
CHALMERS UNIVERSITY OF TECHNOLOGY
Department of Computer Science and Engineering

Examination in Databases, TDA357/DIT620

Wednesday 14 December 2011, 08:30-12:30

Solutions

Updated 2011-12-15

1 of 6

12 p
Question 1. a) E-R diagram:

duration

language

reference name

reservation

forShowing

ofFilm

day strartTime

inRoom Room

number

roomSeat

Seat

number

ShowingFilm

Genre Booking

title

genre

hasGenre

row

b) Films(title, language, duration)

Genres(genre)

HasGenre(film, genre)
film → Films.title
genre → Genres.genre

Rooms(number)

Seats(room, row, number)
room → Rooms.number

Showings(day, startT ime, room, film)
room → Rooms.number
film → Films.title

Bookings(reference, name, day, startT ime, room)
(day, startT ime, room) → Showings.(day, startT ime, room)

Reservations(booking, room, row, number)
booking → Bookings.reference
(room, row, number) → Seats.(room, row, number)

2 of 6

10 p
Question 2. a) Decompose on p -> n

{p}+ = {p,n}

R1(_p,n)
R2(p,i,t,a,r,man,mod)

p -> R1.p

Decompose R1 on i -> t
{i}+ = {i,t,a}

R21(_i,t,a)
R22(p,i,r,man,mod)

i -> R21.i

Decompose R22 on r -> man
{r}+ = {r,man,mod}

R221(_r,man,mod)
R222(p,i,r)

r -> R221.r

The key of R222 is (p,i,r).

Should update references to decomposed relations.

b) Relation R222 has MVDs p ->> i and p ->> r

Decompose R222 on p ->> i

R2221(_p,_i)
R2222(_p,_r)

(The original relation R has MVDs p,n ->> i,t,a and p,n ->> r,man,mod)

c) i) Yes.
AB -> AD can be rewritten as 2 FDs: AB->A and AB->D
The first of those is trivial.
The second is true due to transitivity: AB->C and C->D, so AB->D

ii) | A | B | C | D |
|----+----+----+----|
| a1 | b1 | c1 | d1 |
| a2 | b1 | c2 | d2 |

3 of 6

9 p
Question 3. a) Departments(deptName, location)

Employees(empId, name)
WorksIn(employee, dept, location, percentage)

employee → Employees.empId
(dept, location) → Departments.(deptName, location)

CREATE TABLE Departments (
deptName VARCHAR(20),
location VARCHAR(20),
PRIMARY KEY (deptName, location)

);

CREATE TABLE Employees (
empId CHAR(10) PRIMARY KEY,
name VARCHAR(30)

);

CREATE TABLE WorksIn (
employee CHAR(10),
dept VARCHAR(20),
location VARCHAR(20),
percentage INT DEFAULT 0 CHECK (percentage >= 0 AND percentage <= 100),
PRIMARY KEY (employee, dept, location),
FOREIGN KEY (employee) REFERENCES Employees(empId)

ON DELETE CASCADE
ON UPDATE CASCADE,

FOREIGN KEY (dept, location) REFERENCES Departments(deptName,location)
ON DELETE CASCADE
ON UPDATE CASCADE

);

b) CREATE ASSERTION NotOverFullTime CHECK
(NOT EXISTS

(
SELECT employee
FROM WorksIn
GROUP BY employee
HAVING SUM(percentage) > 100

)
);

c) CREATE TRIGGER MaxOneHundred
BEFORE INSERT ON WorksIn
REFERENCING NEW AS new
FOR EACH ROW
DECLARE previousPercentage INT;
BEGIN

SELECT SUM(percentage) INTO previousPercentage
FROM WorksIn
WHERE employee = :new.employee;

IF previousPercentage + :new.percentage > 100 THEN
:new.percentage := 100 - previousPercentage;

END IF;
END;

4 of 6

6 p
Question 4. a) πempId,deptName(Employees 1empId=employee (σpercentage>50∧location=′Stockholm′(WorksIn)))

b) πname,deptName,location(Employees
1empId=employee (WorksIn 1 σnum>3(γdept,location,COUNT (∗)→num(WorksIn)))

10 p
Question 5. a) SELECT DISTINCT name

FROM Employees JOIN WorksIn w1 on empId = w1.employee
JOIN WorksIn w2 on empId = w2.employee

WHERE w1.dept = ’sales’
AND w1.location = ’Stockholm’
AND (w2.dept <> ’sales’ OR w2.location <> ’Stockholm’)

ORDER BY name

b) SELECT *
FROM Departments
WHERE (deptName, location) NOT IN

(SELECT dept, location
FROM WorksIn
WHERE percentage > 50)

c) SELECT dept, location
FROM WorksIn
GROUP BY dept, location
HAVING SUM(percentage) >= ALL

(SELECT SUM(percentage)
FROM WorksIn
GROUP BY dept, location)

5 of 6

4 p
Question 6. a) A1 A2 B1 B2 gives 130 for price of item ‘i001’

A1 B1 A2 B2 gives 120 for price of item ‘i001’
A1 B1 B2 A2 gives 110 for price of item ‘i001’
B1 A1 A2 B2 gives 120 for price of item ‘i001’
B1 A1 B2 A2 gives 110 for price of item ‘i001’
B1 B2 A1 A2 gives 130 for price of item ‘i001’

b) The index in (i) will improve the performance, but the index in (ii) will not.
See section 8.3.2 of the textbook for an explanation.

9 p
Question 7. a) <!DOCTYPE Cookbook [

<!ELEMENT Cookbook (Recipe*) >

<!ELEMENT Recipe (Ingredient*, Step*) >
<!ATTLIST Recipe
name CDATA #REQUIRED >

<!ELEMENT Ingredient EMPTY >
<!ATTLIST Ingredient
name CDATA #REQUIRED
quantity CDATA #REQUIRED
unit CDATA #IMPLIED >

<!ELEMENT Step (#PCDATA) >
<!ATTLIST Step
number CDATA #REQUIRED >

]>

b) //Step[@number="1"]

c) <Result>
{
for $r in doc("cookbook.xml")//Recipe[Ingredient/@name="eggs"]
return <EggRecipe name="{$r/@name}" />

}
</Result>

d) <Result>
{
let $d := doc("cookbook.xml")
let $max := max(for $r in $d//Recipe

let $numsteps := count($r/Step)
return $numsteps

)
for $r in $d//Recipe
where count($r/Step) = $max
return $r

}
</Result>

6 of 6

