HATS

Highly Adaptable and Trustwarthy Softwere using Formal Models

Project N°: FP7-231620
Project Acronym: HATS
Project Title: Highly Adaptable and Trustworthy Software using Formal Methods

Instrument: Integrated Project
Scheme: Information & Communication Technologies

Future and Emerging Technologies

Deliverable D5.1

Requirements Elicitation

Due date of deliverable: (T6)
Actual submission date: 31 August 2009
Revision date: 30th March 2010

SEVENTH FRAMEWORK
PROGRAMME

Start date of the project: 1st March 2009 Duration: 48 months

Organisation name of lead contractor for this deliverable: FRG

Revised version

Integrated Project supported by the 7th Framework Programme of the EC

Dissemination level

PU | Public ve

PP | Restricted to other programme participants (including Commission Services)

RE | Restricted to a group specified by the consortium (including Commission Services)

CO | Confidential, only for members of the consortium (including Commission Services)

Executive Summary:

Requirements Elicitation

This document summarises deliverable D5.1 of project FP7-231620 (HATS), an Integrated Project supported
by the 7th Framework Programme of the EC within the FET (Future and Emerging Technologies) scheme.
Full information on this project, including the contents of this deliverable, is available online at http:
//www.hats-project.eu

Deliverable D5.1 presents the requirements for the HATS method elicited in Task 5.1. The requirements
are divided into methodological requirements and high level concerns. The methodological requirements
stem from different audiences and different perspectives and provide a high-level requirements view to the
HATS methodology. The high level concerns are the result of analyzing different scenarios of three selected
case studies of different profile, abstraction, size, and application area. Besides the description of the
concerns, the possible HATS support is already envisioned and mapped to the responsible work tasks. This
will simplify the validation in the next steps of Work Package 5.

List of Authors

Pablo Antonino (FRG)
Ralf Carbon (FRG)
Nikolay Diakov (FRH)
Jan Schéfer (UKL)
Yannick Welsch (UKL)
Peter Wong (FRH)

http://www.hats-project.eu
http://www.hats-project.eu

Contents

[1.2.1 Methodological requirements|
[L.2.2 Casestudies|. e
[1.2.3 Labeling|. o
[1.2.4 Scope and structure]
2 Methodological Requirements|
2.1 Product line engineering]
[2.2 Organization: Fraunhoter IESE perspective]o L.
[2.2.1 Managers’ perspective] L L
[2.2.2 Users’ perspectivel L e e
[2.3 Industrial applicability: Fredhopper’s perspectivelo
[2.3.1 Developing an evolving product|. oo
2.3.2 Server softwarel L
I2.;i|;i :i!zll!!ills: il: i! :s:l &‘lgsl
[2.3.4 Integrated tools development environment|,
2.4 End-user panel perspectivel
2.5 Summary] e e e e
|3 Trading System Case Study|
BIOVEIVIEW] . . . o o o e e e
B2 Scenarfos o o
[3.2.1 Scenario TS1: Coupon handling featurel
[3.2.2 Scenario 1'S52: Cash desk variability|]
[3.2.3 Scenario TS3: Dependability property| L.
[3.2.4 Scenario T'S4: Authentication policies|
[3.2.5 Scenario T'55: Feature evolution - Loyalty system|.
3.3 Summary] e e e e
4 Virtual Office of the Future Case Study|
BT OVEIVIEW] o o e e e e e
4.2 Reusable artifactsl.
E3Scenarfof v v e e
4.3.1 Scenario VI1: Realize a new workflowl
[4.3.2 Scenario VF2: Add a new device type to the VOF infrastructure|
Il.;i,;i :5;:5:1]3!1‘]!! & [;i; I;g:i!liz“!l i!zll Szi !‘! lls:!! ! g)I {is:l &i!:s:l ---------------------
4.3.4 Scenario VF4: Integration of a new virtual office application|
[4.3.5 Scenario VF5: Integration of new functionality in the VOF P2P platform|
|4.3.6 Scenario VF6: Replacement of technologies|

10
10
12
13
14
14
14
15
16
16
17
18

20
20
22
22
23
23
24
25
26

HATS Deliverable D5.1

Requirements Elicitation

4.4 Summary|] L e e e e e e e 35

[Fredhopper Case Study] 38
BT _Overviewl o o 38
B278Cenarios . « - ¢ v v v e e 39
[5.2.1 Scenario FP1: Correctness of sequential programs| 40

[5.2.2 Scenario FP2: Integration of a new feature component in FAS| 43

[0.2.3 Scenario FP3: "lTest system provisioning] 46

9.2.4 Scenario FP4: Concurrency| 49

[5.2.5 Scenario FP5: Using third party library| o000 51

0.2.6 Scenario FP6: Performancel 54

5.3 Summary] e e e e 56

59
[Bibliography| 61
63

Chapter 1

Introduction

As pointed out in the project proposal, in HATS [17] we aim to develop a methodological and tool frame-
work achieving not merely far-reaching automation in maintaining dynamically evolving software, but an
unprecedented level of trust by replacing informal processes with rigorous analyzes based on formal methods.
Furthermore, the HATS framework and methodology aim at enabling organizations to produce trustworthy
software that supports adaptation. The methodology takes an empirically successful, yet informal software
development paradigm and puts it on a formal basis. In HATS, we plan to turn the software product fam-
ily (SWPF) development into a rigorous approach. Specifically, HATS focuses on product line engineering
(PLE) [25], i.e. a development approach to produce products as part of a product family based on strategic
and pro-active reuse of available components.

The technical core of the framework consists of an Abstract Behavioral Specification language which
allows precise description of SWPF features and components and their instances. Such level of descrip-
tion allows analysis of various system properties related to trustworthiness, for instance, security or per-
formance [6], and enable new opportunities in code generation, automatic product derivation etc. The
framework also provides extensive tool and method automation support to its users.

The project’s work packages one, two, three and four focus on developing various aspects of the HATS
framework and methodology. The fifth work package (WP5) focuses on producing input to the other packages
to steer their results in the right direction. The WP5 includes execution of case studies to provide the final
evaluation of the degree of success of the HATS framework and methodology.

Within the HATS project, we opt for a research method based on continuous empirical evaluation of
the project results throughout the project execution. Specifically we use an iterative approach, such that
at every step of the process, work package members would consider scenarios and requirements as starting
points to develop the framework core, extensions and tooling. Furthermore, at every step of the process
we challenge the intermediate results by evaluating them against a criteria of requirements, preferably via
controlled experimentations. This allows for early feedback and continuous improvement. Therefore, WP5
has the important role to provide input that directs the work of other work packages, and the important
role to validate results. In order to fulfill this goal, WP5 defines the following working tasks: Require-
ments Elicitation (Task 5.1), Evaluation of Core Framework (Task 5.2), Evaluation of Modeling (Task 5.3),
and Evaluation of Tools and Techniques (Task 5.4). In particular, this document presents results from
Requirements Elicitation.

1.1 Goal of the deliverable

This document presents deliverable D5.1, which contains the results from initial Requirements
FElicitation (Task 5.1). In Task 5.1 we gather requirements in the form of detailed scenarios from
selected case studies, and identify general methodological concerns. Requirements Engineering in
D5.1 is driven by the owners of the example case studies used in HATS. In particular, FRH and
FRG bring in requirements from their industrial perspectives.

HATS Deliverable D5.1 Requirements Elicitation

The main goals of this document are as follows:

1. We study the general requirements of the HATS methodology. Specifically we collect high-level method-
ological requirements from both industrial and research perspectives. In particular from the industrial
perspective, we study how the HATS methodology may be integrated to existing development and
support processes, while from the research perspective, we investigate how existing methodological
challenges, which arise in the scientific areas in which the HATS consortium is specialized, may be
addressed.

2. We have interviewed members of the end user panel of the HATS project. End user panel is composed
of representatives of external companies interested in the HATS technology. In this document we
present an evaluation of these interviews in the context of HATS methodology.

3. We provide three case studies, which differ in profile, abstraction, size and application area. Specifically
we have chosen an academic case study of a trading system for handling sales in supermarkets [27, [10;
a case study of the Virtual Office of the Future [30] for supporting seamless execution of office tasks
independent of the office workers’ physical location, and an industrial case study on Fredhopper’s
server-based software systems [I5] providing search and merchandising IT services to e-Commerce
companies.

