Databases Re-exam August 2015

Solutions

Aarne Ranta

1 ER diagrams and schemas

Fea Y
L | P,
- = —""
il ."'\-\.I '
.‘H § - .".
— —t
. = i
0 R
g ¥ o
Y
L—LI—. —_—
o .
L M | { " M'".
L i
I o
.
- 1T -
.
—
e
-
R |
e i
s =
ra S
%, &

EnglishNoun(_singular,plural)
SwedishNoun(_singularIndefinite,singularDefinite,pluralIndefinite,pluralDefinite)
IsTranslatedTo(_englishNounSingular,_swedishNounSingularIndefinite)

englishNounSingular -> EnglishNoun.singular
swedishNounSingularIndefinite -> SwedishNoun.singularIndefinite

2 Functional dependencies and normal forms

From lecture notes, section 4.2.4:

country | product | exportTo
Sweden cars Norway
Sweden paper Denmark
Sweden cars Denmark
Sweden paper Norway
key (country,product,exportTo)
MVD country ->> product
Not in 4NF. Decomposition:
country | product
Sweden cars
Sweden paper
key (country,product)
country | exportTo
Sweden Norway
Sweden Denmark

key (country,exportTo)

3 SQL DDL and Queries

-- 3a
CREATE TABLE Words (
string text,
lemma text,
class text,
description text,
constraint class_names check (class in (’noun’,’verb’,’adjective’)),
constraint words_prim_key primary key (lemma,class,description)

)
-- 3b

SELECT lemma, string
FROM Words
WHERE description LIKE ’plural indefinite 7%’ ;

-- 3c

SELECT class, description, COUNT(string) AS occurrences
FROM Words

GROUP BY class, description

ORDER BY COUNT(string) DESC ;

4 Relational algebra

T A.string0 A.string=B.stringAN D A.class<B.class (pAUJOTdS X pBWOTdS)

5 Triggers

-- ba

CREATE VIEW Verbs AS (
SELECT I.string AS infinitive, Pr.string AS present,
P.string AS past, S.string AS supine
FROM Words I, Words Pr, Words P, Words S

WHERE
I.lemma = Pr.lemma AND I.lemma = P.lemma AND I.lemma = S.lemma AND
I.description = ’infinitive’ AND Pr.description = ’present’ AND
P.description = ’past’ AND S.description = ’supine’
)
-- 5b

CREATE OR REPLACE FUNCTION add_verb() RETURNS trigger AS $$

BEGIN

INSERT INTO Words VALUES(NEW.infinitive, NEW.infinitive, ’verb’, ’infinitive’) ;

INSERT INTO Words VALUES(NEW.present, NEW.infinitive, ’verb’, ’present’) ;
INSERT INTO Words VALUES(NEW.past, NEW.infinitive, ’verb’, ’past’) ;

INSERT INTO Words VALUES(NEW.supine, NEW.infinitive, ’verb’, ’supine’) ;

RETURN NEW ;

END;

3

LANGUAGE plpgsql;
CREATE TRIGGER AddVerb
INSTEAD OF INSERT ON Verbs

FOR EACH ROW
EXECUTE PROCEDURE add_verb() ;

6 Indexes

-- all analyses of string

SELECT * FROM Words WHERE string = ’lcker’ ;
-- 50; with index on string, 1+k where k is the number of different analyses

WITH Forms AS (

SELECT =*

FROM Verbs
WHERE ’lcker’ in (infinitive, present, past, supine)
)

SELECT ’lcker’ as string, infinitive as lemma, ’verb’ as class,
’infinitive’ as description
FROM Forms
WHERE infinitive = ’lcker’
UNION
SELECT ’lcker’ as string, infinitive as lemma, ’verb’ as class,
’present’ as description
FROM Forms
WHERE present = ’lcker’
UNION
SELECT ’lcker’ as string, infinitive as lemma, ’verb’ as class,
’past’ as description
FROM Forms
WHERE past = ’lcker’
UNION
SELECT ’lcker’ as string, infinitive as lemma, ’verb’ as class,
’supine’ as description
FROM Forms
WHERE supine = ’lcker’
—-— UNION the same from nouns and adjectives
—-- cost 30 = 10+10+10; with indexes on each form, vf + nf + af,
-- certainly larger than in lookup from Words

—- all forms of lemma+class

SELECT * FROM Verbs WHERE infinitive = ’lcka’ ;
—-- or Nouns or Adjectives
-- 10; with index on lemma, 2 = 1+k where k=1 by assumption

SELECT description, string
FROM Words
WHERE lemma=’lcka’
AND class=’verb’ AND description IN (’infinitive’,’present’,’past’,’supine’) ;
-- 50; with index on (lemma,class), 2 = 1+k where k=1 by assumption

/*

description | string
_____________ +________
infinitive | lcka

%

ast

present
supine

| 1lckte
| lcker
| 1ckt

which is good enough for the purpose.

If

you want

infinitive | present |
———————————— T B

lcker | lckte | 1lckt

past | supine

expand it to the following, with the same cost:

*/

WITH Forms AS (
SELECT description, string

FROM Words

WHERE lemma=’lcka’ AND class=’verb’ AND
description IN (’infinitive’,’present’,’past’,’supine’)

),

Infinitives AS (SELECT

Presents
Pasts
Supines

AS (SELECT
AS (SELECT
AS (SELECT

string AS infinitive FROM Forms WHERE description

string AS present
string AS past
string AS supine

FROM Forms WHERE description
FROM Forms WHERE description
FROM Forms WHERE description

SELECT * FROM Infinitives, Presents, Pasts, Supines

’

’infinitive’),
’present’),
’past’),
’supine’)

