
EXAM

Databases (DIT620/TDA355/TDA356/TDA357)

DAY: 15 Mar 2013 TIME: 8:30 – 12:30 PLACE: M

Responsible: Niklas Broberg, Computer Science and Engineering

mobil 0706 49 35 46

Results: Will be published on the course web page after the exam

Extra aid: A single, hand-written A4 paper.

It is legal to write on both sides.

This paper should be handed in with the exam.

Grade intervals: U: 0 – 23p, 3: 24 – 35p, 4: 36 – 47p, 5: 48 – 60p,

G: 24 – 41p, VG: 42 – 60p, Max. 60p.

1

IMPORTANT

The final score on this exam is computed in a non-standard way. The exam is divided
into 7 blocks, numbered 1 through 7, and each block consists of 2 or 3 levels, named A, B,
and optionally C. A level can contain any number of subproblems numbered using i, ii and
so on. In the final score you can only count ONE level from each block. For example: if you
attempt to solve the problems on all three levels in block 4 and manage to obtain 4 points
for 4A (block 4, level A), 1 point for 4B and 8 points for 4C, only problem 4C (where you
got your highest score) will count towards your final result, so your score for block 4 will be
8 points.

The score for each problem depends on how difficult it is (more points for harder problems)
and how important I think it is (more points for more important problems). It does not

depend on how much work it takes to answer the problem. There could very well be a 12
point problem that takes 15 seconds to answer (given that you know the right answer, of
course).

The problems in each block are ordered by increasing difficulty. Hence the A problems are
easy, but aim to cover the full basics of its area. The B and C level problems are more
difficult, and aim to test your knowledge of the areas beyond the mere basics. If you only
solve A problems your maximum score is 35 points.

Please observe the following:

• Answers can be given in Swedish or English

• Use page numbering on your pages

• Start every assignment on a fresh page

• Write clearly; unreadable = wrong!

• Fewer points are given for unnecessarily complicated solutions

• Indicate clearly if you make assumptions that are not given in the assignment

Good advice

• Most problems have been designed to give short answers. Few problem should require
more than one page to answer.

• There are more problems than you are likely to solve in 4 hours. This means that you
have to think about which problems you attempt to solve. If you try solve the problems
in the order they are given, you are likely to fail the exam!

Good Luck!

2

Block 1 - Entity-Relationship Diagrams max 12p

1A (8p)

(i) (4p)
An online service for streaming video needs a database to keep track of the items in
its catalogue.
The service supplies two kinds of shows: full movies, and TV series. For movies, the
database needs to store the name of the movie, the year when it was released, its
length, and its parental guideline rating. For simplicity we assume that the name and
year together are enough to uniquely determine a movie.
TV series are sent as episodes. Each series has one or more seasons, conveniently
labeled S1, S2 etc. Within each season there are one or (typically) more episodes,
labeled E01, E02 etc. Apart from the labels, the database needs to store the name and
the parental guideline rating of the whole series, the year each season was originally
aired, and the name and length of each episode.
Finally, to help users find shows they like, each show can be assigned to one or more
predefined categories, e.g. “Drama”, “Horror”, “Family”, etc.

Your task is to draw an ER diagram that correctly models this domain and its
constraints.

3

(ii) (4p)
The E/R diagram below depicts a rudimentary database used for a carpool.

Translate the ER diagram above into a set of relations. Mark keys and references clearly
in your answer.

4

1B (12p)

Below is part of a database schema used for the catalogue of a music-streaming service:

Tracks(trackId, title, length)
Acts(actId)
Artists(artistId,name, yearOfBirth)

artistId → Acts.actId

Groups(groupId,name, yearStarted)
groupId → Acts.actId

PlaysIn(artist, group, instrument)
artist → Artists.artistId

group → Groups.groupId

Albums(albumId, title, yearReleased)
SingleActAlbums(album, act)

album → Albums.albumId

TracksOnAlbum(album, track, trackNr)
album → Albums.albumId

track → Tracks.trackId

Participates(track, act)
track → Tracks.trackId

act → Acts.actId

All of this should be self-explanatory (or part of the problem), but if there is something that
you don’t understand, don’t hesitate to ask. (Note that this schema is different from the one
used in block 3 and onwards, and that the domain modeled here is not identical to the one
modeled there.)