4. Through each case study, we investigate several scenarios, and for each scenario, we present a concrete
example detailing the typical steps in the development and support process of the software system
described in the case studies. We then identify technical concerns that arise from the concrete examples
and associate them to corresponding tasks from technical work packages 1 to 4, the result of which
would address these concerndl

We now give details on how requirements and concerns identified in this deliverable are used throughout
the HATS project.

The methodological requirements are used to guide the development of the HATS methodology in Task
1.1 as well as to guide the integration of different modeling techniques and tool support into the development
method. These requirements will also be used to evaluate on the effectiveness of the methodology. Conse-
quently these requirements will help the validation process (Tasks 5.2, 5.3 and 5.4) to provide constructive
feedback to the technical work tasks for further improvements.

In Task 5.2 we will study the methodological requirements in more detail and in particular we will
investigate suitable evaluation strategies with these requirements. These strategies will then be applied
throughout the validation process, starting with the validation of milestone M1 of the HATS project as part
of Task 5.2.

Through various scenarios from the case studies this deliverable identifies high-level concerns that should
be addressed by the technologies delivered by the project’s work tasks. We will carry out extensive analysis
to further refine these concerns in Task 5.2. The analysis will be carried out in close cooperation with
partners of individual work tasks. In Task 5.2 we aim also to define suitable evaluation methods and criteria
for each concern. These results will then be used to evaluate results of each work task as well as to guide
the validation process in WP5, starting with the validation of milestone M1 of the HATS project as part of
Task 5.2.

1.2 Structure of document

In this section we present the structure of this deliverable and provide the necessary detail to assist readers
navigating through this deliverable; we also highlight the scope of the requirements and concerns identified
in this deliverable. A summary of this deliverable is provided in Chapter [6}

!Detailed requirements analysis of scenarios will be conducted in Task 5.2 together with members of the technical work
packages

HATS Deliverable D5.1 Requirements Elicitation

1.2.1 Methodological requirements

In Chapter [2] we describe requirements of the HATS methodology in the context of industry and research.

Industry

In the context of industry, we used three main sources for gathering methodological requirements — First
is through the understanding of stakeholders’ needs in the development and support process of software
systems. Stakeholders in this process includes the managers that would have to decide on the adoption of
the HATS method as well as the users such as software developers and support specialists, which would apply
the HATS method to their daily work. Second is through examination of the most distinctive characteristics
of the software production method employed by the Fredhopper consortium member. Third is through the
evaluation of the interviews with members of the end user panel.

Research

In the context of research, we focus on methodological requirements from product line engineering [25].
Specifically we study the principle and foundation of product line engineering methodology and derive
requirements of the HATS methodology in the context of product line engineering.

1.2.2 Case studies

In Chapters and [5] we study the cases chosen as the sources of requirement elicitation of the HATS
project as well as the target where the evaluation of results produced from the project would be carried
out. Specifically Chapter [3| presents the case study of the trading system for handling sales in supermarkets,
Chapter 4] presents the case study of the Virtual Office of the Future, and Chapter [5| presents the industrial
case study on Fredhopper’s server-based software systems. Here we describe the structure of each case study
in these chapters.

Structure of case studies

We format each case study using the following structure:

1. We informally introduce the functionality and the architecture of the software systems in question.
This includes description of individual components of the systems and their interaction relationship.
We then briefly overview each scenario and the technical concerns the scenario would identify.

2. We divide each scenario section into subsections. In each subsection we present the content in the
following format:

(a) Description of the scenario, its relationship to the software system in question and the type of
concerns it aims to identify;

(b) A concrete example of the scenario. These are procedural steps, which reflect or portray the way
in which the software system is developed, used and maintained in the context of the scenario.
For each step, a single instance of the procedure may be provided to help work package members
to understand the scenario.

(c¢) Concerns identified from the scenario. These are technical issues, which may be addressed by
the HATS framework for improving qualities of the software system, which include correctness,
evolvability, trustworthiness and effective resource consumption, as well as the efficiency of the
development and support process of the software system. We associate each concern with one or
more work tasks in the HATS project when possible.

3. We provide a summary of our presentation of the case study and tabulate the association of concerns
with work tasks in the HATS project.

HATS Deliverable D5.1 Requirements Elicitation

1.2.3 Labeling
Methodological requirements

Each requirement harvested in Chapter [2 has a label consisting of a unique identifier prefixed with MR,
as well as a descriptive name. Table at the end of Chapter [2| shows an overview of the methodological
requirements.

Case studies

Scenarios and concerns in the case studies chapters are also uniquely identified. For the trading system case
study in Chapter [3| each scenario has a unique identifier prefixed by TS and a descriptive name, while each
concern has a unique identifier prefixed by T'S-C and also a descriptive name. Table shows an overview
of the scenarios and concerns considered in this case study, while Table maps each HATS project’s work
task to the concerns that the task could help to address. Both tables can be found at the end of Chapter

For the Virtual Office of the Future case study in Chapter [4] each scenario has a unique identifier
prefixed by VF and a descriptive name, while each concern has a unique identifier prefixed by VF-C' and
also a descriptive name. Table [I.1] shows an overview of the scenarios and concerns considered in this case
study, while Table maps each HATS project’s work task to the concerns that the task could help to
address. Both tables can be found at the end of Chapter

For the Fredhopper product case study in Chapter [5] each scenario has a unique identifier prefixed
by FP and a descriptive name, while each concern has a unique identifier prefixed by FP-C and also a
descriptive name. Table shows an overview of the scenarios and concerns considered in this case study,
while Table maps each HATS project’s work task to the concerns that the task could help to address.
Both tables can be found at the end of Chapter

We have included Table which maps task numbers to their task names.

1.2.4 Scope and structure

This deliverable defines high level requirements and concerns that the HATS framework should satisfy. Here
we consider the scope of the deliverable in terms of the methodological requirements and the concerns
identified through case studies. We stress that some methodological requirements and technical concerns
identified through case studies might not be achievable within a basic research project such as HATS. An
achievable scope for the validation process will be identified in Task 5.2 and become part of deliverable D5.2.

Moreover, in Task 5.2 we will carry out extensive analysis on the high level requirements and concerns.
The result will give a structured classification to the analyzed requirements. The requirement analysis in
Task 5.2 will also refine the requirements and concerns identified in this deliverable. This will minimize
ambiguity and maximize verifiability of the requirements and concerns throughout the validation process in
WP5.

Remark: Deliverable D5.1 is not meant to prescribe a comprehensive set of requirements for the technical
work packages 1—4. It provides initial input and needs to be complemented by requirements and concerns
provided by the work package teams themselves. Although this is not the standard approach to elicit require-
ments in a commercial software project, it is appropriate and from our point of view even mecessary in a
basic research project to bootstrap development of a method extending the state of the art. The work package
and task leaders are leading experts in their respective fields that will provide additional requirements in the
HATS method as well as the ABS language as soon as they know the case studies and scenarios introduced in
Task 5.1. The work of the work packages in HATS as a basic research project should not be over-constrained.
The requirements provided in D5.1 will be extended and detailed in T5.2 in close collaboration with all task
leaders based on D5.1.

HATS Deliverable D5.1 Requirements Elicitation

Task ‘ Task Name

WP 1: Framework

1.1 Core ABS Language

1.2 Feature Modeling, Platform Models, and Configuration
1.3 Analysis

14 System Derivation and Code Generation
1.5 Integrated Tool Platform

WP 2: Variability

2.1 A configurable deployment architecture

2.2 Feature integration

2.3 Testing, debugging, and visualization

2.4 Types for variability

2.5 Verification of General Behavior Properties
2.6 Refinement and Abstraction

WP 3: Evolvability

3.1 Evolvable Systems: Modeling and Specification
3.2 Model Mining

3.3 Hybrid Analysis for Evolvability

3.4 Evolvability at Bytecode Level

3.5 Autonomously Evolving Systems

WP 4: Trustworthiness

4.1 Security

4.2 Resource Guarantees

4.3 Correctness

4.4 Auto Configuration and Quality Variability

Table 1.1: A table relating work task numbers to their names

Chapter 2

Methodological Requirements

This chapter collects general requirements on the HATS methodology. Thereby, we distinguish different
perspectives. As product line engineering (PLE) provides the methodological basis of HATS we identify
requirements from the point of view of a PLE researcher. Furthermore, requirements from an industrial
perspective are presented. Fraunhofer IESE as an applied research organization focusing on technology
transfer provides general requirements in the HATS methodology to be able to introduce the HATS results
in industry during, but mainly after, the project. Fredhopper as the industrial partner in the HATS project
provides requirements from their perspective. Finally, we present requirements from members of the HATS
end-user panel elicited in telephone interviews. Some of the requirements described in this chapter will
automatically be fulfilled if the project is conducted according to its proposal, for instance, the need for em-
pirical evaluation of the HATS methodology is already manifested in work package five (WP5) on validation.
Others, like the tailorability of the HATS method to different organizational contexts, are not yet explicitly
mentioned in the proposal. Several requirements in this chapter, especially the ones presented in the section
on the Fraunhofer perspective (Section 2.2) are very ambitious to be fulfilled in a basic research project like
HATS. Consequently, their complete fulfillment is not in the scope of the HATS project. Nevertheless, we
list them here as researchers of the HATS project should always keep them in mind to increase the likelihood
that the HATS results can be transferred to industry after the project has been finished.

