Bounded Quantification is Undecidable

Benjamin C. Pierce
School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213-3890, USA

bcp@cs.cmu.edu

Abstract

F< is a typed A-calculus with subtyping and bounded
second-order polymorphism. First proposed by Cardelli
and Wegner, it has been widely studied as a core calcu-
lus for type systems with subtyping.

Curien and Ghelli proved the partial correctness of a
recursive procedure for computing minimal types of F
terms and showed that the termination of this proce-
dure is equivalent to the termination of its major com-
ponent, a procedure for checking the subtype relation
between F< types. This procedure was thought to ter-
minate on all inputs, but the discovery of a subtle bug
in a purported proof of this claim recently reopened the
question of the decidability of subtyping, and hence of
typechecking.

This question is settled here in the negative, using
a reduction from the halting problem for two-counter
Turing machines to show that the subtype relation of
F¢ is undecidable.

1 Introduction

The notion of bounded quantification was introduced by
Cardelli and Wegner [16] in the language Fun. Based
on informal ideas by Cardelli and formalized using tech-
niques developed by Mitchell [11, 30], Fun integrated
Girard-Reynolds polymorphism [25, 33] and Cardelli’s
first-order calculus of subtyping [7, 8].

Fun and its relatives have been studied extensively by
programming language theorists and designers. Cardelli
and Wegner’s survey paper gives the first programming
examples using bounded quantification; more are de-
veloped in Cardelli’s study of power kinds [9]. Curien

and Ghelli [20, 23] address a number of syntactic prop-
erties of F'<. Semantic aspects of closely related sys-
tems have been studied by Bruce and Longo [3], Mar-
tini [29], Breazu-Tannen, Coquand, Gunter, and Sce-
drov [1], Cardone [17], Cardelli and Longo [13], Cardelli,
Martini, Mitchell, and Scedrov [14], and Curien and
Ghelli [20, 21]. F< has been extended to include record
types and richer notions of inheritance by Cardelli and
Mitchell [15], Bruce [2], Cardelli [12], and Canning,
Cook, Hill, Olthoff, and Mitchell [5]; an extension
with intersection types [19, 34] is the subject of the
present author’s Ph.D. thesis [32]. Bounded quantifi-
cation also plays a key role in Cardelli’s programing
language Quest [10, 13] and in the Abel language devel-
oped at HP Labs [4, 5, 6, 18].

The original Fun was simplified by Bruce and
Longo [3], and again by Curien and Ghelli [20]. Curien
and Ghelli’s formulation, called minimal Bounded Fun
or F¢ (“F sub”), is the one considered here.

Like other second-order A-calculi, the terms of F< in-
clude variables, abstractions, applications, type abstrac-
tions, and type applications, with the refinement that
each type abstraction gives a bound for the type variable
it introduces and each type application must satisfy the
constraint that the argument type is a subtype of the
bound of the polymorphic function being applied. The
well-typed terms of F< are defined by means of a col-
lection of rules (summarized in Figure 1) for inferring
statements of the form I' - e € 7 (“e has type 7 in
context I'). Variables, abstractions, and applications
have the rules familiar from other A-calculi (rules VAR,
ABs, and APP). Type abstractions (rule TABs) declare
a bound, with respect to the subtype relation, for the
variable they introduce; they are checked by moving this
assumption into the context and checking the body of
the abstraction under the enriched set of assumptions.
Type applications (rule TAPP) check that the type be-
ing passed as a parameter is indeed a subtype of the
bound of the polymorphic value in the function posi-
tion. Finally, like other A-calculi with subtyping, F<

I' - zel(x) (VAR)
FzokFeer A
' Axio.e € o—7 (ABs)
I'Fe € o—71 'k e eo
A
I'Feeyer (APP)
Faf Feer TA
I'F Aa<f.e € Ya<l. T (TABs)
Ik Ya<. I+ < f
e € Ya T o < (TAPP)
Tk elo] € {o/a}r
F'Feeo o <r
F''Feer (Sus)

Figure 1: Typing rules

includes a rule of subsumption, which allows the type of
a term to be promoted to any supertype (rule SUB).

The rules TArp and SuUB rely on a separately ax-
iomatized subtype relation I' - o < 7 (“o is a sub-
type of 7 under assumptions I'”). This relation, which
forms our main object of study, is summarized in Fig-
ure 2. Subtyping is both reflexive and transitive (rules
REFL and TRANs). Every type is a subtype of a max-
imal type called Top (rule Top). Type variables are
subtypes of their bounds (rule TVAR). The subtype
relation between arrow types is contravariant in their
left-hand sides and covariant in their right-hand sides
(rule ARrROW). Similarly, subtyping of quantified types
is contravariant in their bounds and covariant in their
bodies (rule ALL).

The last rule deserves a closer look, since it is the pri-
mary cause of the difficulties we will be discussing for
the rest of the paper. Intuitively, it reads as follows.
A type 7 = VYa<m. 1 describes a collection of poly-
morphic values (functions from types to values), each
mapping subtypes of 7 to instances of . If 7 is a
subtype of oy, then the domain of 7 is smaller than
that of ¢ = Va<o;. 09, so 7 is a weaker constraint
and describes a larger collection of polymorphic values.
Moreover, if, for each type 8 that is an acceptable argu-
ment to the functions in both collections (i.e., one that
satisfies the more stringent requirement 6 < 71), the 6-
instance of o5 is a subtype of the #-instance of 75, then
T is a “pointwise weaker” constraint and again describes
a larger collection of polymorphic values.

