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Motivation

Downloading software over the network is nowadays common-place.

But who says that the software does what it promises to do?

Who protects the consumer from malicious software or other
undesirable side-effects?

=⇒ Mechanisms for ensuring that a program is
“well-behaved” are needed.
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Authentication for Mobile Code

The main mechanisms used nowadays are based on
authentication.

Java: define safety policies to control the level of safety; managed
through cryptographic signatures on the code.

Windows: Microsoft’s Authenticode attaches cryptographic
signatures to the code; more or less compulsory in Windows XP for
drivers.

But, all these mechanisms say nothing about the code, only
about the supplier of the code!
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Whom do you trust completely?
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Maybe that’s not such a good idea!
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Proof-Carrying-Code (PCC): The idea

Goal: Safe execution of untrusted code.

PCC is a software mechanism that allows a host system
to determine with certainty that it is safe to execute a
program supplied by an untrusted source.

Method: Together with the code, a certificate describing its
behaviour is sent.

This certificate is a condensed form of a formal proof of this
behaviour.

Before execution, the consumer can check the behaviour, by
running the proof against the program.
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A PCC architecture
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Program Verification Techniques

Many techniques for PCC come from the area of program
verification. Main differences:
General program verification

is trying to verify good behaviour (correctness).

is usually interactive

requires at least programmer annotations as invariants to the
program

PCC

is trying to falsify bad behaviour

must be automatic

may be based on inferred information from the high-level

Observation: Checking a proof is much simpler than creating one
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An Example: CCured

CCured is a system for checking pointer-safety of C programs,
developed by the group of George Necula at Berkeley.

Uses a hybrid mechanism of static type checking and run-time
checks.

Goal: Prove pointer safety statically, where possible, and minimise
required run-time checks.
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A Roadmap to a PCC infrastructure

Task of the infrastructure: Certify that the execution of the
program is well-behaved.

Several steps to build the infrastructure:

Formalise execution as an operational semantics of the
language.

Formalise well-behaved as a safety policy (type-system)

Certify safety by producing a proof-term (or similar).
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The core language

Mini-C language:

e ::= x | n | e1 op e2 | (τ)e | e1 ⊕ e2 | !e
c ::= skip | c1;c2 | e1 := e2

Types: standard C types with extension for pointers into arrays
and dynamic types.

Efficient type inference is possible and demonstrated for this type
system.
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The CCured type system: pointers

C contains 2 evil pointer operations: arithmetic and casts.

The type system distinguishes between 3 kinds of pointers:

Safe pointers: no arithmetic or casts; represented as an
address

Sequence pointers: arithmetic but no casts; represented as
a region

Dynamic pointers: casts, all bets are off! represented as a
region
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Example program

Sum over an array of boxed integers:

int acc; /* accumulator */ int **p; // elem ptr

int **a; /* array */ int i; // index

int *e; /* unboxer */

acc = 0;

for (i=0; i<100; i++) {
p = a + i; // ptr arithm

e = *p; // read elem

while ((int)e % 2 == 0) { // check tag

e = *(int **)e; // unbox

}
acc += ((int)e >> 1); // strip tag

}
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int acc; /* accumulator */ int **p; // elem ptr
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acc = 0;
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a and p point into an array with elems of type int *
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Example program

Sum over an array of boxed integers:

int acc; /* accumulator */ int **p; // elem ptr

int **a; /* array */ int i; // index

int *e; /* unboxer */

acc = 0;

for (i=0; i<100; i++) {
p = a + i; // ptr arithm

e = *p; // read elem

while ((int)e % 2 == 0) { // check tag

e = *(int **)e; // unbox

}
acc += ((int)e >> 1); // strip tag

}

a is subject to pointer arithm (“sequence pointer”)
=⇒ check for out of bounds
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Example program

