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Review of the Last Week

K-means objective corresponds to optimizing the following
problem

min
µ,Z

R(µ,Z; X) = min
µ,Z

N∑
n=1

K∑
k=1

znk‖xn − µk‖22.

s.t. znk ∈ {0, 1} and
K∑
k=1

znk = 1 ∀n.

Where,
X = [x1; · · · ; xN ] ∈ RN×D,
µ = [µ1; · · · ;µK ] ∈ RK×D and
Z ∈ {0, 1}N×K .
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From Hard to Soft Clustering

I Relax the ‘hard’ constraint given by

znk ∈ {0, 1},
K∑
k=1

znk = 1 ,

I and replace it by a ‘soft’ constraint:

znk ∈ [0, 1],

K∑
k=1

znk = 1 .
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From Single to Mixture Models

Old Faithful data set includes 272 measurements of eruptions of
the Old Faithful geyser at Yellowstone National Park. Each
measurement consists of

I the duration of the eruption in minutes;

I the time in minutes to the next eruption.
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From Single to Mixture Models
Plots of the ’old faithful’ data

I Horizontal axis: the duration of the eruption in minutes.
I Vertical axis: the time in minutes to the next eruption.
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(b) Modeling data by a linear
combination of two Gaussians fit-
ted by maximum likelihood
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Gaussian Distrbution (1-D)

I Sample space X = R
I Definition:

p(x|µ, σ) :=
1√
2πσ

exp(−(x− µ)2

2σ2
)

I Statistics:
E[X] := µ, V ar[X] := σ2
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Gaussian Distrbution (d-D)

I Sample space X = Rn,x = (x1, .., xd)
>

I Definition:
p(x|µ,Σ) := 1

(
√

2π)d|Σ|
1
2

exp(−1
2(x− µ)>Σ−1(x− µ))

where Σ is the covariance matrix and |Σ| is its determinant
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Generative Clustering

Generative approach

I Goal: explain the observed data {xn}Nn=1 by a probabilistic
model p(x).

I We assume the parametric form of the model to be chosen
apriori.

I The model has parameters that need to be learned in order to
explain the observed data well.

I Today we will focus on Gaussian Mixture Model.

Clustering?

The model can be interpreted as assigning data points to different
components/modes of a multimodal distribution.
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Introduction to Mixture Models

I Mixture of K probability densities is defined as

p(x) =

K∑
k=1

πkp(x | θk).

Each probability distribution p(x | θk) is a component of the
mixture and has its own parameters θk.

I Almost any continuous density can be approximated by using
a sufficient number of component distributions.

I For a Gaussian component distribution the parameters θk are
given by the mean µk and the covariance Σk.
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Elements of Mixture Models

Mixture models are constructed from:

I Component distributions of the form p(x | θk).

I Mixing coefficients πk that give the probability of each
component.

In order for p(x) to be a proper distribution, we have to ensure that

K∑
k=1

πk = 1 and πk ≥ 0, 1 ≤ k ≤ K.

Therefore, the parameters πk, 1 ≤ k ≤ K define a categorical
distribution representing the probability of each component.
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Gaussian Mixture Model

The Gaussian Mixture Model (GMM) uses Gaussians as the
component distributions.

The distribution (of a particular point x) is witten as

p(x) =

K∑
k=1

πk N (x | µk,Σk).

I Given data points {x1, . . . ,xN}, the goal is to learn
(estimate) the unknown parameters µk,Σk, and πk such that
we approximate the data as good as possible.

I This is equivalent to finding the parameters that maximize the
likelihood of the given data.
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GMM: Generative Viewpoint

We assume that the the model parameters Σ,µ,π are given.

Then, given those parameters, we sample the data xn as follows:

1. Sample a component (cluster) index k according to the
probabilities πk.

2. Sample a data point xn from the distribution p(xn | µk,Σk).

Parameter estimation based on maximizing likelihood:
Revert this process: data is given, but the parameters are unknown
and should be estimated.

Machine Learning course, Chalmers University of Technology



Full Data Likelihood

We assume that the data points xn are independent and identically
distributed (i.i.d.). The probability or likelihood of the observed
data X, given the parameters is then otained by

p(X|π,µ,Σ) =

N∏
n=1

p(xn) =

N∏
n=1

K∑
k=1

πkN (xn | µk,Σk).
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Maximum Log-Likelihood Formulation

Goal. find the parameters that maximize the likelihood of the data:

(π̂, µ̂, Σ̂) ∈ argmax
π,µ,Σ

p(X|π,µ,Σ).