Though semantically appealing, this rule creates seri-
ous problems for reasoning about the subtype relation.
In a quantified type Ya<o;. 0g, instances of a in o5 are

r-r<r (REFL)
I+ < Ik <

n=n =" (TrRANS)

F l_ T1 S 73
L't o < Top (Top)
I' - a <T(a) (TVAR)

I < r+ <
n= % 2" (ARROW)

F l_ 01—09 S T1—T2
'mn <o Iasm F oy < 1 (ALL)

I' - Va<o,. 09 < Vasn. m

Figure 2: Subtyping rules

naturally thought of as being bounded by their lexically
declared bound ;. But this connection is destroyed
by the second premise of the quantifier subtyping rule:
when Va<o;. o5 is compared to Va<t. 79, instances of
a in both oy and 75 are bounded by 7 in the premise
[, agm F oy < 15. As we shall see, this “re-bounding”
behavior is powerful enough to allow undecidable prob-
lems to be encoded as subtyping statements.

Cardelli and Wegner’s definition of Fun [16] used a
weaker quantifier subtyping rule in which Ya<o;. o3 is
a subtype of Va<r;. 7 only when o1 and 7, are identi-
cal. (This variant can easily be shown to be decidable.)
Later authors, including Cardelli, have chosen to work
with the more powerful formulation given here.

Curien and Ghelli used a proof-normalization argu-
ment to show that F< typechecking is coherent — that
is, that all derivations of a statement I' I e € 7 have the
same meaning, under certain assumptions about the se-
mantic interpretation function. One corollary of their
proof is the soundness and completeness of a natural
syntax-directed procedure for computing minimal typ-
ings of F< terms, with a subroutine for checking the
subtype relation; the same procedure had been devel-
oped by the group at Penn and by Cardelli for use in
his Quest typechecker [26]. The termination of Curien
and Ghelli’s typechecking procedure is equivalent to the
termination of the subtyping algorithm. Ghelli, in his
Ph.D. thesis [23], gave a proof of termination; unfortu-
nately, this proof was later discovered — by Curien and
Reynolds, independently — to contain a subtle mistake
(see [31]). In fact, Ghelli soon realized that there are
inputs for which the subtyping algorithm does not ter-
minate [24]. Worse yet, these cases are not amenable
to any simple form of cycle detection: when presented

with one of them, the algorithm would generate an in-
finite sequence of recursive calls with larger and larger
contexts. This discovery reopened the question of the
decidability of F<.

The undecidability result presented here began as an
attempt to formulate a more refined algorithm capa-
ble of detecting the kinds of divergence that could be
induced in the simpler one. A series of partial results
about decidable subsystems eventually led to the discov-
ery of a class of input problems for which increasing the
size the input by a constant factor would increase the
search depth of a succeeding execution of the algorithm
by an exponential factor. Besides dispelling previous in-
tuitions about why the problem ought to be decidable,
this construction suggested a trick for encoding natural
numbers, from which it was a short step to an encoding
of two-counter Turing machines.

After formally defining the F< subtype relation (Sec-
tion 2), reviewing Curien and Ghelli’s subtyping algo-
rithm (Section 3), and presenting an example where the
algorithm fails to terminate (Section 4), we identify a
fragment of F< that forms a convenient target for the re-
ductions to follow (Sections 5 and 6). The main result is
then presented in two steps. We first define an interme-
diate abstraction, called rowing machines (Section 7);
these bridge the gap between F< subtyping problems
and two-counter machines by retaining the notions of
bound variables and substitution from F< while intro-
ducing a computational abstraction with a finite col-
lection of registers and an evaluation regime based on
state transformation. An encoding of rowing machines
as F'< subtyping statements is given and proven correct,
in the sense that a rowing machine R halts iff its trans-
lation F(R) is a derivable statement in F< (Section 8).
We then review the definition of two-counter machines
(Section 9) and show how a two-counter machine 7" may
be encoded as a rowing machine R(7") such that 7" halts
iff R(T) does (Section 10). Section 11 shows that the
undecidability of subtyping implies the undecidability
of typechecking. Section 12 briefly discusses the prag-
matic import of our results.

Full proofs, omitted here to save space, may be found
in an accompanying technical report [31]. In all cases,
they proceed either by structural induction on deriva-
tions or by straightforward calculation from the defini-
tions.

2 The Subtype Relation

We begin the detailed development of the undecidability
of F< by establishing some notational conventions and
deﬁn_ing the subtype relation formally.

2.1. Notation: We write X = Y, where X and Y

are types, contexts, statements, etc., to indicate that
“X has the form Y.” If Y contains free metavariables,
then X =Y denotes pattern matching; for example “If
7 = Vasr. 19, then ...” means “If 7 has the form
Va<rt. 1 for some «, 7, and 75, then ...”

2.2. Definition: The types of F< are defined by the
following abstract grammar:

T = «a| n—omn | Yasn. | Top

2.3. Definition: Typing contextsin F< are lists of type
variables and associated bounds,

r == {} | I, asr

with all variables distinct. (To deal formally with the
F< typing relation, we would also need bindings of the
form #:7.) The comma operator is used to denote both
extension (I', «<7) and concatenation (I'y, I's) of con-
texts. The set of variables bound by a context I' is
written dom(T). When I' = T'y, a<r, I's, we call 7 the
bound of & in T and write 7 = I'(«).

2.4. Definition: A subtyping statement is a phrase of
the form I' F o < 7. The portion of a statement to the
right of the turnstile is called the body.