(i) (8p)
Reconstruct the ER diagram that led to these relations and constraints.

(ii) (4p)
During the translation that led to the above schema, the ER approach will have been
used used consistently. For each case where applicable in the diagram you have recon-
structed, state what constraints you would lose by instead using the NULL approach.

5

Block 2 - Dependencies and Normal Forms max 12p

2A (8p)

A website that hosts a centralized revision control system needs a database to store informa-
tion about repositories, branches, users and patches.

The revision control system stores information about documents contained in some repo-

sitory, and how those documents are successively changed. Users with access to a repository
may look at the revision history to see what changes have been made, and look at particular
older versions of documents. Revisions are done in the form of patches, where each patch
specifies a set of changes to the repository. Further, several branches of a particular reposi-
tory can exist, each specifying a different set of revisions (i.e. patches), thus allowing several
versions of a repository to exist in parallel.
For the site in question, users must be registered in order to create repositories or supply
patches. For each user the database should store their unique login name, the name to be
displayed, a unique email adress, and an encrypted password.
Each repository is owned by some user. It also has a name, a description, and a unique iden-
tifying short name, used as part of the web page adress for the repository. On the page for
the repository, the contact details of the owner will be displayed.
Each branch of the repository is identified by another short name (e.g. “master”, “experi-
mental”, etc), unique within the repository. Users other than the owner can be given read or
write access to different branches.
Each patch is created as a set of changes against a particular branch, by some user with
write access to that branch. For each patch, the system stores a unique patch id (a hash
code); the branch and repository that the patch applies to; the user details; a user-supplied
title; the time the patch was applied; and finally the changes themselves. The order of patches
is important, so for a given repository, no two patches can be applied at exactly the same time.

You are given the following schema of their intended database:

Users(login,name, encPwd)
Repositories(shortName, repoName, owner, ownerName, ownerEmail)

owner → Users.login

Branches(branchName, repository)
repository → Repositories.shortName

HasAccess(user, branch, repository, level)
user → Users.login

(branch, repository) → Branches.(branchName, repository)
Patches(patchId, repository, branch, byUser, userEmail, title, time, changes)

(branch, repository) → Branches.(branchName, repository)
byUser → Users.login

6

This schema is not fully normalized, and thus suffers from a number of problems. It is your
task to solve these by normalization of the schema.

(i) (4p)
For the given domain, identify all functional dependencies that are expected to hold.

(ii) (1p)
With the dependencies you have found, identify all BCNF violations in the relations
of the database.

(iii) (3p)
Do a complete normalization of the schema, so that all relations are in BCNF. Also
ensure that all key constraints are properly captured. (It’s the end product that’s
important, not the steps you take to get there.)

7

2B (12p)

Consider the domain presented for the revision control system above, and then consider the
hypothetical independencies listed below. For each of those, state whether you expect it to
hold for this domain, and explain why/why not.

i. login ։ encPwd

ii. shortName ։ branchName

iii. branchName, repository ։ login, level

iv. login, repository ։ branchName, level

(Note for students having taken the course several years ago: Back then we referred to inde-
pendencies as “multi-valued dependencies (MVDs)”. The two terms are equivalent.)

8

Block 3 - SQL Data Definition Language max 8p

The domain for this block, and for several following blocks as well, is that of a database for
the catalogue of an online music streaming site.

You are given the following schema of their intended database:

Tracks(trackId, title, length)
length > 0

Artists(artistId,name)
Albums(albumId, title, yearReleased)
TracksOnAlbum(album, trackNr, track)

album → Albums.albumId

track → Tracks.trackId

(album, track) unique

trackNr > 0
Participates(track, artist)

track → Tracks.trackId

artist → Artists.artistId

Users(username, email,name)
email unique

Playlists(user, playlistName)
user → Users.username

InList(user, playlist,number, track)
(user, playlist) → Playlists.(user, playlistName)
track → Tracks.trackId

PlayLog(user, time, track)
user → Users.username

track → Tracks.trackId

(user, time) unique

An artist can be either a solo artist or a group, the design makes no difference between the
two kinds. Tracks are recorded by one or more artists, and each track can appear on one or
more albums (but no more than once on each album) to account for e.g. “Greatest hits” or
collection albums.
Users of the site can register, in order to create playlists, which are simply ordered collections
of tracks.
Finally, the system stores a log over all songs played by registered users, to calculate statistics
and to give suggestions and feedback.
(Note: The actual music files to be streamed is considered to be stored separately, outside the
scope of this schema.)