To simplify the calculation we take the logarithm, such that the
product becomes a sum:

(π̂, µ̂, Σ̂) ∈ argmax
π,µ,Σ

N∑
n=1

ln

{
K∑
k=1

πkN (xn | µk,Σk)

}
.
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Maximum Log-Likelihood Estimation

I Want to solve:

(π̂, µ̂, Σ̂) ∈ argmax
π,µ,Σ

N∑
n=1

ln

{
K∑
k=1

πkN (xn | µk,Σk)

}
.

I Due to the presence of the summation over k inside the
logarithm, the maximum likelihood solution for the parameters
no longer has a closed-form analytic solution.
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Maximum Log-Likelihood Estimation

I Want to solve:

(π̂, µ̂, Σ̂) ∈ argmax
π,µ,Σ

N∑
n=1

ln

{
K∑
k=1

πkN (xn | µk,Σk)

}
.

I Due to the presence of the summation over k inside the
logarithm, the maximum likelihood solution for the parameters
no longer has a closed-form analytic solution.

I We employ an elegant powerful algorithmic technique, called
Expectation Maximization.
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Maximum Log-Likelihood Estimation

I We want to solve:

(π̂, µ̂, Σ̂) ∈ argmax
π,µ,Σ

N∑
n=1

ln

{
K∑
k=1

πkN (xn | µk,Σk)

}
.

I Due to the presence of the summation over k inside the
logarithm, the maximum likelihood solution for the parameters
no longer has a closed-form analytic solution.

I We employ an elegant powerful algorithmic technique, called
Expectation Maximization.

I Intuition: if we know to which clusters the data points are
assigned, then computing the maximum likelihood estimate
becomes straightforward.

I Hence: we introduce a latent (or hidden) variable for the
assignment of data points to clusters.
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Latent Variables

I Define K-dimensional binary random variable z with a 1-of-K
representation.

I Only one element of z is equal to 1 and all other elements are
0, i.e.,

zk ∈ {0, 1},
∑
k

zk = 1.
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Latent Variables

I Define K-dimensional binary random variable z with a 1-of-K
representation.

I Only one element of z is equal to 1 and all other elements are
0, i.e.,

zk ∈ {0, 1},
∑
k

zk = 1.

I The marginal distribution over z is specified in terms of the
mixing coefficients πk, i.e.,

p(zk = 1) = πk.
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Latent Variables and Data Likelihood

I z uses a 1-of-K representation. Thus, we write this
distribution in the form of:

p(z) =

K∏
k=1

πzkk .

I Also, the conditional distribution of x given a particular
instantiation (value) of z is a Gaussian distribution

p(x | zk = 1) = N (x | µk,Σk).

I Therefore, we have:

p(x | z) =
K∏
k=1

N (x | µk,Σk)
zk .
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Marginal Distribution with Latent Variables

The marginal distribution of x can be obtained by summing the
joint distribution over all possible states of z to yield:

p(x) =
∑

z

p(z)p(x | z) =

K∑
k=1

πkN (x | µk,Σk).

For the full data log-likelihood we have:

ln p(X | π,µ,Σ) =

N∑
n=1

ln

{
K∑
k=1

πkN (xn | µk,Σk)

}
.

In the following, for the simplicity of prsentation, we assume that
the covariances Σ are given (we do not need to estimate them).
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Responsibilities

I γ(zk): probability of assigning a data point to a cluster

γ(zk) := p(zk = 1 | x)

I Remember the generative viewpoint!

I We shall view πk as the prior probability of zk = 1, and the
quantity γ(zk) as the corresponding posterior probability once
we have observed x.
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Overview of Expectation-Maximization

I We want to solve:

(π̂, µ̂, Σ̂) ∈ argmax
π,µ,Σ

N∑
n=1

ln

{
K∑
k=1

πkN (xn | µk,Σk)

}
.

I Due to the presence of the summation over k inside the
logarithm, the maximum likelihood solution for the parameters
no longer has a closed-form analytic solution.

I We employ an elegant powerful algorithmic technique, called
Expectation Maximization.
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Overview of Expectation-Maximization

I We employ an elegant powerful algorithmic technique, called
Expectation Maximization.

I First, we select some initial values for the means and mixing
coefficients. Then, we alternate between the following two
updates called the E (expectation) step and the M
(maximization) step:

1. In the expectation step, the current values for the model
parameters are used to compute the posterior probabilities
(responsibilities) γ(znk).

2. In the maximization step, the responsibilities are used to
estimate the model parameters (e.g., means and mixing
coefficients).
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Expectation Step

I γ(zk): probability of assigning a particular data point to a
cluster

γ(zk) := p(zk = 1 | x)

Bayes’ rule

The conditional probability of A given B (posterior) can be
obtained by:

p(A|B) =
p(A)p(B|A)

p(B)
.

