EXAM
Databases (INN120/TDA355/TDA356/TDA357)
Informationssystem (TDA426)

DAY: 13 Mar 2008 TIME: 14:00 — 18:00 PLACE: M

Responsible: Niklas Broberg, Computing Science
mobil 0706 49 35 46

Results: Will be published on the course web page right after then exam
Extra aid: A single, hand-written A4 paper.
It is legal to write on both sides.

This paper should be handed in with the exam.

Grade intervals: U: 0 - 23p, 3: 24 — 35p, 4: 36 — 47p, 5: 48 — 60p,
G: 24 41p, VG: 42 60p, Max. 60p.

IMPORTANT

The final score on this exam is computed in a non-standard way. The exam is divided
into 7 blocks, numbered 1 through 7, and each block consists of 2 or 3 levels, named A, B,
and optionally C. A level can contain any number of subproblems numbered using i, ii and
so on. In the final score you can only count ONE level from each block. For example: if you
attempt to solve the problems on all three levels in block 4 and manage to obtain 4 points
for 4A (block 4, level A), 1 point for 4B and 8 points for 4C, only problem 4C (where you
got your highest score) will count towards your final result, so your score for block 4 will be
8 points.

The score for each problem depends on how difficult it is (more points for harder problems)
and how important I think it is (more points for more important problems). It does not
depend on how much work it takes to answer the problem. There could very well be a 12
point problem that takes 15 seconds to answer (given that you know the right answer, of
course).

The problems in each block are ordered by increasing difficulty. Hence the A problems are easy,
but aim to cover the full basics of its area. The B and C level problems are more difficult, and
aim to test your knowledge of the areas beyond the mere basics. If you only solve A problems
your maximum score is 36 points, and if you only solve the B problems where there are also
C problems it is 40 points.

Please observe the following:

Answers can be given in Swedish or English

Use page numbering on your pages

Start every assignment on a fresh page

Write clearly; unreadable = wrong!

Fewer points are given for unnecessarily complicated solutions

Indicate clearly if you make assumptions that are not given in the assignment

Good advice

e Most problems have been designed to give short answers. Few problem should require
more than one page to answer.

e There are more problems than you are likely to solve in 4 hours. This means that you
have to think about which problems you attempt to solve. If you try solve the problems
in the order they are given, you are likely to fail the exam!

Good Luck!

Block 1 - Entity-Relationship Diagrams max 12p

1A

(8p)

(i)
A small carpool organization wants a database to handle booking of cars, and want to
store information about vehicles and members. Regarding members, the organization
wants to store the social security number, name and phone number. The pool consists
of cars of a few different models, and for each model they want to store information
regarding the brand and model name, number of doors, and type (combi or sedan). For
each individual car the database should store the registration number, what model it
is, and how many miles it has run (updated after each use). The cars are bookable on a
per-day basis, each member being allowed to book a car a specific number of times per
month. For each booking, the organization wants to store which car that was booked,
by whom, and for what day.

Your task is to draw an ER diagram that correctly models this domain and its
constraints.

Solution:

Name

Brand Model —@ Member PhoneNr

o
§
ji

&

Reghr Car Booking

(i) (4p)
Here is an ER diagram describing the domain of land surveys, consisting of estates as
well as pictures that those estates appear on.

Picture

Estate k—@ House

Translate this ER diagram into a set of relations, clearly marking keys and references

in your answer.
Solution:

Areas(_name_)
Estates(_area_, _number_)
area —> Areas.name
Houses(_area_, _estate_, _number_)
(area, estate) -> Estates.(area, number)
Pictures(_id_)
ShownAt(_picture_, _area_, _estate_, _house_, x, y)
picture -> Pictures.id
(area, estate, house) —-> Houses.(area, estate, number)

N

1B (12p)

A camera retailer wants a database to hold information about the various digital camera
models they sell. The cameras they sell come in two kinds - compact cameras and system
cameras. Compact cameras are those with all the components integrated, whereas system
cameras have exchangeable lenses. This is a crude simplification of the domain, but for our
purposes, and those of the retailer, it is good enough.

All camera models have a brand name and a model name. The retailer also wants to store
information about pixels, zoom, frames per second, min and max aperture values and weight.
For compact cameras, all those values are dependent on the camera alone. For system cameras,
only pixels, weight and frames per second depend on the camera, while aperture values and
zoom depend on the lens. The lens also has a weight that should be stored. For compact
cameras, only the maximum zoom value should be stored, while for lenses both min and max
values are needed.

Furthermore, the database must hold information regarding what lenses fit what cameras.
System cameras have a socket, and lenses are built to fit some particular socket. The database
should hold a list of the sockets used, as well as what socket each camera has and what socket
each lens fits on.

