CHALMERS |

UNIVERSITY OF TECHNOLOGY

A Self-Trained Chess Engine for Atomic
Chess

Leveraging self-training for the creation of chess bots in un-
derexplored variants

Bachelor’s thesis in Computer science and engineering

Hannes Adolfsson
David Lewis
Anton Rahmn
Sigge Rajamae
Edvin Rungardt
Marco Tafani

Department of Computer Science and Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY
UNIVERSITY OF GOTHENBURG

Gothenburg, Sweden 2025

BACHELOR’S THESIS 2025

A Self-Trained Chess Engine for Atomic Chess

Leveraging self-training for the creation of chess bots in
underexplored variants

Hannes Adolfsson
David Lewis
Anton Rahmn
Sigge Rajamée
Edvin Rungardt
Marco Tafani

UNIVERSITY OF
GOTHENBURG

CHALMERS

UNIVERSITY OF TECHNOLOGY

Department of Computer Science and Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY
UNIVERSITY OF GOTHENBURG
Gothenburg, Sweden 2025

A Self-Trained Chess Engine for Atomic Chess

Hannes Adolfsson David Lewis Anton Rahmn Sigge Rajamie Edvin Rungardt
Marco Tafani

© Hannes Adolfsson, David Lewis, Anton Rahmn, Sigge Rajamée, Edvin Rungardt,
Marco Tafani 2025.

Supervisor: Andreas Abel, Department of Computer Science and Engineering
Examiner: Patrik Jansson and Arne Linde, Department of Computer Science and
Engineering

Graded by teacher: Yehia Abd Alrahman, Department of Computer Science and
Engineering

Bachelor’s Thesis 2025

Department of Computer Science and Engineering

Chalmers University of Technology and University of Gothenburg
SE-412 96 Gothenburg

Telephone +46 31 772 1000

Typeset in BTEX
Gothenburg, Sweden 2025

Abstract

Chess has long been a benchmark for artificial intelligence (AI) research due to its
complexity and well-defined rules. Recent advances, such as AlphaZero, introduced
self-learning Al through reinforcement learning and self-play, achieving superhuman
performance without prior strategic knowledge, relying solely on the rules of the
game. AlphaZero defeated the world-champion chess engine Stockfish after only four
hours of training, leveraging large-scale computational resources to rapidly learn and
refine its strategies.

This thesis presents the development of a chess engine for the chess variant Atomic
Chess. The engine was developed in C++ and trained through self-play and re-
inforcement learning, taking inspiration from AlphaZero’s approach. This project
explores the extent to which a chess engine with this approach is feasible for the
average enthusiast.

Cost-effective cloud-based virtual machine instances with powerful hardware were
rented to manage training workloads. Given limited computational resources, we
opted for a data-centric approach, focusing on refining the training pipeline to max-
imize the training data that could be produced, rather than hyperparameter tuning
and experimenting with neural network architectures. The final engine was trained
on approximately 450,000 self-play games in roughly 150 hours.

The final engine was deployed on the chess platform Lichess and achieved an ELO-
rating of 1,729, which corresponded to the top 10th percentile of Atomic Chess
players on Lichess. These results demonstrate that it is possible to achieve a com-
petitive Atomic Chess engine within a budget of 3,000 SEK for cloud computation.
This shows that strong self-play reinforcement learning agents for niche games can
be developed without requiring large-scale computing infrastructure. These results
highlight the viability of accessible, low-budget Al research for underexplored game
variants.

Sammandrag

Schack har sedan linge anvéints for att evaluera forskning inom artificiell intelli-
gens pa grund av spelets komplexitet samt véildefinierade regler. Nya framsteg,
sasom AlphaZero, introducerade sjalvlarande Al genom forstdarkningsinldrning och
sjalvspelande som uppnadde éverménsklig prestanda utan nagon tidigare strategisk
kunskap, enbart utifran spelets regler. AlphaZero besegrade den davarande bésta
schackmotorn, Stockfish, efter endast ett fatal timmars tréaning, dar den utnyttjade
storskalig hardvaruinfrastruktur for att snabbt bli battre och finslipa sina strategier.

Denna avhandling presenterar utvecklingen av en schackmotor for schackvarianten
Atomic Chess. Motorn utvecklades i C4++ och tranade genom sjalvspelande och
forstarkningsinlarning, likt AlphaZero. Detta projekt utforskar om dessa metoder
ar rimliga for den vanlige entusiasten.

Kostnadseffektiva molnbaserade virtuella maskininstanser med kraftfull hardvara
hyrdes for att hantera traningen. Med tanke pa den begransade tillgangen till
hardvara valde vi ett datacentrerat tillvigagangssiatt med fokus pa att forfina tran-
ingspipelinen for att maximera mangden traningsdata som kunde produceras, istéllet
for att justera hyperparametrar och experimentera med neuronnétverksarkitekturer.
Den slutgiltiga modellen trénades genom att spela approximativt 450,000 partier
mot sig sjalv under en sammanlagd traningsperiod pa 150 timmar.

Den resulterande schackmotorn gjordes tillganglig pa schackplattformen Lichess och
uppnadde en ELO-rating pa 1,729, vilket motsvarar den 6versta 10:e percentilen av
Atomic Chess-spelare pa Lichess. Resultaten visade att det ar mojligt att skapa
en motor for Atomic Chess som spelar pa en hog niva inom en budget av 3,000
SEK for att hyra hardvara. Detta visar att starka sjalvspelande forstarkningsin-
larningsmotorer gjorda for nischade spel kan utvecklas utan att behéva storskalig
hardvaruinfrastruktur. Dessa resultat belyser mojligheten med lattillganglig, lag-
budgetbaserad Al-forskning for outforskade spelvarianter.

Acknowledgements

We would like to extend our gratitude to our supervisor, Andreas Abel, who has
offered us his guidance and support throughout this entire project. Furthermore, the
evaluation of the project would have been significantly more difficult had it not been
for the players and creators of bots who competed against our engine on Lichess.
Lastly, we would like to show appreciation to the many people who have developed
the open source chess platform lichess.org.

Hannes Adolfsson, David Lewis, Anton Rahmn, Sigge Rajamée, Edvin
Rungardt, Marco Tafani. Gothenburg, June 2025.

Contents

1 Introduction

1.1 Background
1.2 Purpose

Theory
2.1 Atomic Chess
2.1.1 Justification for Chess Variant Selection
2.1.2 Atomic Chess Rules.
2.2 Chess Engines
2.3 Monte Carlo Tree Search
2.3.1 Standard Monte Carlo Tree Search
2.3.2 AlphaZero’s Monte Carlo Tree Search
2.4 Neural Networks
2.4.1 Neural Network Layers
2.4.2 Learning Process of Neural Networks
2.4.3 Residual Networks
2.4.4 AlphaZero Network Construction
2.5 Bitboards and Magic Number Move Generation
2.6 Parallelization
2.6.1 Monte Carlo Tree Search Parallelization
2.6.2 Training Parallelization
2.7 Previous Bachelor Theses and Related Work

Implementation

3.1 Implementation Overview

3.2 Game Rules and Move Generation
3.2.1 Bitboard-Based Representation
3.2.2 Standard Chess Move Generation
3.2.3 Handling Piece Constraints
3.2.4 Atomic Chess Extension

3.3 Monte Carlo Tree Search Implementation
3.3.1 Monte Carlo Tree Search Structure
3.3.2 Batching Selections
3.3.3 Final Move Choice

10
11
12
12
13
16
18
20
22
23
23
25
25
25
26

Contents

3.4 Neural Network
3.5 Training Setupo
3.5.1 Self Playo
3.5.2 Calculating Loss
3.5.3 Replay Buffer 0o
3.6 Parallelization
Method
4.1 Training Process
4.2 Evaluation of Models o0
4.2.1 Internal Evaluation 000
4.2.2 External Evaluation
4.3 Hardware Utilization and Cost
Results
5.1 Engine Strength o
5.1.1 Model Comparisons
5.1.2 Final Playing Strength
5.2 Neural Network and Training
5.2.1 Training Process oL
5.2.2 Learning Verification
5.2.3 Training Metrics Lo Lo
5.2.4 Virtual Machine Costs
5.3 Move Generation Component
5.4 Monte Carlo Tree Search Optimizations
5.4.1 Batching Selections
54.2 Virtual Loss
5.5 Time Analysis of the Engine
Discussion
6.1 Analysis of Final Product and Results
6.1.1 Final Engine Strength Discussion
6.1.2 Neural Network and Training Process
6.1.3 Computational Performance Analysis
6.1.4 Training Data Volume
6.2 Engineering Decisions and Their Effects
6.2.1 Effect of Replay Buffer
6.2.2 Reflection on Programming Language
6.2.3 Financial Implications
6.3 Future Research
6.3.1 Symmetry Augmentation
6.3.2 Improving the Middle and End-game Strength
6.3.3 Additional Neural Network Inputs
6.4 Conclusion
6.4.1 Question 1.
6.4.2 Question 2.

37
37
38
38
38
39

40
40
40
42
44
44
44
45
46
46
46
46
47
47

List of Figures

2.1 Example of white winning a game by the unique explosion mechanic
in Atomic Chess. The move results in the capture of black’s knight,
king and rook while leaving the pawns unaffected. 10
2.2 The left picture showcases an illegal move, since capturing the black
queen would result in removing the black knight, in turn opening up
a check on white’s king. The right showcases a very similar situa-
tion, differing only by a black king, where the same move would be

considered legal since it captures black’s king. 10
2.3 Example of white performing an en passant move. The move results
in an explosion around the ending tile of the attacking pawn. 11

2.4 The different steps to Monte Carlo Tree Search visualised. Each node
has a "visit count/value" pair. "MCTS-steps" by Robert Moss is li-
censed under CC BY-SA 4.0. To view a copy of this license, visit

https://creativecommons.org/licenses/by-sa/4.0/7ref=openverse. . . . 14
2.5 Example of tree after two iterations where N is visit count, W is value
and Pispolicy. 16

2.6 A visual representation of a perceptron. "Perceptron moj"' by Mayranna
is licensed under CC BY-SA 3.0. To view a copy of this license, visit
https://creativecommons.org/licenses/by-sa/3.0/Tref=openverse. . . . 17
2.7 A visual representation of a multilayer neural network. "Multilayer
Neural Network" by John Salatas is licensed under CC BY-SA 3.0. To
view a copy of this license, visit https: //creativecommons.org/licenses/by-

sa/3.0/%ref=openverse. 18
2.8 Example of pattern detectable by 3 x 3 kernel. The diagonal forms a

continuous line of values. 19
2.9 Example of convolutional layer with kernel where 4 grids have been

forwarded together. 20
2.10 Visual representation of the difference between learning rate sizes. . . 21
2.11 Visual representation of a residual block. 23
2.12 Calculation of blockers for a rook in the bottom left corner. 24
3.1 Conversion from a board position to a tensor. 33
3.2 Structure of the neural network. 34

List of Figures

0.1

5.2

5.3

5.4

ELO progression during the final training phase. The last model,
Model-8000 was set to an arbitrary ELO of 1,000, the other ELOs
are then calculated in relation to their win rate against Model-8000
Atomic Chess ELO distribution and the projects final engines place-
ment on the chess platform Lichess [17]
Probabilities for the known best move from MCTS and the neural
network in a fixed mate-in-2 test. MCTS ran with 10,000 iterations
PET TNOVE. . . v o v v e v e e e e e
Speed up of the engine using different numbers of selections that are
batched and sent to the network.

4.1

5.1
5.2

2.3
5.4
9.9
2.6

5.7

List of Tables

Rented hardware and associated costs

Comparing win rate model-0 to untrained
Model-8000’s win rates against the other models over 500 matches

(1,000 for both). Config: MCTS-iterations: 3,000
Model-4000’s win rates against the other models over 500 matches

(1,000 for both). Config: MCTS-iterations: 3,000
The win rate of the model when playing 1,000 games against itself . .
Final cost per unit
Average number of select collisions per move in MCTS with and with-

out virtual loss for 1,000 and 5,000 iterations per move.
Execution Time and Proportion by Component

1

Introduction

1.1 Background

Chess has been a central subject in artificial intelligence (AI) research for decades
due to its complexity and well-defined rules. The development of chess engines has
evolved significantly over time, from brute-force search methods to sophisticated
Al-driven approaches. A major milestone in this evolution was Deep Blue’s victory
over Garry Kasparov, the chess world champion at the time, in 1997 [1]. Deep Blue
was used by IBM as a demonstration of their processing prowess, but also became
an example that handcrafted functions for the evaluation of chess positions could
beat even the strongest human players.

