
1

PROGRAMMING IN HASKELL

Chapter 8 - Functional Parsers

2

What is a Parser?

A parser is a program that analyses a piece
of text to determine its syntactic structure.

2∗3+4 means 4

+

2

∗

32

3

Where Are They Used?

Almost every real life program uses some
form of parser to pre-process its input.

Haskell programs

Shell scripts

HTML documents

Hugs

Unix

Explorer

parses

4

The Parser Type

In a functional language such as Haskell,
parsers can naturally be viewed as functions.

type Parser = String → Tree

A parser is a function that takes
a string and returns some form

of tree.

5

However, a parser might not require all of its
input string, so we also return any unused
input:

type Parser = String → (Tree,String)

A string might be parsable in many ways,
including none, so we generalize to a list of
results:

type Parser = String → [(Tree,String)]

6

Finally, a parser might not always produce a
tree, so we generalize to a value of any type:

type Parser a = String → [(a,String)]

Note:

❚ For simplicity, we will only consider
parsers that either fail and return the
empty list of results, or succeed and
return a singleton list.

7

Basic Parsers

❚ The parser item fails if the input is empty,
and consumes the first character
otherwise:

item :: Parser Char

item = λ inp → case inp of

 [] → []

 (x:xs) → [(x,xs)]

8

❚ The parser failure always fails:

failure :: Parser a

failure = λ inp → []

❚ The parser return v always succeeds,
returning the value v without consuming
any input:

return :: a → Parser a
return v = λ inp → [(v,inp)]

9

❚ The parser p +++ q behaves as the parser
p if it succeeds, and as the parser q
otherwise:

(+++) :: Parser a → Parser a → Parser a

p +++ q = λ inp → case p inp of

 [] → parse q inp

 [(v,out)] → [(v,out)]

❚ The function parse applies a parser to a
string:

parse :: Parser a → String → [(a,String)]

parse p inp = p inp

10

Examples

% hugs Parsing

> parse item ""
[]

> parse item "abc"
[('a',"bc")]

The behavior of the five parsing primitives
can be illustrated with some simple
examples:

11

> parse failure "abc"

[]

> parse (return 1) "abc"

[(1,"abc")]

> parse (item +++ return 'd') "abc"

[('a',"bc")]

> parse (failure +++ return 'd') "abc"

[('d',"abc")]

12

Note:

❚ The library file Parsing is available on the web
from the Programming in Haskell home page.

❚ For technical reasons, the first failure
example actually gives an error concerning
types, but this does not occur in non-trivial
examples.

❚ The Parser type is a monad, a mathematical
structure that has proved useful for modeling
many different kinds of computations.

13

A sequence of parsers can be combined as a
single composite parser using the keyword
do.

For example:

Sequencing

p :: Parser (Char,Char)

p = do x ← item
 item

 y ← item
 return (x,y)

14

Note:

❚ Each parser must begin in precisely the same
column. That is, the layout rule applies.

❚ The values returned by intermediate parsers
are discarded by default, but if required can be
named using the ← operator.

❚ The value returned by the last parser is the
value returned by the sequence as a whole.

15

❚ If any parser in a sequence of parsers
fails, then the sequence as a whole fails.
For example:

> parse p "abcdef"
[((’a’,’c’),"def")]

> parse p "ab"
[]

❚ The do notation is not specific to the Parser
type, but can be used with any monadic
type.

16

Derived Primitives

sat :: (Char → Bool) → Parser Char
sat p = do x ← item
 if p x then
 return x
 else
 failure

❚ Parsing a character that satisfies a
predicate:

17

digit :: Parser Char

digit = sat isDigit

char :: Char → Parser Char
char x = sat (x ==)

❚ Parsing a digit and specific characters:

❚ Applying a parser zero or more times:

many :: Parser a → Parser [a]
many p = many1 p +++ return []

18

many1 :: Parser a -> Parser [a]
many1 p = do v ← p
 vs ← many p
 return (v:vs)

❚ Applying a parser one or more times:

❚ Parsing a specific string of characters:

string :: String → Parser String
string [] = return []
string (x:xs) = do char x
 string xs
 return (x:xs)

19

Example

We can now define a parser that consumes a
list of one or more digits from a string:

p :: Parser String
p = do char '['
 d ← digit
 ds ← many (do char ','
 digit)
 char ']'
 return (d:ds)

20

For example:

> parse p "[1,2,3,4]"

[("1234","")]

> parse p "[1,2,3,4"

[]

Note:

❚ More sophisticated parsing libraries can
indicate and/or recover from errors in the
input string.

21

Arithmetic Expressions

Consider a simple form of expressions built
up from single digits using the operations of
addition + and multiplication *, together with
parentheses.

We also assume that:

❚ * and + associate to the right;

❚ * has higher priority than +.

22

Formally, the syntax of such expressions is
defined by the following context free
grammar:

expr → term '+' expr  term

term → factor '*' term  factor

factor → digit  '(' expr ')‘

digit → '0'  '1'  …  '9'

23

However, for reasons of efficiency, it is
important to factorise the rules for expr and
term:

expr → term ('+' expr  ε)

term → factor ('*' term  ε)

Note:

❚ The symbol ε denotes the empty
string.

24

It is now easy to translate the grammar into a
parser that evaluates expressions, by simply
rewriting the grammar rules using the parsing
primitives.

That is, we have:

expr :: Parser Int
expr = do t ← term
 do char '+'
 e ← expr
 return (t + e)
 +++ return t

25

factor :: Parser Int
factor = do d ← digit
 return (digitToInt d)
 +++ do char '('
 e ← expr
 char ')'
 return e

term :: Parser Int
term = do f ← factor
 do char '*'
 t ← term
 return (f * t)
 +++ return f

26

Finally, if we define

eval :: String → Int

eval xs = fst (head (parse expr xs))

then we try out some examples:

> eval "2*3+4"
10

> eval "2*(3+4)"
14

27

Exercises

(2) Extend the expression parser to allow the
use of subtraction and division, based
upon the following extensions to the
grammar:

expr → term ('+' expr  '-' expr  ε)

term → factor ('*' term  '/' term  ε)

(1) Why does factorising the expression
grammar make the resulting parser more
efficient?

	PowerPoint Presentation
	What is a Parser?
	Where Are They Used?
	The Parser Type
	Slide 5
	Slide 6
	Basic Parsers
	Slide 8
	Slide 9
	Examples
	Slide 11
	Slide 12
	Sequencing
	Slide 14
	Slide 15
	Derived Primitives
	Slide 17
	Slide 18
	Example
	Slide 20
	Arithmetic Expressions
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Exercises