Your task is to draw an ER diagram that correctly models this domain, and then translate it
into relations. Don’t forget to mark keys and references in your answer.

Solution:

Camera Lens
e

mexAperturg

minAperture
Compact

:

Cameras(_brand_, _
Compacts(_brand_, _
(brand,model) -> Cameras(brand,model)
Systems(_brand_,_model_,socket)
(brand,model) -> Cameras(brand,model)
socket —-> Sockets.socketId
Lenses(_model_,weight,minZoom,maxZoom,minAperture ,maxAperture,socket)
socket —-> Sockets.socketId
Sockets(_socketId_)

model_,weight,pixels,fps)
model_,zoom,minAperture ,maxAperture)

Block 2 - Dependencies and Normal Forms max 12p

2A (8p)

A mid-sized private clinic uses a database to keep track of their patients, appointments and
treatments. They have experienced some problems though, and have called on a database
expert (you) to help them.

Regarding patients, the database stores their social security number, name and phone number.
For appointments they store the doctor’s id number (unique within the clinic) and name, the
time of the appointment, and the patient’s social security number and phone number to call
in case something comes up. The clinic must also keep track of all prescriptions of medicines.
For medicines the database stores the medicine’s id number, name, the name of the producer
company and the phone number of the producer. For prescriptions they store the medicine’s id
and name and the dose to be taken, the doctor that prescribed it, the patient that got it, and
what date the prescription was made. Each prescription is also given a unique identification
number.

Their database has the following schema:

Patients(ssnr, name, phone_nr)

Appointments(doctor_id, time, doctor_name, pat_id, pat_phone)
pat_id — Patients.ssnr

Medicines(idnr, name, producer, prod_phone)

Prescriptions(nr, date, doctor_id, patient, medicine, med_name, dose)
patient — Patients.ssnr
medicine — Medicines.idnr

You of course immediately see that the schema is not fully normalized, and thus it’s no
wonder that they suffer from a number of problems. Your task is now to solve these by
normalization of the schema.

(i) (3p)
For the given domain, identify all functional dependencies that you expect to hold.
Solution:

ssNr -> name, patPhone

doctorId -> doctorName

doctorId, time -> ssiNr

medIdNr -> medName, medProducer

medProducer -> prodPhone

prescNr -> date, doctorlId, ssNr, medIdNr, dose

What names you use for the attributes here don’t matter, if there is a reference between
them then they are the same attribute.

(ii)

With the dependencies you have found, identify all BCNF violations in the relations
of the database

Solution:

Patients: no violations

Appointments: ssNr -> patPhone, doctorId -> doctorName
Medicines: medProducer -> prodPhone

Prescriptions: medIdNr -> medName

(iii)

Give an example of a deletion anomaly that could occur because of one of the violations.
Solution: If a certain doctor had no appoinments planned, there would be no place in
the database to store that doctor’s name.

(iv)

Do a complete normalization of the schema, so that all relations are in BCNF. You do
not need to show all steps of the normalization, only the end result schema is fine.
Solution:

Patients(_ssNr_,name,phonelr)
Doctors(_doctorId_, name)
Appointments(_doctor_,_time_,patient)

doctor -> Doctors.doctorId

patient -> Patients.ssNr
Medicines(_idNr_,name,producer)

producer -> Producers.producer
Producers(_producer_,prodPhone)
Prescriptions(_nr_,date,doctor,patient,medicine,dose)

doctor -> Doctors.doctorId

patient -> Patients.ssNr

medicine -> Medicines.idNr

(2p)

2B (12p)

When the clinic (same as above) realizes how good you are, they decide to hire you to extend
the database to keep track of their employees as well.

The clinic is organized into a set of wards, each with its own staff, though a doctor could
be assigned to several wards. A specific ward is identified by a designated number, and this
should be stored together with the phone number to the ward. For doctors, the database
should store their id and name, as well as their specialization (e.g. orthopaedian, neurologist
etc) and the wards they serve on. For nurses the database should store an id and name, and
the ward the nurse belongs to.

Further, the database should keep track of the expensive equipment the clinic uses. Any given
piece of equipment belongs to a particular ward. Further, the database should store the name
and phone number of the company that maintains that equipment, in case something happens
to it. Several pieces of equipment could be maintained by the same company.

They also want the information about patients and medication from section A, but for simp-
lification we leave that out here, it will look the same (and you only need to answer one of
the sections).