9

3A (4p)

Write SQL DDL code that correctly implements these relations as tables in a relational
DBMS. Make sure that you implement all given constraints correctly. Do not spend too much
time on deciding what types to use for the various columns. We will accept any types that
are not obviously wrong. Don’t forget to implement all specified constraints, including checks.

3B (6p)

Note that the relation PlayLog, storing the log of songs played by registered users, curiously
has no primary key specified. It does, however, have a uniqueness constraint. Explain why this
choice was made, and what the benefits and drawbacks are for this particular situation.

3C (8p)

When a user right-clicks a song in the online interface, they get the option “Add song to
playlist”. If they choose this option, they may pick one of their existing playlists, or choose
the option “Create new playlist”. If they opt for the latter, they supply a name for the new
playlist, which is created with the song in question in it.
Sketch an overview of how to ensure, through the use of views, and/or triggers, and privileges,
that the database stores the correct information in the correct tables.

For any views you want to use, give the schema and explain its intended contents.

For any trigger you might include, list the trigger head ([BEFORE/AFTER/INSTEAD OF]
[INSERT/DELETE/UPDATE] ON which element), and describe its intended operation in
broad terms (a simple overview in plain English would be fine, you don’t have to write any
code).

Also specify what privileges the front-end should be granted in order to handle this use case.

10

Block 4 - SQL Queries max 8p

Use the relations for the music site from the previous block when answering the following
problems.

When you are asked to list all X, you need only return the key attributes of X.

4A (4p)

(i) (2p)
Write an SQL query that lists all artists appearing on any album released this year
(2013).

(ii) (2p)
Write an SQL query that lists, for each user, how many playlists that user has.

4B (6p)

Write an SQL query that lists, for each track, its trackId and title, together with the number
of times that track has been played, and the number of distinct users that have played it.

4C (8p)

Write an SQL query that finds the title, length and album title of the longest track in the
database. If the track appears on more than one album, list the album where it appeared
first. If more than one track of the same length qualifies, list the one that was released first,
as given by the album it appears on. If there is still a tie, list all such tracks.

11

Block 5 - Relational Algebra max 6p

Use the relations for the music site from the previous blocks when answering the following
problems.

5A (3p)

(i) (1p)
What does the following relational algebra expression compute (answer in plain text):

τx(γplaylistName,COUNT (∗)→x(σplaylistName=playlist(Playlists × InList)))

(ii) (2p)
Translate the following relational algebra expression(s) to corresponding SQL:

let R1 = γuser,track,COUNT (∗)→nrT imes(PlayLog)

σavgNrT imes>=10(γtrack,AV G(nrT imes)→avgNrT imes(R1))

5B (4p)

Translate the following SQL query to relational algebra:

SELECT album, MAX(trackNr) AS nrOfTracks, SUM(length) AS totalLength

FROM Albums, TracksOnAlbum, Tracks

WHERE albumId = album

AND trackId = track

GROUP BY albumId

ORDER BY totalLength DESC;

5C (6p)

Write a relational algebra expression that lists the artist(s) appearing in the highest number
of distinct playlists. In case of a tie for highest number of different playlists, list all such
artists.

12

Block 6 - Transactions max 6p

Use the relations for the music site from the previous blocks when answering the following
problems.

6A (3p)

Consider the situation where an administrator adds a new track to the database. Data then
needs to be added to the tables Tracks, Participates and TracksOnAlbum. We assume for the
sake of simplicity that relevant data already exists in the Artists and Albums tables, and also
that the track being added is recorded by one single artist, and appears on one single album.

Consider the following program (partly in pseudo-code), for handling this situation. In the
code I prefix program variables with : just to distingush them from attributes (i.e. you don’t
need to worry about any connection to PSM or the like).

1 ... admin submits :title, :length, :artist, :album and :trackNr ...

2 SELECT MAX(trackId)+1 INTO newTrackId

FROM Tracks

WHERE post = :post;

3 INSERT INTO Tracks VALUES (:newTrackId, :title, :length);

4 INSERT INTO Participates VALUES (:newTrackId, :artist);

5 INSERT INTO TracksOnAlbum VALUES (:album, :trackNr, :newTrackId);

(i) (1p)
For the program as specified above, what atomicity problems could arise if it was not
run as a transaction?