2.5. Definition: The set of free type variablesin a type
T is written FTV(7). A type 7 is closed with respect
to a context I' if FTV(r) C dom(T). A context I is
closed if T' = {}, or T = TI'y, a<r, with I'; closed and
7 closed with respect to I';. A statement ' F o < 7 is
closed if T is closed and o and 7 are closed with respect
to I'. In the following, we assume that all statements
under discussion are closed. In particular, we allow only
closed statements in instances of inference rules.

2.6. Convention: The metavariables o, 7, #, and ¢
range over types; «, 3, and 7 range over type variables;
I' ranges over contexts; J ranges over (closed) state-
ments.

2.7. Definition: Fc¢ is the least three-place relation
closed under the subtyping rules in Figure 2.

2.8. Convention: Types, contexts, and statements
that differ only in the names of bound variables are con-
sidered to be identical. (In a statement I'y, a<f, T'y -
o < 1, the variable « is bound in T's, o, and 7.)

2.9. Definition: The capture-avoiding substitution of
o for ain 7 is written {o/a}7. Substitution is extended
pointwise to contexts: {o/a}T.

2.10. Definition: The positive and negative occur-
rences in a statement I' F o < 7 are defined as fol-
lows. The type o and the bounds in I' are negative
occurrences; T is a positive occurrence. If 11—7 is a
positive (resp. negative) occurrence, then 7 is a nega-
tive (positive) occurrence and 73 is a positive (negative)
occurrence. If Ya<r. 15 is a positive (resp. negative)
occurrence, then 71 is a negative (positive) occurrence
and 79 is a positive (negative) occurrence.

2.11. Fact: The rules defining F'< preserve the signs
of occurrences: wherever a metavariable 7 appears in a
premise of one of the rules, it has the same sign as the
corresponding occurrence of 7 in the conclusion.

2.12. Definition: In the examples below, it will be
convenient to rely on a few abbreviations:

def

Va. 1T = Va<Top. T
def

Va15¢1.0,50,. T = Va5¢1. .. Va,<¢,. 7
def

-7 = Va1 «

The salient property of the last of these is that it
allows the right- and left-hand sides of subtyping state-
ments to be swapped:

2.13. Fact: ' F =0 < =7 is derivable if ' - 7 < ¢ is.

3 A Subtyping Algorithm

The rules defining F« do not constitute an algorithm
for checking the subtype relation, since they are not
syntax-directed. In particular, the rule TRANS cannot
effectively be applied backwards, since this would in-
volve “guessing” an appropriate intermediate type 7.
Curien and Ghelli (as well as Cardelli and others) use
the following reformulation:

3.1. Definition: FY (N for normal form) is the least
relation closed under the following rules:

't o < Top (NTopr)
'k o<« (NREFL)

'FT(a) <7

- N

rra<r (NVaR)

r+ < rk <
=0 2= T (NARROW)

F |_ 01—09 S T1— T2
'mn <o Iasm F oy < 1 (NALL)

I' - Va<o,. 09 < Vasn. m

The reflexivity rule here is restricted to type variables.
Transitivity is eliminated, except for instances of the
following form, which are “hidden” in instances of the
new rule NVAR:

I'kFa<T(a) 'FT(a)< T
r~a<r

3.2. Lemma: [Curien and Ghelli] The relations Fc¢
and I'Y coincide: I' b o < 7 is derivable in F¢ iff it is
derivable in F¥.

3.3. Definition: The rules defining FY may be read as
an algorithm (i.e., a recursively defined procedure, not
necessarily always terminating) for checking the subtype
relation. We write F'Y to refer either to the algorithm
or to the inference system, depending on context.

The algorithm F'Y may be thought of as incrementally
attempting to build a normal form derivation of a state-
ment J, starting from the root and recursively building
subderivations for the premises. By Lemma 3.2, if there
is any derivation whatsoever of a statement J, there is
one in normal form; the algorithm is guaranteed to re-
capitulate this derivation and halt in finite time.

4 Nontermination of the Algo-
rithm

Ghelli recently dispelled the widely held belief that the

algorithm /'Y terminates on all inputs, by discovering

the following example.

4.1. Example: Let § = Va. =(¥Y8<a. =3). Then

executing the algorithm F7 on the input problem
()[039 F Qp S (VOqSOéo. _|(11)

leads to the following infinite sequence of recursive calls:

(XQS@ F (6]
S V(leao. mlest
(XQSH F Val. —|(Va2§a1. _|()12)
S Valﬁao. lest
Oéo<9, ()51<010 F _|(VOZQSCY1. _H‘ZXQ)
< o]
(XQSG, Oélf()to F [¢%]
S VO(QSOQ. g
aOS(}, alfao F (¢ %))
<

VO(QSOQ. g
ete.

(The a-conversion steps necessary to maintain the
well-formedness of the context when new variables are
added are performed tacitly here, choosing new names
so as to clarify the pattern of infinite regress.)

5 A Deterministic Fragment

The pattern of recursion in Ghelli’s example is an in-
stance of a more general scheme — one so general, in
fact, that it can be used to encode termination prob-
lems for two-counter Turing machines. We now turn to
demonstrating this fact.
5.1. Fact: The rules defining 'Y preserve the signs
of occurrences: wherever a metavariable 7 appears in a
premise of one of the rules, it has the same sign as the
corresponding occurrence of 7 in the conclusion.

