
Databases Re-exam August 2015

Solutions

Aarne Ranta

1 ER diagrams and schemas

EnglishNoun(_singular,plural)

SwedishNoun(_singularIndefinite,singularDefinite,pluralIndefinite,pluralDefinite)

IsTranslatedTo(_englishNounSingular,_swedishNounSingularIndefinite)

englishNounSingular -> EnglishNoun.singular

swedishNounSingularIndefinite -> SwedishNoun.singularIndefinite

2 Functional dependencies and normal forms

From lecture notes, section 4.2.4:

1

country product exportTo
Sweden cars Norway
Sweden paper Denmark
Sweden cars Denmark
Sweden paper Norway

key (country,product,exportTo)

MVD country ->> product

Not in 4NF. Decomposition:

country product
Sweden cars
Sweden paper

key (country,product)

country exportTo
Sweden Norway
Sweden Denmark

key (country,exportTo)

3 SQL DDL and Queries

-- 3a

CREATE TABLE Words (

string text,

lemma text,

class text,

description text,

constraint class_names check (class in (’noun’,’verb’,’adjective’)),

constraint words_prim_key primary key (lemma,class,description)

) ;

-- 3b

SELECT lemma, string

FROM Words

WHERE description LIKE ’plural indefinite %’ ;

-- 3c

SELECT class, description, COUNT(string) AS occurrences

FROM Words

GROUP BY class, description

ORDER BY COUNT(string) DESC ;

2

4 Relational algebra

πA.stringσA.string=B.stringANDA.class<B.class(ρAwords× ρBwords)

5 Triggers

-- 5a

CREATE VIEW Verbs AS (

SELECT I.string AS infinitive, Pr.string AS present,

P.string AS past, S.string AS supine

FROM Words I, Words Pr, Words P, Words S

WHERE

I.lemma = Pr.lemma AND I.lemma = P.lemma AND I.lemma = S.lemma AND

I.description = ’infinitive’ AND Pr.description = ’present’ AND

P.description = ’past’ AND S.description = ’supine’

) ;

-- 5b

CREATE OR REPLACE FUNCTION add_verb() RETURNS trigger AS $$

BEGIN

INSERT INTO Words VALUES(NEW.infinitive, NEW.infinitive, ’verb’, ’infinitive’) ;

INSERT INTO Words VALUES(NEW.present, NEW.infinitive, ’verb’, ’present’) ;

INSERT INTO Words VALUES(NEW.past, NEW.infinitive, ’verb’, ’past’) ;

INSERT INTO Words VALUES(NEW.supine, NEW.infinitive, ’verb’, ’supine’) ;

RETURN NEW ;

END;

$$

LANGUAGE plpgsql;

CREATE TRIGGER AddVerb

INSTEAD OF INSERT ON Verbs

FOR EACH ROW

EXECUTE PROCEDURE add_verb() ;

6 Indexes

-- all analyses of string

SELECT * FROM Words WHERE string = ’lcker’ ;

-- 50; with index on string, 1+k where k is the number of different analyses

WITH Forms AS (

3

SELECT *

FROM Verbs

WHERE ’lcker’ in (infinitive, present, past, supine)

)

SELECT ’lcker’ as string, infinitive as lemma, ’verb’ as class,

’infinitive’ as description

FROM Forms

WHERE infinitive = ’lcker’

UNION

SELECT ’lcker’ as string, infinitive as lemma, ’verb’ as class,

’present’ as description

FROM Forms

WHERE present = ’lcker’

UNION

SELECT ’lcker’ as string, infinitive as lemma, ’verb’ as class,

’past’ as description

FROM Forms

WHERE past = ’lcker’

UNION

SELECT ’lcker’ as string, infinitive as lemma, ’verb’ as class,

’supine’ as description

FROM Forms

WHERE supine = ’lcker’

;

-- UNION the same from nouns and adjectives

-- cost 30 = 10+10+10; with indexes on each form, vf + nf + af,

-- certainly larger than in lookup from Words

-- all forms of lemma+class

SELECT * FROM Verbs WHERE infinitive = ’lcka’ ;

-- or Nouns or Adjectives

-- 10; with index on lemma, 2 = 1+k where k=1 by assumption

SELECT description, string

FROM Words

WHERE lemma=’lcka’

AND class=’verb’ AND description IN (’infinitive’,’present’,’past’,’supine’) ;

-- 50; with index on (lemma,class), 2 = 1+k where k=1 by assumption

/*

description | string

-------------+--------

infinitive | lcka

4

past | lckte

present | lcker

supine | lckt

which is good enough for the purpose.

If you want

infinitive | present | past | supine

------------+---------+--------+--------

lcka | lcker | lckte | lckt

expand it to the following, with the same cost:

*/

WITH Forms AS (

SELECT description, string

FROM Words

WHERE lemma=’lcka’ AND class=’verb’ AND

description IN (’infinitive’,’present’,’past’,’supine’)

),

Infinitives AS (SELECT string AS infinitive FROM Forms WHERE description = ’infinitive’),

Presents AS (SELECT string AS present FROM Forms WHERE description = ’present’),

Pasts AS (SELECT string AS past FROM Forms WHERE description = ’past’),

Supines AS (SELECT string AS supine FROM Forms WHERE description = ’supine’)

SELECT * FROM Infinitives, Presents, Pasts, Supines

;

5