We call p(A) prior, p(B|A) likelihood and p(B) evidence.
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Expectation Step

Bayes’ rule

The conditional probability of A given B (posterior) can be
obtained by:

p(A|B) =
p(A)p(B|A)

p(B)
.

We call p(A) prior, p(B|A) likelihood and p(B) evidence.

γ(zk) := p(zk = 1 | x) =?

We use the Bayes’ rule to get

γ(zk) := p(zk = 1 | x) =
p(zk = 1)p(x | zk = 1)∑K
j=1 p(zj = 1)p(x | zj = 1)

=
πkN (x | µk,Σk)∑K
j=1 πjN (x | µj ,Σj)
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Estimating the Means

I We set the derivatives of ln p(X | π,µ,Σ) with respect to the
means µk to zero, and obtain:

0 =

N∑
n=1

πkN (xn | µk,Σk)∑
j πjN (xn | µj ,Σj)︸ ︷︷ ︸

γ(znk)

Σ−1
k (xn − µk).

I Assume that Σk is not signular. Multiplying by Σk we obtain

µk = 1
Nk

∑N
n=1 γ(znk)xn, Nk =

∑N
n=1 γ(znk)

I The mean µk is obtained by taking a weighted mean of all the
points in the data set.
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Estimating the Variances

I If we set the derivative of ln p(X | π,µ,Σ) with respect to
Σk to zero we obtain

Σk =
1

Nk

N∑
n=1

γ(znk)(xn − µk)(xn − µk)
T
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Estimating the Coefficients
I Maximizing ln p(X | π,µ,Σ) with respect to the mixing

coefficients πk and taking account of the constraint which
requires the mixing coefficients to sum to one, leads to the
following Lagrangian

ln p(X | π,µ,Σ) + λ(

K∑
k=1

πk − 1)

which gives

0 =

N∑
n=1

N (xn | µk,Σk)∑
j πjN (xn | µj ,Σj)

+ λ.

⇒ 0 =

N∑
n=1

γ(znk) + πkλ = Nk + πkλ.

Then,
∑K

k=1 πk = 1 leads to λ = −N . Thus,

πk =
Nk

N
.
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Description of EM

Given a GMM, the goal is to maximize the likelihood function with
respect to the parameters.

1. Initialize the means µk, and mixing coefficients πk. Set the Σk to the given
covariances.

2. E-step. Evaluate the responsibilities using the current parameter values

γ(znk) =
πkN (xn | µk,Σk)∑
j πjN (xn | µj ,Σj)

3. M-step. Re-estimate the parameters using the current responsibilities

µk =
1

Nk

N∑
n=1

γ(znk)xn

πk =
Nk

N
where Nk =

N∑
n=1

γ(znk)

4. Compute the log-likelihood and check for the convergence of either the
parameters or the log-likelihood.
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Example of EM for Gaussian Mixture Models
Illustration of the EM algorithm using the Old Faithful data set.

(a)−2 0 2

−2

0

2

(b)−2 0 2

−2

0

2

(c)

L = 1

−2 0 2

−2

0

2

(d)

L = 2

−2 0 2

−2

0

2

(e)

L = 5

−2 0 2

−2

0

2

(f)

L = 20

−2 0 2

−2

0

2

Figure: EM algorithm for mixture of two Gaussians. Note that here the
covariance is also estimated (illustrated by the two ellipsoids).
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EM and K-means Algorithm

I The K-means algorithm yileds a hard assignment of data
points to clusters, but the EM algorithm performs a soft
assignment based on the posterior probabilities.

I The K-means algorithm does not estimate the covariances of
the clusters but only the cluster means.
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EM and K-means Algorithm

I Consider a Gaussian Mixture Model in which the covariance
matrices of the mixture components are given by εI. Then, we
have

p(x | µk,Σk) =
1

(2πε)1/2
exp

{
− 1

2ε
‖x− µk‖22

}
.

I Consider the EM algorithm in which ε is a fixed constant (i.e.,
we do not need to estimate the covariance matrix). Then

γ(zk,n) =
πk exp{− 1

2ε‖x− µk‖22}∑
j πj exp{− 1

2ε‖x− µj‖22}
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EM and K-means Algorithm

I Consider the EM algorithm in which ε is a fixed constant,
instead of a parameter to be re-estimated. Then

γ(zk,n) =
πk exp{− 1

2ε‖x− µk‖22}∑
j πj exp{− 1

2ε‖x− µj‖22}

I In the limit ε→ 0, in the denominator the term for which
‖xn − µj‖2 is smallest, goes to zero most slowly, and hence
the responsibilities γ(znk) for the data point xn all go to zero
except for term j, for which the responsibility γ(znj) will go
to unity.
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EM and K-means Algorithm

I In this limit, we obtain a hard assignment of data points to
clusters, just as in the K-means, ie.e, each data point is
assigned to the cluster having the closest mean.