In what follows, it will be convenient to work with
a fragment of F'Y with somewhat simpler behavior: we
drop the — type constructor and its subtyping rule; we
introduce a negation operator explicitly into the syn-
tax and include a rule for comparing negated expres-
sions; we drop the left-hand premise from the rule for

comparing quantifiers, requiring instead that when two
quantified types are compared, the bound of the one on
the left must be Top; and we consider only statements
where no variable occurs positively, allowing us to drop
the NREFL rule. Since the F[rules preserve positive
and negative occurrences, we may redefine the set of
types so that positive and negative types (i.e. those that
appear in positive and negative positions) are separate
syntactic categories. At the same time, we simplify each
category appropriately.

5.2. Definition: The sets of positive types 7T and
negative types T~ are defined by the following abstract
grammar:

™t = Top | -t~ | Vasr~. 7t

a | -t | Va. 77

T =
A negative context I'” is one whose bounds are all neg-

ative types.

5.3. Definition: F? (P for polarized) is the least
relation closed under the following rules:

'+ 7 < Top (PTop)
I~ kI (o) <7t
- rFa<rt (PVaR)
I,a<¢” F o™ < 7t
— PA
'~ F Va. o~ < Vag¢—. 7t (PALL)
r-rr- <ot
(PNEG)

- F —ot < =7~

FZ is almost the system we need, but it still lacks one
important property: F< is not a conservative extension
of FZ. For example, the non-derivable F'7 statement

F—=Top < Va<Top. a

corresponds, under the abbreviation for —, to the deriv-
able F< statement

FVYa<Top. a <Va<Top. a.

To achieve conservativity, we restrict the form of FZ
statements even further so that negated types can never
be compared with quantified types.
5.4. Definition: Let n be a fixed nonnegative number.
The sets of n-positive and n-negative types are defined
by the following abstract grammar:

™t = Top | Yao<ty .. an<t, . =1~
+

T i=a | Yag..ap. 0T

We stipulate, moreover, that an n-positive type
Vao<Ty .. an<t, . =7~ is closed only if no o; appears
free in any ;.

An n-negative contert is one whose bounds are all n-
negative types.

5.5. Convention: To reduce clutter, we drop the su-
perscripts + and — and leave n implicit in what follows.

5.6. Definition: F'2 (D for deterministic) is the least
relation closed under the following rules:

'k 7 < Top (DTopr)

I'F T(a) € Vao<ry .. ansrm,. o7

I' H @ < Vag<rg .. @y <1y 7

(DVaR)

I, apS<rg..anst, F 7 < o

I' F Vag ..o, 0 < Va1 .. ap<t,. T
(DALLNEG)

Using the earlier abbreviations for negation, multiple
quantification, and unbounded quantification, we may
read every F'Z statement as an FY statement. Under
this interpretation, the two subtype relations coincide
for statements in their common domain:

5.7. Lemma: I} is a conservative extension of F'Z: if
J is an F2 statement, then J is derivable in F2 iff it is
derivable in F¥. N

These simplifications justify a useful change of per-
spective. Since the only rule in F'} with two premises
has been replaced by a rule with one premise, deriva-
tions in this fragment are linear (each node has at most
one subderivation). The syntax-directed construction
of such a derivation may be viewed as a deterministic
state transformation process, where the subtyping state-
ment being verified is the current state and the single
premise that must be recursively verified (if any) is the
next state. In other words, a subtyping statement is
thought of as an instantaneous description of a kind of
automaton.

From now on we use terminology that makes the in-
tuition of “subtyping as state transformation” more ex-
plicit. Analogous terminology and notation will be used
to describe the execution behavior of the other calculi
introduced below.

5.8. Definition: The one-step elaboration function £
for F'2-statements is the partial mapping defined by:

J! if J is the conclusion of an in-
stance of DVAR or DALLNEG
and J' is the corresponding
premise

if J is an instance of DTop.

£(J) =

undef.

J' is an immediate subproblem of J in F2, written
J —p J i J = E(J). J'is a subproblem of J in
FZ, written J =5 J', if either J = J or J —p J;

and Jq —*>D J'. The elaboration of a statement J is the
sequence of subproblems encountered by the subtyping
algorithm given J as input.

6 Eager Substitution

To make a smooth transition between the subtyping
statements of Fi< and the rowing machine abstraction to
be introduced in Section 7, we need one more variation
in the definition of subtyping, where, instead of main-
taining a context with the bounds of free variables, the
quantifier rule immediately substitutes the bounds into
the body of the statement.

6.1. Definition: The simultaneous, capture-avoiding
substitution of ¢g through ¢,, respectively, for «g
through «a, in 7, is written {¢o/aq .. ¢n/an} 7.

6.2. Definition: FfZ (F for flattened) 1is
the least relation closed under the following rules:
Fr < Top (FTop)

F {do/ao .. ¢on/an} T < {d0o/ao..bn/an} o
F Vag.. a, -0 < Vagldg.. an<o,. o7
(FALLNEG)

6.3. Remark: Of course, an analogous reformulation
of full F< would not be correct. For example, in the
non-derivable statement

F (Ya<Top. Top) < (Va<Top. «)

substituting 7op for « in the bodies of the quantifiers
yields the derivable statement = Top < Top. But having
restricted our attention to statements where variables
appear only negatively, we are guaranteed that the only
position where the elaboration of a statement can cause
a variable to appear by itself in the body of a subprob-
lem is on the left-hand side, where it will immediately be
replaced by its bound. We are therefore safe in making
the substitution eagerly.