The following relation sums up all the attributes that should be stored in (this part of) the
database:

Clinic(ward, ward_phone, doctor_id, doctor_name, doctor_spec,

nurse_id, nurse_name, equipment, maint_name, maint_phone)

Your task is to use normalization techniques to find a suitable schema for this database.

(i) (8p)
Find all dependencies, both functional and multi-valued, that you expect should hold

for this domain given the domain description above.

Solution:

ward -> wardPhone

ward ->> doctorId, doctorName, doctorSpec
ward ->> nurseld, nurseName

ward ->> equipment, maintName, maintPhone
doctorId -> doctorName, doctorSpec
nurseld -> nurseName, ward

equipment -> maintName

maintName -> maintPhone

(i) (4p)

Do a complete decomposition of Clinic so that the resulting schema fulfills ANF, without
breaking any of the dependencies you identified.

If you find that you must break some dependency then either you are doing something
wrong, or you have identified some dependency that we did not think to include. If you
think it is the latter case, explain why this is the case, and normalize anyway.
Solution: To not break any dependencies, I will begin to decompose based on the MV Ds,
with ward as the LHS.

Wards (_ward_,wardPhone)
WardDoctors(_ward_,_doctorId_,doctorName,doctorSpec)
WardNurses(ward, _nurseld_,nurseName)

WardEquipment (ward, _equipment_,maintName,maintPhone)

From there I can decompose based on the FDs to get the following end result:

Wards (_ward_,wardPhone)
Doctors(_doctorId,doctorName,doctorSpec)
WardDoctors(_ward_,_doctor_)

doctor -> Doctors.doctorId
Nurses(_nurseld_,nurseName,ward)

ward -> Wards.ward
Equipment (_equipment_,ward,maintName)

ward -> Wards.ward

maintName -> Maintainers.name
Maintainers(_name_,phone)

10

Block 3 - SQL Data Definition Language max 8p

The domain for this block, and for several following blocks as well, is that of a database
used for an online image blog community. Each user has their own image blog, where they
can upload images for particular days and write a text entry for each image. Other users in
the community can leave comments under each image. Further, a user may create albums to
organize their images. An album can be thought of as a way to give quick access to a set of
related image entries, but the primary organization of images is the days of their entries.

You are given the following schema of their intended database:

Users(username, name, email)
Images(image_nr, filename, user, title, year, month, day)
user — Users.username
(year, month, day) forms a valid date
filename 1is unique
Albums(album_name, user, description)
user — Users.username
InAlbum(image_nr, album_name, user)
image_nr — Images.image_nr
(album_name, user) — Albums.(album_name, user)
Owner of image must be the same user as owner of album
Comments(image, nr, user, time, text)
image — Images.image_nr
user — Users.username

11

3A (4p)

Write SQL DDL code that correctly implements these relations as tables in a relational DBMS
Make sure that you implement all given constraints correctly. Do not spend too much time
on deciding what types to use for the various columns. We will accept any types that are not
obviously wrong. Don’t forget to implement all specified constraints, including checks.

Solution:

CREATE TABLE Users (

username VARCHAR(20) PRIMARY KEY,
name VARCHAR(50),

email VARCHAR(50)

);
CREATE TABLE Images (

image_nr INT PRIMARY KEY,

filename VARCHAR(50) UNIQUE,

user REFERENCES Users(username),
title VARCHAR(100),

year INT, month INT, day INT,

CHECK (VALID_DATE(year,month,date))
);
CREATE TABLE Albums (

album_name VARCHAR(50),

user REFERENCES Users(username),
description VARCHAR(100),

PRIMARY KEY (album_name, user)

)3
CREATE TABLE InAlbum (

image_nr REFERENCES Images(image_nr),
album_name, user,

FOREIGN KEY (album_name,user) REFERENCES Albums(album_name,user),
CHECK (user = (SELECT user FROM Images I WHERE I.image_nr = image_nr))
)3
CREATE TABLE Comments (

image REFERENCES Images(image_nr),
nr INT,

PRIMARY KEY (image, nr),

user REFERENCES Users(username),
time DATE,

text VARCHAR(1000)

);

3B (8p)

Consider the code for creating the Albums table, and consider the following four different

12

ways of implementing the reference:

CREATE TABLE Albums (

ﬁéér VARCHAR(20) REFERENCES Users(username),
);...
CREATE TABLE Albums (

user VARCHAR(20),
user REFERENCES Users(username),

);...
CREATE TABLE Albums (

ﬁéér VARCHAR(20) CHECK (user IN (SELECT username FROM Users)),
);...
CREATE TABLE Albums (

user VARCHAR(20),
CHECK (user IN (SELECT username FROM Users)),

)

Explain the differences, if any, between these four different statements, in terms of what modi-
fications that can be performed. (NOTE: The last two checks cannot be specified with Oracle
- that’s not what we’re asking about though, we want to know how they affect modifications,
assuming they could be written).