2.1 Product line engineering

This section provides general requirements from the product line engineering perspective. Thereby, we cover
topics like the overall product-line life cycle, application engineering, architecture, regression testing, and
evolution in general. We selected such topics based on our experience in Product Line Engineering.
Product line engineering (PLE) splits the overall development life-cycle into application engineering
(AE) and family engineering (FE) (see Figure 2.1) [24]. FE builds reusable artifacts that are stored in a
product line artifact base. Thereby, scoping provides the requirements to be fulfilled by FE. The product line
artifacts provided by FE are generic, i.e. they contain variation points. AE builds products based on reuse
from the product line artifact base. Variation points in reusable artifacts are resolved and product specific
extensions are made to come up with the final customer specific products. Product line engineering methods
in the end need to contribute to such essential activities in the product line life cycle. Either they support
FE, i.e. they need to be able to deal with generic artifacts containing variation points, or they address AE,
i.e. they need to deal with reuse and reusable artifacts that need to be instantiated, evolved, tested etc. for
a specific customer’s product. Product line methods like Fraunhofer PuLSE or the product line practice
framework of the Software Engineering Institute [9] list essential product line activities that need to be
conducted in the context of the product line life cycle. The HATS methodology should be aligned with such
existing comprehensive product line approaches. Hence, we can formulate the following requirement.

10

HATS Deliverable D5.1 Requirements Elicitation

Requirement (MR1). Integrating Product Line Engineering: The HATS methodology should be inte-
grated with the Product Line Engineering (PLE) life-cycle as it is established in typical product line organi-
zations and should be aligned with existing product line approaches.

Product
Requirements Q ;

| Application Engineering |

7 A
U —
R 1
¢ L 1
Yoo 3 (D
Ay Product 2]
ﬁ‘ Line o
Product PV L Artifact Base A
R 6,

Requirements A St

| Family Engineering

Product Line Infrastructure

Figure 2.1: Product Line Life-Cycle

The ultimate goal of every product line organization is to produce products during AE. AE can be
done in various fashions depending on the characteristics of a certain application domain. In general,
one can distinguish approaches involving engineering activities during AE, i.e., for instance, design and
implementation activities are part of AE [5] and approaches that try to automate AE, i.e. all engineering is
done in FE and products are derived automatically based on a feature configuration selected by the customer
or a provided specification [I1]. HATS specifically looks at automatic product derivation but should keep
other engineering approaches used in practice in mind as well.

Requirement (MR2). Integrating application engineering: The HATS methodology should be inte-
gratable with different application engineering approaches.

AE typically involves testing activities, especially if customer specific requirements have been realized.
Besides effort reduction during engineering a new product by means of reuse, effort reduction is expected in
the AE testing step as well. It is expected that test artifacts (e.g. test cases) can be reused. Furthermore, it
is expected that overall less testing is necessary during AE, since reusable artifacts are employed that have
been already tested during FE.

When reusable artifacts are being changed in a product line, it must be possible to effectively run
regression tests at all places where that reusable artifacts are actually being reused to assure the change did
not introduce any flaws into the system. Consequently, regression test cases should be provided by FE and
being reused in AE. The regression tests should be evolvable besides the system itself. This leads us to the
following requirement.

Requirement (MR3). Testing reusable artifacts: The HATS methodology should allow the automated
generation of regression tests in FE that ensure that changes on a reusable artifact do not violate properties
of product line members that reuse that artifact.

One of the product line practice areas mentioned above that should specifically be pointed out is archi-
tecture. The product line architecture is referred to as the core artifact of a product line. According to [20]
software architecture is defined as follows: “A software architecture is a set of concepts and design decisions

11

HATS Deliverable D5.1 Requirements Elicitation

about the structure and texture of software that must be made prior to concurrent engineering to enable
effective satisfaction of architecturally significant explicit functional and quality requirements and implicit
requirements of the product family, the problem, and the solution domains.” A product line architecture
is a generic artifact and defines the architecture for all the members of a product line. Compliance of a
product architecture with the product line architecture facilitates high reuse rates of product line compo-
nents. The product line architecture implies certain constraints to the product line components to be able
to realize system wide properties like performance, security, availability, etc. During component design the
constraints imposed by the architecture, for instance, regarding performance or how to realize security need
to be considered. To be able to reason about the overall quality of the system on the architecture level,
components should explicitly specify their quality properties, i.e. languages to specify components like the
envisioned ABS language should provide the possibility to express quality properties of components. Besides
the possibility to reason about the overall system quality on an architecture level this enables to specify
evolution requirements. If in the context of an evolution a component is to be replaced, for instance, the
specification of the component’s quality properties can be used to select and evaluate the new component.
Hence, we can formulate the following requirement.

Requirement (MR4). Providing language support for PLE: The HATS methodology should take the
role of the product line architecture as the core artifact of a product line explicitly into account. Consequently,
the ABS language, should provide language constructs to specify quality properties of components.

Product Line Engineering involves three types of artifacts: (a) reusable artifacts, (b) customized instances
of reusable artifacts and (c) product-specific artifacts. Reusable artifacts are the result of FE. The goal of
FE is to provide reusable artifacts that can be easily employed in the context of a product line member for
solving a concrete problem. Customized instances of reusable artifacts are the result of AE. In this case,
already existing reusable artifacts are either reused as-is (i.e. without any modifications) or configured and
then adapted to the needs of a product line member. Finally product-specific artifacts are also the result of
AE. Those artifacts emerge in the context of a particular product line member without reusing any artifacts
provided by FE.

Product line evolution scenarios can hence be organized along the above three categories. A change
request may either involve a reusable component, a customized instance or a product-specific component.
The first two categories are of particular interest. When a reusable component evolves the change might
need propagation to all customized instances that originate from it. On the other hand, when a customized
component instance evolves, it should be easy to track that change so that reusable components the instance
has been derived from can be revised. The ABS language could support evolution explicitly as follows.

Requirement (MR5). Specifying reusable contracts: The ABS language should allow product line en-
gineers to specify reuse contracts. A reuse contract describes how a component can be reused and specifically
how it is actually being reused within a given product line member.

For facilitating software impact analysis it is necessary that constituent parts of a software system have
clearly specified interrelations. In the FE phase of Product Line Engineering reusable artifacts as, for
instance, components are developed. Those components are reusable by containing variation points that
capture what may vary in the component and how it may vary. For enabling impact analysis on reusable
components it is necessary to have clear relations between the components but also between the variation
points within the components.

Requirement (MR6). Defining reusable artifacts and variation points: The HATS methodology
should allow defining reusable artifacts and variation points contained therein as well as the according in-
terdependencies.

2.2 Organization: Fraunhofer IESE perspective

In this section the requirements from an organization perspective are elaborated in detail. As mentioned
above we distinguish between managers deciding on the adoption of the HATS methodology and users as well

12

HATS Deliverable D5.1 Requirements Elicitation

as Fredhopper as a member of the HATS consortium and members of the HATS end-user panel. Industrial
organizations are mainly interested into how the HATS methodology can be adopted in their specific context
and into the expected benefits. In the industrial context several stakeholders can be identified in the HATS
context: managers that have to decide on the adoption of the HATS method in their project or even the
overall organization and users or developers applying the HATS method in their daily work.

2.2.1 Managers’ perspective

This section covers the requirements in the HATS methodology from the point of view of a manager in an
industrial context. They have been derived by the authors of this deliverable and have been confirmed in
the interviews with members of the end-user panel.