6.4. Lemma: F? is a conservative extension of FZ.

7 Rowing Machines

The reduction from two-counter Turing machines to F¢
subtyping statements is easiest to understand in terms
of an intermediate abstraction called a rowing machine
that makes more stylized use of bound variables. A
rowing machine is a tuple of registers

(p1 - pn),

where the contents of each register is a row. By conven-
tion, the first register is the machine’s program counter
(or PC). To move to the next state, the PC is used as
a template to construct the new contents of each of the
registers from the current contents of all of the registers
(including the PC).

7.1. Definition: The set of rows (of width n) is defined

by the following abstract grammar:

p = Qg forl<m<n
| [1..an](p1..pn)
| HALT

The variables a;..cp in [@1..c0]{p1..pn) are binding oc-
currences whose scope is the rows p; through p,. We
regard rows that differ only in the names of bound vari-
ables as identical.

7.2. Definition: A rowing machine (of width n) is a
tuple {p1..pn), where each p; is a row of width n with
no free variables.

7.3. Definition: The one-step elaboration function &
for rowing machines of width n is the partial mapping

({p1/a1 . pn/an} pia

~Api/er . pafan} pin)
E({p1..pn)) = if p1 = [a1..an](p11..p10)
undefined

if p1 = HALT.

(Since rowing machines consist only of closed rows, we
need not define the evaluation function for the case
where the PC is a variable. Also, since all the p, are
closed, the substitution is trivially capture-avoiding.)
7.4. Notational conventions: When the symbol
“—” appears as the ith component of a compound row
[a1..@n]{p1..pn), it stands for the variable a;.

To avoid a proliferation of variable names in the ex-
amples and definitions below, we sometimes use numeri-
cal indices (like deBruijn indices [22]) rather than names
for variables: the “variable” #n refers to the n*" bound
variable of the row in which it appears; ##n refers to
the n'" bound variable of the row enclosing the one in
which it appears; and so on. For example, the row
[ar..a3]{a1, [B1..0s){a1, B1, B3), a1) would be abbrevi-
ated (—, (##1, #1,—), #1).

7.5. Definition: A rowing machine R halts if there is
a machine R’ such that R —>g R’ and the PC of R’ is
the instruction HALT.

7.6. Example: The machine
(Loop, A, B),

where
LOOP = (—, #3, #2)
A = an arbitrary row
B = an arbitrary row

executes an infinite loop where the contents of the sec-
ond and third register are exchanged at successive steps:
(LooPp, A, B)
—npr (LOOP, B, A)
—nr (LOOP, A, B)
—R

7.7. Example: The row
BRI = (#2, —)

encodes an indirect branch to the contents of register 2
at the moment when BRI is executed. The machine

(BRI, (BRI, (BRI, HALT)))

elaborates as follows:
(BRI, (BRI, (BRI, HALT)))
—gr {(BRI, (BRI, HALT)), (BRI, (BRI, HALT)))
—gr (BRI, (BRI, HALT))
—gr {(BRI, HALT), (BRI, HALT))
—gr (BRI, HALT)

— g (HALT, HALT).

8 Encoding Rowing Machines as
Subtyping Problems

We now show how a rowing machine R can be encoded
as a subtyping problem F(R) such that R halts iff F(R)
is derivable in F'Z.

The idea of the translation is that a rowing machine
R = (p1..pn) becomes a subtyping statement such that

e if py = HALT, the elaboration of F(R) halts (by
reaching a subproblem where 7Top appears on the
right-hand side);

o if p1 = [a1..an]{p11.-p1n), the elaboration of F(R)
reaches a subproblem that encodes the rowing ma-
chine

({pr/a1 . pn/an} pr1 .- {p1/a1 .. pn/an} p1n).

In more detail, if R = ([a1..an]{(p11--P1n)-.Pn), then
F(R) is essentially the following:

FooVYy1.9m.
(V11 <7 - 7S
< VmsF(pr) - m<F(pn)-
—(Vay..o.
~(Vai<F(p11) .. an<F(pin). =F(p11))).

The elaboration of this statement proceeds as follows:

1. The current contents of the registers p;..p, are tem-

porarily saved by matching the quantifiers on the
right with the ones on the left; this has the effect
of substituting the bounds F(p1) .. F(p,) for free
occurrences of the variables 4;..7, on the left-hand
side.
The right- and left-hand sides are also swapped (by
the = constructor on both sides), so that what now
appears on the left is a sequence of variable bind-
ings for the free variables a;..ap of p;.

2. The saved contents of the original registers now
appear on the right-hand side. When these are

matched with the quantifiers on the left, the result
is that the old values of the registers are substi-
tuted for the variables a .. @, in the body of the
left-hand side.

Swapping right- and left-hand sides again yields a
statement of the same form as the original, where
the appropriate instances of F(p11) .. F(pin) ap-
pear as the bounds of the outer quantifiers on the

right:
Foo.<(Yns{F(p)/ a1 .. Flpn)/an} F(p11) -
Tn{F(p1)/er .. Fpn)/ant Fpin)-
—AF(p1)/er . Flpn)/ant F(p11) ...

To be able to get back to a statement of the same form
as the original, one piece of additional mechanism is
required: besides the n variables used to store the old
state of the registers, a variable 7y is used to hold the
original value of the entire left-hand side of F(R). This
variable is used at the end of a cycle to set up the left
hand side of the statement encoding the next state of
the rowing machine.