In 2017, a new paradigm emerged with AlphaZero, which showcased the effective-
ness of self-learning Al [2]. Unlike traditional engines with hand-crafted evaluation
functions, AlphaZero relied solely on reinforcement learning and self-play, where it
in simple terms played games against itself, learned by reinforcement from those
games and then repeated this process to continue improving on itself iteratively.
With this self-learning approach, AlphaZero progressed from having no prior knowl-
edge of how to play chess to becoming the world’s strongest chess engine within 4
hours of training.

Chess variants modify the standard chess rules, such as board size, piece movement,
or win conditions. These variations present new opportunities for Al research due
to the lack the well-established theory and human expertise in these variants when
compared that which exists for regular chess. This makes them an ideal testing
ground for self-playing Al engines, which develop strong strategies entirely on their
OWN.

Since the creation of AlphaZero, computational strength of computer hardware has
dramatically improved. The increased interest in machine learning has also led to
improvements specifically in hardware that specializes in this. These factors result
in a lower barrier of entry to train an AI model similar to AlphaZero and can
therefore be achieved for a lower price today compared to in 2017 when AlphaZero
was created. This is what this project aims to investigate.

1. Introduction

1.2 Purpose

This project seeks to build a self-play engine for the chess variant named Atomic
Chess, utilizing reinforcement learning to discover effective strategies without hand-
crafted heuristics. It also aims to investigate how Al can successfully adapt to
unfamiliar strategic environments while working within a level of expenditure on
hardware that keeps the training easily replicable, and to discover which optimiza-
tions and techniques are the most impactful in improving the performance and
training of a model as to train as efficiently as possible on limited hardware.

To be more specific, the research questions that this project aims to answer are as
follows:

e Q1: How feasible is it to train a chess engine through self-play, similar to
AlphaZero, using computational resources available to the common enthusiast?

e Q2: How can a chess engine using a self-training model be designed and
optimized to work at this scope?

2

Theory

This chapter outlines the theoretical foundations of our Atomic Chess engine. We
begin by describing the rules and unique mechanics of Atomic Chess, followed by
an overview of chess engines and AlphaZero, the self-learning chess engine that
this project is attempting to replicate. Key concepts in Monte Carlo Tree Search
(MCTS) and neural networks are then introduced, focusing on the modifications
and techniques relevant to AlphaZero and our implementation. The chapter con-
cludes with a discussion of move generation techniques, bitboard representations,
and related work, providing context for the design decisions presented in Chapter 3.

2.1 Atomic Chess

Atomic Chess is a variant of chess that preserves the fundamental movement rules
of the original game while introducing a unique capture mechanic, where captures
trigger explosions that remove surrounding pieces. This combination results in a
game that is both familiar and strategically distinct.

2.1.1 Justification for Chess Variant Selection

There were several motivations for selecting Atomic Chess as the focus of this project.
Firstly, the explosion mechanic accelerates the rate at which pieces are removed from
the board, often leading to significantly shorter games compared to classical chess.
This characteristic allows for a higher throughput of self-play games during training,
which is particularly advantageous when computational resources are limited. The
increased number of training iterations per unit time can lead to faster learning
progress and more rapid model refinement. Secondly, because Atomic Chess shares
the same piece movements as standard chess, a baseline implementation of classical
chess could be reused to verify the correctness of the move generation system using
established testing methodologies. Once validated, the Atomic Chess—specific rules
could be layered on top, as detailed later in Section 2.1.2. This approach simplifies
implementation by isolating the variant-specific logic.

Finally, while Atomic Chess is relatively well-known and supported by major chess
platforms such as Lichess, it lacks the depth of established theory found in classi-

2. Theory

cal chess. The absence of extensive opening books and end-game tablebases makes
it a particularly suitable environment for a self-learning engine, as it must develop
strategies independently without relying on pre-existing human knowledge or heuris-
tics.

2.1.2 Atomic Chess Rules

According to the rules outlined by Lichess [3] as well as further verification through
testing scenarios on Lichess’ Atomic Chess mode, pieces in Atomic Chess have the
same moves as in regular chess. During a capture, both pieces are removed from play,
and an explosion occurs on the ending tile of the capturing piece, which removes
all non-pawn pieces in the 8 adjacent tiles in a 3 x 3 area as shown in Figure 2.1.
A capture may neither explode your own king nor may it reveal a regular check on
your king, unless it also explodes the enemy king in the process as shown in Figure
2.2. If a player is in check they can either evade it through regular means, but also
by exploding the enemy king or the checking piece. Since both pieces involved in a
capture explode, kings can not capture. This also allows kings to occupy tiles next
to one another since the other king is not a threat. During en passant, both pawns
involved in the capture are taken out of play, and the explosion is centred around
the tile the attacking pawn lands on, shown in Figure 2.3.

Figure 2.1: Example of white winning a game by the unique explosion mechanic
in Atomic Chess. The move results in the capture of black’s knight, king and rook
while leaving the pawns unaffected.

Figure 2.2: The left picture showcases an illegal move, since capturing the black
queen would result in removing the black knight, in turn opening up a check on
white’s king. The right showcases a very similar situation, differing only by a black
king, where the same move would be considered legal since it captures black’s king.

10

2. Theory

A8% ARE
i

| I]
Tan [

Figure 2.3: Example of white performing an en passant move. The move results
in an explosion around the ending tile of the attacking pawn.

2.2 Chess Engines

Chess engines are computer programs made to play chess. For an engine to be able
to play well, it needs to know what valid moves there are in a given chess position.
To do this, the engine requires a way to represent the board to the computer. In this
project bitboards are used for this. The engine then needs a way to generate what
valid moves are available from a given board position. Relevant theories to this will
be described in Section 2.5. With these parts, a typical chess engine searches for the
best moves by simulating legal moves for both players and evaluating the resulting
positions from these move sequences.

Standard chess is a well studied game and therefore several heuristics to evaluate
board positions have been developed. These heuristics are also used by engines
in conjunction with different algorithms to rank future moves based upon their
strength. Examples of chess engines that use established chess heuristics are Deep
Blue and Stockfish [1][4]. Atomic Chess does not have established strategies and
heuristics to the same extent, making a different method of evaluation useful, which
brings us to AlphaZero.

AlphaZero, introduced by Silver et al. [2], employs a generalized learning approach
based on reinforcement learning and self-play. The system was designed to master
the games of chess, shogi, and Go without any prior knowledge beyond the rules of
the game.

AlphaZero utilizes a neural network to search and evaluate chess moves and posi-
tions. The neural network is given the state of the chess board and returns a value
and move policy. This is used to guide the Monte Carlo Tree Search algorithm,
further discussed in Section 2.3. The value of a board position is a value between
-1 (black win) and 1 (white win) and the move policy is a list of probabilities corre-
sponding to different moves.

To train the neural network, AlphaZero plays games against itself (self-play) and

trains the network on these games. Once a game of self-play reaches a result, a
data set is created based on the resulting search tree. This is then compared to new

11

2. Theory

predictions on those positions and used to adjust the network to bring future predic-
tions closer to the actual result (explained further in Section 2.4.2). As the process
is repeated the neural network gets better at evaluating moves and board states
which eventually, over many training iterations, results in AlphaZero discovering
novel strategies beyond what humans understand.

A key distinction between AlphaZero and its predecessor, AlphaGo Zero, is its ability
to generalize across multiple board games using the same learning framework. The
results presented in the paper demonstrate that AlphaZero surpassed Stockfish, one
of the strongest traditional chess engines, within a matter of hours of training.

The success of AlphaZero underscores the effectiveness of self-learning Al in complex
decision-making tasks. By removing the dependency on human expertise, AlphaZero
exemplifies the potential of reinforcement learning to discover novel and highly effi-
cient strategies in strategic environments. Its approach has since influenced further
AT research within non-deterministic board games such as a simplified version of
Chinese Dark Chess where it converges towards optimal play [5]. Additionally, Al-
phaZero also has influence in broader AI research such as the prediction of protein
structures with AlphaFold [6], although not using the same algorithm or network.

2.3 Monte Carlo Tree Search

Monte Carlo Tree Search (MCTS) was not only used in AlphaZero but is a com-
mon search algorithm used in decision-making problems, particularly in games with
large state spaces and high branching factors. Unlike other search algorithms like
minimax, which rely on exhaustive exploration of the game tree, MCTS uses a prob-
abilistic approach to balance exploration of new moves and exploitation of known
promising moves. This makes it particularly well-suited for games like chess and its
variants, where the number of possible positions is too large to evaluate exhaustively.

MCTS was chosen for this project because of its proven success in self-learning
chess engines like AlphaZero. Its ability to dynamically balance exploration and
exploitation makes it ideal for discovering strategies in a domain with limited prior
knowledge, such as Atomic Chess. By combining MCTS with neural network-guided
evaluations, our engine can efficiently navigate the game tree and develop a deep
understanding of the variant’s unique dynamics.

2.3.1 Standard Monte Carlo Tree Search

The implementation of MCTS used by AlphaZero features some key differences to
the standard implementation. To better understand these differences, it is important
to establish how standard MCTS works. MCTS is a tree search algorithm where
each node represents a game-state and contains some statistics. It starts off with the
root node which represents the current game state and performs search iterations
according to a budget, which can be a set number of iterations or a time limit. Each
MCTS search iteration operates in four main phases [7]:

12

2. Theory

1. Selection: Starting from the root node, the algorithm traverses the tree by
selecting moves that maximize the Upper Confidence Bound for Trees (UCT)
formula.

2. Expansion: When the algorithm reaches a leaf node (a node that has not
been fully explored), it expands the tree by adding one or more child nodes
representing possible moves from that position.

3. Simulation: From the selected leaf node starts a rollout that plays out random
moves until it reaches a terminal state in the game (a player winning or a
draw).

4. Back propagation: After the simulation, the result is propagated back up the
tree (from the leaf node that started the rollout), updating the statistics of
each node along the path.

The selection phase uses the Upper Confidence Bound applied to Trees (UCT) which,

for all valid moves possible from a position, is the following formula:

In(N)

n

+C-

(2.1)

w
n

The * term is the winrate of the move corresponding to a node, where w is the
value and n is the visit count of said node. The N variable is the visit count of
the current state. The two terms added represent how exploitative and explorative
the search algorithm is. The win rate is the exploitative part whilst the second
term is the explorative. The explorative term has a constant C, known as the
exploration parameter, which affects how likely the algorithm is to explore different
moves instead of exploiting the same high win rate move. The parameter is set
depending on the application and how you want the search to behave.

2.3.2 AlphaZero’s Monte Carlo Tree Search

The differences to standard MCTS mainly revolve around the fact that AlphaZero
integrates a neural network into the search algorithm. Since neural networks will be
covered later in Section 2.4, we can for the time being think of the neural network
as an oracle f. Given the current state of the chess board (s) our oracle will give us
a value for how good the current position is for the current player (v) and a move
policy for how good each move from this position is (p):

f(s) = (v, p) (2.2)

The selection phase for this version of MCTS uses a different formula known as
Predictor UCT (PUCT). For each valid move a from state s, the PUCT formula

13

2. Theory

SELECTION Expansion

SIMULATION BACKPROPAGATION

Figure 2.4: The different steps to Monte Carlo Tree Search visualised.
Each node has a 'visit count/value' pair. "MCTS-steps" by Robert Moss
is licensed under CC BY-SA 4.0. To view a copy of this license, visit
https://creativecommons.org/licenses/by-sa/4.0/?ref=openverse.

14

2. Theory

looks as follows [2]:

N(s)

Q(s,a) +C - P(s,a) - m

(2.3)

Compared to the regular UCT formula (Equation 2.1), there are some differences,
mainly the addition of the prior probability P(s,a) from the neural network. The
Q(s,a) term is the action value. The second term contains the exploration constant
C, prior probability of action a as P(s,a) and the visit counts N. Next in the ex-
pansion phase there are some big differences. When the search has reached a leaf
node it expands the tree by creating new nodes for every valid move available. It
then performs f(s) on the current board state to get a value and move policy which
it assigns to the corresponding nodes. After the expansion is done, there is no sim-
ulation with random rollouts, instead the value given by f(s) is propagated. Once
it has propagated up to the root of the search tree we have completed one iteration.

Figure 2.5 shows what the search tree looks like after two iterations from the begin-
ning of the game. Firstly it expands the root node with every valid opening move
for white and assigns a move policy value, P. Since it is the root it does not back-
propagate any value and only increases the visit count of the root. Next iteration
it chooses Knight to h3 as the most promising move and expands it with all the
opening moves for black. It also assigns the board position a value of 0.1, which is
then backpropagated to the root.

