
Type Theory (CM0859) – Exercises

Andreas Abel

March 2017

1 Natural deduction

Exercise 1 (Natural deduction derivations). Give derivations of the follow-
ing propositions:

1. A⇒ A.

2. (A ∧ (A⇒ B))⇒ B.

3. (A ∧ (B ∨ C))⇒ (A ∧B) ∨ (A ∧ C).

4. (¬A ∨B)⇒ (A⇒ B).

Exercise 2 (De Morgan laws). Which of the following de Morgan laws are
constructively valid?

1. ¬(A ∨B)⇒ (¬A ∧ ¬B).

2. ¬(A ∧B)⇒ (¬A ∨ ¬B).

3. (¬A ∧ ¬B)⇒ ¬(A ∨B).

4. (¬A ∨ ¬B)⇒ ¬(A ∧B).

For the ones you consider valid, give natural deduction proofs. For the ones
you consider constructively invalid, offer an argument why you think so.

Exercise 3 (Local soundness and completeness).

1. Invent an elimination rule for conjunction which is too strong and
argue that it lacks local soundness.

2. Give a set of elimination rules for conjunction which is too weak and
argue that it lacks local completeness.

3. Do the same (1. and 2.) for disjunction.

Exercise 4 (Rules with explicit assumptions). Write down the natural de-
duction rules for judgement Γ ` A true.

1

2 Classical logic

Exercise 5 (Equivalent formulations of classical logics). Consider the fol-
lowing abbreviations for “classical” formulæ:

EM(A) := A ∨ ¬A excluded middle
RAA(A) := (¬A⇒ ⊥)⇒ A reductio ad absurdum
RAA′(A) := (¬A⇒ A)⇒ A reductio ad absurdum (variant)
Pierce(A,B) := ((A⇒ B)⇒ A)⇒ A Pierce’s formula

Assuming one of these formulas categorically, for instance, assuming that
EM(A) holds for all formulæA, makes the logic classical.

Prove constructively, either by drawing natural deduction derivations,
by giving typed λ-terms, or by writing appropriate functions in Agda:

1. ¬¬EM(A) holds for any formula A, constructively.

2. All four versions of classical logic are equivalent.
This can be proven by a chain of implications, for instance:

• RAA implies EM.

• EM implies Pierce.

• Pierce implies RAA′.

• RAA′ implies RAA.

Exercise 6 (Direct proof). Using Pythagoras’ theorem, the statement

In any non-degenerate right triangle the hypothenuse is shorter
than the sum of the catheti.

can be formally expressed as “a, b, c > 0 and a2 + b2 = c2 imply a+ b > c”.
Here is a proof by contradiction:

Assume the contrary, a+b ≤ c. Then (a+b)2 = a2+2ab+b2 ≤ c2,
thus, 2ab ≤ 0. This contradicts a, b > 0.

Transform this into a direct, constructive proof!

2

3 Lambda-calculus

Exercise 7 (Lambda terms). Find closed lambda terms of the following
types:

1. (S → T)→ ((T → U)→ (S → U)).

2. S → (T → (S × T)).

3. (S × (T + U))→ ((S × t) + (S × U)).

4. ((S → 0) + T)→ (S → T).

Exercise 8 (Substitution and free variables). Consider the untyped lambda-
calculus with tuples and variants.

1. FV(t) computes the set of free variables of t. Write out the full defini-
tion of FV!

2. t[s/x] substitutes term s for all free occurrences of variable x in term
t. Write out the full definition of t[s/x].

3. Prove that FV(t[s/x]) ⊆ FV(s) ∪ (FV(t) \ {x}).

4. Give an example for FV(t[s/x]) (FV(s) ∪ (FV(t) \ {x}).

Exercise 9 (Scoping). Prove: If Γ ` t : T then FV(t) ⊆ dom(Γ).

Exercise 10 (Inversion of typing). If Γ ` λx.t : U , then U = S → T for
some types S, T with Γ, x:S ` t : T .

1. Prove this inversion law!

2. Find inversion law for all other term constructors!

Exercise 11 (Capturing substitution). Consider substitution defined with
(λy.t)[s/x] = λy.t[s/x] regardless of whether x = y or y ∈ FV(s). Show by
example that subject reduction is broken, i. e., find Γ, t, t′, and T such that
Γ ` t : T and t −→ t′, but not Γ ` t′ : T .

Exercise 12 (Subject reduction). Prove the subject reduction theorem for
simply typed lambda-calculus: If Γ ` t : T and t −→ t′ then Γ ` t′ : T .

Exercise 13 (Progress). Prove the progress theorem: If Γ ` t : T and
t −→ t′ then Γ ` t′ : T .

3

4 Logical Framework

Exercise 14 (HOAS representation of the untyped lambda-calculus). We
wish to encode untyped lambda terms

Tm 3 t ::= x | λx.t | t t′

via higher-order abstract syntax in the Logical Framework. Terms are rep-
resented as inhabitans of a new type Tm.

1. Give constants with their type that act as constructors for untyped
lambda terms.

2. Represent the following untyped lambda terms using your constructors
in LF:

• λx.x
• λf.λx. f x
• λf.(f (λx. f x))

Exercise 15 (HOAS representation of the type assignment judgement).
(Continues the previous exercise.) Consider simple types:

Ty 3 T ::= F | T → T ′

1. Represent Ty with its constructors in LF!

2. Represent the typing judgement Γ ` t : T in LF and give one constant
for each typing rule of the simply typed lambda calculus.

References

4

	Natural deduction
	Classical logic
	Lambda-calculus
	Logical Framework