(ii) (2p)
For the program as specified above, what isolation problems could arise if it was not
run as a serializable transaction?

13

6B (6p)

Consider the situation where a user asks the system to play the songs on one of her playlists,
in order. Each time a new song begins playing, the system should log this fact. Consider the
following program (partly in pseudo-code), for handling this situation. In the code I prefix
program variables with : just to distingush them from attributes (i.e. you don’t need to worry
about any connection to PSM or the like).

1 ... user (:user) asks to play list (:playlist) ...

2 SELECT MIN(number), MAX(number)

INTO (currentTrackNr, lastTrackNr)

FROM InList

WHERE user = :user AND playlist = :playlist;

3 while (:currentTrackNr <= :lastTrackNr) {

4 SELECT track INTO currentTrack

FROM InList

WHERE user = :user AND playlist = :playlist

AND number = :currentTrackNr;

5 INSERT INTO PlayLog VALUES (:user, NOW(), :track);

6 ... fetch and stream the requested track ...

7 SET currentTrackNr = currentTrackNr+1;

8 }

Compare what would happen if the program above was run as a transaction with isolation
level SERIALIZABLE, to if it was run with isolation level READ COMMITTED. Point out
benefits and drawbacks of the two choices for this particular problem, and suggest a suitable
transaction strategy to use.

14

Block 7 - Semi-structured Data and XML max 8p

The following DTD attempts to as faithfully as possible model the same domain and constraints
for the music streaming site as the relations used in the previous blocks.

<!DOCTYPE MusicStream [

<!ELEMENT MusicStream (Track+,Album+,Artist+,User*)>

<!ELEMENT Track (Participant+)>

<!ELEMENT Participant EMPTY >

<!ELEMENT Album (TrackOnAlbum+)>

<!ELEMENT TrackOnAlbum EMPTY >

<!ELEMENT Artist EMPTY >

<!ELEMENT User (Playlist*,PlayedTrack*)>

<!ELEMENT Playlist (InList*)>

<!ELEMENT InList EMPTY >

<!ELEMENT PlayedTrack EMPTY >

<!ATTLIST Track

trackId ID #REQUIRED

title CDATA #REQUIRED

length CDATA #REQUIRED >

<!ATTLIST Participant

artist IDREF #REQUIRED>

<!ATTLIST Album

albumId ID #REQUIRED

title CDATA #REQUIRED

yearReleased CDATA #IMPLIED>

<!ATTLIST TrackOnAlbum

trackNr CDATA #REQUIRED

track IDREF #REQUIRED>

<!ATTLIST Artist

artistId ID #REQUIRED

name CDATA #REQUIRED>

<!ATTLIST User

username ID #REQUIRED

email CDATA #REQUIRED

name CDATA #IMPLIED>

<!ATTLIST Playlist

name CDATA #REQUIRED>

<!ATTLIST InList

number CDATA #REQUIRED

track IDREF #REQUIRED>

<!ATTLIST PlayedTrack

time CDATA #REQUIRED

track IDREF #REQUIRED>

]>

15

7A (5p)

(i) (2p)
Give an example XML document that is valid with respect to the DTD above.

(ii) (3p)
For a document conforming to the schema given above, what would the following
XQuery expression compute? Answer in plain text:

<Result>

{ for $d in (doc("musicstream.xml"))

for $u in $d//User[/Playlist]

let $c := count (for $x in $u/Playlist[/InList]

return $x)

order by (-$c)

return <User username="{$u/@username}">{$c}</User> }

</Result>

16

7B (8p)

When answering this question, disregard types and usage (required vs NULL etc).

Compare the DTD schema given above to the relational schema presented in block 3. For
each of the four kinds of constraints listed below, give one concrete example of a constraint
that is enforced by one of the schemas but not the other. For each, state which of the two
schemas that enforces it, and give an example of unwanted data that could be entered into
the one that does not enforce it.

(i) (1p)
A value constraint.

(ii) (2p)
A dependency constraint.

(iii) (2p)
A reference constraint.

(iv) (3p)
A multiplicity constraint.

17