15

Starting positions

White move \(

(ol ol
W

0o o0oo

Figure 2.5: Example of tree after two iterations where N is visit count, W is value
and P is policy.

Having introduced the search algorithm used by AlphaZero we can now hone in on
the oracle f(s) which is a neural network.

2.4 Neural Networks

Artificial neural networks are computational models that are inspired by the struc-
ture and function of neural networks in the biological brain and are an integral
part of AlphaZero. The simplest neural networks are single artificial neurons, called
perceptrons, that can be used to classify inputs. Looking at Figure 2.6 we see a per-
ceptron that takes in the inputs z, and multiplies them with the weights w. These
weights are used to tell the perceptron what parts of the input are important. For
example if we want to classify an image the different inputs could be different pixels.
With these inputs we compute the weighted sum and also add the bias #, which is
fed into an activation function.

16

2. Theory

out(t)

in(t) <

wo(t) = @

Figure 2.6: A visual representation of a perceptron. "Perceptron moj" by
Mayranna is licensed under CC BY-SA 3.0. To view a copy of this license, visit
https://creativecommons.org/licenses/by-sa/3.0/7ref=openverse.

In Figure 2.6 the activation function used is a simple step function that gives 1 as
an output if the sum exceeds zero and otherwise outputs 0. AlphaZero utilizes tanh
and rectified linear unit (ReLLU) as activation functions in its neural network:

tanh(z) = Z:z—i (2.4)
ReLU(x) = max(0, z) (2.5)

Tanh is a function that outputs a number between -1 and 1. ReLU is a function
that sets any negative values to 0 and otherwise uses the original input [8].

Perceptrons on their own are not particularly complex so for a neural network to be
“smart” we need to combine multiple perceptrons into layers. For a neural network
we will always have an input and output layer but we might also have layers between
them known as hidden layers. The structure of layers can be seen in Figure 2.7.
Every perceptron in the first hidden layer is connected to each of the three inputs,
and same for the second hidden layer but it is connected to the first hidden layer.
The output layer has two perceptrons delivering 2 values, so the whole network
implements a function: R3 — R2.

17

2. Theory

Input 151 hiddan 2nd hiddan Output

layar layear layear layer

Figure 2.7: A visual representation of a multilayer neural network. "Multilayer
Neural Network" by John Salatas is licensed under CC BY-SA 3.0. To view a copy of
this license, visit https://creativecommons.org/licenses/by-sa/3.0/7ref=openverse.

2.4.1 Neural Network Layers

We may say that a neural network is a structured set of interconnected layers. The
number and types vary between networks and applications. In the following sections,
fully connected and convolutional layers are explained since they are relevant to chess
engine networks.

Fully Connected Layers

The layers displayed in Figure 2.7 are so called fully connected layers. This is
because the perceptrons in each layer has a connection to each perceptron in the
previous layer. While this wiring structure is feasible for small networks, it has
very poor scalability for more complex and deep networks such as those required for
image identification, for example. If we want to identify an image that is 256 x 256
pixels, we need 65,536 inputs. Now say we have a fully connected hidden layer that
has 20 perceptrons. This gives us 1,310,720 weights that we need to update when
we backpropagate through the network. For tasks such as image recognition it has
therefore become much more common to use convolutional layers.

Convolutional layers

In many tasks involving grid-like data structures such as images or chess boards, it
is important to detect patterns that depend on the relative positions of neighboring
elements. A convolutional layer is a type of neural network layer specifically designed
for this. Rather than connecting every input to every output neuron as in a fully

18

2. Theory

connected layer, a convolutional layer applies a small, learnable function called a
kernel or filter over small regions of the input at a time [9)].

In the 2D case, the kernel is a small matrix with a fixed size that moves across the
input grid. At each position, it performs a calculation based on the input values
it covers. The distance it moves between each step is called the stride. To ensure
the output size remains consistent with the input, convolutional layers can use a
technique called zero padding, which adds extra rows and columns of zeros around
the edges of the input grid. This concept also generalizes to higher dimensions.

Multiple 2D grids can be forwarded through a convolutional layer together the re-
sulting operations will treat the input as a tensor of size x x y x num__grids. This
allows for related information stored into equal sized 2D grids to be processed to-
gether, such as the RGB colour values of a coloured image. In this case, assuming
we wanted set the 2D convolutions to be 3 x 3 in size, the effective size of the 3D
convolution would be 3 x 3 x 3 to account for the 3 RGB layers. Each convolution
would then compute each kernel position using a set of 3 x 3 x 3 weights to produce
a final value.

The reason for their usage in fields such as image recognition and local pattern
recognition in applications like board games is their ability to handle bigger inputs,
unlike regular layers that would need a great number of perceptrons and connections
and have a higher likelihood of overfitting and have difficulties learning meaningful
patterns from training. Convolutional layers are a great fit for tabletop games like
chess, played on a two dimensional grid since they can recognize patterns regardless
of where they appear on the board, in other words, they have positional invariance.

1 0 0
0 1 0
0 0 1

Figure 2.8: Example of pattern detectable by 3 x 3 kernel. The diagonal forms a
continuous line of values.

19

2. Theory

Figure 2.9: Example of convolutional layer with kernel where 4 grids have been
forwarded together.

2.4.2 Learning Process of Neural Networks

Neural networks are not “smart” by design, in fact the weights start out with random
values. To get “smart” it needs to learn by producing guesses and improving based
upon them, also called reinforcement learning. To get an idea of the process we will
first go through a general overview to then get into specifics about AlphaZero.

Neural Networks can be seen as a function that, when provided an input, should
produce an expected output. This pair between input and expected output creates
the basis for training the network. Giving the neural network an input should
hopefully give us the expected output, but for a newly created neural network with
randomized weights, this is highly unlikely. Comparing the difference between actual
output with the expected output we can compute the loss, which is a measure for
how “wrong” the predicted output from the neural network was [8]. The neural
network is improved by reducing this loss, which is done by adjusting the network’s
weights accordingly.

Each weight in the network contributes differently to the overall loss and during
backpropagation, we compute how much a small change in each weight would affect
the loss. This value is called the gradient for that specific weight. By backpropagat-
ing the loss through the network and calculating these gradients, we can determine
in which direction to adjust each weight to reduce the loss. The amount the weights
are changed is proportional to the magnitude of the gradient that was calculated.
How much we move towards the direction which decreases the loss is also influenced
by the learning rate, and the bigger the learning rate the more change in weight.
This process of using training data to find out how “wrong” the neural network
is repeats until we find an optimal solution to our problem. When deciding the

20

2. Theory

learning rate we want to find one that is neither too high nor too low.

Figure 2.10 shows the downsides when using learning rates which are too high or
too low. The weight 6; and the effect of it on the loss function (6;) are the axes. For
the high learning rate example the weight is initialized low, but misses the global
minima because of the slope and learning rate, and settles in a less optimal value.
For the low learning rate example we only find the closest minima, which is not the
global minima.

4 Too high

l(@z) learning rate Too low
learning rate

>

0;

Figure 2.10: Visual representation of the difference between learning rate sizes.

If we look at AlphaZero’s input and output, it takes in the current state of the chess
board as the input and outputs a value and a move policy [2]. To get the expected
output for the neural network we will use the results we get from the MCTS algo-
rithm. A vector can be formed where each value is the number of visits to that node
divided by total number of visits to all nodes from the starting position. With these
values we can compare the output of the neural network with the move probabilities
we get from our MCTS to compute a loss. This setup reflects a reinforcement learn-
ing framework, where the model learns to improve through self-play. AlphaZero’s
loss function utilizes a sum of cross-entropy losses between the MCTS policy pre-
diction and a new model prediction with the mean-squared error between the value
prediction with the game result. L2-regularization is also applied to prevent the
weights in the model from endlessly growing. The loss function can be seen below
in Equation 2.6:

21

2. Theory

I =(z—v)>—7n"logp + c||0|? (2.6)

The first part of the loss function is the mean-squared error of the value v given by
the neural network and z is the result of the self-played game, with it being 1 if the
player who’s turn it is won and -1 if they lost. The second part is the cross-entropy
loss of the policy p given by the network. The vector p is multiplied by a transposed
vector 7 which is the policy based on the tree search mentioned earlier. The last
term is used for regularization for large weights and consists of the network param-
eters (the weights), 6, and a regularization coefficient, c¢. The coefficient determines
how much to punish large weights to reduce overfitting.

AlphaZero addresses the issue of learning rate size by using different learning rates
depending on how far it is into training [2]. At the start of training the learning
rate is set to 0.2 and is then updated depending on how many times it has updated
the weights in the network. After 100,000 updates the learning rate changes to 0.02,
after 300,000 it changes to 0.002 and after 500,000 it changes to 0.0002.

2.4.3 Residual Networks

When backpropagating through deep neural networks we run the risk of getting
vanishing or exploding gradients. As we travel backwards through the network to
update weights the impact of the loss is either lessened or blown out of proportion
due to the chain rule. To prevent this we can use something called a residual network,
also known as ResNet. These networks introduce skip connections that bypass layers
of the neural network and combine the output of the skipped layers with the input
to the block, referred to as residual blocks. With this skip connection there is
an alternate, less computationally heavy road backwards through the network that
means earlier layers also get meaningful weight updates. This has proven to be
effective at training and optimizing deep neural networks and is used in AlphaZero’s
network construction (discussed further in Section 2.4.4) [2][10].

Batch normalization is a widely used technique in residual blocks to stabilize and
accelerate training in deep neural networks. It works by normalizing the inputs
within a batch of inputs, adjusting them to have zero mean and variance based
on the batch’s statistics. This process reduces internal covariate shift, allowing the
network to train faster and more effectively by maintaining more stable gradients
throughout the layers [11]. In Figure 2.11 we see a residual block with a skip
connection going above it. In the F'(X) path we have convolutional layers (Conv)
and batch normalizations (BN) which are added before each ReLU function. After
the second batch normalization, the skip connection is added to F(X) before the
next RelLU function which is the end of the residual block.

22

2. Theory

X (skip connection)

BN, RelLU BN RelLU
X ¥ Convv ———»| Comw ¥ > F(X)+ X
F(X)

Figure 2.11: Visual representation of a residual block.

2.4.4 AlphaZero Network Construction

The Neural Network in use by AlphaZero as described in the Supplementary Ma-
terials [2] consists of a body, which is responsible for the majority of calculations
in the network, which then feeds into two separate heads. The heads consist of a
value head and a policy head, each of which are responsible for extracting features
valuable for either the value or policy from the main body prediction and format-
ting them to become the value and policy output. The body consists of 20 parts,
the first of which is a convolutional layer which is responsible for batch-normalizing
the inputs into a range around 0 and rectifying all negative values to 0. This is
followed by 19 residual blocks as seen in Figure 2.11. Each convolution layer applies
256 filters of kernel size 3 x 3 with stride 1. After the body it splits into the value
and policy heads. The policy head applies an additional rectified, batch-normalized
convolutional layer, followed by a final convolution of 73 filters. The value head
applies an additional rectified, batch-normalized convolution of 1 filter of kernel size
1 x 1 with stride 1, followed by a rectified linear layer of size 256 and a tanh-linear
layer of size 1.

2.5 Bitboards and Magic Number Move Genera-
tion

Bitboards and magic numbers are used to calculate the legal moves from any given

position. Bitboards are an efficient way to represent chess positions using 64-bit

integers, where each bit corresponds to a square on the chessboard. This repre-
sentation allows for fast manipulation of piece positions using bitwise operations,

23

2. Theory

rather than traditional array-based approaches for storing a 2D space like a chess-
board. By leveraging the inherent parallelism of bitwise operations, bitboards enable
highly optimized and computationally efficient legal move generation. Since there
are multiple pieces and piece types in chess, each type of piece typically has its own
associated bitboard.

