = 1(mod n) is shown by a divide and onquer strategy in whih the exponentgets smaller until the omputation is trivial.(b)gd(an�1qi � 1; n) = 1, i = 1; : : : ; t is shown by proving that 1 is a linear ombinationof an�1qi � 1 and n (mod n).()n � q2 is shown trivially.(3)[Output℄ Assemble the tati sripts S1, : : :, St, Sa, Sb, and S in the tati sript T forproving Prime(n). Figure 3: Poklington Criterion Algorithmform am = b (mod n), that are proved using the divide and onquermethod outlined below, are assumed as axioms instead.4.Believe modular equations and linear ombinations. As above, butalso sub-goals of the form 9�; �:(�x+ �x =  (mod n)) are assumedas axioms.5.Believe everything. Any sub-goal may be assumed as an axiom.In priniple the proof-objet returned by Coq ould be parsed and pre-sented using the tools developed in [30℄ leading to a real interative math-ematial doument in the sense of [12℄.Now we desribe in detail the algorithm based on Poklington's rite-rion whih redues the proof of primality of a positive integer n to theproof of a number of algebrai identities. The PoklingtonC algorithmsummarized in Figure 3 takes as input a prime number n and produesa Coq tati sript for onstruting a proof-objet for Prime(n). Intera-tion with omputer algebra orales takes plae mostly in Step (1), wherethe witnesses are found, and (4), where the algebrai identities are shown.When the omputer algebra software is given a positive number n,it �rst tests whether the number is indeed prime. If not, it returns the



Caprotti and Oostdijk: Formal and eÆient primality proofs 10number. If the number n is prime, then the system an ompute thenumbers a, q and m as follows. For a take the primitive root (mod n),namely an element a suh that an�1 = 1; (mod n) and ai 6= 1; (mod n)for i = 1; : : : ; n � 2. For q, onsider the prime fatorization n � 1 =q1 : : : qt : : : qk, where q1 � : : : � qt � : : : � qk, and take q = q1 : : : qt forthe smallest t suh that q � pn. Finally, form take m = (n�1)=q. All theoperations to ompute the appropriate a, q = q1 : : : qt, and m are arriedout by the omputer algebra pakage upon reeiving the prime number n.Notie that these witnesses, omputed as desribed, satisfy the hypothesesof Poklington's riterion. Sub-goals (4)(a) and (4)() are learly true.Condition (4)(b) is true beause n is prime and gd(an�1qi � 1; n) annotbe n. If it was n, then an�1qi = 1 (mod n) for an exponent n�1qi < n � 1.However, this is not possible beause a is the primitive root (mod n).The omputer algebra orale is also alled in Step (4)(b). It omputesthe oeÆients for the linear ombinations generated by the gd proof obli-gations using a straightforward extension of the Eulidean gd algorithm.Most omputer algebra systems provide this algorithm as primitive. Theorale also omputes the result of the exponentiation for an�1 (mod n)and an�1qi and for all the intermediate steps in the divide and onquerproedure outlined below. Intermediate obligations are of the form xm =y (mod n) where all variables are onrete instanes suh that x; y � n.Although �nding the witness z 2 Z suh that xm = y + z � n is easy forthe omputer algebra system, the omputations involved in proving theequality diretly are too expensive for Coq as xm gets large. Instead, thegoal is hanged by replaing the exponent m as follows.xm = y (mod n)( ( xm2 = z (mod n); zz = y (mod n) if m evenxm�12 = z (mod n); xzz = y (mod n) if m oddThe omputer algebra orale is used to ompute z suh that 0 � z <n. The resulting goal involving x is solved by reursively applying thisproedure, the other goal an be proved diretly as all numbers are small.Note that this solution again relies on the omputer algebra orale to �ndwitnesses.To summarize the overall piture, the algorithm PoklingtonC an beused to produe a Coq tati sript that generates a proof-objet for theprimality of a positive number. The only requirements on the omputeralgebra systems used as orales is the ability to perform integer omputa-tions like prime testing, fatorization, gd omputation and some modulararithmeti. Sine the ommuniation uses the OpenMath standard, the ar-hiteture allows for multiple omputer algebra orales, see Figure 2. Thetatis view of the applet presents the generated tati sript to the user,see Figure 4.All responses of Coq an be predited, so the tati sript an beomposed without onsulting Coq. One the sript is generated, the useran send it to Coq whih returns a proof-objet. The proof-objet ispresented in the proof-objet view, see Figure 5.
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Figure 4: Tatis view of applet.

Figure 5: Proof-objet view of applet.4. ResultsOur implementation of the arhiteture desribed above onsists of a Javaappliation in whih the user enters a positive integer n and selets a om-puter algebra pakage running on a remote server. If the number is prime,the omputer algebra pakage is repeatedly invoked for a onrete valueof n and for the subsequent reursive alls of the fators. The appliationthen generates a Coq tati sript that an be sent automatially to Coqwhen proving the goal Prime(n).In pratie, the algorithm outlined in Setion 3 has to take into aountlimitations on the size of the prime number n. Computer algebra software,