8.1. Definition: Let p be a row of width n. The FZ-
translation of p, written F(p), is the n-negative type

T(O(Z) = &y
F(HALT) = Vv, ..
F(lar.an](pr.pn)) =
Y70, a1 .. ap.
~(¥16<90, Q4 SF(p1) - a4 <F (pn). ~F(p1))

where 7o, 75, and «f through o/, are fresh variables.

8.2. Fact: The free variables of F(R) coincide with
those of R.

8.3. Definition: Let R = {p;..p,) be a rowing ma-
chine. The FZ-translation of R, written F(R), is the
FZI statement

Fo < V<o, <F(p1) - m<F(pn). =F(p1),

where

p. —Top

o =YY, 71-Yn- 2(¥0<70, Y1571 - S0 T0).

8.4. Lemma: If R —p R, then F(R) A F(R).
Proof: By the definition of the elaboration function
for rowing machines, R = {p1..pn}, where

p1 = [ar.an](p11--p1n),

and
R = ({p1/e1..pafantpi1 . {pr/a1 .. pn/an} p1n).

Calculate as follows:
F(R)
= + o
< Vyso, isF(pr) - ms<F(pn). ~F(p1)

= F Yy, 717 2(M10570, 1171 - 70 S$Yn 70)
< Yso,msF(pr) - m<F(pn). —F(p1)
—r B Ao/yo, Flpr)/v1 - Fpn)/ 1} Flpr)
< Ao/yvo, Flp1)/v1 - Flpn)/m}
(10570, 11571 - 7 S$Yn- 770)
= F Flp)
< V50, Yi<F(p1) - 1 SF(pn). —o
= F Vv, a1.0,.
~(V75<70, @1 <F(p11) - @, <F(pin).
—F(p11))
< VS0, Yi<F(p1) - 1 SF(pn). —o
= F Vv, a1.04.
(Vv <y0, &1 SF(p11) - o), <F(pin).
—F(p11))
< Vyso, a1 <F(p1) .. an<F(pn). 7o
—r b Ao/vo, Flp1)/ar .. F(pn)/an} o
< Ao/vo, Flpr)/ar .. Flpn)/an}
(Y270, o <F(p11) -), SF(pin).
=F(p11))
= + o
< Vyp <o,
ay < ({F(p1)/ar .. Flpn)/an} F(p11)) -
a, <{F(p1)/ar .. Flpn)/an} Fpin))-
—({F(p1)/er .. Fpn)/ant F(p11))
= + o
S V70 S ag,
7 < ({F(p1)/er .. Flpn)/an} F(p11)) -
o < ({F(p1)/ a1 .. Fpn)/an} Fpin))-
—({F(p1)/er .. Fpn)/an}t F(p11))
= F(R). U

8.5. Lemma: If R = (HALT, p3..pn), then F(R) is
derivable in F'Z.

Proof: Similar. O
8.6. Corollary: The rowing machine R halts iff F(R)
is derivable in I'Z.

9 Two-counter Machines

This section reviews the definition of two-counter Turing
machines; see, e.g., Hopcroft and Ullman [27] for more
details.
9.1. Definition: A two-counter machine is a tuple
(PC, A, B, I ..1,), where A and B are nonnegative
numbers and PC and I; through I, are instructions
of one of the forms:

INCA=m

INCB=m

TSTA=mM/n

TSTB=m/n

HALT.

9.2. Definition: The elaboration function & for two-
counter machines is the partial function mapping 7' =

(PC, A, B, I,..1,) to

(Im, A+1, B, I,..I,} if PC=1NcA=>m
(Im, A, B+1, I,..1,} if PC=1NCB=>m
(Im, A, B, I ..1,) if PC=TsTa=m/n
and A=0
(I., A-1, B, I,..1,)) if PC= 1sTa=m/n
E(T) = and A >0
(Im, A, B, I ..1,) if PC=T1sTB=m/n
and B=0
(I., A, B-1, I,..1,) if PC=T1sTB=m/n
and B >0
undefined if PC'= HALT.
9.3. Definition:

A two-counter machine T
halts if T —Sp T’ for some machine 7' =
(marT, A, B, I..I,)).
9.4. Fact: The halting problem for two-counter ma-
chines is undecidable.

Proof sketch: Hopcroft and Ullman [27, pp. 171-173]
show that a similar formulation of two-counter machines
is Turing-equivalent. (Their two-counter machines have
test instructions that do not change the contents of the
register being tested and separate decrement instruc-
tions. It is easy to check that this formulation and the
one used here are inter-encodable.) O

10 Encoding Two-counter Ma-
chines as Rowing Machines

We can now finish the proof of the undecidability of Fi¢
subtyping by showing that any two-counter machine 7'
can be encoded as a rowing machine R(T") such that T

halts iff R(7T") does.

The main trick of the encoding lies in the represen-
tation of natural numbers as rows. Each number n
is encoded as a program (i.e., a row) that, when exe-
cuted, branches indirectly through one of two registers
whose contents have been set beforehand to appropri-
ate destinations for the zero and nonzero cases of a test;
in other words, n encapsulates the behavior of the test
instruction on a register containing n. The increment
operation simply builds a new program of this sort from
an existing one. The new program saves a pointer to the
present contents of the register in a local variable so that
it can restore the old value (i.e., one less than its own
value) before executing the branch.

The encoding R(T) of a two-counter machine 7' =
(PC, A, B, I ..1,) comprises the following registers:

#1 R¥(PC)

#2 R4(4)

3 R%(B)

#4 address register for zero branches
#5 address register for nonzero branches
#6 RY (1)

#6+w—1 RY(I).