The main advantage on the computation side is allowing for the pre-computation
of possible moves for sliding pieces, making it possible to avoid evaluating whether
each position the sliding piece could move to is blocked. Instead, since each bitboard
is also a 64-bit number, all of them can be combined using OR operations into a
single bitboard containing information regarding positions of all pieces and possible
blockers. By then executing a bitwise AND operation on the combined bitboard and
a mask of possible moves for the piece, keeping only an oversight of pieces capable
of blocking the sliding piece. Since the bitboard containing information of all pieces
can be computed once at the start of move generation for the turn, only the bitwise
AND operation has to be performed to calculate all blockers making it extremely
fast.

o(o|jof0|0O|O|0O]|O o|ojo|(Oo|OfO|O]|O o|o|0|0O|0OfOf0O|O
of1|of0o|0|O(0]|O i]0|0|0|Of(Of0O]|O o|o|0|0O|0OfO|0O|O
o(ojof0o|1|0|0]|0 1]0|0|0|Of(OfO]|O o|o|0|0O|0OfOf0O|O
1|{0(1]|0|0|0(|1]0 AND i]0|0|0|OfOfO|O _ 1|0|0|0|0Of(OfO|O
o(o|jof0|0O|O|0O]|O i]0|0|0|Of(Of0O]|O o|o|0|0O|0OfOf0O|O
ofojof1|0jO(1]0 i]0|0|0O|Of(OfO]|O o|o|0|0O|0OfOf0O|O
o(o|jof0|0O|O|0O]|O i]0|0|0|Of(Of0O]|O o|o|0|0O|0OfOf0O|O
1{0[1]|0|0|0O|1]0 o111 |1|{1|1]|0 o|oj1|0|0f0O(f1|0
Combined piece bitboard Rook attack mask Relevant blockers

Figure 2.12: Calculation of blockers for a rook in the bottom left corner.

At this stage, the only thing that remains is calculating which spaces the piece is
able to move to. As shown in Figure 2.12, there are a total of 12 spaces which
can be occupied by a blocking piece, meaning that in that instance, there exists
212 or 4096 possibilities of blockers for a rook positioned in the absolute bottom-left
square. This is a small enough number that it is possible to pre-compute all possible
movements per blocker configuration and store them into a lookup table for later,
meaning that the computation can be simplified to a simple value lookup making
it extremely fast as well. This process can then be repeated for all 64 squares as
well as once for both rooks and bishops creating a full set of lookup tables for all
sliding pieces, with queens being able to use both rook and bishop lookup tables
sequentially for their movements. After the lookup, an additional check is carried
out to see if the target square is of the same colour as the piece the calculations are
being carried out for, in which case the move is rejected as invalid.

After the allowed moves have been pre-generated, they can be stored into a hashmap

24

2. Theory

which allows for compact storage and psuedo-constant lookup times. One further
optimization that is often performed is utilizing a custom hashing algorithm utilizing
magic numbers to avoid collisions. Since we can know all of the possible keys that
will be input into the hashmap, it is also possible to pre-compute a magic number
which will allow us to avoid collisions when looking up values, meaning we can skip
the key comparison step as well as ensure constant time on lookups. The most
common version of this hashing algorithm is to multiply the bitboard by the magic
number, then keep only the most a set number of highest bits decided by the index
position of the moving piece. Originally, these magic numbers were pre-computed
using a brute-force search during development, due to each piece type and square
needing their own number. These numbers have been widely disseminated onto the
Internet since.

2.6 Parallelization

Parallelization is critical in this project due to the computational demands of training
a self-learning chess engine. The two main processes that benefit from parallelization
are MCTS and neural network training.

2.6.1 Monte Carlo Tree Search Parallelization

It is not trivial to effectively parallelize the MCTS algorithm in the case of a self-
learning engine. One common strategy for pure MCTS is to do root parallelization,
where multiple threads create separate MCTS trees in parallel and later sum the
visit counts to get a more accurate result. However, this strategy will not work in
the case of AlphaZero’s modified MCTS implementation. The reason for this is that
the random rollout step in the algorithm is switched out for a neural network that
always values a position the same way. This results in multiple identical trees if
multiple threads start from the same root, as the same path through the tree will
always be chosen.

An alternative approach is tree parallelization, where multiple threads operate on
the same search tree simultaneously. However, this can lead to performance issues,
as threads tend to compete for access to the nodes with the highest PUCT scores,
resulting in frequent contention. To address this, virtual losses are used, a proven
technique for reducing such conflicts [12]. The core idea is to temporarily assign a
“virtual loss” to nodes selected by other threads, artificially reducing their PUCT
scores. This discourages other threads from choosing the same high-priority nodes,
spreading the exploration more effectively and reducing the risk of redundant com-
putations.

2.6.2 Training Parallelization

Similarly, neural network training involves processing large amounts of self-play
data, which can be accelerated through parallelization. By distributing the workload

25

2. Theory

across multiple CPU or GPU cores, the training process becomes more efficient, al-
lowing for faster iterations and better utilization of limited computational resources.
One example would be to utilize multiple threads to play individual games, meaning
that the number of moves generated to train using could scale with the number of
available cores on a CPU, assuming there is no bottleneck on the GPU.

Given the constrained hardware available for this project, parallelization is not just
a performance optimization but a necessity. It enables the engine to complete more
training iterations and play more games within a fixed time-frame, ultimately im-
proving the engine’s playing strength and the quality of the learned strategies.

2.7 Previous Bachelor Theses and Related Work

Projects similar to ours have been done as bachelor’s thesis before, and we had
access to two of those reports [13] [14]. By examining the challenges, limitations, and
insights from earlier work, we can identify strategies to improve the current project
and avoid common pitfalls. Note that these projects made engines for different chess
variants, differing in complexity to Atomic Chess.

Below, we summarize the key takeaways from previous bachelor theses’ findings that
are relevant to this project.

o Challenges and Limitations: Both projects encountered significant chal-
lenges related to overfitting and computational resources. Overfitting was a
recurring issue, where models performed well on training data but poorly on
validation data. Techniques such as weight decay, dropout layers, and increas-
ing dataset size were suggested as potential solutions. Additionally, compu-
tational constraints were a major bottleneck, particularly for training deep
neural networks and running MCTS with high iteration counts. These limita-
tions highlight the importance of balancing model complexity with available
hardware and optimizing training efficiency.

o Neural Network Architectures: One project successfully implemented a
convolutional neural network (CNN) with a reduced number of hidden layers
(13 layers instead of AlphaZero’s 19) to manage computational constraints.
Despite the simplification, the network demonstrated good learning capabili-
ties, suggesting that smaller-scale projects can achieve meaningful results with
simpler architectures.

26

3

Implementation

This chapter aims to explain the components of the final product and how they are
constructed. Firstly, an overview of the entire implementation is given. The chapter
then goes into more detail explaining the individual components. The chapter will
build on most of the concepts that were introduced in Chapter 2.

3.1 Implementation Overview

The architecture consists of four core components: a game representation system,
a neural network, a Monte Carlo Tree Search (MCTS) algorithm, and a training
framework. The board states and the move generation logic are implemented using
bitboards and allows the program to compute legal moves for Atomic Chess.

The engine was developed in C++4-, primarily due to the language’s strong perfor-
mance characteristics and its compatibility with Libtorch, the C++ distribution of
PyTorch. C++ also has a wide variety of other libraries which are made with perfor-
mance in mind, which makes it a fitting language for a project where the importance
of execution speed is paramount.

The network made with LibTorch adopts a residual network architecture similar to
that used in AlphaZero, but scaled down in size. Our implementation processes
board states through 12 residual blocks, producing two outputs: a policy vector
where each value is an evaluation by the network on how advantageous that op-
tion would be if played, with the entire vector being normalized. representing the
probability distribution over legal moves, as well as a scalar value estimating how
advantageous the current position is for the turn player.

To guide decision-making during gameplay, the engine employs Monte Carlo Tree
Search. The search algorithm uses the PUCT formula to balance exploration and
exploitation and performs backpropagation to update node statistics based on net-
work evaluations. Batch processing is used to accelerate inference across multiple
nodes.

Training is organized into iterations where the engine plays games against itself,

27

3. Implementation

collects positions from the game in a replay buffer, and updates the neural network
based on a batch of sampled data from the replay buffer. To train, debug, and
evalutate the models and more, several modes were developed to help perform these
tasks. These are the main modes:

e Arena: for head-to-head matches between two models.
o Perft: for validating move generation correctness.

e Dojo: for self-play training.

o FEN: for starting games from specific board positions.

» Lichess-UCI: Implements UCI (Universal Chess Interface), this is used to
deploy the bot on Lichess.org.

Additionally, a graphical interface was introduced where the board state can be seen,
both during training and of course when playing against the engine.

Now we will be diving deeper into the individual components and their implemen-
tation details.

3.2 Game Rules and Move Generation

Move generation is a foundational subsystem of the chess engine, responsible for
enumerating all legal actions from a given board state. This component is used in
conjunction with the neural network, which returns the move policy with the moves
it thinks have the highest win probability. The move generator’s list of legal moves
is then used to invalidate all the illegal moves that the neural network suggested,
leaving a complete move policy.

The implementation was carried out in two distinct phases: initially supporting
standard chess to ensure correctness and ease of verification, followed by the in-
corporation of Atomic Chess mechanics. This staged development strategy enabled
reliable testing and debugging prior to introducing the additional complexity of the
atomic variant, and was feasible as the atomic features are simple to add on top of
regular chess rules.

3.2.1 Bitboard-Based Representation

Bitboards are used to represent the board state, where the 64 squares of the board
are represented using 64-bit integers. Separate bitboards are maintained for each
player’s pieces, so there are 12 bitboards in total, 6 unique piece types per player.
Each bitboard also encodes the occupancy and attack patterns for every piece type
on the board.

28

3. Implementation

3.2.2 Standard Chess Move Generation

Legal move generation is sorted by how the pieces move, with specialized logic for
sliding, non-sliding, pawns and castling.

Sliding Pieces (Bishop, Queen, Rook) : Sliding piece attacks are computed
using directional occupancy masks and magic bitboards, explained in Section 2.5.

Meaning it works by multiplying the occupancy on relevant squares by a magic
number. Then it shifts the result, and using it as an index into a precomputed
lookup table. This table stores all possible attack patterns for each unique blocker
scenario along a given direction.

Non-Sliding Pieces (King, Knight): Kings and Knights always have the same
movement pattern, and cannot be blocked by other pieces in the same way, except
if allied piece is on the square already. But this means that the non-sliding piece
attack sets are stored in static lookup tables that are indexes by their square.

Pawns: Pawns are more complex as they have many unique features. They require
asymmetric logic for forward movement as the piece only moves in one direction
relative to the player. Diagonal captures, are easy to compute as they work the
same way as a non-sliding piece. Promotions is handled using separate logic that
simply checks whether a pawn has reached the last rank. Similarly, single and double
advances are checked depending on rank. Lastly, en passant legality is verified after
move generation to ensure it does not expose the king to discovered checks.

Castling: Castling rights are validated via bitwise tests: verifying that both the
king and the rook in question have not moved, that the path is unoccupied, and
that intermediate squares are not under attack.

3.2.3 Handling Piece Constraints

Check Detection: All opposing piece attacks masks are checked to determine if
the side to move is in check or not. When a king is under check, its legal moves are
restricted to three actions. These are either capturing the checking piece, blocking
its line of attack, or moving the king to a non-attacked square.

Pin Detection: Pinned pieces are identified by scanning all straight lines extend-
ing from the king’s square, in the same manner a queen can move. If a friendly piece
lies on the same line between the king and an opposing bishop, rook, or queen, and
there are no other pieces blocking the path, it is considered pinned. Such a piece is
then restricted to moving only along that line, if at all.

Legal move generation begins with a set of pseudo-legal moves, which are then

filtered by applying the constraints described above. The filtering logic then excludes
moves that violate these constraints.

29

3. Implementation

3.2.4 Atomic Chess Extension

After implementing and verifying that the standard rules of chess detailed above
worked, the Atomic Chess additions were added.

Explosion Capture: After a capture, the piece that made the capture is removed.
Then a 3x3 explosion mask is applied to the area. The board state is updated
accordingly by clearing the relevant bits in each affected bitboard, leaving pawns
unaffected, as they are immune to nearby explosions.

Modified Legality Checks: Captures that would result in the player’s own king
being removed are disallowed. This requires a re-evaluation of the resulting board
state post-explosion, ensuring that all remaining pieces are valid under the variant’s
rules.

Pinned pieces are allowed to move in a way that checks their own king if the resulting
move would result in capturing an opposing king through an explosion. This requires
the logic handling pinned pieces to be re-evaluated as pinned pieces could never be
moved in regular chess.

Impact on Attack Evaluation: Attack generation routines were extended to
consider the effects of explosions on adjacent pieces, influencing king safety and
positional evaluation.

3.3 Monte Carlo Tree Search Implementation

Monte Carlo Tree Search (MCTS) was chosen as the engines decision-maker because
of its use in AlphaZero, where they proved that it is an effective implementation
when using neural networks and in environments with high branching factor, such
as a complex game like chess that can alter the board state drastically in just a few
moves. The implementation is based on the PUCT formula similar to AlphaZero’s
implementation.

3.3.1 Monte Carlo Tree Search Structure

A tree-node data structure is the core of the MCTS, which represents a node in the
game state search tree. Each node maintains the following:

o A reference to its parent and a list of children.
e The move that led to the node.
e The game state the node represents

o PUCT statistics: total accumulated value, visit count, and the prior probabil-
ity provided by the neural network.