Typically, organizations have established development processes that should be improved but not re-
placed. Organizations want to keep development practices that have proven to work well in their context
and select new practices to solve existing issues. Let’s assume the following example: An organization al-
ready uses component-oriented development, for instance, according to KobrA [4], and models components
using the Unified Modeling Language(UML). Developers have several years of experience with UML and
UML models are successfully used for code generation. Introducing the HATS ABS Language and related
code generation techniques in this context requires their adaptation to the described context. The usage of
ABS and the HATS code generation technique needs to be combined with UML modeling and UML based
code generation. Otherwise the acceptance rate of the HATS approach in such an organization will be low.

Requirement (MR7). Tailorability: The HATS methodology must support its tailoring to a specific orga-
nizational context. The HATS methodology needs to provide certain adjustment parameters that enable its
tailoring to, for instance, the existing development practices in an organization, the application domain, the
structure of an organization, or the experience of the developers.

A complete introduction of the HATS methodology in an organization in a big-bang fashion leads to
large-scale changes that may compromise the ongoing development activities. Furthermore, certain aspects
of the HATS methodology are not relevant in a specific organizational context. Hence, an incremental and
partial introduction of the HATS methodology needs to be possible which can be achieved by a modular
structure of the HATS methodology. Different adoption strategies should be sketched that illustrate in which
order certain modules of the HATS methodology should be introduced depending on the current situation
in an organization.

Requirement (MRS8). Incremental adoptability: The HATS methodology must be designed modularly
to support its incremental introduction as well as partial adoption.

Managers demand a solid basis for decision making in their organization whether the HATS methodology
is appropriate or not. Case studies and controlled experiments should show the pros and cons of the adoption
of the overall HATS methodology but also of single modules of the HATS methodology that can be applied
in isolation.

Requirement (MR9). Empirical evaluation: The HATS methodology must be empirically evaluated to
demonstrate that the expected benefits like higher quality in terms of trustworthiness, lower effort and cost
to achieve such quality, and less time required can be achieved. The benefits need to be quantified by means
of concrete measures and the context in which the empirical evaluation has been conducted needs to be
thoroughly documented.

The HATS methodology aims at providing support for small, medium, and large systems and organiza-
tions. In the case of large systems it should be applicable to system parts first and then be extended to
cover the overall system. This requires the HATS methodology to be applicable to small systems or system
parts without causing significant overhead in terms of effort.

13

HATS Deliverable D5.1 Requirements Elicitation

Requirement (MR10). Scalability: The HATS methodology must be scalable, i.e. it needs to provide high
quality results by using reasonable effort in the case of small, medium, and large scale systems. Applying
it to larger systems parts or systems with higher complexity should not cause more than linear increase of
effort and constantly deliver high quality.

2.2.2 Users’ perspective

This section covers the requirements in the HATS methodology from the point of view of a user from
industry, i.e. a developer, tester, architect, designer. The requirements have been derived by the authors of
this deliverable and have been confirmed in the interviews with members of the end-user panel.

Requirement (MR11). Learnability: The HATS methodology must be easy to learn. The new concepts to
be applied by developers in an organization introducing the HATS methodology should be kept simple to be
understandable by developers with average skills and experience. This implies offering of good documentation,
tutorials, incremental examples.

Requirement (MR12). Usability: The HATS methodology must be easy to use. Developers with average
skills and experience should be able to apply the HATS methodology with reasonable effort. For example, this
implies tools designed for ease of use.

Requirement (MR13). Reducing manual effort: The HATS methodology must reduce manual effort as
well as the error-proneness of manually defined code.

If such requirements are fulfilled, the HATS methodology will find broad acceptance by developers as
their satisfaction at work will be increased.

2.3 Industrial applicability: Fredhopper’s perspective

In this section we examine the most distinctive characteristics of the software production method of the
Fredhopper consortium member as a provider of a service-oriented server software product. We aim to
collect methodological requirements to the HATS framework, so that it can easily support the Fredhopper
production method out of the box.

Fredhopper offers services targeted at improving catalog-based sales over the Internet by assisting users
to find relevant items quickly. The services consist of different functional blocks - searching of sale items, fast
navigation of categorized items, promotional items, integration with third party online advertising systems
(such as Google ADs), user context-based search, alternatives suggestions, and so on. Each block addresses
different areas of the main mission — to help clients increase their sales over the Internet.

2.3.1 Developing an evolving product

Fredhopper develops and maintains its own server software. Fredhopper regularly enhances its product
with new features to constantly offer to its clients a competitive edge. Therefore, Fredhopper employs a
development cycle that includes large iterations that regularly produce quality versions of the product. In
this way, the product provides more values to clients at each evolutionary step.

Requirement (MR14). Iterative formal modeling: The HATS framework plans to apply formal methods
for enhancing software production in many aspects. In iterative development, we want to allow iterative
formal modeling as well. For example, if the framework employs code generation, we have to consider model
mining out of code too. This will allow the developer to integrate the changes in the code into the model.

Since most software companies produce their software using many informal methods to produce the code
of their products, these companies have to attest the quality of their products by doing extensive checking
on whether the software does what one designs it to do. One typical approach includes testing by a team

14

HATS Deliverable D5.1 Requirements Elicitation

of Quality Assurance (QA) engineers. The test plans typically contain test cases harvested from design
specifications, solving of previous bugs, user requirements, and so on. This kind of testing is expensive,
especially with products that evolve. Each iteration over the product code base may introduce changes
to it. Every change brings the risk of regression - functionality attested in a previous iteration, suddenly
becomes wrong or inaccessible.

Fredhopper maintains a test system as a satellite to the product code base. The test system consists
of automated testing facilities and tests cases to perform. The test system contains tests which if passed
altogether, attest the quality of the product version. The automated test system changes or grows as the
product changes or grows with each product version. Naturally, Fredhopper uses the test system to quickly
detect regression due to changes in the code base. The test system does continuous integration to rerun
tests based on several events: weekly, nightly, and based on individual updates made to the code base.

Requirement (MR15). Test system evolution: The HATS framework has to support iterative updates of
the test system. For example, if we have test generation, tests may change following a change of constraints
in the model that the framework generates. The tools in the HATS system have to update the test system
with the new or changed tests. The updated test system would subsequently rerun the changed tests.

We point out that software development companies that contract one-time pieces of software, may not
need to invest in such an incremental system, as clients may not agree to pay the additional investment to
create and maintain it. Still, in the case of a necessary change at a later point in time, the client will pay
the increased cost of a complete retest, instead of the initial investment in a test system that captures and
automates the test of the previous iteration.

2.3.2 Server software

Fredhopper backs its service to its clients with server software that it deploys for them. This server software
runs long time and has to meet the Service Level Agreement (SLA) with the client. The SLA includes,
among others, functionality, data interoperability, support and performance guarantees. For example, the
performance guarantees include:

e Stable memory usage guarantee;

e Number of concurrent user requests guarantee;
e Statistical average response time guarantee;

e Up time guarantee.

In order to make sure Fredhopper maintains the SLA between versions of its product, Fredhopper’s
iterative development process includes a phase which measures and compares various aspects of performance.
For example, for memory guarantees, one measures the memory footprint of changed modules over different
data sets. Measuring CPU utilization under concurrent user stress shows the capacity of the current code
base to process concurrent requests. Measuring average response time on simulated user requests makes
sure that the current code base covers the response time guarantee.

Requirement (MR16). Resource guarantees: The HATS framework will address resource guarantees.
In this context, it would prove useful if the framework tooling allows performance metrics to be broken
down using structural information from the models. This resembles ’code profiling’ which uses structural
information mined from the code to decompose the overall performance measuring down to smaller pieces,
In this way developers may focus on improving the biggest contributors to delays. The same applies to
memory and concurrency bottlenecks (high lock contention, etc).

15

HATS Deliverable D5.1 Requirements Elicitation

2.3.3 Software as a service

Fredhopper offers its software services in two different manners:
e Software product;
e Software as a service.

As a software product, Fredhopper integrates its own product with the electronic commerce (typically a
web shop) software of the client by installing and integrating it in the client’s I'T infrastructure. As a software
service, Fredhopper deploys a product instance in-house and leases to its clients a software service over the
Internet according to some SLA. The SLA for software service includes extended guarantees compared to
the product SLA:

e Additional connection guarantees;
e Interface guarantees.

Since Fredhopper hosts the service explicitly for its client, connection guarantees refer to additional
requirements for connection throughput between the client infrastructure and Fredhopper infrastructure.