We use four translation functions for the various com-
ponents: R(T) is the encoding of a the two-counter ma-
chine T as a rowing machine of width w + 5; R¥(I)
is the encoding of a two-counter instruction I as a row
of width w + 5; R%(n) is the encoding of the natural
number n, when it appears as the contents of register
A, as a row of width w + 5; R%(n) is the encoding of
the natural number n, when it appears as the contents
of register B, as a row of width w + 5.

10.1. Definition: The row-encoding (for w instruc-
tions) of a natural number n in register A, written

RY(n), is defined as follows:

R%(0) = (#4,—, —, HALT, HALT, — —)
w times
R4 (n+1) = (#5, RY(n), —, HALT, HALT, — —).
w times

The row-encoding (for w instructions) of a natural num-
ber n in register B, written R (n), is defined as follows:

R%(0) = (#4, —, —, HALT, HALT, — .. —)
w times
Ry (n+1) = (#5,—, R%(n), HALT, HALT, — .. —).

w times
10.2. Definition: The row-encoding (for w instruc-
tions) of an instruction I, written R¥(I), is defined as
follows:

RY(INCA=m)
= (#m+5, (#5, ##2, —, HALT, HALT, — .. —), —,
HALT, HALT, — .. —)
RY(INCB=m)
= (#m+5, —, (#5, —, ##3, HALT, HALT, — .. —),
HALT, HALT, — .. —)
RY(TsSTA=mM/N)
= (#2,—, —, #m+5, #n+5, — .. —)
R*(TSTB=m/n)
= (#3,—, —, #m+5d, #n+5, — .. —)
R (HALT)
= (HALT, —, —, HALT, HALT, — .. —).

10.3. Definition: Let T = (PC, A, B, I..I;) be a
two-counter machine. The row-encoding of T', written
R(T), is the rowing machine of width w+5 defined as
follows:
R(T) = (R*(PC), RY(A), RE(B),
HALT, HALT, R¥ (1) .. R¥(1y))
10.4. Lemma: If T —¢ 77, then R(T) —= R(T").

Proof: Straightforward. O
10.5. Lemma: If 7" = (HarT, A, B, I..1I,), then
R(T) halts.

Proof: Immediate. O

10.6. Corollary: T halts iff R(T") does.

10.7. Theorem: The F< subtyping relation is unde-
cidable.

Proof: Assume, for a contradiction, that we had a
total-recursive procedure for testing the derivability of
subtyping statements in F<. Then to decide whether
a two-counter machine 7' halts, we could use this pro-
cedure to test whether F(R(T)) is derivable, since T
halts iff R(T) halts (by Corollary 10.6), iff Z(R(T)) is
derivable in FZ (by Corollary 8.6), ifft (R(1")) is deriv-
able in 2 (by Lemma 6.4) iff Z(R(T')) is derivable in
FY (by Lemma 5.7), iff F(R(T)) is derivable in F< (by
Lemma 3.2). O

11 Typechecking

From the undecidability of F« subtyping, the undecid-
ability of typechecking follows immediately: we need
only show how to write down a term that is well typed
iff a given subtyping statement - o < 7 is derivable.
One such term is Af:7—Top. da:wo. f a.

12 Conclusions

The undecidability of F'< will perhaps surprise many of
those who have studied, extended, and applied it since
its introduction in 1985. But it may turn out that lan-
guage designs and implementations based on F¢ will
not be greatly affected by this discovery, since the algo-
rithm has been used for several years now without any
sign of misbehavior in any situation arising in practice.
Indeed, constructing even the simplest nonterminating
example requires a contortion that is difficult to imagine
anyone performing by accident. Moreover, a number of
useful fragments of F'< are easily shown to be decidable.
For example:

e The prenex fragment, where all quantifiers appear
at the outside and quantifiers are instantiated only
at monotypes.

e A predicative fragment where types are stratified
into universes and the bound of a quantified type
lives in a lower universe than the quantified type
itself.

e Cardelli and Wegner’s original formulation where
the bounds of two quantified types must be identi-
cal in order for one to be a subtype of the other.

Acknowledgements

I am grateful for productive discussions with John
Reynolds, Robert Harper, Luca Cardelli, Giorgio Ghelli,
Daniel Sleator, and Tim Freeman.

References

[1] Val Breazu-Tannen, Thierry Coquand, Carl
Gunter, and Andre Scedrov. Inheritance as implicit
coercion. Information and Computation, 93:172—

221, 1991.

[2] Kim B. Bruce. The equivalence of two semantic
definitions for inheritance in object-oriented lan-
guages. In Proceedings of Mathematical Founda-
tions of Programming Semantics, Pittsburgh, PA,
March 1991. To appear.

[3] Kim Bruce and Giuseppe Longo. A modest model
of records, inheritance, and bounded quantifica-
tion. In Proceedings of the IEEE Symposium on
Logic in Computer Science, pages 38-50, 1988.

[4] Peter Canning, William Cook, Walt Hill, and Wal-
ter Olthoff. Interfaces for strongly-typed object-
oriented programming. In Object Oriented Pro-
graming: Systems, Languages, and Applications
(Conference Proceedings), pages 457467, 1989.

[5] Peter Canning, William Cook, Walter Hill, Walter
Olthoff, and John Mitchell. F-bounded quantifica-
tion for object-oriented programming. In Fourth
International Conference on Functional Program-
ming Languages and Computer Architecture, pages

273-280, September 1989.
[6] Peter Canning, Walt Hill, and Walter Olthoff.