30

3. Implementation

The MCTS steps are similar to what was described in Section 2.3.2. In our imple-
mentation, the Monte Carlo tree is constructed by first initializing a root node and
then performing a series of iterations, where each iteration executes the following
steps.

1. Selection: Selection works by, at each level of depth, selecting the child node
corresponding to the move with the highest PUCT score, calculated as:

N
PUCT(a) = % +p-C- 1\1_71 (3.1)

where n is the visit count of move a. The total visit count of the current
parent node is N, the average value (win rate) of simulations through move a
is then 2, the prior probability of move a provided by the neural network is p
and C' is the exploration constant.

2. Expansion and Evaluation: When the search reaches a leaf node, an expand
function is called. This function performs the following steps:

o Generates all legal moves from the current game state.

o Evaluates the position using the neural network, which returns a policy
vector (prior probabilities) and a scalar value (position evaluation).

o Applies softmax normalization to the policy outputs.
o Initializes child nodes for each legal move using the normalized priors.

3. Backpropagation: Once a leaf node has been expanded and evaluated, the
scalar value is propagated back through the visited path. During this phase,
the total value and visit count for each node along the path are updated. The
value is inverted from positive to negative at each step to reflect the opponent’s
perspective.

3.3.2 Batching Selections

In order to leverage the strength of GPU parallel processing, some additional modi-
fications to the original MCTS algorithm were made. In the original algorithm, only
one node could be selected at a time and have its game-state be processed by the
neural network. This however, does not leverage the parallel nature of the GPU.
Instead we want to send a big batch of multiple game-states to the network and
evaluate them all at the same time. So by running multiple selections and batching
their game-states for a batch evaluation, the search will be much faster on a GPU.

To make this change work, already selected nodes are skipped during the selection
phase to not evaluate duplicate positions. But this introduces an issue where all

31

3. Implementation

selections will try to go down the same path in the tree. This is resolved through
the use of virtual loss.

3.3.3 Final Move Choice

Once exploration has ended, a move suggestion can be extracted from the tree
structure. Two different strategies are implemented for final move selection and are
used depending on the circumstance. The first strategy is choosing the node with
the highest visit count, pure exploitation. This is used during real play against other
opponents, because we want to play what the neural network thinks is best. Nodes
having high visit counts indicate that the move is likely to be good because it has
been selected more often than others using the PUCT-formula.

The second strategy is proportional sampling, which results in more exploration.
This is used during self-play to encourage variations in the training games. The
strategy works by looking at all the root’s children’s visit-counts and divide them
by the total visits for all the children to get a list of probabilities. Then choosing
the move randomly based on the probabilities. For instance, if you are at one node
with three child nodes, with 70, 20 and 10 visit-counts respectively. Then we will
randomly pick between them, with the nodes having a 70%, 20% and 10% chance of
being chosen respectively. This will most often result in the best move being picked,
but allows for less visited nodes to be expanded and explored as well.

3.4 Neural Network

The neural network used in the engine is a deep convolutional neural network, similar
in structure to that of AlphaZero, but scaled down in size.

Network Input

To process the game state with the neural network, the board must first be encoded
as tensors. Each of the 12 bitboards are converted into an 8x8 tensor. These tensors
are then stacked along the channel dimension, forming a final single tensor with 12
channels, similar to how colour channels work in image processing. This is illustrated
in Figure 3.1. This final tensor is the input to the neural network without any other
information.

Additionally, because chess is both spatially and rule-symmetric, we can mirror the
board vertically and swap the colours of the pieces when it is black’s turn. This
ensures that the network always sees the position from the perspective of the player
to move. As a result, the network does not need to learn separate strategies for
white and black, or learn to shift its perspective.

32

3. Implementation

o|w|o|o|e|lsae|e
o|lx|o|c|o|la|ale
o|l=|o|o|e|ee|e
o|=|o|c|o|la|ale
o|l=|o|e|e|ee|le
o|l=|o|o|a|la|ale
o|=|o|c|els|a|e
o|l=|o|o|e|ee|e

ole|o|e|le|s|es|e
o|lo|o|o|o|s|s|s
olo|o|a|le|e|e|e
o|lo|o|o|o|s|s|s
olo|o|a|la|s|s|s
olo|o|a|le|e|e|e
olo|o|a|le|e|e|e

olo|lo|a|le|e|e|=

o|l=|o|lo|a|a|l=|a
ol a|o|lo|a|a|le|e
o|l=|o|lo|a|a|ls|at-

o|x|o|lo|e|e|s|e

o|lx|o|lo|a|a|s|a

Figure 3.1: Conversion from a board position to a tensor.

Network Structure

Once the game-state has been converted into a tensor and passed into the neural
network as an input. The input tensor of size 8 x 8 x 12 first goes through an initial
convolutional layer consisting of 128 filters, each with a kernel size of 3 x 3 x 12
and a stride of 1, which produces a tensor of size 8 x 8 x 128. This is followed by
12 residual blocks, each with 128 filters of kernel size 3 x 3 x 128 and stride of 1,
outputting tensors of the same size as the input, as illustrated in Figure 2.11. Due
to the resource constraints of this project, a shallower network was implemented
than the 19 residual blocks used by AlphaZero as was discussed in Section 2.4.4.

Lastly, the network needs to output the policy and value heads. These are respon-
sible for guiding the search and evaluating the game state. The policy head begins
with a 2 filter 1 x 1 x 128 convolution that reduces the number of channels to 2,
yielding a 8 x 8 x 2 tensor that is flattened to a vector of size 128. This is followed
by a fully connected layer that outputs the move policy head with all the move
probabilities, where the element at each position in the output represents a move.
For instance, the first element in the output (ala2) represents a move for square
al to a2 which contains the likelihood that this move is the best move. The value
head starts similarly to the policy head with a 1 x 1 x 128 convolution to reduce the
channels to 1, followed by a ReLLU activation. The resulting tensor is then flattened
to a vector of size 64, and passed through a RelLU-activated hidden layer outputting

33

3. Implementation

the same size, before being reduced to a single value through a last perceptron. The
final output is a single scalar value representing the expected outcome of the game
from the current position. This separation of the network value and policy head
allows the network to perform both move prediction and position evaluation. The
overall structure of the network is illustrated in Figure 3.2.

—

Flatten .

Conv] : Policy Head

Conv |—» 12 Residual Blocks

Value Head

Flatten .
»/Conv| :

Figure 3.2: Structure of the neural network.

3.5 Training Setup

The training setup, like most components, draws inspiration from AlphaZero. The
iterative process goes through two main phases, generating training game by self-
play, then using this data to update the neural network.

3.5.1 Self Play

During training, the engine goes through multiple training steps. For every training
step, the engine uses self-play to generate a set amount of training data. By using
proportional sampling in self-play, see Section 3.3.3, we ensure a diverse set of train-
ing games. Fach data sample consists of a chess position, the MCTS probability
distribution for that position and the final outcome of the game.

By training the network on these data samples, the model should gradually improve
as more generations are completed. The assumption here is that the MCTS move
distribution and final outcome is more accurate than the output from the network.
So by having the model continuously try to mimic this, it should improve a small
amount each training step.

3.5.2 Calculating Loss

The loss between a data sample and the model’s prediction is calculated in two
parts. First, the value loss is calculated to determine how accurately the model
can predict the final outcome of the game. This is calculated as the mean squared
error between the final game outcome (z), and the model’s prediction (v), where a
1 represents a win, 0 a draw, and -1 a loss for the acting player. The term then
becomes:

34

3. Implementation

(z —v)? (3.2)

Second, the policy loss determines how accurately the model can predict what the
best moves are. This is calculated as the cross-entropy between the MCTS move
probability distribution and the model’s policy head. This term becomes:

—wllogp (3.3)

These two values are then added together and the resulting loss function is written
in Equation 3.4.

l=(z—v)>—n"logp (3.4)

A Stochastic Descent Optimizer is used to optimize the model. The optimizer is
originally set with a learning rate of 0.01 and a momentum of 0.9. The optimizer is

also set to a weight decay of le™%.

The loss Equation 3.4 does not include a term responsible for L2-regularization
unlike the formula used by AlphaZero, as seen in Equation 2.6. This is because the
weight decay parameter in the optimizer will ensure that L2-regularization is carried
out each time the optimizer is used.

3.5.3 Replay Buffer

After a batch of training data is created, it is stored in a replay buffer of training
samples. By using a buffer of training examples, the model can sample from a
diverse and robust dataset, not only the latest games. Over time, the oldest data is
overwritten to prevent the model from training on outdated training data. Another
feature added to prioritize newer training data is “prioritized experience replay” [15].
By using this, newer samples are prioritized when sampling from the replay buffer.

The size of the replay buffer varied during development but was set between 100,000
to 200,000 samples. For each training step, a mini-batch of 4,096 is sampled from
the replay buffer and used to update the model, similar to what AlphaZero did
[2]. For each of these training steps, about 2,056 additional samples are generated
through self-play and added to the buffer.

3.6 Parallelization

Parallelization enables multiple training games to run concurrently, significantly in-
creasing the speed at which data samples can be generated. At the start of training,

35

3. Implementation

a variable number of permanent worker threads is spawned. All workers indepen-
dently play games and, at the end of each game, create samples and add them to the
common replay buffer. Once enough samples (per training step) have been created,
the first worker to end its game is responsible for launching the training routine that
updates the weights of the network, at which point all other threads remain idle.
Importantly, workers may still have ongoing games while weights are updated, but
they are never selecting moves, i.e. performing MCTS due to the back-propagation
algorithm not being threadsafe.

In practice, this was simply done by using a reader-writer mutex on the actual model
object, where updating the weights of the network is considered a writing action,
and selecting a move is considered a reading action. In essence, all workers shared
a single model, and updates to the weights of the neural network were coordinated
in a round-robin fashion.

36

4

Method

This chapter describes the methods used to train and assess the strength of our
engine.

4.1 Training Process

Training a large convolutional neural network and generating self-play games is very
computationally costly, therefore, we opted to train only a single neural network
model and not try any other architectures. Neural network weights between different
architecture can not be reused or transferred to a different network structure. If we
had explored multiple different architectures, then we would essentially be wasting
large amounts of time computing training models that would later be discarded, so
we decided against this.

Instead we trusted the general neural network structure that AlphaZero had de-
scribed and stuck with the scaled-down version of it described in Section 3.4. There-
fore, the majority of the time spent after creating an initial working training pipeline
was spent refining the pipeline as opposed to hyperparameter tuning the network.
The main adjustments to the training pipeline are the following:

Multithreading optimizations: The self-play and training loops were better
optimized to better utilize the available hardware and reduce bottlenecks, resulting
in a higher throughput of games. The primary changes were running the self-playing
games in parallel and letting an idle thread start the training routine without waiting
for the others to finish playing games.

Resizing of replay buffer: The size of the replay buffer was altered in the middle
of training from 100,000 to 200,000, helping to balance the trade-off between data

freshness and remembering long-term strategies.

Adjustments to learning rate: The learning rate was also tuned manually dur-
ing the training to prevent stagnation and continue the learning effectively.

One problem with this manual tweaking and altering of the training pipeline is that

37

4. Method

it makes tracking progress more difficult as there are more changing variables. Mak-
ing it difficult to pinpoint exactly what is contributing and the magnitude of the
contribution to the learning process. It is also hard to quickly benchmark if the
changes made were in fact an improvement as training is a very slow process and
it takes hours before a noticeable difference in playing strength can be observed.
Therefore we mostly tweaked based on our hypothesis around the previously men-
tioned trade-off between data freshness and remembering long-term strategies.

4.2 Evaluation of Models

Throughout the training, multiple training checkpoints were made between training
iterations. To evaluate the strength of these models and also the final strength of
the best model, two methods for evaluation are used.

4.2.1 Internal Evaluation

To compare our different models an arena mode was developed. In this mode two
models play against each other for a set number of games. The first model plays as
white and the second model as black. The number of wins for white, black and the
amount of draws that the games result in are then outputted. The set number of
games per side was set to 500, then the sides were reversed for another 500 games,
to create 1,000 games between two models in total. This makes it easy to calculate
the win rate between the models on white / black / both.

4.2.2 External Evaluation

To evaluate the final model, the chess engine was deployed on Lichess.org on a
dedicated bot account. This was done with the chess engine mode Lichess-UCI,
where a computer runs our engine and upon receiving a match request from Lichess
using the Universal Chess Interface (UCI) it accepts the request and plays the game.
In this mode the engine always plays with 100% exploitation. The engine was
hosted on a consumer grade PC with an Intel i5-12400f CPU and a NVIDIA 3060TT
GPU. The MCTS-iterations were set to 50,000, which results in a thinking time of
approximately 10 seconds per move.