Interface guarantees define the messaging formats and protocols that Fredhopper service has to adhere
to so that the client can have continuous service. This requirement becomes important, because when
hosting, Fredhopper may update the server version transparently to allow clients to get improvements for
performance, bug fixing and new features. In order to make sure the client does not get any undesired
functional degradations, Fredhopper has to strictly adhere to the same protocol.

In contrast, a product hosted at a client requires to fix the product version. In this case, software updates
at a client happen explicitly and the client typically plans testing phases. For service-oriented deployment,
Fredhopper benefits from supporting transparent updates with no-protocol-degradation guarantees.

Requirement (MR17). Protocol analysis: The HATS framework addresses verification and protocol
checking issues. From the methodological point of view, it would prove useful to provide an analytical tool
that Fredhopper can integrate in its service provisioning process. The tool can support the detection of any
protocol violations. Violations may be originated from unanticipated regressions in the Fredhopper product or
unanticipated client misuses of the protocol. Furthermore, if such a tool can operate as a runtime component,
Fredhopper may provide a proper default handling of the issue automatically during runtime. Note that the
possibility for such errors comes from the informal process of producing the Fredhopper product. In addition,
Fredhopper does not have control over the remote client, which may abuse the protocol due to own regressions
or incorrect implementations.

2.3.4 Integrated tools development environment

Fredhopper uses a modern development environment. Such an environment has the characteristic that it
integrates all necessary tools. The integrated development environment (IDE) manages all resources that
constitute the coding representation of the final product. These include models, text sources, tests, and
so on. The IDE also integrates all activities in a development process - modeling, writing code, testing,
collaboration with other team members, and so on.

Requirement (MR18). Integrated environment support: The tools of the HATS framework have to
support usage in an integrated environment. As such these tools have to have:

o Interoperable formats. HATS tools that we expect to use in a sequence, have to speak common formats.

o Common visual representation. HATS tools may have different cores, working with different for-
malisms. Nevertheless they have to operate in the common visual and easy to use control environment
of the IDE.

16

HATS Deliverable D5.1 Requirements Elicitation

e Common resources. An IDE manages project resources by building a heterogeneous repository of
resources, which one may share among teams and team members. The tools have to take into account
versioning and collaborative work.

o Ability to work with large projects. HATS tools have to scale. This may even mean that individual tools
and formalisms may have to introduce partitioning of models and splitting and merging of models just
for the sake of utilizing work across the team.

2.4 End-user panel perspective

In this section we present the requirements that the end-user panel stated in interviews that we conducted
with their representatives.

Many organizations in practice already use model-based development approaches. They invested con-
siderable effort in the past to construct models that they use in development. Using the HATS methodology
in the future including the use of the ABS language may not lead to a loss of such efforts, i.e. organizations
want to reuse their models in the context of the HATS methodology. This leads to the following requirement.

Requirement (MR19). Existing modeling techniques support: The HATS methodology must be able
to cope with existing models in organizations. To allow the reuse of models from languages typically used in
practice today, for instance, UML activity diagrams with Petri-net semantics, the HATS methodology should
provide model-transformations from those models into ABS models.

Note that to address this requirement is probably out of the scope of the research agenda of the HATS
project and should be pursued in follow-up activities. The requirement has also to be relativized to the
existence of a formal semantics of source models. While activity diagrams have a fairly clear semantics, in
practice many companies use ad-hoc profiles that have at best informal meaning.

Organizations that are customizing their products for specific customers often try to restrict the allowed
changes. They define extension points in their applications and prevent modifications of the core application.
In doing so, they keep control over the evolution of the core application. One of the key benefits of such an
approach is that the core application can be evolved without interfering with customer specific extensions.

Requirement (MR20). ABS extensibility: The ABS language should provide the possibility to on the
one hand specify extension points of an ABS model to be used, for instance, for customizing activities and
on the other hand specify a core model that should only be evolved by developers of the application core.

Large information systems today are often based on service-orientation. Services support the alignment
of business and IT by providing a means to map business related services to IT services. Sometimes services
are composed to higher-level services to better align with the workflows of certain customers.

Requirement (MR21). Service orientation: The HATS methodology, and in particular the ABS lan-
guage, should be able to deal with service-orientation. Ideally, the ABS language provides constructs to
specify services and their properties. Additionally, the composition of services should be considered.

Another major characteristic of today’s information systems is that they are surrounded by lots of
middleware realized in different technologies. Often, the behavior of such middleware is not specified which
can lead to unexpected reactions of the respective software.

Requirement (MR22). Middleware abstraction: The ABS language should be able to abstract from
concrete middleware technologies and provide means to describe the expected behavior of middleware solu-
tions.

The architectural style of a system determines the component types and connector types that are used
to model a concrete system according to that style. Component and connector types have specific properties
that need to be expressible by the language used to model components and connectors, in the case of HATS
the ABS language.

17

HATS Deliverable D5.1 Requirements Elicitation

Requirement (MR23). Architectural style: The ABS must be able to specify the properties imposed by a
specific architectural style that is used for a concrete system to be modeled. Ideally, the ABS language would
provide different variants according to the architectural style used in the architecture of a concrete system
and provide the possibility to easily define new variants of it to address specific architectural styles.

2.5 Summary

Table summarises all methodological requirements for short reference. We have presented requirements
grouped by the different sources. We have selected representative source that guarantee that HATS pro-
duces an efficient and usable methodology for applying formal methods to software development. The four
categories of requirements emphasize the following issues:

Product line engineering This category focuses on support for PLE with formal methods.

Organization This category focuses on adoption, integration of the HATS new method into an existing
infrastructure for software production, including large operations.

Industrial applicability This category focuses on modern professional product-based development that
includes evolving products with some performance guarantees.

End-user panel This category focuses on modern trends in productivity and knowledge management such
as links to different existing modeling languages and architectural styles for using them, middleware
support, and service orientations. Requirements in this category were harvested by interviewing mem-
bers of the end-user panel of the HATS project.

Requirements in the categories “product line engineering” and “industrial applicability” are more specific
than those in the categories “organization” and “end-user panel”. In particular we envisage the HATS
methodology will meet some of these requirements (e.g. MR1 and MR14) by design, while other requirements
(e.g. MR3 and MR16) in these two categories will be met by delivering corresponding technical contributions
from respective work tasks.

For more general requirements in the categories “organization” and “end-user panel”, we will apply
further scoping to them so that HATS could contribute within the project time frame and resources. In
some cases, for example, MR19 this could mean to defer addressing requirements in follow-up projects.
Scoping will be carried out in Task 5.2. In addition, Task 5.2 will further analyze all requirements to clarify
and finalize the mapping of work from requirements to work tasks.

18

HATS Deliverable D5.1

Requirements Elicitation

Requirement Identifiers | Requirement Labels Reference
Product Line Engineering

MR1 Integrating Product Line Engineering Page |11
MR2 Integrating application engineering Page 1]
MR3 Testing reusable artifacts Page 11
MRA4 Providing language support for PLE Page 12
MR5H Specifying reusable contracts Page 12
MR6 Defining reusable artifacts and variation points | Page 12)
Organization

MRY7 Tailorability Page (13
MRS Incremental adoptability Page 13
MR9 Empirical evaluation Page 13
MR10 Scalability Page 14
MR11 Learnability Page 14
MR12 Usability Page [14]
MR13 Reducing manual effort Page 14
Industrial Applicability

MR14 Iterative formal modeling Page |14
MR15 Test system evolution Page 15
MR16 Resource guarantees Page 15
MR17 Protocol analysis Page 16
MR18 Integrated environment support Page 16
End-User Panel

MR19 Existing modeling techniques support Page |17
MR20 ABS extensibility Page [17
MR21 Service orientation Page 17
MR22 Middleware abstraction Page 17
MR23 Architectural style Page 18

Table 2.1: Methodological requirements

19

Chapter 3

Trading System Case Study

3.1 Overview

The following example describes a Trading System as it can be observed in a supermarket handling sales.
The Trading System is a typical example for a distributed component-based information system. It includes
the processes at a single cash desk like scanning products using a bar code scanner or paying by credit
card or cash as well as administrative tasks like ordering of running out products or generating reports.
The following section gives a brief overview of such a Trading System and its hardware parts. The Trading
System example was also used in the CoCoME modeling contest [27], [10], which was based on an idea of
Larman [23].

