
CHALMERS UNIVERSITY OF TECHNOLOGY

Department of Computer Science and Engineering

Examination in Databases, TDA357/DIT620

Saturday 19 December 2009, 08:30-12:30

Solutions

Updated 2013-12-13

1 of 6

12 p

Question 1. a) E-R diagram:

Panel

proposalPanel

Researcher

ISA

Proposal

TravelProposal

reviews

applicant

co−applicantProjectProposal

panelMember

pid

name

organisation

name

destination

year

number

b) Researchers(pid, name, organisation)

Panels(name)

Proposals(panel, year, number, applicant)
panel → Panels.name

applicant → Researchers.pid

TravelProposals(panel, year, number, destination)
(panel, year, number) → Proposals.(panel, year, number)

ProjectProposals(panel, year, number)
(panel, year, number) → Proposals.(panel, year, number)

CoApplicants(panel, year, number, researcher)
(panel, year, number) → ProjectProposals.(panel, year, number)
researcher → Researchers.pid

Reviews(panel, year, number, researcher)
(panel, year, number) → Proposals.(panel, year, number)
researcher → Researchers.pid

PanelMembers(researcher, panel)
researcher → Researchers.pid

panel → Panels.name

2 of 6

10 p

Question 2. a) i) AB -> C

B -> D

CE -> F

D -> G

F -> A

ii) Decompose on AB -> C

{AB}+ = {ABCDG}

R1(_A,_B,C,D,G)

R2(A,B,E,F)

(A,B) -> R1.(A,B)

Decompose R1 on B->D

{B}+ = {BDG}

R11(_B,D,G)

R12(_A,_B,C)

B -> R11.B

Decompose R11 on D->G

{D}+ = {DG}

R111(_D,G)

R112(_B,D)

D -> R111.D

Decompose R2 on F -> A

{F}+ = {AF}

R21(A,_F)

R22(_B,_E,_F)

F -> R21.F

b) i) A,B,C,E and F are prime

ii) B -> D

D -> G

iii) Compute the minimal closure of F

(Remove A->C if we have A->B and B->C, etc.)

Group together FDs with the same LHS

ABE -> FG

For each group, create a relation with the LHS as the key.

R1(A,B,C)

R2(B,D)

R3(C,E,F)

R4(A,B,E,F,G)

R5(D,G)

R6(A,F)

If no relation contains a key of R, add one relation containing only

a key of R.

Relation R4 contains a key of R.

3 of 6

9 p

Question 3. a) Employees(empId, name, year, salary, entitlement, branch)
ParentalLeave(employee, startDay, startY ear, endDay, endY ear)

employee → Employees.empId

CREATE TABLE Employees (

empId INT PRIMARY KEY,

name VARCHAR(40),

year INT,

salary INT,

entitlement INT DEFAULT 30,

branch VARCHAR(40),

);

CREATE TABLE ParentalLeave (

employee INT,

startDay INT,

startYear INT,

endDay INT,

endYear INT,

PRIMARY KEY (employee, startDay, startYear),

FOREIGN KEY (employee) REFERENCES Employees(empId)

ON DELETE CASCADE

ON UPDATE CASCADE,

CONSTRAINT CheckStartDay CHECK (StartDay BETWEEN 1 and 366),

CONSTRAINT CheckEndDay CHECK (EndDay BETWEEN 1 and 366),

CONSTRAINT CheckStartBeforeEnd (startYear < endYear OR

(startYear = endYear AND startDay < endDay)),

);

b) CREATE ASSERTION PayRangeLimit CHECK

(NOT EXISTS (

SELECT A.empId

FROM Employees A, Employees B

WHERE A.salary - B.salary > 10000))

or

CREATE ASSERTION PayRangeLimit CHECK

(((SELECT MAX(salary) FROM Employees)

- (SELECT MIN(salary) FROM Employees)) <= 10000);

c) CREATE TRIGGER IncreaseEntitlement

BEFORE INSERT ON Employees

REFERENCING NEW ROW AS new

FOR EACH ROW

WHEN (new.year < 1970 AND new.entitlement < 35)

SET new.entitlement = 35;

4 of 6

5 p

Question 4. a) π(Employees 1empId=employee (σstartY ear=2007(ParentalLeave)))

b) τbranch(πname,branch,salary(σsalary=maxSal(
Employees 1 (γbranch,MAX(salary)→maxSal(Employees)))))

7 p

Question 5. a) SELECT DISTINCT empId, name

FROM Employees JOIN (

SELECT employee

FROM ParentalLeave

WHERE startYear < endYear) ON employee=empId;

b) SELECT A.name, B.name

FROM Employees A, Employees B

WHERE A.empId <> B.empId

AND A.year = B.year

AND A.entitlement = B.entitlement

AND A.salary < B.salary;

c) CREATE VIEW V AS

SELECT branch, startYear, COUNT(empId) AS numParents

FROM Employees JOIN ParentalLeave on empId = employee

GROUP BY branch, startYear

3 p

Question 6. a) Either T1 runs completely before T2, or vice versa. In either case, the output is: 2,2

b) In addition to the above, several other orderings are now possible.
T1B will see at least the same tuples as T1A.

T2A,T1A,T1B,T2B gives 1,1
T2A,T1A,T2B,T1B gives 1,2
T1A,T2A,T1B,T2B gives 2,2
T1A,T2A,T2B,T1B gives 2,3

6 p

Question 7. a) i) task 1: 2, task 2: 30, task 3: 30.

ii) task 1: 4, task 2: 30, task 3: 11.

iii) task 1: 4, task 2: 6, task 3: 30.

iv) task 1: 6, task 2: 6, task 3: 11.

b) (iv) has lowest cost of 6.5, with (iii) next with cost of 7.4.

5 of 6

8 p

Question 8. a) (Alternative tags and structures are also acceptable.
Note: Branch numbers have been modified so that they start with a letter.
We’ll accept solutions where these begin with digits.)

<?xml version="1.0" standalone="yes" ?>

<!DOCTYPE Question8 [

<!ELEMENT Question8 (Employees, Branches)>

<!ELEMENT Employees (Employee*)>

<!ELEMENT Employee EMPTY>

<!ATTLIST Employee

name ID #REQUIRED

branch IDREF #REQUIRED

salary CDATA #REQUIRED >

<!ELEMENT Branches (Branch*)>

<!ELEMENT Branch EMPTY>

<!ATTLIST Branch

number ID #REQUIRED

city CDATA #REQUIRED >

]>

b) <Question8>

<Employees>

<Employee name="Andersson" branch="b3" salary="35000" />

<Employee name="Jonsson" branch="b3" salary="25000" />

<Employee name="Larsson" branch="b2" salary="32000" />

</Employees>

<Branches>

<Branch number="b1" city="Stockholm" />

<Branch number="b2" city="Paris" />

<Branch number="b3" city="London" />

</Branches>

</Question8>

c) (Alternatives are acceptable. Two suggestions are given here.)

/Question8/Branches/Branch[@city="Paris"]

//Branch[@city="Paris"]

d) (Alternatives are acceptable.)

FOR $e IN /Question8/Employees/Employee[@salary>30000]

LET $place := $e/@branch => Branch/@city

RETURN <Result>{$e/name}: {$place}</Result>

6 of 6