Other players and chess engines with established ELO-ratings can be challenged
from a bot account, which allows us to get an ELO for our engine. Bot accounts are
however not allowed to queue for the standard “find a game” function, which limits
the players we could find to those who were on the Atomic Chess top 200 leader
board. Additionally, there are not many other bot accounts on Lichess that play
Atomic Chess at an intermediate level, with most playing either on a very high level
or a very low level.

Lichess also provides data as to where the bots ELO-rating ranks in terms of the

entire active playerbase, which is a valuable metric better at clarifying its playing
strength rather than a somewhat arbitrary ELO-rating.

38

4. Method

4.3 Hardware Utilization and Cost

To handle the computational demands of training deep reinforcement learning mod-
els we utilized cloud-based GPU virtual machines (VMs) from TensorDock [16].
TensorDock is a cloud computing service specializing in on-demand GPU instances
well-suited for machine learning workloads.

We rented two VMs, one was mostly running the current best available version of the
training pipeline, ensuring uninterrupted progress toward a final model. A second
VM was periodically brought online to test modifications to the training pipeline
or to evaluate experimental configurations. This approach allowed us continue to
improve the training without risking ending up without a final satisfactory product.

To optimize costs we powered VMs on and off as needed. Because TensorDock
charges different hourly rates depending on whether a VM is active or idle, this
flexibility helped us stay within the projects budget constraints. The total target
expenditure for the entire project was 3,000 SEK The rented hardware configurations
and their associated costs are shown in Table 4.1.

Table 4.1: Rented hardware and associated costs

Unit GPU CPU SEK/h (On) SEK/h (Off)
1 NVIDIA RTX A6000 PCIE 48GB | Intel Xeon Gold 6226 (14 cores) 4 0.1
2 NVIDIA A100 SXM4 80GB AMD EPYC 7513 (32 cores) 14 0.1

39

O

Results

This chapter presents the outcomes of the project by looking at the playing strength
achieved by our engine, as well as comparing different models and evaluating the
key components of the system individually.

5.1 Engine Strength

In this section we present the strength of our best performing engine in the form of
comparisons to earlier versions and also as an ELO progression.

5.1.1 Model Comparisons

After choosing the final training setup, after some experimenting and making sure
the training pipeline worked, the model went through 8,000 training steps using a
replay buffer of 200,000 positions. In Table 5.2, we can see the win rates for the final
model with 8,000 iteration steps matched against the models at previous steps in
the training phase. It is important to note that less than 1% of the games typically
resulted in draws, therefore games ending in draws were discarded when calculating
the win rates.

The number associated with each model represents the number of training iterations
it has undergone during the final training phase. However, this number does not
reflect the total number of training iterations from the start of the project. The final
training phase was conducted on an already partially trained model, referred to as
Model-0. The performance of Model-0, which can be seen in Table 5.1, shows that
it beat a completely untrained model with randomized weights in 98.0 % of games.

Table 5.1: Comparing win rate model-0 to untrained

Untrained
Model-0 (white) | 99.2%
Model-0 (black) | 96.8%
Model-0 (both) | 98.0%

40

5. Results

The training that was previously done on Model-0 was done with a suboptimal
training pipeline where we sampled many smaller batches every time we generated
new positions, in contrast to the current one where a batch of 4,096 is sampled
each training iteration, increasing stability. Mostly this part of the training was
done in order to test that the training was working at all, and due to the limited
compute resources, we decided to keep the model that the initial training had given
us in order to not waste resources. This unfortunately resulted in us not having
any presentable data on the initial training, yet it is important to note that this
early training was minimal and only accounts for a small factor of the training that
was done in the final model. This can be seen in Table 5.2 where Model-8000 has a
win-rate of 83.6% against Model-0.

Table 5.2: Model-8000’s win rates against the other models over 500 matches (1,000
for both). Config: MCTS-iterations: 3,000

Untrained | M-0 | M-2000 | M-4000 | M-6000 | M-8000
Model-8000 (white) | 100% 88.8% | 56.1% | 52.3% | 57.1% | -
Model-8000 (black) | 100% T84% | 49.7% | 44.4% | 44.4% | -
Model-8000 (both) | 100% 83.6% | 52.9% | 484% | 508% | -

Something that can be observed in Table 5.2 is that Model-4000 seems to outperform
Model-8000. To further investigate this, we ran the same test again with Model-4000
as the main model to see if it was a superior model. Those results can be seen in
Table 5.3.

Table 5.3: Model-4000’s win rates against the other models over 500 matches (1,000
for both). Config: MCTS-iterations: 3,000

Untrained | M-0 M-2000 | M-4000 | M-6000 | M-8000
Model-4000 (white) | 100% 86.0% | 54.8% | - 55.1% | 55.6%
Model-4000 (black) | 100% 81.5 % | 53.0% | - 48.6% | 47.7%
Model-4000 (both) | 100% 83.7 % | 53.9% | - 51.9% | 51.6%

Comparing the win rates for the two models we see that Model-4000 is the slightly
stronger model overall, which is a result of its better performance when playing with
the black pieces. Model-8000 might be worse overall but has a higher win rate than
Model-4000 when playing white.

To help visualize these results we can convert the win rates into difference in ELO
rating, a more commonly understood metric of strength in chess. This can be done
with the simple formulas that dictate how the ELO system in chess works. An
arbitrary ELO rating of 1,000 is set for Model-8000 which will help us see how the
ELO changed in the final training phase.

41

5. Results

1000 A

800

600

400 -

Hypothetical ELO

200

0 4

T T T T T
Untrained M-0 M-2000 M-4000 M-6000 M-8000
Model

Figure 5.1: ELO progression during the final training phase. The last model,
Model-8000 was set to an arbitrary ELO of 1,000, the other ELOs are then calculated
in relation to their win rate against Model-8000

Another interesting metric to look at Model-4000’s and Model-8000’s relative strength
when playing white compared to black. Looking at Table 5.4 we can observe the
same thing that we found when comparing the win rates of the models against other
models in Tables 5.2 and 5.3. Model-8000 is stronger than Model-4000 at playing
the white pieces, but worse when playing the black pieces.

Table 5.4: The win rate of the model when playing 1,000 games against itself

White | Black
Model-4000 | 52.9% | 47.1%
Model-8000 | 55.9% | 44.1%

5.1.2 Final Playing Strength

By looking at the results in Tables 5.3 and 5.2, Model-4000 was chosen to be matched
against other bots online to get a strength estimate determined by the ELO rating.
After 40 games against players and other chess engines, the engine got an ELO
rating of 1,729. On Lichess this corresponds to a rating better than 90% of Atomic
Chess players that week, which can be seen in Figure 5.2.

42

5. Results

8,802 Atomic players this week.
Your Atomic rating is 1729.
You are better than 90% of Atomic players.

Figure 5.2: Atomic Chess ELO distribution and the projects final engines place-
ment on the chess platform Lichess [17]

The accuracy of this rating is hard to judge. The only atomic players we were able
to find and play against were the players on the top 200 leader-board, all having a
ELO rating above 1,950. Additionally, there are not many different Atomic Chess
engines on Lichess, so the engine was either matched against engines much stronger
or much weaker than itself.

A few observations were made while playing against the engine and watching it
play stronger players on Lichess. The engine has learned several sharp tactics and
strategies in the opening and general strategies that hold true for all parts of the
game. But when it comes to tactics specific to the mid- and end-game, the engine
becomes noticeably weaker. The engine also does not have a great understanding of
being resourceful with its pieces. For instance, when being several pieces down in
material, the engine still plays moves that trades its own pieces for the opponents or
for some positional winning. This goes against a common playing principle in chess
that states you should not trade down pieces when you are behind, because you will
be left in a situation with only pawns while the opponents has major pieces (rook,
queen, etc.) left. It should be noted that we are not very familiar with Atomic
Chess specific tactics and it is possible the engine is making good moves that we
simply do not understand and therefore discount them as mistakes.

43

5. Results

Additionally, the engine is not very good at time management. The engine currently
is fully idle during the opponents turn, which means the engine wastes time every
turn as when its turn starts, it still has no idea what it wants to do. A similar issue
is the fact that the engine does not take its time remaining at all into account, it
only does a hardcoded set number of MCTS-iterations, which typically takes the
same time for every turn. This is opposed to a human that naturally make moves
quicker when low on time in order to not lose on time.

5.2 Neural Network and Training

In this section we cover the results of the training of our neural network.

5.2.1 Training Process

Several training strategies were explored to identify the most effective approach.
Two key factors were found to significantly impact training outcomes: replay buffer
size and sampling strategy.

With a very small replay buffer, fitting only the samples generated from previous
training step, the model did not seem to learn anything. Even with 8 hours of
training the model could not out-perform an untrained model. When matched
against the untrained model it achieved a win rate of only 47% for the 500 games
played (ignoring the draws). However, increasing the buffer size allowed the model
to surpass an untrained version within the same training duration, highlighting the
importance of sample diversity for effective learning.

Initial experiments also involved sampling the entire replay buffer during each train-
ing step. While this approach led to rapid loss reduction and short-term performance
gains, it introduced significant overfitting. Models trained this way struggled when
matched against their earliest versions, indicating a lack of generalization.

To address this the strategy was adjusted to use mini-batches for each training
step. This change dramatically improved long-term model strength, allowing it to
consistently outperform all previous versions. For our final implementation we found
that using a mini-batch size of 4,096, while generating 2,048 new positions per step,
provided an optimal balance. This effectively resulted in each sample being utilized
approximately twice, promoting both stability and sustained improvement.

5.2.2 Learning Verification

To assess whether the network could learn simple tactical patterns a mate-in-2 test
was conducted. The model played 50 games against itself from a fixed position where
a forced mate was achievable. Figure 5.3 shows the move probability predicted by
both MCTS and the neural network over training iterations. MCTS consistently
favoured the correct move and after a few games the network started favouring that
move as well.

44

5. Results

.,—_______*/— —e— MCTS
—a— NN
0.8
f 06
e}
&
o
a 04
0.2
0
0 10 20 30 40 50

Mumber of games

Figure 5.3: Probabilities for the known best move from MCTS and the neural
network in a fixed mate-in-2 test. MCTS ran with 10,000 iterations per move.

5.2.3 Training Metrics

The systems throughput during training was measured. With the final configuration
(12 residual blocks, 128 channels, 800 MCTS iterations per move on unit 2 in Table
4.1 with all 32 cores) the system achieved:

o Games generated per hour: 3,200

o Positions generated: 16,384,000 = 2, OZLEBTMS;#I;%Step - 8,000 Training Steps
These results highlight the computational demands of reinforcement learning using
MCTS and neural networks, even on simplified chess variants. Generating data
samples concurrently was likely the single most important optimization step, as the
throughput of generated samples per unit time increased linearly with the number
of workers up to 15 workers, on the hardware configuration used for training. In a
later version of the program we were able to scale the number of workers up even
further to around 64, but due to unresolved bugs and time constraints these changes
were not used during final training.

45

5. Results

5.2.4 Virtual Machine Costs

Table 5.5: Final cost per unit

Unit | Expenditure in SEK
1 1,212.32
2 627.39

The results show that the total expenditure for all virtual environments totalled
1839.71 SEK, which is under the goal of 3,000 SEK set for the project.

5.3 Move Generation Component

To verify the correctness of move generation and evaluate its performance, we built a
routine for conducting Perft tests. Perft tests take a position as input and output the
number of positions, or nodes, found for a given depth, as well as how long the search
took. Additionally, Perft divide tests are used to find bugs in move generation, where
the number of nodes found for each move from the root position is also recorded.
With this, we were able to verify the correctness and measure the speed of our
move generation. Running on an AMD Ryzen 7 5800H, a consumer grade CPU,
using all 16 cores, our Perft routine found roughly 250,000,000 to 360,000,000 nodes
per second, depending on the root position. The output of our Perft routines was
compared to the output of Fairy Stockfish’s Perft routines for at least ten important
positions, totalling over a hundred billion positions, ensuring the same total number
of nodes was found for each position [18].

In the engine the move generation runs on independent cores. The single-core per-
formance was benchmarked by repeatedly generating all legal moves for randomly
generated positions. The system consistently achieved a rate of 44,519,649 positions
per second.

5.4 Monte Carlo Tree Search Optimizations

In this section we present the results of different optimization methods for MCTS.