Figures and depict the basic structures of a single cash desk with the connected peripheral
equipment such as bar code scanners, credit card readers, etc., as well as the store and enterprise server
infrastructure. A store consists of an arbitrary number of these cash desks. Each of those is connected to
the store server, holding store-local product data such as prices and inventory stock for each store. The
store client, which is also connected to the server, allows manipulation and analysis of store-local product
data. Additionally, all stores are connected to an enterprise server, which holds global product information,
such as product descriptions and bar codes. An enterprise client is connected to the enterprise server, which
allows to modify the global product data, e.g., adding or removing product types, and also allows to generate
a set of statistics.

The cash desk is the place where the cashier scans the goods the customer wants to buy and where the
paying (either by credit card or cash) is executed. Furthermore, it is possible to switch into an express
checkout mode which allows only customers with few goods and cash payment to speed up the clearing. To
manage the processes at a cash desk, a lot of hardware devices are necessary (see Figure [3.1). Using the
cash box available at each cash desk, a sale is started and finished. Also the cash payment is handled by
the cash box. To manage payments by credit card, a card reader is used. In order to identify all goods the
customer wants to buy, the cashier uses the bar code scanner. During each transaction the cashier enters
respective product IDs using a keyboard. Entering the price of a product manually is not allowed, as this
would exclude automatic inventory management. After entering all products, the customer pays the final
product value either by cash or credit card. At the end of the paying process, a bill is produced using a
printer. Each cash desk is also equipped with a light display to let the customer know if this cash desk is in
the express checkout mode or not. The central unit of each cash desk is the cash desk PC which wires all
other components with each other. Also the software which is responsible for handling the sale process and
amongst others for the communication with the bank is running on that machine.

For a more detailed description of the Trading System, we refer to [27].

20

HATS Deliverable D5.1

Requirements Elicitation

Cash Desk

Bar Code
Scanner

ﬂ/

Cash Box

Printer
v
\ / Light Display

\

Cash Desk PC

Bank

Figure 3.1: The hardware components of a single cash desk. Image taken from [27].

Store

Cash Desk Line

Kt

i

Cash Desk —
Cash Desk —

Cash Desk —

Cash Desk —

Store Server

1

Store Client

m

Figure 3.2: An overview of entities in a store which are relevant for the Trading System. Image taken

from [27].

Enterprise

Store
Store

Store

Store

ki

Enterprise
Server

Enterprise Client

Figure 3.3: The enterprise consists of several stores, an enterprise server and an enterprise client. Image

taken from [27].

21

HATS Deliverable D5.1 Requirements Elicitation

3.2 Scenarios

3.2.1 Scenario TS1: Coupon handling feature
Description

This scenario covers the case of adding a new feature to the Trading System. As a concrete example, coupon
handling is added to the Trading System.

Concrete example

The current trading system implementation does not have the possibility of handling coupons. Coupons
allow customers to get a discount on a purchase. The discount may either be fixed to a certain amount of
money, e.g., 5 Euro, or relative to the actual amount of a purchase, e.g., 5%. At each purchase at most one
coupon can be redeemed, i.e., multiple coupons cannot be combined. Coupons are customer agnostic, which
means that they are not bound to a certain customer.

Coupons have a validity period, which exactly defines the days when a coupon can be redeemed by the
customer. This includes a start date and an end date.

Coupons can either be unique or common. A unique coupon can only be redeemed once, which is
ensured by the system. A common coupon can be redeemed multiple times, the system only has to ensure
the validity period. There may also exist multiple copies of a common coupon.

Coupons can be generated in different ways. For example, a shop may have certain discount days, on
which each customer gets a coupon on each purchase together with the bill. Such a coupon could, for
example, be redeemed on the next purchase on a different day. In that case, each coupon will be unique.
Coupons could also be printed in newspapers as part of an advertisement. Such coupons would be common,
and the cashier has to invalidate these coupons manually, by shredding them, for example.

Concerns and envisioned support by HATS

Concern (TS-C1). Correctness: It should only be possible to redeem a coupon within its validity period.
In addition, a unique coupon should only be redeemed once. The system must guarantee both properties.

HATS should provide mechanisms to ensure these properties. Ideally HATS would allow for a full
verification (T2.5, T4.3) of this property on the model level. On the implementation level, either code
generation (T1.4) should be applicable or a correctness verification of the implementation with respect to
the model (T2.6, T4.3). At least, it should be able to generate test cases to validate the implementation
(T2.3).

Concern (TS-C2). Failure isolation from standard sales process: The coupon functionality should
be implemented in a way that allows the standard sales process to work, even if the coupon functionality is
not working at runtime. In that case, it should be possible by the cashier to manually apply the discount
of the coupon to the purchase price.

HATS should provide support for guaranteeing such failure isolation. Ideally, the coupon handling would
be modeled as a separate feature (T1.2) and HATS would be able to verify failure isolation on the ABS
model level (T1.3, T2.2, T2.5, T2.6). If a complete feature separation is not possible, HATS should be
able to ensure that the evolution from the old version to the new version preserves the mentioned property
(T3.1, T3.3). It might also be the case that such a property can only be verified on the final product (T4.3).
Finally, self-monitoring and self-correction techniques could be applied (T3.5).

Concern (TS-C3). Security: It should not be possible for third parties to create fresh valid coupons. A
coupon is valid if it is accepted by the system and results in a purchase discount. A coupon is fresh if it was
not generated by the system itself. However, the system does not have to guarantee that existing coupons,
i.e., coupons which have been generated by the system, cannot be copied.

22

HATS Deliverable D5.1 Requirements Elicitation

HATS should provide support for ensuring these security properties. Most likely, many techniques must
be applied, ranging from the correctness verification of the component, which validates coupons (as described
above), to guaranteeing confidentially and privacy policies (T4.1).

Concern (TS-C4). Resource: The system response time may not be noticeably slowed down during the
sales process by the additional coupon functionality.

HATS could help here by allowing the specification of such resource properties on the model level and
ensuring this property on the implementation level (T4.2).

Concern (TS-C5). System upgrade: Existing cash desks need to be easily upgraded by the new software
functionality. Ideally this would be done at runtime, while the cash desks are running.
HATS should allow to guarantee the safeness of such upgrades, ideally at runtime (T3.1, T3.3, T3.4).

3.2.2 Scenario TS2: Cash desk variability
Description

The trading system was originally designed as one possible configuration of a product line. As there is an
increasing demand by shop managers to tailor the shop application to specific needs, we want to set up our
system as a product line to realize several shop scenarios.

Concrete example

A cash desk system should always allow a cashier to perform payment transactions. There are, however,
multiple ways to realize this. The payment options which can be available are cash, credit card, prepaid
card, or electronic cash system like Maestro. Depending on the payment options, there is a need for several
additional devices which allow to do credit card transactions. There can also be multiple ways for a cashier
to enter bought goods into the system. For example, a barcode scanner, an RFID scanner or a keyboard
can be provided which allows the cashier to enter the respective product number. Some cash desks may
furthermore provide a scale to weigh goods whose prices are not calculated on a per piece basis. Shop
managers want to select payment options which are available to their clients and only need the required
devices to realize these payment options. The same applies for input options to the cash desk system.

Concerns and envisioned support by HATS

Concern (TS-C6). Variability modeling: The HATS approach should provide support for modeling
the variability at the language level (T1.1, T1.2). An adaption of the ABS model to incorporate feature
modeling, different platform models and configurations should enable modular description of the presented
scenario using the HATS modeling approach (T1.2). It should furthermore be possible to generate different
configurations of the cash desks (T1.4).

Concern (TS-C7). Correctness: The HATS approach should guarantee that all possible product config-
urations are correct for some definition of correctness, e.g., can be compiled, or satisfy certain invariants
(T1.5). Also, a description of valid configurations should be possible (T2.1). To support these configura-
tions, there is also a need for tools which allow for a simple deployment process of different configurations
(T2.2). Visualization of variants, test generation and debugging for single features (T2.3) and their relations
is also of great importance. This can furthermore be supported by type systems and specification aspects
which consider variability (T2.4).

3.2.3 Scenario TS3: Dependability property
Description
This scenario covers the case of formulating and verifying dependability properties [19]. As a concrete

example, one of the most important properties of a sale system, exact payment, is analyzed.

