
CHALMERS UNIVERSITY OF TECHNOLOGY

Department of Computer Science and Engineering

Examination in Databases, TDA357/DIT620

Tuesday 13 January 2015, 14:00-18:00

Solutions

Updated 2015-02-09

1 of 7

12 p

Question 1. a) This suggestion is acceptable:

ISA ISA

PersonRoom

year

startTime

building roomNumber

bookingId

day

week

endTime

Booking

bookedRoom

courseCode

studentBooking

staffBooking

Student

Staff

nameemail

telephone

However, that suggestion does not model the multiplicity of the relationships between
booking, students and staff in a good way. These can be represented in a better way
with subclasses of booking:

ISA ISA ISA ISA

Person

nameemail

courseCode

Staff

Student telephone

Room

year

startTime

building roomNumber

bookingId

day

week

endTime

Booking

bookedRoom

StudentBooking

StaffBooking

bookedByStudent

bookedByStaff

b) E1(a, b, c)

E2(a, b, d)
(a, b) → E1.(a, b)

E3(a, b)
(a, b) → E2.(a, b)

E4(a, b, e, f)
(a, b) → E2.(a, b)

E5(g, h, a, b, e)
(a, b, e) → E4.(a, b, e)

R2(a, b, g)
(a, b) → E3.(a, b)
g → E5.g

2 of 7

10 p

Question 2. a) i) ABC->F and ABC->G do not violate BCNF since their left sides are keys.

The other 5 FDs violate BCNF.

ii) Decompose R on A->E

{A}+ = {AEF}

R1(_A,E,F)

R2(A,B,C,D,G)

A -> R1.A

Decompose R2 on AB->D

{AB}+ = {ABD}

R21(_A,_B,D)

A -> R1.A

R22(A,B,C,G)

(A,B) -> R21(A,B)

Decompose R1 on E->F

{E}+ = {E,F}

R11(_E,F)

R12(E,_A)

E -> R11.E

Decompose R22 on G->B

{G}+ = {GB}

R221(_G,B)

R222(_A,_C,_G)

G -> R221.G

Update reference for R21: A -> R12.A

b) i) A, B, C, D, G

ii) A->E, E->F

iii) R1(_A,E)

R2(_A,_B,D)

R3(_A,_B,_C,F,G)

R4(_C,_D,G)

R5(_E,F)

R6(_G,B)

3 of 7

10 p

Question 3. a) CREATE TABLE Programmes (

code CHAR(5) PRIMARY KEY,

name VARCHAR(50),

department VARCHAR(50),

numPlaces INT

);

CREATE TABLE Applicants (

name VARCHAR(30),

address VARCHAR(50),

appNumber INT PRIMARY KEY

);

CREATE TABLE AppliesFor (

applicant REFERENCES Applicants(appNumber),

programme REFERENCES Programmes(code),

choiceNumber INT CHECK (choiceNumber BETWEEN 1 AND 4),

meritScore INT DEFAULT 0 CHECK (meritScore BETWEEN 0 AND 1000),

status VARCHAR(30) DEFAULT ’unprocessed’

CHECK (status IN (’unprocessed’, ’offered’,

’accepted’, ’declined’,

’offer withdrawn’, ’rejected’)),

PRIMARY KEY (applicant, programme),

CONSTRAINT choices_unique UNIQUE (applicant, choiceNumber)

);

b) CREATE ASSERTION ConsecutiveChoices CHECK

(NOT EXISTS (

SELECT applicant

FROM AppliesFor

GROUP BY applicant

HAVING MAX(choiceNumber) > COUNT(choiceNumber)))

c) CREATE OR REPLACE TRIGGER CourseFull

AFTER UPDATE OF status ON AppliesFor

REFERENCING NEW AS newrow

FOR EACH ROW

WHEN (newrow.status = "accepted")

BEGIN

IF ((SELECT COUNT(applicant)

FROM AppliesFor

WHERE programme = :newrow.programme

AND status = "accepted") >= (SELECT numPlaces

FROM Programmes

WHERE code = :newrow.programme)) THEN

UPDATE AppliesFor

SET status = "rejected"

WHERE status = "unprocessed" AND programme = :newrow.programme;

END IF;

END;

Privilege UPDATE of attribute status in table AppliesFor is needed.