5.4.1 Batching Selections

By batching together multiple game-states before sending them to the neural net-
work, the performance increased significantly. This takes advantage of the GPUs
efficiency when it comes to parallel computations. In Table 5.4 we can see what
speed-up was achieved for different number of selections per batch. Our implemen-
tation also used virtual loss to minimize competition between threads when it comes
to selecting multiple nodes.

46

5. Results

125 —8— Speed up

10

2 7.5
3
D

& 5

25

0

5 10 15 20 25 30

Number of selections

Figure 5.4: Speed up of the engine using different numbers of selections that are
batched and sent to the network.

5.4.2 Virtual Loss

Virtual loss was used in the engine to decrease the number of collisions when selecting
multiple MCTS nodes during the selection phase. To test the effects of virtual loss,
the engine was run with and without virtual loss with different numbers of MCTS
iterations. In Table 5.6 we can see that the results show a significant decrease in
collisions when using virtual loss. Additionally, while more MCTS iterations lead to
more collisions, the increase is less than proportional with virtual loss. However, it
is important to note that virtual loss optimizations might lead to distortion when it
comes to the final visit counts for the MCTS algorithm. Though, by observing the
games the engine played, no significant decrease in strength seemed to happen.

Table 5.6: Average number of select collisions per move in MCTS with and without
virtual loss for 1,000 and 5,000 iterations per move.

MCTS Iterations

No Virtual Loss

Virtual Loss

1000

11 000

300

2000

48 000

380

5.5 Time Analysis of the Engine

This section focuses exclusively on the inference-time performance of the engine
during gameplay. The training phase, while computationally intensive in total,
represents a minor proportion of runtime relative to the inference cost per move and

47

5. Results

is not a limiting factor in real-time decision-making. As such, the analysis presented
here concentrates solely on the performance of move generation, neural network
inference, and MCTS search during self-play games.

To identify computational bottlenecks in the engine, runtime profiling was conducted
during a standard self-play game on a PC with a Intel i5-12400F CPU and an
NVIDIA RTX 3060 GPU. These measurements will differ across different hardware
configurations. The measurements include both the time distribution between major
components and absolute execution times per move. The results are summarized in
Table 5.7.

Table 5.7: Execution Time and Proportion by Component

Component Time Per Move | Percentage of Total Time
Neural Network Inference 120 ms 65%
Monte Carlo Tree Search 65 ms 33%
Generating Legal Moves < 1 ms < 1%

The results show that neural network inference and MCTS search together account
for nearly all execution time during gameplay, with neural network inference alone
taking approximately twice as long as the MCTS search. Move generation, on the
other hand, is computationally negligible, requiring under 1 millisecond per move
and less than 1% of total execution time.

48

O

Discussion

This chapter discusses the project results, limitations encountered, and lessons
learned throughout development. It analyzes the final results in relation to the
original project goals. The chapter then covers suggestions for future work and ex-
plores directions for improvement. Lastly, the chapter concludes with answers to
our research questions.

6.1 Analysis of Final Product and Results

This section discusses the results from Chapter 5. We begin by reflecting on the
final engine strength.

6.1.1 Final Engine Strength Discussion

The final engine achieved an ELO rating of 1,729, placing it in the top 10th percentile
of the active Atomic Chess player base on Lichess. Even though these results do not
match the super-human performance of AlphaZero, they match the ambitions for
this project. The training pipeline was therefore shown to be effective in producing a
decent engine, yet the results also revealed several limitations that merit reflection.

One of the more interesting findings was the inconsistent performance progres-
sion across training iterations. Unexpectedly, Model-4000 ultimately outperformed
Model-8000 in overall strength, particularly when playing with the black pieces.
This suggests that more training does not necessarily correlate with better perfor-
mance between the training iteration 4,000 and 8,000. The reasons for this will be
discussed further in Section 6.1.2.

The engine also demonstrated some suboptimal patterns of play. It demonstrated
strong opening play but became noticeably weaker in mid- and end-game decision-
making. For instance, the engine had a tendency to trade down pieces even while
behind in material, which goes against chess strategy fundamentals and indicates
a lack of long-term planning. One possible reason for this is that Atomic Chess
simply has inherently more emphasis on the opening since there are many openings
that lead to a quick checkmate. This rewards aggressive, short-term strategies that

49

6. Discussion

sacrifice material in order to find a checkmate early. Despite this, it is still unde-
sirable to be weak in the end-game, so there are several potential augmentations
to the training pipeline that could counteract this issue. Some solutions could be
starting a few self-play games from middle- or end-game positions, or adjusting the
exploration/exploitation balance. These ideas will be discussed in Section 6.3.2.

Finally its lack of time management further limited its practical playing strength.
A simple fix to would be a variable MCTS iteration count that is based on the time
setting for the match. This would mean a longer thinking period for longer time
controls and setting a cutoff for the amount of time left, forcing the MCT'S iterations
to shrink down from the fixed MCTS iteration count to match the remaining time.
Another possibility would be to use an additional machine learning algorithm to
adjust the amount of MCTS iterations.

The engine being idle during the opponents turn also causes a large time-loss. The
obvious solution to this issue would be to continue MCTS indefinitely when waiting
for the opponents move. When the opponent finally makes a move, the engine could
then use the relevant subtree that has been built corresponding to that move.

6.1.2 Neural Network and Training Process

A key part of the project is the neural network and training setup, which due to the
limitations in the hardware, the complexity of the network and number of training
samples that can be generated, is constrained. Therefore, unlike AlphaZero and
other strong self-learning engines, we used a relatively shallow network structure
due to the inference time benefits.

There is an important trade-off between the speed of neural network inference and
the complexity of the network. A shallow network enables faster position evalua-
tions, which allows the engine to generate a larger volume of training data through
self-play games in a given amount of time. This increases the quantity of training
examples, which can help reduce variance in the learning process. Additionally, the
shorter inference time allows for more MCTS iterations to be ran when searching
for moves. On the other hand, having a too shallow of a network would create a
bottleneck where the neural network can not find any more patterns beyond a cer-
tain point due to being too simple. A deeper network will be able to identify more
complex patterns, resulting in an engine that can find better strategies.

It hard to tell whether our model size was a bottleneck or not. Looking at the
hypothetical ELO progression plot we can see that the progress seems to halt after
2,000 training iterations. The reason for this could be that the model is not complex
enough to find new patterns beyond this playing level. It could also mean that the
neural network forgot strategies it had previously learnt. Despite this, we suspect
that what we interpret as the progress halting is simply that the model is not trained
on enough data, meaning that when comparing the models between iterations 2,000
and 8,000 we are simply looking at iterations too close to each other. If the training

50

6. Discussion

had continued to something like 100,000 training steps we could have seen more
meaningful progress. This idea will be discussed further in Section 6.1.4.

6.1.3 Computational Performance Analysis

Part of the purpose of this project was to investigate the possibilities of creating
and training a strong self-learning Atomic Chess engine with limited hardware and
resources. Both standard chess engines and reinforcement learning algorithms are
computationally demanding, which posed many challenges. Therefore, a lot of the
time spent on the project was on optimizing the engine for performance and ensur-
ing we were training as effectively as possible. The optimizations for performance
included our successful multithreading of self-play, allowing us to play several games
at once, as well as batching of tensors before being processed by the neural network.
In Figure 5.4, we can see that this optimization significantly improved the computa-
tional speed. Without batching, the final model would be significantly weaker due
to lacking training.

The time analysis results presented in Section 5.5 indicate that neural network infer-
ence constitutes the primary computational bottleneck during gameplay, accounting
for approximately 65% of the total time spent, followed by MCTS, accounting for
approximately 33% and 1% for move generation. It is important to note that these
measurements reflect the performance only on one PC with NVIDIA RTX 3060 GPU
and an Intel i5-12400f CPU, different hardware setups will show slightly different
result, but the results still give a decent overview.

These results are somewhat in line with our expectations. We can firmly conclude
that our move generation is highly optimized, and if something needs optimization
it is either the neural network inference or MCTS. On the other hand it is hard to
draw meaningful conclusions from these results as we do not know what an ideal self-
training engine should look like, perhaps an ideal engine would do only inference and
the overhead from MCTS would be minimal. This hypothesis suggests that MCTS
is the component that likely would be the component that has most optimization
potential.

6.1.4 Training Data Volume

The factor we believe to be our biggest limiter in terms of engine strength is the
small training data volume. According to the AlphaZero paper, the chess version of
AlphaZero required approximately 300,000 training steps, with every step training
on a mini-batch of 4,096 positions, to surpass the best engine at the time, Stock-
fish [2]. This amounts to approximately 1.2 billion positions. Comparing this to our
16.8 million positions, it paints a clear picture, we only trained on 1.4% of the data
they trained on to beat Stockfish, not to mention they later continued training for
another 400,000 steps. The time it took AlphaZero to generate and train on those
1.2 billion positions was 4 hours. While for this project we trained for a total of
around 150 hours.

51

6. Discussion

While such a disparity is expected given the substantial difference in hardware, it un-
derscores the central role that data generation throughput plays in the effectiveness
of creating self-play reinforcement learning systems. The relatively limited volume
of training data that could be generated within the project’s constraints remains the
primary factor identified for improvement in order to develop a stronger engine.

6.2 Engineering Decisions and Their Effects

This section discusses the decisions made in the construction of the chess engine and
the impacts it had on the project.

6.2.1 Effect of Replay Buffer

The testing we performed in terms of measuring the effects of the replay buffer
showed a clear improvement in the model’s training. It is not clear if the model
could have become proficient enough to also beat untrained models if allowed to
train long enough, but the results are enough to demonstrate that the replay buffer
is a good optimization if not vital for the training of the model.

Given that a very basic version of a replay buffer is not hard to implement, consisting
only of a list of played moves, where the oldest ones are constantly cycled out to
keep the same size on the list, we believe this to be a very worthwhile optimization.

6.2.2 Reflection on Programming Language

The programming language C+-+ was chosen for this project as it is often used
in programs where performance is key. This is likely a reason for why our move
generation is so fast. Additionally, the fact that we could use C++ for all parts of
the engine likely reduced the overhead which is good for speed. There is however a
big challenge with using C++ that we encountered, which is the handling of memory
allocation. For instance, Libtorch handles memory allocation internally, creating
tensors and returning references to memory region in RAM and VRAM, C++ itself
provides no guarantees that these regions remain valid at the language level. This
occasionally results in “use-after-free” errors that are difficult to detect. In hindsight,
a language like Rust may have been better suited for this project as it prevents many
of these problems through strict compile-time memory safety checks. That said,
integrating Rust with existing deep learning libraries would likely have introduced
its own complications, possibly requiring a mixed-language setup with Python or
alternative frameworks. Despite these issues, we remain reasonably satisfied with the
choice of C++4 given the project’s demands for performance, control, and ecosystem
support and due to our product was beyond our expectations for the project.

6.2.3 Financial Implications

While the model itself was able to be trained for a cost which was lower than
the target cost set for the project, we also as previously concluded that the model

52

6. Discussion

has likely not yet been fully trained. Given that we used approximately 40% of
our allocated budget at 8,000 generations, it would mean that we could train to a
maximum of roughly 20,000 generations before exceeding the budget.

In comparison, AlphaZero was trained for 700,000 generations [2] which shows that
if we were to train a model of equivalent size we would still be able to train much
further than 20,000 generations, which in turn implies that we would far exceed the
budget if our goal was to train the model to its maximum strength.

We could also further implement optimizations in order to better utilize the virtual
machines we had rented, as all of them were rented at a set price per hour, which
would allow us to train further for the same total price.

As such, we are unable to determine exactly whether or not we could have trained
the model for the price point assuming all possible optimizations were implemented,
but does lead us to believe we could not train an equivalent model for that price.
We were able to train up a model that plays reasonably well, which means that if
you were to want to train up a model which plays with relatively limited strength
in comparison to AlphaZero, that could be achieved within a limited budget.

6.3 Future Research

Given additional time and resources, several areas would have been prioritized. As
has been stated multiple times in this report our main limit was the amount of
compute power that we had access to. If we had more resources for this project the
natural next step would be to continue to train the model and see at what point it
stops improving.

6.3.1 Symmetry Augmentation

Increasing the rate at which we could generate training samples was one of the
more difficult challenges to overcome and when achieved, resulted in much better
training performance, which means it stands that further optimization in this field
would be beneficial. One technique that was explored in order to improve this was
symmetry augmentation. The underlying idea is that due to the symmetric nature
of a chessboard, it might be possible to generate two training samples for the price
of one. This would be done by mirroring a game sample along the vertical symmetry
line for each sample we generate, meaning the board will be mirrored horizontally.