Solution: For all of them, the same modifications can be performed on the Albums table,
namely whenever we insert or update a row, the system ensures that the corresponding value
of user is in the Users table. The difference is in what operations may be performed on the
Users table.

There is no difference at all between the first two. For both of them, we can only delete rows
from Users if there are no rows in Albums that depend on that value for user. Same thing for
updates.

There is very little difference between the last two, for this particular example. For both of

them, there will be no check done when the rows in Users are modified, the checks will only
happen when the Albums table itself is modified. The only difference between the last two

13

is that for the first of them the check will only be done when the user attribute is updated,
whereas the second check would be done when any attribute is updated.

14

Block 4 - SQL Queries max 8p

Use the relations for the image blog community from the previous block when answering the
following problems.

4A (4p)

(i) (1p)
Write an SQL query that lists all images labelled with May 2007, together with the
username and name of the owner.

Solution:

SELECT =*

FROM Images, Users
WHERE user = username
AND month = ’May’

AND day = ’157;

(i) (3p)
Write an SQL query that lists all albums together with the number of images they
contain. Albums with no images should be listed either with 0 or with NULL as their
number of images.

Solution:

SELECT album_name, user, COUNT(image)
FROM (SELECT album_name, user, image
FROM Albums LEFT OUTER JOIN Images ON image = image_nr);

4B (6p)

Write a query that for each pair of users X and Y lists the number of images belonging to
X that Y has left a comment on. The result should contain three columns X, Y and the
number of images. Do not include the case where X = Y. Also do not include those pairs
where the number is 0. Order the result by username X and number of comments descending.

Solution

SELECT I.user as X, C.user as Y, count (%)
FROM Images I, Comments C
WHERE I.image_nr = C.image
AND TI.user <> C.user
GROUP BY I.user, C.user;

15

4C (8p)

Write a query that lists the user (or users) with the hightest average number of comments on
their images. In case of a tie, list all those users that are tied for first place.

Solution:

WITH
Counts AS
(SELECT image_nr, username, COUNT(nr) as nr
FROM Images, Comments
WHERE image = image_nr
GROUP BY image_nr, username),
Averages AS
(SELECT username, AVG(nr) as avg
FROM Counts
GROUP BY username)
SELECT username, avg
FROM Averages
WHERE avg = (SELECT MAX(avg) FROM Averages);

16

Block 5 - Relational Algebra max 6p

Use the relations for the image blog site from the previous blocks when answering the following
problems.

5A (4p)

(i) (1p)

What does the following relational-algebraic expression compute (answer in plain text):

T—nr (7m0nth,(7()UNT(*)—>nr (Images))

Solution: The number of images uploaded per each month of the year, ordered so that
the month with the highest count is listed first.

(i) (3p)
The following relational-algebraic expression returns the list of all albums containing

100 or more images. For each such album, the album name, description and number of
images are projected. Translate it to a corresponding SQL query:

Talbum_name,nr,description (Um“>:100 (’YA .album_name,A.user,description,COU NT (image_nr)—nr

(O'A.user:I.userA.album.name:[.a,lbum_name (PA (Albums) X pr (InAlbum))))) (1)

Solution: First of all, there’s an error, it should have been a normal cross-product and
not a natural join. We will be nice when we correct it, so no matter how you read it
you will get points (if it’s otherwise correct).

SELECT A.album_name, COUNT(image_nr) as nr, description
FROM Albums A, InAlbum I
WHERE A.user = I.user
AND A.album_name = I.album_name
GROUP BY A.album_name, A.user, description
HAVING COUNT(image_nr) > 100;

5B (6p)

Write a relational algebra expression that lists all images together with the albums they
belong to (once for each album, each images could belong to several albums). Tmages not
belonging to any album should also be listed, with NULL as album name.

Solution: Ok, I have a problem here, I don’t know how to get this program to give me the

outer join symbol. So I'll just write here that the natural join symbol below should really be
an outer join.

17

Timage_nr,album_name,user (Images Ximage_nr=image InAlbum)

18

Block 6 - Transactions max 6p

Use the relations for the image blog community from the previous blocks when answering the
following problems.

6A (4p)

Assume images are uploaded and inserted via a web application that (somewhat stupidly)
performs the following operations:

. user identified through current_user, file uploaded to new_file...
1 new_image_nr := SELECT MAX(image_nr) FROM Images;
2 INSERT INTO IMAGES VALUES (new_image_nr, new_file, current_user, ...)