4 of 7

6 p

Question 4. a) πApplicants.name,Programmes.name(Applicants 1applicant=appNumber

((σdepartment=”Physics”Programmes) 1code=programme (σchoiceNumber=1AppliesFor)))

b) R := γprogramme,COUNT (appliocant)→numApplicants(σchoiceNumber=1AppliesFor)

πprogramme(σnumApplicants=maxApplicants(γMAX(numApplicants)→maxApplicantsR)R)

9 p

Question 5. a) SELECT Applicants.name, Programmes.name

FROM Applicants, Programmes, AppliesFor

WHERE applicant = appNumber

AND code = programme

AND department = ’Physics’

AND choiceNumber = 1

b) WITH R AS (SELECT programme, COUNT(applicant) AS numApplicants

FROM AppliesFor

WHERE choiceNumber = 1)

SELECT Programme

FROM R

WHERE numApplicants = (SELECT MAX(numApplicants)

FROM R)

c) WITH R1 AS

(SELECT A.applicant AS name

FROM AppliesFor A JOIN AppliesFor B ON A.applicant = B.applicant

WHERE A.programme = ’MPALG’

AND B.programme = ’MPCSN’

AND A.choiceNumber < B.choiceNumber)

WITH R2 AS

(SELECT name

FROM Applicants

WHERE ’MPALG’ IN (

SELECT programme

FROM AppliesFor

WHERE applicant = name)

AND ’MPCSN’ NOT IN (

SELECT programme

FROM AppliesFor

WHERE applicant = name)

SELECT COUNT(name)

FROM R1 UNION R2

5 of 7

5 p

Question 6. a) See the lecture slides on transactions. In short phantoms can occur when (i) trans-
action A reads data satisfying some <search conditions>, then (ii) transaction B
creates data items satisfying A’s <search conditions>, then A repeats a read with
the same <search conditions>.

b) In the normal case, T5 returns a value one larger than T2 (if place is accepted) or the
same as T2 (if place is declined).

Larger values for T5 can occur due to phantoms (see part (a)) for transactions run
with isoltion levels REPEATABLE READ, READ COMMITTED or READ UN-
COMMITTED.

Running transactions with isolation level SERIALIZABLE is the only way to avoid
possible problems with phantoms. But step T4 involves waiting for a reply from the
applicant, and it would be unacceptable for other transactions to have to wait.

6 of 7

8 p

Question 7. a) <!DOCTYPE Question7 [

<!ELEMENT Question7 (Applicants, Choices)>

<!ELEMENT Applicants (Applicant*)>

<!ELEMENT Applicant EMPTY>

<!ATTLIST Applicant

name CDATA #REQUIRED

appNum ID #REQUIRED >

<!ELEMENT Choices (Choice*)>

<!ELEMENT Choice EMPTY>

<!ATTLIST Choice

applicant IDREF #REQUIRED

code CDATA #REQUIRED

choiceNum CDATA #REQUIRED

meritScore CDATA #REQUIRED>

]>

b) //Choice[@choiceNum="1" and @meritScore>800]

c) <Question7>

<Applicant appNum="a1" name="Andersson">

<Choice meritScore="750" choiceNum="1" code="MPSOF"/>

<Choice meritScore="750" choiceNum="2" code="MPALG"/>

<Choice meritScore="800" choiceNum="3" code="MPCSN"/>

</Applicant>

<Applicant appNum="a2" name="Jonsson">

<Choice meritScore="700" choiceNum="1" code="MPALG"/>

</Applicant>

<Applicant appNum="a3" name="Larsson">

<Choice meritScore="850" choiceNum="1" code="MPCSN"/>

<Choice meritScore="850" choiceNum="2" code="MPALG"/>

</Applicant>

</Question7>

d) <Question7>

{

let $d := doc("exam.xml")

for $a in $d//Applicant

let $choices := (

for $c in $d//Choices/Choice[@applicant = $a/@appNum]

return <Choice code="{$c/@code}"

choiceNum="{$c/@choiceNum}"

meritScore="{$c/@meritScore}" />)

return <Applicant name="{$a/@name}" appNum="{$a/@appNum}" >

{$choices}

</Applicant>

}

</Question7>

7 of 7