23

HATS Deliverable D5.1 Requirements Elicitation

Concrete example: Exact payment

For the customer of a shop, it is essential that he or she pays not more than the amount of the complete
purchase costs. It is acceptable for a customer to pay less, though. From the shop owners’ perspective, a
customer should pay at least the price that a purchase costs, but may also be interested in not displeasing a
customer by charging too much. So, essentially, a shop owner is interested that a customer pays exactly the
amount of money that the purchase costs. When the customer pays by cash, the system cannot guarantee
much, because it is in the responsibility of the cashier to correctly count the money. However, when the
customer pays by an electronic payment system, e.g., a credit card, the system should guarantee that the
correct amount of money is withdrawn from the corresponding account. Two properties must be ensured
by the system, namely that the purchase price is calculated correctly, i.e., it must exactly reflect the sum of
all bought products, and that the calculated price is correctly withdrawn from the electronic account. Here
again, the system must rely on the cashier to correctly scan all products.

Concerns and envisioned support by HATS

Concern (TS-C8). Correct price calculation: The component that calculates the price of a purchase
must do this correctly.

HATS should provide mechanisms to verify the correctness of the price calculation on the model level
(T2.5, T4.3). On the implementation level, correctness should be ensured by either generating correct code
from the model (T1.4), showing implementation correctness with respect to the model (T2.6), or at least
by generating test cases (T2.3).

Concern (TS-C9). Transactional behavior: The electronic payment process must be done in a transac-
tional way, i.e., it should either completely be done or not at all. In the latter case, the payment process
must either be retried (for a fixed number of times) or fall back to cash payment. The system may only finish
the payment process if the correct amount of money was either been withdrawn from an electronic account
or paid by cash. If the customer has not enough cash to pay the purchase and the electronic payment did
not work, the payment process has to be canceled by the cashier. The system must also guarantee that an
electronic account is only charged once, or not at all, but never more than once for a single purchase.

HATS should provide mechanisms to guarantee the transactional behavior of the overall payment process.
This property should be verifiable on the model level (T2.5, T4.3). Correctness on the implementation level
should either be guaranteed (T1.4, T2.6) or at least, test cases should be generated, which cover the possible
failure cases (T2.3).

Concern (TS-C10). Secure transactions: It should not be possible by third parties to interfere with the
payment process.
HATS could provide mechanisms to ensure this (T4.1).

3.2.4 Scenario TS4: Authentication policies
Description

So far, we have not considered security aspects in our shop application. To introduce the application into a
real-life scenario, we have to take authentication and security mechanisms into account.

Concrete example

We want to distinguish between a set of roles in our application model. First of all, we have customers,
cashiers and shop managers. Then, there are system administrators and enterprise management staff. Shop
managers should only be allowed to access inventory information for their own shop and the distribution
center. Cashiers should not be able to directly modify the inventory (only by selling goods). Neither shop
managers nor cashiers should be able to access the credit card information of customers.

24

HATS Deliverable D5.1 Requirements Elicitation

Concerns and envisioned support by HATS

Concern (TS-C11). Security modeling and analysis: HATS should support modeling of authentication
and security features in the ABS language. Furthermore, analysis and verification of security policies at
the model and at the implementation level should be possible (T1.3, T2.5, T4.1, T4.3). Another important
property would be to show that the security model is implemented in a correct way. The HATS approach
should also provide the possibility to model security aspects on top of existing system specifications in a
modular way.

3.2.5 Scenario TS5: Feature evolution - Loyalty system
Description

This scenario covers the case of a feature evolution. As a concrete example, the coupon handling feature of
Scenario TS1 is extended to a full loyalty system.

Concrete example

The coupon handling feature described in Scenario TS1 only allows anonymous coupons to get a discount.
To create an even stronger binding of a customer to a certain company or shop, loyalty programs can be
used. In a loyalty program, customers can have a special loyalty card, which they can use for each purchase.
Customers can then get discounts, which can be based on their individual shopping behavior. For example,
it is possible to give a customer a discount of 10 Euros for every 100 Euros the customer spent when using
his or her loyalty card. This total amount can be based on the sum of recent purchases of the customer and
is not restricted to one single purchase.

Detailed description In order to implement the loyalty program, individual customers must be managed
by the system. To participate in the loyalty program a customer has to fill out a form with his or her name
and address. Each new customer gets a unique customer id. The customer is then given out a loyalty card.
In general, the customer will have to sign the card, and must agree that his or her private information and
shopping behavior can be stored in the system and can be used for calculating the discount.

A loyalty card is a plastic card with a unique card id and a corresponding barcodeﬂ which allows for
an automatic scanning of the card id. The card id is also printed on the plastic card to allow for a manual
input by the cashier. It is possible to have multiple loyalty cards assigned to the same customer, e.g., to
allow partner cards.

Whenever the customer does a purchase, he or she is asked for the loyalty card, which is then scanned
by the system. After the payment of the purchase has finished, the corresponding information is stored in
the system. In a first simplified version, only the amount of the purchase may be stored, while in a more
advanced system, the complete product list of the purchase could be stored.

The discount, which is provided to the customer, can be given in various different ways. For example,
there could be a fixed discount of 1% for every purchase, which is directly applied to the current purchase.
Another possibility is to print out an individual coupon for the customer, which he or she can redeem on the
next purchase. The individual coupon is bound to the customer and can only be redeemed together with
a corresponding loyalty card. Such individual coupons can also be sent by mail to the customer’s address,
either if the customer reached a certain purchase amount, or as part of an advertisement. Like the other
coupons described above, these coupons also have a validity period.

Concerns and envisioned support by HATS

All concerns, which are already mentioned in the coupon handling scenario, also apply to this scenario, so
these concerns are not repeated here. Only those concerns which are new to this scenario are mentioned

LOther technologies like magnetic strips, smart cards, or RFID chips are left out for simplicity.

25

HATS Deliverable D5.1 Requirements Elicitation

here.

Concern (TS-C12). Feature evolution: The most important aspect of this scenario is that of a feature
evolution. The existing coupon handling feature is extended by individual coupons, which are bound to a cer-
tain customer. This additional functionality should not influence the existing coupon handling functionality
for anonymous coupons.

HATS should be able to model this new functionality. Ideally, it could be possible to completely factor
out the additional functionality in a separate feature, which is based on the coupon handling feature and
allow for different product configurations (T1.2, T2.2). It should then be possible to verify that the existing
coupon handling functionality is not affected by the loyalty extension. In particular, proofs done on the
original feature should be reusable (T3.1).

Concern (TS-C13). Privacy: One important aspect of the loyalty feature is to ensure that the private
purchase information of the customer can only be used by the loyalty system to calculate the discount. It
is therefore important to save the customer information separately from product or inventory information.
In addition, the system must guarantee that this information can only be used for the loyalty functional-
ity. Certain authenticated staff members could also be allowed to access the information, building on the
authentication feature described in Scenario TS4.

HATS should provide mechanisms to ensure the isolation of the customer information, from unrelated
system functionality. Several different techniques have to be applied here, namely property verification on
the model level (T2.5, T4.3) and corresponding implementation correctness by code generation (T1.4) or by
refinement (T2.6), and enforcement of security requirements on the model level and on the implementation
level, either by static analysis or by runtime checks (T4.1).

Concern (TS-C14). Security: As with the anonymous coupons, it should also not be possible to create
new valid individual coupons. In addition, it must not be possible for third-parties to modify the purchase
sum of a customer in other ways except what has been described previously, i.e., by actually purchasing
products.

HATS should provide similar mechanisms as described in Concern TS-C3.

Concern (TS-C15). Correctness: As with the other scenarios, HATS should allow to formally describe the
properties of this scenario and be able to verify them to a certain extend on the model and implementation
level (T1.4, T2.3, T2.5, T2.6, T4.3).

3.3 Summary

The Trading System is an academic case study of moderate size. The focus of the scenarios lies on additional
features and the variability of the system. Because of its size it should be possible to give a complete ABS
model of the whole System. The model should be based on features, to be able to create different versions
of the system. Table gives a summary of the concerns harvested from this case study and Table
shows the relationship between concerns identified in this case study and tasks to be carried out in the HATS
project.