(i) (1p)
For the program specified above, what atomicity problems could arise if it was not run

as a transaction?

Solution: None at all. We only do one write, so there is no way the program can crash

in the middle. If it crashes after 1, nothing bad will have happened.

(i) (1p)
For the program specified above, what isolation problems could arise if it was not run

as a transaction at a sufficiently restrictive isolation level?

Solution: First of all, there’s an error in the formulation, there’s a +1 missing after
MAX(image_nr).

We could get the problem that two (or more) parallel transactions both generate the

same new”image number, and both try to insert an image with that number (all but

one will fail due to the uniqueness constraint).

(iii) (2p)
Which of the four possible isolation levels would solve both of these problems (more

than one answer possible)?

Solution: Only SERTALIZABLE would solve the isolation problem.

6B (6p)

Assume that the user may specify an album to add the image to when uploading it, and
consider the following sequence of operations:

current_user, new_file and new_image_nr as above...
. user supplies chosen_album...
1 INSERT INTO InAlbum VALUES (new_image_nr, chosen_album, current_user);
2 INSERT INTO Images VALUES (new_image_nr, new_file, current_user, ...);

If this program is not run as an assertion, which of the four ACID properties could give

19

problems in this case (more than one answer possible), and how?

Solution: A — Atomicity: If the program crashes after the first insert, we have an image
in an album that doesn’t exist (won’t happen because of C though). C Consistency: All
constraints must be preserved at the end points of the transaction. If this was not a transaction,
1 would fail because of the foreign key constraint between InAlbum and Images. If we did run
a transaction, the checking of that constraint would be deferred until after the transaction
has completed. I ~ Isolation: No problems, since we never read anything we’re not dependent
on what other operations may do. D — Durability: Not applicable.

20

Block 7 - Semi-structured Data and XML max 8p

A school wants to try something new for their course portal, and to allow a bit more flexibility
with their information they have decided to try a semi-structured data model, and to interface
their data as XML.

You have come up with the following DTD as a schema for their new database:

<!DOCTYPE CoursePortal [

<!ELEMENT CoursePortal (Course*, Student*)>

<!ELEMENT Course (Assistant*)>
<!ELEMENT Assistant CDATA>
<!ELEMENT Student (RegCoursex)>

<!ELEMENT RegCourse EMPTY>

<!ATTLIST Course

code ID #REQUIRED

name CDATA #REQUIRED

teacher CDATA #IMPLIED>
<!ATTLIST Student

ssNr ID #REQUIRED

name CDATA #IMPLIED>
<IATTLIST RegCourse

code IDREF #REQUIRED>

1>

21

7TA (4p)

(i) (2p)
Give a minimal XML document that contains information about at least one student

who is registered to at least one course, and is valid with respect to the given DTD.

Note that minimal does not refer to the length of strings given, but the number of
elements and attributes in the document.

Solution:

<CoursePortal>
<Course id="TDA357" name='"Databases" />
<Student ssNr="841224-0123">
<RegCourse code="TDA357" />
</Student>
</CoursePortal>

(if) (2p)
For a document conforming to the schema given above, what would the following
XQuery expression compute? Answer in plain text:

FOR $c IN //Course
LET $x := count($c/*)
WHERE $x > 2

ORDER BY -($x)
RETURN ({$c})

Solution: It would return all courses having more than two assistants, ordered so that
the course with most assistants comes first.

7B (6p)

For a document conforming to the schema given above, what would the following XQuery
expression compute? Answer in plain text, and give an example of a returned XML document:

LET $cs := (
FOR $c IN //Course
LET $ss := (
FOR $s IN //Student
WHEN $s/RegCourse/Qcode = $c/Qcode
RETURN <Student ssNr=({$s/@ssNr}) />)
RETURN <Course id=({$c/@id})>({$ss})</Course>)
RETURN <Courses>({$cs})</Courses>

Solution: It returns all courses, with the registered students as children. Example:

<Courses>

22

<Course id="TDA357">
<Student ssNr="841224-0123" />
. more students
</Course>
. more courses
</Courses>

7C (8p)

Write an XQuery expression that returns a list of all students together with the number of
courses they read. The result should be on the following form:

<StudentList>
<Student ssNr="841224-0123">3</Student>
. more students
</StudentList>

You can use the function COUNT(X) to count the elements in a set X.

Solution: First of all, the number of courses that they read means the number they are
registered to.

LET $ss := (

FOR $s IN //Student

LET $n := COUNT($s/*)

RETURN <Student ssNr=({$s/@ssNr})>({$n})</Student>)
RETURN <StudentList>({$ss})</StudentList>

23