Caprotti and Oostdijk: Formal and eÆient primality proofs 12like GAP, is able to test primality for integers that are up to 13 digitslong. For bigger integers, the primality test are probabilisti and return aprobable prime. For instane, testing numbers with several hundreds digitsis quite feasible in GAP4 using IsPrimeInt or IsProbablyPrimeIntx.Conerning fatorization, FatorsInt is guaranteed to �nd all fatorsless than 106 and will �nd most fators less than 1010.We tested the generated tati sripts for all primes between 2 and 7927(the �rst 1000 primes) and measured the time needed by Coq to run thetati sript and hek the resulting proof-objet on a Unix workstation.{Obviously the general trend is that larger primes need more time. How-ever, some numbers are muh harder due to an unfortunate prime fator-ization of q. Some examples of easy and hard primes are given in olumn1 in Table 1 followed by the number of reursive alls, and the seondsneeded to prove primality using a believing and a skeptial approah.Table 1: Easy and hard primes.n Reursive alls Believing Skeptial2939 3; 7; 113 5 254111 17; 137 4 257829 17; 103 4 282039 3; 7; 127; 509; 1019 8 454079 3; 7; 127; 509; 1019; 2039 9 617727 3; 193; 1931; 3863 7 52For example when proving Prime(2039), the algorithm is fored tohoose q = 1019, sine the prime fatorization of 2038 is 2 � 1019. Now,1018 in its turn has as prime fatorization 2 � 509. In the end reursivealls for 3, 7, 127, 509, and 1019 are needed to prove Prime(2039), andit takes about 45 seonds to verify the proof. In ontrast to verify theproof generated for n = 2939 only needs reursive alls for 3, 7, and 113and only takes about 25 seonds. The number of primes required in thereursion steps for the �rst 1000 primes are plotted in Figure 6. Numbersof the form 2n + 1 require no reursive all (they are 3, 5, 17, 257, : : :).Next best are primes of the form p+1 where the fatorization of p involvesprimes of the form 2n + 1 above (they are 7, 11, 13, 19, 37, 41, : : :), andso on. In general, given a number n, the worst ase is that there will bedlog2 n+13 e primes to be heked reursively. This trend shows also in theplot of the size of the ontext used in the primality proof (number of lem-mata about modular equations, linear ombinations, and primes) as givenin Figure 7. The omplete run-time results for the �rst 1000 primes areplotted in Figure 8. The timings (in seonds) for the believing approahxIt remains to see whether, for suh titani primes, Coq sueeds in heking the generatedproofs.{The mahine used for the tests is a Sun Ultra 10 with 333Mhz Spar proessor and 128MBmemory. The Coq version used is 6.3.1.
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Figure 8: Coq timings (in seonds) for the �rst 1000 primes.seemed to be worse than linear, while Figure 8 shows a logarithmi timeomplexity.Some large primes that were tested are listed in Table 2. For severalof them, GAP issues a warning that a probabilisti primality test is used.The last olumns lists the time Coq needed to hek the proof-objetprodued by the skeptial approah.Table 2: Some large primes veri�ed skeptially.n Digits Time1234567891 10 24574747474747474747 17 7671111111111111111111 19 14719026258083384996860449366072142307801963 40 1240420988936657440586486151264256610222593863921 44 290605. ConlusionsWe have shown how by ombining omputer algebra orales and theoremprovers it is possible to automatially produe proofs of primality that areeÆiently and formally veri�able. The primality proofs are obtained a-ording to Poklington's riterion that has been formally proven in Coq.The formal development has been arried out onstrutively and is nowavailable as ontributed library of Coq, it onsists of 260 smaller lemmatataking approximately 5000 lines of ode.



Caprotti and Oostdijk: Formal and eÆient primality proofs 15The arhiteture for using Poklington's riterion relies on the useof omputer algebra orales. We implemented these orales by re-usingOpenMath mathematial servers providing omputational apabilities onthe network that we have developed previously. The Java appliationthat produes the tati sript behaves as a lient to these servers. In thisgeneral view, our experiments are an example of how to use omputeralgebra in theorem proving and an investigation on the tools that arerequired to e�etively arry out the integration. We pro�ted greatly fromour former work in using the standard ommuniation language Open-Math to interfae to a variety of symboli omputation systems. For someof the systems we used, we have developed our own small OpenMath in-terfae, available from http://rystal.win.tue.nl/publi/projets,sine unfortunately most system do not yet support OpenMath (GAP isamong the few that atually do). It was extremely easy to extend thealready available OpenMath servers to handle the requests of the Pok-lington's applet. In our experiene, adding a new orale for the spei�tasks of this ase study is quite straightforward: the fewOpenMath objetsused in the ommuniation are the only ones that need to be translated,together with the result. It should eventually be possible in future to in-terat with mathematial servers by a unique protool without having toworry about syntax, loation, or availability.We tested the urrent implementation with primes up to 44 digits. Be-sides the diÆulty of omputing the witnesses required by the proof ofsuh large numbers, another issue has been the time required to heklarger proof-objets. It is striking to see what an atually be aom-plished by ombining powerful omputer algebra systems with Coq. Infat, we do not think that Ferrier's prime is the largest prime that an betakled by our approah although we have not yet attempted any biggerone. We are urrently adding interfaes to Pari and to Magma whih willallow to takle larger problemsk. For this appliation, adding omputeralgebra engines as orales is onsiderably simpler than hanging the proofassistant, whih would imply doing most of the formal development plusdesigning a new ad-ho tati generator. It is our hope that ase stud-ies suh as this one stimulate the developers of omputational softwarein building systems that provide mathematial servies in a standardizedway. This would greatly simplify this kind of investigations.Aknowledgments: The authors are very grateful to Henk Baren-dregt and to Arjeh Cohen for suggesting this ase study and for halleng-ing and inspiring them with proving bigger and bigger primes. HermanGeuvers has helped us with hints during many disussions. A gratefulthanks to the anonymous referees for pointing out missing referenes inthe initial version of the bibliography.kFor instane the primitive root of the prime 3141592653589793238462643383279528841 isomputed without problems by Magma, whereas GAP omplains.
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