Sum over an array of boxed integers:

int acc; /* accumulator */ int **p; // elem ptr

int **a; /* array */ int i; // index

int *e; /* unboxer */

acc = 0;

for (i=0; i<100; i++) {
p = a + i; // ptr arithm

e = *p; // read elem

while ((int)e % 2 == 0) { // check tag

e = *(int **)e; // unbox

}
acc += ((int)e >> 1); // strip tag

}

p has no arithmetic (“safe pointer”)
=⇒ no bounds check needed
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Example program

Sum over an array of boxed integers:

int acc; /* accumulator */ int **p; // elem ptr

int **a; /* array */ int i; // index

int *e; /* unboxer */

acc = 0;

for (i=0; i<100; i++) {
p = a + i; // ptr arithm

e = *p; // read elem

while ((int)e % 2 == 0) { // check tag

e = *(int **)e; // unbox

}
acc += ((int)e >> 1); // strip tag

}

e is subject to a type cast (“dynamic pointer”)
=⇒ nothing known about underlying type

Hans-Wolfgang Loidl Proof-Carrying-Code



Motivation Basic Concepts CCured Main challenges Summary

Operational Semantics

The value of an integer, or a safe pointer is an integer n; the value
of a sequence or dynamic pointer is a home, modelled as a pair
N× N of start address and offset.

v ::= n | 〈h, n〉

Each home is tagged as being an integer or a pointer, and has an
associated kind and size functions. The semantic domain for
pointers:

|| int ||H = N
|| DYNAMIC ||H = {〈h, n〉 | h ∈ H ∧ (h = 0 ∨ kind(h) = untyped}
|| τ ref SEQ ||H = {〈h, n〉 | h ∈ H ∧ (h = 0 ∨ kind(h) = typed(τ)}
|| τ ref SAFE ||H = {h + i | h ∈ H ∧ 0 ≤ i ≤ size(h) ∧

(h = 0 ∨ kind(h) = typed(τ)}
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Operational Semantics (pointers)

Σ,M ` e1 ⇓ 〈h, n1〉 Σ,M ` e2 ⇓ n2

Σ,M ` e1 ⊕ e2 ⇓ 〈h1, n1 + n2〉
(Pointer Artihm)

Σ,M ` e ⇓ 〈h, n〉
Σ,M ` (int)e ⇓ h + n

(CastToInt)

Σ,M ` e ⇓ n

Σ,M ` (τ ref SEQ)e ⇓ 〈0, n〉
(CastToSeq)

Σ,M ` e ⇓ 〈h, n〉 0 ≤ n ≤ size(h)

Σ,M ` (τ ref SAFE)e ⇓ h + n
(CastToSafe)
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Operational Semantics (read operations)

Two kinds of reads, with different obligations for run-time checks:

Σ,M ` e ⇓ n n 6= 0

Σ,M `!e ⇓ M(n)
(SafeRd)

Σ,M ` e ⇓ 〈h, n〉 h 6= 0 0 ≤ n ≤ size(h)

Σ,M `!e ⇓ M(h + n)
(DynRd)

Σ,M ` e1 ⇓ n n 6= 0 Σ,M ` e2 ⇓ v

Σ,M ` e1 := e2 ⇓ M(n 7→ v)
(SafeWr)

Σ,M ` e1 ⇓ 〈h, n〉 h 6= 0 0 ≤ n ≤ size(h) Σ,M ` e2 ⇓ v

Σ,M ` e1 := e2 ⇓ M(h + n 7→ v)
(DynWr)
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The CCured type system: rules

The type system keeps track of the kind of pointers.
Rules for converting pointers:

τ ≤ τ τ ≤ int

int ≤ τ ref SEQ int ≤ DYNAMIC

τ ref SEQ ≤ τ ref SAFE
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Typing rules for commands

Γ ` c means, command c is well-typed.
Γ ` e : τ means, expression e has type τ .

