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PROGRAMMING IN HASKELL

Chapter 8 - Functional Parsers
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What is a Parser?

A parser is a program that analyses a piece 
of text to determine its syntactic structure.

2∗3+4 means 4

+

2

∗

32
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Where Are They Used?

Almost every real life program uses some 
form of parser to pre-process its input.

Haskell programs

Shell scripts

HTML documents

Hugs

Unix

Explorer

parses
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The Parser Type

In a functional language such as Haskell, 
parsers can naturally be viewed as functions.

type Parser = String → Tree

A parser is a function that takes 
a string and returns some form 

of tree.
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However, a parser might not require all of its 
input string, so we also return any unused 
input:

type Parser = String → (Tree,String)

A string might be parsable in many ways, 
including none, so we generalize to a list of 
results:

type Parser = String → [(Tree,String)]
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Finally, a parser might not always produce a 
tree, so we generalize to a value of any type:

type Parser a = String → [(a,String)]

Note:

❚ For simplicity, we will only consider 
parsers that either fail and return the 
empty list of results, or succeed and 
return a singleton list.
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Basic Parsers

❚ The parser item fails if the input is empty, 
and consumes the first character 
otherwise:

item :: Parser Char

item  = λ inp → case inp of

                  []     → []

                  (x:xs) → [(x,xs)] 
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❚ The parser failure always fails:

failure :: Parser a

failure  = λ inp → []

❚ The parser return v always succeeds, 
returning the value v without consuming 
any input:

return  :: a → Parser a
return v = λ inp → [(v,inp)]
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❚ The parser p +++ q behaves as the parser 
p if it succeeds, and as the parser q 
otherwise:

(+++)  :: Parser a → Parser a → Parser a

p +++ q = λ inp → case p inp of

                   []        → parse q inp

                   [(v,out)] → [(v,out)]

❚ The function parse applies a parser to a 
string:

parse :: Parser a → String → [(a,String)]

parse p inp = p inp
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Examples

% hugs Parsing

> parse item ""
[] 

> parse item "abc"
[('a',"bc")]

The behavior of the five parsing primitives 
can be illustrated with some simple 
examples:
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> parse failure "abc"

[]

> parse (return 1) "abc"

[(1,"abc")]

> parse (item +++ return 'd') "abc"

[('a',"bc")]

> parse (failure +++ return 'd') "abc"

[('d',"abc")]
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Note:

❚ The library file Parsing is available on the web 
from the Programming in Haskell home page. 

❚ For technical reasons, the first failure 
example actually gives an error concerning 
types, but this does not occur in non-trivial 
examples.

❚ The Parser type is a monad, a mathematical 
structure that has proved useful for modeling 
many different kinds of computations.
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A sequence of parsers can be combined as a 
single composite parser using the keyword 
do.

For example:

Sequencing

p :: Parser (Char,Char)

p  = do x ← item
        item

        y ← item
        return (x,y)
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Note:

❚ Each parser must begin in precisely the same 
column.  That is, the layout rule applies.

❚ The values returned by intermediate parsers 
are discarded by default, but if required can be 
named using the ← operator.

❚ The value returned by the last parser is the 
value returned by the sequence as a whole.
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❚ If any parser in a sequence of parsers 
fails, then the sequence as a whole fails.  
For example:

> parse p "abcdef"
[((’a’,’c’),"def")]

> parse p "ab"
[]

❚ The do notation is not specific to the Parser 
type, but can be used with any monadic 
type.
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Derived Primitives

sat  :: (Char → Bool) → Parser Char
sat p = do x ← item
           if p x then
              return x
            else
              failure

❚ Parsing a character that satisfies a 
predicate:
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digit :: Parser Char

digit  = sat isDigit

char  :: Char → Parser Char
char x = sat (x ==)

❚ Parsing a digit and specific characters:

❚ Applying a parser zero or more times:

many  :: Parser a → Parser [a]
many p = many1 p +++ return []



18

many1  :: Parser a -> Parser [a]
many1 p = do v  ← p
             vs ← many p
             return (v:vs)

❚ Applying a parser one or more times:

❚ Parsing a specific string of characters:

string       :: String → Parser String
string []     = return []
string (x:xs) = do char x
                   string xs
                   return (x:xs)
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Example

We can now define a parser that consumes a 
list of one or more digits from a string:

p :: Parser String
p  = do char '['
        d  ← digit
        ds ← many (do char ','
                       digit)
        char ']'
        return (d:ds)
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For example:

> parse p "[1,2,3,4]"

[("1234","")]

> parse p "[1,2,3,4"

[]

Note:

❚ More sophisticated parsing libraries can 
indicate and/or recover from errors in the 
input string.
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Arithmetic Expressions

Consider a simple form of expressions built 
up from single digits using the operations of 
addition + and multiplication *, together with 
parentheses.

We also assume that:

❚ * and + associate to the right;

❚ * has higher priority than +.
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Formally, the syntax of such expressions is 
defined by the following context free 
grammar:

expr   → term '+' expr  term
 

term   → factor '*' term  factor

factor → digit  '(' expr ')‘

digit  → '0'  '1'  …  '9' 
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However, for reasons of efficiency, it is 
important to factorise the rules for expr and 
term:

expr → term ('+' expr  ε )

term → factor ('*' term  ε )

Note: 

❚ The symbol ε  denotes the empty 
string.
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It is now easy to translate the grammar into a 
parser that evaluates expressions, by simply 
rewriting the grammar rules using the parsing 
primitives.

That is, we have:

expr :: Parser Int
expr  = do t ← term
           do char '+'
              e ← expr
              return (t + e)
            +++ return t
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factor :: Parser Int
factor  = do d ← digit
             return (digitToInt d)
           +++ do char '('
                  e ← expr
                  char ')'
                  return e

term :: Parser Int
term  = do f ← factor
           do char '*'
              t ← term
              return (f * t)
            +++ return f 
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Finally, if we define

eval   :: String → Int

eval xs = fst (head (parse expr xs))

then we try out some examples:

> eval "2*3+4"
10

> eval "2*(3+4)"
14
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Exercises

(2) Extend the expression parser to allow the 
use of subtraction and division, based 
upon the following extensions to the 
grammar:

expr → term ('+' expr  '-' expr  ε )

term → factor ('*' term  '/' term  ε )

(1) Why does factorising the expression 
grammar make the resulting parser more 
efficient?
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