Doing this would essentially copy the same game with each player switched, due
to the two sides king and queen starting on opposing sides. This also plays into
the fact that our model does not separate between white and black meaning that
mirroring would not compromise the the model weights. Therefore, by only applying
this single optimization, we are potentially doubling the number of training samples
generated per unit time. Unfortunately, we were not able to implement this in the
given time for the project.

33

6. Discussion

There is potentially also another more complex approach that adds this feature by
using the symmetrical invariance of the neural network weights themselves. The
convolutional layers have some inherent spatial context and symmetry to them,
which might make it possible to create a modified convolutional layer that takes
advantage of this fact to be able to store two mirrored positions on opposing sides
of the board as the same convolution. This could be used to downsize the neural
network which would improve its speed. This idea is quite immature and would
likely be much more complex and difficult to implement than the first alternative
and could perhaps be a separate research topic to study on its own.

6.3.2 Improving the Middle and End-game Strength

One issue we encountered during training was that many games did not last very
long, due to the explosive nature of our chosen variant. In Atomic Chess, there are
many opening tricks that try to give checkmate directly from the start which meant
the engine spent a lot of time learning different openings while later stages of the
game did not get as much training. This also became apparent when playing against
the engine ourselves, as it performed better in the opening than in the end-game.

To address this, we considered ways to incentivize longer games. One potential ap-
proach involves adding temperature proportional sampling. The idea is to scale the
move selection probabilities using an exponent, making the probability distribution
either sharper, making it more deterministic or flatter, more exploratory.

One theory we had, but were unable to test, was that by forcing the model to
play more deterministically in the opening, this might help it avoid early forced
checkmates and reach deeper positions. This would in turn increase its exposure
end-game scenarios, and subsequently help its performance in the end-game. While
we expect a sufficiently complex network to eventually learn end-game play, we
believe this adjustment could help accelerate that process.

Another less theoretical approach we considered was to just weigh samples by the
total number of moves in the games that they were drawn from, or simply by the
full move counter of the sample itself, thus training more heavily on longer games
and end-game scenarios.

An additional idea that could have been used to improve later stages of the game
would be to not only train from the regular starting position but also generate a set
of middle-game and late-game positions, and then starting the self-play games from
those positions. Though it is very possible that a method like that might lead to
overfitting to certain positions, so a large set of unique positions would have to be
generated.

6.3.3 Additional Neural Network Inputs

Currently, the neural network’s inputs are very simple, only consisting of the board-
state and nothing else. Something that might be interesting to explore would be

o4

6. Discussion

additional inputs to the neural network. For example, the network could receive the
game’s move count, giving it awareness of how far into the game it is. It could also
track move repetition, allowing it to recognize when a position is being repeated for
the third time, which results in a draw. En passant rights are also an input that
could help the engine spot en passant moves. Another alternative would be to add
history of past positions, which was done by AlphaZero. These extra inputs might
provide the neural network with a better overview of the game and enable it to learn
more patterns and complex strategies.

6.4 Conclusion

In this section, we conclude the report by answering our research questions.

6.4.1 Question 1

How feasible is it to train a chess engine through self-play, similar to
AlphaZero, using computational resources available to the common en-
thusiast?

This project has proved that it is feasible to apply self-training techniques, even
when constrained by hardware resources. According to our evaluation on Lichess,
the resulting engine was significantly stronger than the average human player, and
this was done while staying far below our budget of 3,000 SEK. This goes to show
that even without both a prior dataset to train on and a prior understanding of the
game’s strategies, a decent engine can be developed.

6.4.2 Question 2

How can a chess engine using a self-training engine be designed and
optimized to work at this scope?

In order for a self-learning chess engine to be successful, it needs to train on a
sufficiently large number of training steps, where the quality of each training step
is mostly determined by the total number of samples in the replay buffer and the
number of samples that were generated since the last training step. Thus, the
throughput of samples generated per unit time is a determining factor when it
comes to actual model performance. We found that limited access to processing
power mainly becomes a problem of optimizing for hardware utilization and minimal
congestion.

To optimize performance under these conditions, we employed a shared-worker ar-
chitecture, where multiple threads generated self-play games in parallel and wrote to
a shared buffer. Model evaluation was also batched to exploit the parallelism of the
GPU, as opposed to serial inference. These decisions significantly increased training
throughput without requiring additional hardware. This design demonstrates that

35

6. Discussion

with careful engineering, it is possible to develop a self-learning Al model for a com-
plex game like Atomic Chess on moderate hardware. The pipeline was cost-effective
and scalable, and this suggests that others would be capable of duplicating such
efforts even with limited budgets.

56

Bibliography

Murray Campbell, A.Joseph Hoane, and Feng-hsiung Hsu. “Deep Blue”. In:
Artificial Intelligence 134.1 (2002), pp. 57-83. 1SSN: 0004-3702. DOIL: https:
//doi.org/10.1016 /S0004-3702(01) 00129~ 1. URL: https://www .
sciencedirect.com/science/article/pii/S0004370201001291.

David Silver et al. “A general reinforcement learning algorithm that masters
chess, shogi, and Go through self-play”. In: Science 362.6419 (2018), pp. 1140—
1144.

Lichess. Atomic Chess. https://lichess.org/variant/atomic. Accessed:
2025-04-16. n.d.

Chess.com. Stockfish. Accessed: 2025-05-15. URL: https://www.chess.com/
terms/stockfish-chess-engine.

Chu-Hsuan Hsueh et al. “AlphaZero for a Non-Deterministic Game”. In: 2018
Conference on Technologies and Applications of Artificial Intelligence (TAAI).
2018, pp. 116-121. pO1: 10.1109/TAATI.2018.00034.

J. Jumper, R. Evans, A. Pritzel, et al. “Highly accurate protein structure
prediction with AlphaFold”. In: Nature 596 (2021). Published 15 July 2021,
pp- 583-589. DOI: 10.1038/s41586-021-03819-2. URL: https://doi.org/
10.1038/s41586-021-03819-2.

Oleg Arenz. “Monte Carlo Chess”. MA thesis. Technische Universitat Darm-
stadt, 2012.

Steven S. Skiena. The Data Science Design Manual. Springer, 2017. URL:
https://doi.org/10.1007/978-3-319-55444-0.

Keiron O’Shea and Ryan Nash. An Introduction to Convolutional Neural Net-
works. 2015. arXiv: 1511.08458 [cs.NE]. URL: https://arxiv.org/abs/
1511.08458.

Guoping Xu et al. “Development of residual learning in deep neural networks
for computer vision: A survey”. In: Engineering Applications of Artificial In-
telligence 142 (2025), p. 109890. 1sSN: 0952-1976. DOIL: https://doi.org/10.
1016/ j . engappai.2024.109890. URL: https://www.sciencedirect.com/
science/article/pii/S0952197624020499.

57

https://doi.org/https://doi.org/10.1016/S0004-3702(01)00129-1
https://doi.org/https://doi.org/10.1016/S0004-3702(01)00129-1
https://www.sciencedirect.com/science/article/pii/S0004370201001291
https://www.sciencedirect.com/science/article/pii/S0004370201001291
https://lichess.org/variant/atomic
https://www.chess.com/terms/stockfish-chess-engine
https://www.chess.com/terms/stockfish-chess-engine
https://doi.org/10.1109/TAAI.2018.00034
https://doi.org/10.1038/s41586-021-03819-2
https://doi.org/10.1038/s41586-021-03819-2
https://doi.org/10.1038/s41586-021-03819-2
https://doi.org/10.1007/978-3-319-55444-0
https://arxiv.org/abs/1511.08458
https://arxiv.org/abs/1511.08458
https://arxiv.org/abs/1511.08458
https://doi.org/https://doi.org/10.1016/j.engappai.2024.109890
https://doi.org/https://doi.org/10.1016/j.engappai.2024.109890
https://www.sciencedirect.com/science/article/pii/S0952197624020499
https://www.sciencedirect.com/science/article/pii/S0952197624020499

Bibliography

Sergey loffe and Christian Szegedy. Batch Normalization: Accelerating Deep
Network Training by Reducing Internal Covariate Shift. 2015. arXiv: 1502.
03167 [cs.LG]. URL: https://arxiv.org/abs/1502.03167.

Guillaume M. J. -B. Chaslot, Mark H. M. Winands, and H. Jaap Van Den
Herik. “Parallel Monte-Carlo tree search”. In: Lecture Notes in Computer Sci-
ence (including subseries Lecture Notes in Artificial Intelligence and Lecture
Notes in Bioinformatics) 5131 LNCS (2008). Cited by: 184, pp. 60-71. Dor:
10.1007/978-3-540-87608-3_6. URL: https://www.scopus.com/inward/
record.uri?eid=2-s2.0-55249093890&doi=10.1007%2f978-3-540-
87608-3_6&partnerID=40&md5=7£4c0968675d81db80dd6bf369609169.

Gustaf Algeskog et al. A Self-Trained Engine for a Chess-variant. Unpublished
manuscript. Bachelor’s thesis, Chalmers University of Technology. 2024.

Abdulrazak Ahmedmohamed et al. A Self Trained Engine for the Game of
Antichess. Unpublished manuscript. Bachelor’s thesis, Chalmers University of
Technology. 2025.

Tom Schaul et al. Prioritized Fxperience Replay. 2016. arXiv: 1511 . 05952
[cs.LG]. URL: https://arxiv.org/abs/1511.05952.

TensorDock Inc. TensorDock - Cloud GPU Servers. https://tensordock.
com. Accessed: 2025-05-18.

Lichess. Lichess. https://lichess.org. Accessed: 2025-05-19. n.d.

Fairy-Stockfish contributors. Fairy-Stockfish. https://github.com/ianfab/
Fairy-Stockfish. Accessed: 2025-05-18.

o8

https://arxiv.org/abs/1502.03167
https://arxiv.org/abs/1502.03167
https://arxiv.org/abs/1502.03167
https://doi.org/10.1007/978-3-540-87608-3_6
https://www.scopus.com/inward/record.uri?eid=2-s2.0-55249093890&doi=10.1007%2f978-3-540-87608-3_6&partnerID=40&md5=7f4c0968675d81db80dd6bf369609169
https://www.scopus.com/inward/record.uri?eid=2-s2.0-55249093890&doi=10.1007%2f978-3-540-87608-3_6&partnerID=40&md5=7f4c0968675d81db80dd6bf369609169
https://www.scopus.com/inward/record.uri?eid=2-s2.0-55249093890&doi=10.1007%2f978-3-540-87608-3_6&partnerID=40&md5=7f4c0968675d81db80dd6bf369609169
https://arxiv.org/abs/1511.05952
https://arxiv.org/abs/1511.05952
https://arxiv.org/abs/1511.05952
https://tensordock.com
https://tensordock.com
https://lichess.org
https://github.com/ianfab/Fairy-Stockfish
https://github.com/ianfab/Fairy-Stockfish

	Introduction
	Background
	Purpose

	Theory
	Atomic Chess
	Justification for Chess Variant Selection
	Atomic Chess Rules

	Chess Engines
	Monte Carlo Tree Search
	Standard Monte Carlo Tree Search
	AlphaZero's Monte Carlo Tree Search

	Neural Networks
	Neural Network Layers
	Learning Process of Neural Networks
	Residual Networks
	AlphaZero Network Construction

	Bitboards and Magic Number Move Generation
	Parallelization
	Monte Carlo Tree Search Parallelization
	Training Parallelization

	Previous Bachelor Theses and Related Work

	Implementation
	Implementation Overview
	Game Rules and Move Generation
	Bitboard-Based Representation
	Standard Chess Move Generation
	Handling Piece Constraints
	Atomic Chess Extension

	Monte Carlo Tree Search Implementation
	Monte Carlo Tree Search Structure
	Batching Selections
	Final Move Choice

	Neural Network
	Training Setup
	Self Play
	Calculating Loss
	Replay Buffer

	Parallelization

	Method
	Training Process
	Evaluation of Models
	Internal Evaluation
	External Evaluation

	Hardware Utilization and Cost

	Results
	Engine Strength
	Model Comparisons
	Final Playing Strength

	Neural Network and Training
	Training Process
	Learning Verification
	Training Metrics
	Virtual Machine Costs

	Move Generation Component
	Monte Carlo Tree Search Optimizations
	Batching Selections
	Virtual Loss

	Time Analysis of the Engine

	Discussion
	Analysis of Final Product and Results
	Final Engine Strength Discussion
	Neural Network and Training Process
	Computational Performance Analysis
	Training Data Volume

	Engineering Decisions and Their Effects
	Effect of Replay Buffer
	Reflection on Programming Language
	Financial Implications

	Future Research
	Symmetry Augmentation
	Improving the Middle and End-game Strength
	Additional Neural Network Inputs

	Conclusion
	Question 1
	Question 2