Γ ` skip
Γ ` c1 Γ ` c2

Γ ` c1; c2

Γ ` e : τ ref SAFE Γ ` e′ : τ

Γ ` e := e′

Γ ` e : DYNAMIC Γ ` e′ : DYNAMIC

Γ ` e := e′
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Typing rules for expressions

Γ(x) = τ

Γ ` x : τ

Γ ` e1 : int Γ ` e2 : int

Γ ` e1 op e2 : int

Γ ` e : τ ′ τ ′ ≤ τ

Γ ` (τ)e : τ

Γ ` (τ ref SAFE)0 : τ ref SAFE
Γ ` e1 : τ ref SEQ Γ ` e2 : int

Γ ` e1 ⊕ e2 : τ ref SEQ

Γ ` e1 : DYNAMIC Γ ` e2 : int

Γ ` e1 ⊕ e2 : DYNAMIC

Γ ` e : τ ref SAFE

Γ `!e : τ

Γ ` e : DYNAMIC

Γ `!e : DYNAMIC
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Safety Policy

The safety policy states, that at all times in the execution, the
contents of each memory address must correspond to the typing
constraints of the home to which it belongs.

Formally, the following predicate must be fulfilled at all times

WF (MH) ≡ ∀h ∈ H∗. ∀i ∈ N.0 ≤ i < size(h) ⇒
(kind(h) = untyped ⇒ M(h + i) ∈|| DYNAMIC ||H ∧
kind(h) = typed(τ) ⇒ M(h + i) ∈|| τ ||H

We can prove that this property is preserved by all rules in the type
system.
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Theorems

We separate run-time failure from rightful termination like this:
Σ,MH ` e ⇓ CheckFailed means a run-time check failed during the
execution of expression e.

Theorem

(Progress and type preservation) If Γ ` e : τ and Σ ∈|| Γ ||H and
WF (MH), then either Σ,MH ` e ⇓ CheckFailed or Σ,MH ` e ⇓ v
and v ∈|| τ ||H .

Hans-Wolfgang Loidl Proof-Carrying-Code



Motivation Basic Concepts CCured Main challenges Summary

Theorems

We separate run-time failure from rightful termination like this:
Σ,MH ` e ⇓ CheckFailed means a run-time check failed during the
execution of expression e.

Theorem

(Progress and type preservation) If Γ ` e : τ and Σ ∈|| Γ ||H and
WF (MH), then either Σ,MH ` e ⇓ CheckFailed or Σ,MH ` e ⇓ v
and v ∈|| τ ||H .

Hans-Wolfgang Loidl Proof-Carrying-Code



Motivation Basic Concepts CCured Main challenges Summary

Theorems

Σ,MH ` c =⇒ CheckFailed means a run-time check failed during
the execution of command c .

Theorem

(Progress for commands) If Γ ` c and Σ ∈|| Γ ||h and WF (MH)
then either Σ,MH ` c =⇒ CheckFailed or Σ,MH ` c =⇒ M ′

H and
M ′

H is well-formed.
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Main results

An efficient inference algorithm attaches
ref SEQ, ref SAFE, DYNAMIC annotations to plain C code.

Most of the checks can be done statically.

The performance overhead of the remaining run-time checks
is moderate: 0–150%

Purely dynamic checks would incur a performance overhead of
factors 6–20

Several array bounds bugs discovered in SPECINT95
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Further Reading

CCured: Type-Safe Retrofitting of Legacy Code, in POPL’02
— ACM Symposium on Principles of Programming Languages,
2002. Online Demo at
http://manju.cs.berkeley.edu/ccured/web/index.html.
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Further Reading

George Necula, Proof-carrying code in POPL’97 —
Symposium on Principles of Programming Languages, Paris,
France, 1997.
http://raw.cs.berkeley.edu/Papers/pcc popl97.ps

George Necula, Proof-Carrying Code: Design and
Implementation in Proof and System Reliability,
Springer-Verlag, 2002.
http://raw.cs.berkeley.edu/Papers/marktoberdorf.pdf

CCured Demo,
http://manju.cs.berkeley.edu/ccured/web/index.html
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Main Challenges of PCC

PCC is a very powerful mechanism. Coming up with an efficient
implementation of such a mechanism is a challenging task.