I The EM re-estimation for the µk then reduces to the
K-means results.

I The re-estimation formula for the mixing coefficients simply
re-sets the value of πk to be equal to the fraction of data
points assigned to cluster k, although these parameters no
longer play an active role in the algorithm.
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K-means vs EM

I The EM algorithm takes many more iterations to reach
convergence compared with the K-means algorithm, and each
cycle requires significantly more computation.

I The K-means algorithm can be used to find a suitable
initialization for a Gaussian mixture model.

I The covariance matrices can be initialized to the sample
covariances of the clusters found by the K-means algorithm.

I The mixing coefficients can be set to the fractions of data
points assigned to the respective clusters.

I There will generally be multiple local maxima of the log
likelihood function, and EM is not guaranteed to find the
largest of these maxima.
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Model Order Selection: General Principle

Trade-off between two conflicting goals:

Data fit: We want to predict the data accurately, e.g.,
maximize the likelihood. The likelihood usually
improves by increasing the number of clusters.

Complexity: Choose a model that is not very complex which is
often measured by the number of free parameters.

Find a trade-off between these two goals!
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Decreasing the data fit costs when increasing K

Negative Log-Likelihood of data for K mixture Gaussians:

− ln p(X | π,µ,Σ) = −
N∑
n=1

ln

{
K∑
k=1

πkN (xn | µk,Σk)

}
.

The smaller the negative
log-likelihood, the better
the fit.
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AIC and BIC

Trade-off
Achieve balance between data fit (measured by likelihood p(X|.))
and model complexity. Complexity can be measured by the number
of free parameters c(·).

Different principles to choose K

I Akaike Information Criterion (AIC)

AIC(U,Z|x1, . . . ,xN ) = − ln p(X|.) + c(U,Z)
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AIC and BIC

Trade-off
Obtain a balance between data fit (measured by likelihood p(X|.))
and model complexity. Complexity can be measured by the number
of free parameters c(·).

Different principles to choose K

I Akaike Information Criterion (AIC)

AIC(U,Z|x1, . . . ,xN ) = − ln p(X|.) + c(U,Z)

I Bayesian Information Criterion (BIC).

BIC(U,Z|x1, . . . ,xN ) = − ln p(X|.) +
1

2
c(U,Z) lnN
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AIC and BIC

Which one is more strict on the model complexity?
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AIC and BIC

Which one is more strict on the model complexity?

I Usually (on a large anough dataset), the BIC criterion
penalizes complexity more than AIC.
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AIC and BIC: Remarks and Example

Analysis

A single AIC (BIC) result is meaningless. One has to repeat the
analysis for different Ks and compare the differences: the most
suitable number of clusters corresponds to the smallest AIC (BIC)
value.

Example (Mixture of Gaussians with fixed covariance)

Number of free parameters is (?)
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AIC and BIC: Remarks and Example

Analysis

A single AIC (BIC) result is meaningless. One has to repeat the
analysis for different Ks and compare the differences: the most
suitable number of clusters corresponds to the smallest AIC (BIC)
value.

Example (Mixture of Gaussians with fixed covariance)

Number of free parameters is:

c(U,Z) = K·D + (K − 1).
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AIC and BIC example: 3 clusters
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Figure: Model order selection on synthetic datasets with 3 clusters.
Synthetic data has smaller variance on the left than on the right.
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AIC and BIC example: 5 clusters
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Figure: Model order selection on a synthetic dataset with 5 clusters.
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Exercise 1

Can you write down the K-means cost function in the form of a
matrix factorization problem?

arg min
µ,Z

R(µ,Z; X) = arg min
µ,Z
||X− Zµ||22

What about soft clustering?

Machine Learning course, Chalmers University of Technology



Exercise 2

Consider a GMM with Σk = σ2
kI and one of the component means

equal to a data point: µj = xn.

1. Write down the log-likelihood for this data point (i.e.
ln p(xn|π,µ,Σ))

2. Calculate p(xn|µj ,Σj), the probability of xn given the j-th
component.

3. In the limit σk → 0, how does the probability in Question 3
change? Discuss the impact of this issue on the maximization
of the likelihood function.

4. Can this situation occur in the case of a single Gaussian
distribution (i.e., when K = 1)?

5. Propose a heuristic to avoid such a situation.
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Information

Reference: Christopher M. Bishop, Pattern Recognition and
Machine Learning, Chapter 9.

Questions? Send to Morteza Chehreghani,
morteza.chehreghani@chalmers.se

Acknowledgement: Some of the slides are prepared based on past joint
efforts with P. Pletscher.
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