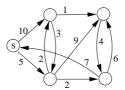
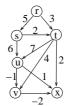
Institut für Informatik der Universität München Prof. M. Hofmann Dr. J. Johannsen SS 2002

28. Juni 2002

Übungen zur Vorlesung Effiziente Algorithmen


Blatt 10

Aufgabe P-42: Konstruieren Sie ein Beispiel eines gerichteten Graphen G = (V, E) mit nichtnegativen Kantengewichten, und Startknoten $s \in V$, derart dass jedem von s erreichbaren Knoten ein Knoten $\pi[\nu]$ zugewiesen werden kann, der Vorgänger von ν auf einem kürzesten Weg von s zu ν ist, so dass der induzierte Teilgraph G_{π} einen Zyklus enthält.

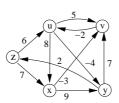

Aufgabe P-43: Zeigen Sie die folgende Aussage: falls für einen Graphen G mit Kantengewichten eine Folge von Relax-Operationen jemals dem Startknoten s einen Vorgänger $\pi[s] \neq \text{NIL zuweist}$, dann gibt es in G einen negativen Zyklus.

Aufgabe P-44: Gegeben sei ein Graph G, der einen vom Knoten s errreichbaren negativen Zyklus enthält. Zeigen Sie, dass es eine unendliche Folge von Relax-Operationen gibt, derart dass $d[\nu]$ bei jeder dieser Operation für einen Knoten ν verändert wird.

Aufgabe P-45: Zeigen Sie den Ablauf des Algorithmus von Dijkstra mit dem folgenden Graphen als Eingabe:

Aufgabe P-46: Führen Sie den Ablauf des Algorithmus aus der Vorlesung für kürzeste Wege von einem Startknoten in einem dag mit dem folgenden Graphen und Startknoten s als Eingabe aus:

Hausaufgaben:


Aufgabe H-38: Sei G = (V, E) ein gerichteter Graph mit gewichteten Kanten, aber ohne negative Zyklen, und sei ein Startknoten $s \in V$ gegeben. Zeigen Sie, dass es eine Folge von |V|-1 Relax-Operationen gibt, derart dass nach Ausführung von Initialize(G, s) und dieser Folge für alle Knoten $v \in V$ gilt $d[v] = \delta(s, v)$. (4 Punkte)

Aufgabe H-39: Konstruieren Sie eine einfaches Beispiel eines Graphen mit negativen Kantengewichten, für den der Algorithmus von Dijkstra falsche Ergebnisse liefert. (4 Punkte)

Aufgabe H-40: Gegeben Sei ein gerichteter Graph G=(V,E) mit einer Kantengewichtsfunktion $f:E\to [0,1]$. Die Kanten stellen Verbindungen in einem Netzwerk dar, und $f(u,\nu)$ die Ausfallwahrscheinlichkeit der Verbindung (u,ν) , d.h. jede Verbindung (u,ν) fällt unabhängig von den Anderen mit Wahrscheinlichkeit $f(u,\nu)$ aus.

Geben Sie einen effizienten Algorithmus an, der zwischen zwei gegebenen Knoten s und t die zuverlässigste Verbindung, d.h. einen Weg mit minimaler Ausfallwahrscheinlichkeit, findet. (6 Punkte)

Aufgabe H-41: Zeigen Sie den Ablauf des Algorithmus von Bellman-Ford mit dem folgenden Graphen und Startknoten y als Eingabe:

Ändern Sie das Gewicht der Kante (y, v) zu w(y, v) = 4, und zeigen Sie den Ablauf des Algorithmus, diesmal mit Startknoten z. (6 Punkte)

Abgabe der Hausaufgaben: Mittwoch, 10. 7. 2002, 10¹⁵ Uhr.