The main problems are

Certificate size

Performance of validation

Size of the trusted code base (TCB)
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Certificate Size

A certificate is a formal proof, and can be encoded as e.g. LF Term.

BUT: such proof terms include a lot of repetition
=⇒ huge certificates

Approaches to reduce certificate size:

Compress the general proof term and do reconstruction on the
consumer side

Transmit only hints in the certificate (oracle strings)

Embed the proving infrastructure into a theorem prover and
use its tactic language
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Performance

Even though validation is fast compared to proof generation, it is
on the critical path of using remote code
=⇒ performance of the validation is crucial for the acceptance of
PCC.

Approaches:

Write your own specialised proof-checker (for a specific
domain)

Use hooks of a general proof-checker, but replace components
with more efficient routines, e.g. arithmetic
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Size of the Trusted Code Base (TCB)

The PCC architecture relies on the correctness of components such
as VC-generation and validation.

But these components are complex and implementation is
error-prone.

Approaches for reducing size of TCB:

Use proven/established software

Build everything up from basics foundational PCC (Appel)
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Foundational PCC

Philosophy of Foundational PCC: Minimise the “trusted code
base”, i.e. the software that needs to be trusted.

Approach of Foundational PCC: Define safety policy directly on
the operational semantics of the code.

Certificates are proofs over the operational semantics.

Pros and cons:

©..̂ more flexible: not restricted to a particular type system as
the language in which the proofs are phrased;

©..̂ more secure: no reliance on VCG.

©.._ larger proofs
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Conventional vs Foundational PCC

Re-examine the logic for memory safety, eg.

m ` e : τ list e 6= 0

m ` e : addr ∧ m ` e + 4 : addr ∧
m ` sel(m, e) : τ ∧ m ` sel(m, e + 4) : τ list

(ListElim)

The rule has built-in knowledge about the type-system, in this
case representing the data layout of the compiler (“Type
specialised PCC”) =⇒ dangerous if soundness of the logic is not
checked mechanically!
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Logic rules in Foundational PCC

In foundational PCC the rules work on the operational semantics:

m |= e : τ list e 6= 0

m |= e : addr ∧ m |= e + 4 : addr ∧
m |= sel(m, e) : τ ∧ m |= sel(m, e + 4) : τ list

(ListElim)

This looks similar to the previous rule but has a very different
meaning: |= is a predicate over the formal model of the
computation, and the above rule can be proven as a lemma, ` is
an encoding of a type-system on top of the operational semantics
and thus needs a soundness proof.
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Example: specifying safe memory access

To specify safety, the operational semantics is written in such a
way, that it gets stuck whenever the safety condition is violated.

Example: operational semantics on assembler code.
Safety policy: “only readable addresses are loaded”.
Define a predicate: readable(x) ≡ 0 ≤ x ≤ 1000
The semantics of a load operation LD ri, c(rj) is now written as
follows:

load(i , j , c) ≡ λ r m r ′ m′.
r ′(i) = m(r(j) + c) ∧ readable(r(j) + c) ∧
(∀x 6= i . r ′(x) = r(x)) ∧ m′ = m

Note: the clause for nothing else changes, quickly becomes
awkward when doing these proofs
=⇒ Separation Logic (Reynolds’02) tackles this problem.
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Further Reading

Andrew Appel, Foundational Proof-Carrying Code in LICS’01
— Symposium on Logic in Computer Science, 2001.
http://www.cs.princeton.edu/~appel/papers/fpcc.pdf
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Summary

PCC is a powerful, general mechanism for providing safety
guarantees for mobile code.

It provides these guarantees without resorting to a trust
relationship.

It uses techniques from the areas of type-systems, program
verification and logics.

It is a very active research area at the moment.

PCC reading list:
http://www.tcs.ifi.lmu.de/~hwloidl/PCC/reading.html
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