A kernel language for object-oriented program-
ming. Technical Report STL-88-21, Hewlett-
Packard Labs, 1988.

[7] Luca Cardelli. A semantics of multiple inheritance.
In G. Kahn, D. MacQueen, and G. Plotkin, editors,
Semantics of Data Types, volume 173 of Lecture
Notes in Computer Science, pages 51-67. Springer-
Verlag, 1984.

[8] Luca Cardelli. A semantics of multiple inheritance.
Information and Computation, 76:138-164, 1988.

[9] Luca Cardelli. Structural subtyping and the no-
tion of power type. In Proceedings of the 15th
ACM Symposium on Principles of Programming
Languages, pages 70-79, San Diego, CA, January
1988.

[10] Luca Cardelli. Typeful programming. Research Re-
port 45, Digital Equipment Corporation, Systems
Research Center, Palo Alto, California, February
1989.

[11] Luca Cardelli, 1991. Personal Communication.

[12] Luca Cardelli. Extensible records in a pure calculus
of subtyping. To appear, 1991.

[13] Luca Cardelli and Giuseppe Longo. A semantic
basis for Quest: (Extended abstract). In ACM
Conference on Lisp and Functional Programming,
pages 30-43, Nice, France, June 1990. Extended
version available as DEC SRC Research Report 55,
Feb. 1990.

[14] Luca Cardelli, Simone Martini, John C. Mitchell,
and Andre Scedrov. An extension of system F with
subtyping. In Ito and Meyer [28], pages 750-770.

[15] Luca Cardelli and John Mitchell. Operations on
records (summary). In M. Main, A. Melton,
M. Mislove, and D. Schmidt, editors, Proceedings
of Fifth International Conference on Mathemati-
cal Foundations of Programming Language Seman-
tics, volume 442 of Lecture Notes in Computer Sci-
ence, pages 22-52, Tulane University, New Orleans,
March 1989. Springer Verlag. To appear in Mathe-
matical Structures in Computer Science; also avail-
able as DEC Systems Research Center Research
Report #48, August, 1989.

[16] Luca Cardelli and Peter Wegner. On understanding
types, data abstraction, and polymorphism. Com-
puting Surveys, 17(4), December 1985.

[17] Felice Cardone. Relational semantics for recursive
types and bounded quantification. In Proceedings
of the Sizteenth International Colloguium on Au-
tomata, Languages, and Programming, volume 372
of Lecture Notes in Computer Science, pages 164—
178, Stresa, Italy, July 1989. Springer-Verlag.

[18] William R. Cook, Walter L. Hill, and Peter S.
Canning. Inheritance is not subtyping. In Sev-
enteenth Annual ACM Symposium on Principles of
Programming Languages, pages 125-135, San Fran-
cisco, CA, January 1990.

[19] M. Coppo, M. Dezani-Ciancaglini, and B. Ven-
neri. Principal type schemes and lambda calculus
semantics. In To H. B. Curry: Essays on Com-
binatory Logic, Lambda Calculus, and Formalism,
pages 535-560, New York, 1980. Academic Press.

[20] Pierre-Louis Curien and Giorgio Ghelli. Coherence
of subsumption. Mathematical Structures in Com-
puter Science, 1991. To appear.

[21] Pierre-Louis Curien and Giorgio Ghelli. Subtyping
+ extensionality: Confluence of frn-reductions in
F<. In Ito and Meyer [28], pages 731-749.

[22] Nicolas G. de Bruijn. Lambda-calculus notation
with nameless dummies: a tool for automatic for-
mula manipulation with application to the Church-
Rosser theorem. Indag. Math., 34(5):381-392,
1972.

[23]

Giorgio Ghelli. Proof Theoretic Studies about a
Minimal Type System Integrating Inclusion and
Parametric Polymorphism. PhD thesis, Universita
di Pisa, March 1990. Technical report TD—6/90,

Dipartimento di Informatica, Universita di Pisa.
Giorgio Ghelli, 1991. Personal Communication.

Jean-Yves Girard. Interprétation fonctionelle et
élimination des coupures de Uarithmétiqgue d’ordre
supérieur. PhD thesis, Université Paris VII, 1972.

Carl Gunter, 1990. Personal Communication.

John E. Hopcroft and Jeffrey D. Ullman. Introduc-
tion to Automata Theory, Languages, and Compu-

tation. Addison-Wesley, 1979.

T. Ito and A. R. Meyer, editors. Theoretical As-
pects of Computer Software (Sendai, Japan), num-
ber 526 in Lecture Notes in Computer Science.
Springer-Verlag, September 1991.

Simone Martini. Bounded quantifiers have interval
models. In Proceedings of the ACM Conference on
Lisp and Functional Programming, pages 174-183,
Snowbird, Utah, July 1988. ACM.

John C. Mitchell. Polymorphic type inference
and containment. Information and Computation,
76:211-249, 1988.

Benjamin C. Pierce. Bounded quantification is
undecidable. Technical Report CMU-CS-91-161,
Carnegie Mellon University, July 1991.

Benjamin C. Pierce. Programming with intersec-
tion types and bounded polymorphism. Ph.D. the-
sis (in progress), 1991.

John Reynolds. Towards a theory of type struc-
ture. In Proc. Colloqgue sur la Programmation,
pages 408-425, New York, 1974. Springer-Verlag
LNCS 19.

John C. Reynolds. Preliminary design of the pro-
gramming language Forsythe. Technical Report
CMU-CS-88-159, Carnegie Mellon University, June
1988.