26

HATS Deliverable D5.1 Requirements Elicitation

Req. Identifiers ‘ Req. Labels Tasks Reference

TS1: Coupon handling feature

TS-C1 Correctness 1.4, 2.3, 2.5, 2.6, 4.3 Page |22

TS-C2 Failure isolation from standard sales process | 1.2, 1.3, 2.2, 2.5, 2.6, | Page 29
3.1, 3.3, 3.5, 4.3

TS-C3 Security 4.1 Page 22)

TS-C4 Resource 4.2 Page 23

TS-Cb System upgrade 3.1, 3.3, 34 Page 23

TS2: Cash desk variability

TS-C6 Variability modeling 1.1, 1.2, 14 Page [23

TS-C7 Correctness 1.5, 2.1, 2.3, 2.4 Page [23}

TS3: Dependability property

TS-C8 Correct price calculation 14,23, 2.5, 2.6, 4.3 Page 24

TS-C9 Transactional behavior 1.4, 2.3, 2.5, 2.6, 4.3 Page 24

TS-C10 Secure transactions 4.1 Page 4

TS4: Authentication policies

TS-C11 \ Security modeling and analysis 1.3, 2.5,4.1,4.3 ‘ Page|2_5|

TS5: Feature evolution - loyalty system

TS-C12 Feature evolution 1.2,2.2, 3.1 Page [26

TS-C13 Privacy 1.4,2.5,26,4.1,4.3 Page [26

TS-C14 Security 4.1 Page 26

TS-C15 Correctness 1.4, 2.3, 2.5, 2.6, 4.3 Page 26

Table 3.1: High level requirements harvested from Trading system case study

27

HATS Deliverable D5.1

Requirements Elicitation

Work-
packages

Concerns harvested from Trading system case study

TS1

TS2

TS3

TS4

TS5

and Tasks 1‘2‘3‘4‘5

6|7

81910

11

12| 13[14] 15

1 Framework

Task 1.1

Task 1.2

Task 1.3

Task 1.4 °

Task 1.5

2 Variability

Task 2.1

Task 2.2

Task 2.3 °

Task 2.4

Task 2.5 °

Task 2.6 °

3 Evolvability

Task 3.1

Task 3.2

Task 3.3

Task 3.4

Task 3.5

4 Trustworthin

€SS

Task 4.1

Task 4.2

Task 4.3 °

Task 4.4

Table 3.2: Overview of the scenarios and concerns of the Trading system case study and related tasks

28

Chapter 4

Virtual Office of the Future Case Study

4.1 Overview

In a Virtual Office of the Future (VOF), office workers are enabled to perform their office tasks seamlessly
independent of their current location. They are supported by a highly distributed, decentralized office
infrastructure that is made up by the devices that are accessible via network by an office worker at a given
point in time based on his current location. Office workers are able to use, for instance, devices like printers
at their current location without knowing and installing them up-front or are able to securely exchange
documents with colleagues in a meeting without using a central infrastructure. Fraunhofer IESE developed
a prototype of an infrastructure aiming to support the vision of the VOF as sketched above. Following are
the main characteristics of the VOF infrastructure prototype:

Peer-to-peer (P2P) style The VOF infrastructure is a distributed system according to the P2P style.
The nodes in the VOF P2P network are called VOF nodes. VOF nodes are devices like laptops, mobile
devices, printers, scanners, fax machines etc. that are connected to the VOF P2P network. The P2P
style enables the decentralization of the VOF infrastructure and thus facilitates mobile working.

Service-orientation VOF nodes provide their functionality in terms of services. Printers, for instance,
provide print services describing the features they are capable of in a service description.

Virtualization Services related to concrete devices can be virtualized. The resulting VOF service provides
functionality to office workers independent of a concrete device. A VOF print service, for instance,
accepts print jobs and maps them to an appropriate device based on the user’s settings and context
information like the user’s current location. Hence, users do not need to deal with, for instance,
specifics of single devices but are provided with higher-level VOF services.

Distributed workflow execution Workflows are executed in a distributed fashion. This is achieved by
means of a concept called VOF documents. A VOF document is a document with attached workflow,
data, and user interface. VOF documents are interpreted by VOF nodes, for instance, an office worker
laptop and thus executed. Local interpretation of VOF documents on office workers laptops enables
offline working.

Integration with standard office applications Office workers typically use office applications like Mi-
crosoft Office or Open Office. Hence, the VOF infrastructure is integrated with standard office appli-
cations. Microsoft Outlook, for instance, has been integrated with the VOF infrastructure as a user
interface to enable its users to receive and send VOF documents.

The VOF infrastructure prototype is a framework that can be leveraged to realize support for office
workflows on an underlying VOF P2P environment. A set of reusable artifacts is provided and a related
production process describes how a VOF P2P environment can be set up and how new workflows can be
realized and deployed on it.

29

HATS Deliverable D5.1 Requirements Elicitation

4.2 Reusable artifacts

According to the product line idea, the VOF infrastructure prototype comes up with a set of reusable
artifacts and a production process that can be used to develop VOF infrastructures. The following reusable
artifacts are available:

VOF P2P platform The VOF P2P platform is one of the core components of the VOF infrastructure
prototype. It offers functionality to provide, discover, and execute VOF services in a P2P environment.
Furthermore, it offers the ability to connect existing office applications of a customer like Microsoft
Outlook to the VOF infrastructure in order to use them as a Ul It is provided as a component that is
ready to use and can be installed on end devices that are planned to collaborate within a P2P network.

VOF documents A VOF document is an architectural concept developed by Fraunhofer IESE to realize
workflows in a Virtual Office environment. In general, a VOF document is an entity consisting of a
workflow specification, files to be handled in a workflow, Uls to be used during the execution of a
workflow by a user, and data related to the execution of a workflow.

XML language to specify workflows This is a language developed by Fraunhofer IESE to describe the
workflows that are part of VOF Documents. Each workflow description contains the definition of
activities, related roles, and data. It is based on XML and can be interpreted by a workflow engine
that is part of the VOF P2P platform.

Framework for VOF document user interfaces VOF Documents contain user interfaces used during
workflow execution by the respective user. The framework for VOF document user interfaces consists
of libraries, APIs, and tools, and supports developers during the implementation of user interfaces in
form of wizards and wizard pages.

Plug-in for MS Outlook This plug-in enables MS Outlook to be used in the context of a VOF infrastruc-
ture. MS Outlook is extended to participate in workflows that are executed on the underlying VOF
P2P platform. VOF documents realizing workflows can be received, edited, and sent via MS Outlook.

VOF services A VOF Service provides functionality to be used in a Virtual Office environment. Each
service can be deployed on the VOF P2P platforms to make it available and executable. The VOF
services are used during the execution of workflows.

VOF service API This API is implemented in Java and has to be used to implement new VOF Services
to become compliant with the general service specification used in the VOF P2P platform.

4.3 Scenarios

In this following section we describe concrete scenarios related to the VOF infrastructure prototype as
evaluation candidates in the HATS project. The set of scenarios is not meant to be complete. It is the
starting point for discussion on the VOF infrastructure prototype in the context of the work packages.
During the HATS project, further scenarios should be elaborated depending on the needs implied by the
ongoing work in HATS. If necessary, the scenarios will be elaborated in more detail before using them in a
respective case study or experiment.

4.3.1 Scenario VF1: Realize a new workflow

One key requirement in the Virtual Office is the workflow support for office workers. For that, it must be
easy to introduce new workflows into the system. Hence, FRG developed the VOF document concept, which
offers the ability to realize new workflows by developing a new VOF document.

30

HATS Deliverable D5.1 Requirements Elicitation

Concrete example

The concrete example we use here is an organization that wants to support requests for vacation electroni-
cally. For the realization of these examples, a VOF document has to be implemented by following the steps
below:

1. Modeling the workflow with VOF workflow language

For the vacation workflow, the activities are:

Filling out the vacation request form;

Approve or Not approve the request by the department head;

Forward the document to the administration;

Send the document back to the requester.
The roles are:

e Requester;
e Department head;

e Administration.

The data involved are, for example:

Requester personal data;

Time period for vacation;

Contact in vacation period;

Substitute for the requester during the vacation period;

Name of the department head.

2. Implementation of user interfaces

For the vacation workflow, four user interfaces are required:

e Request form,;
e Approval or disapproval form;
e Administration form;

e Summarize form.

3. Identify services

For the vacation workflow, two services are required:

e Retrieve the name of the requester’s department head;

e Check the remaining vacation days of the requester.

4. Compiling the VOF document

For the vacation workflow, there are basically two files to be compressed:

e The XML workflow file containing the workflow description and the data bindings;

e Four user interface e files (Dynamic-Link Libraries - DLL’s);

31

HATS Deliverable D5.1 Requirements Elicitation

5. Deployment of the VOF document

The VOF document is now available in the peer network by copying it in each node in a specific folder
which is accessible to all the related services.

The services are addressed to specific nodes according to the preference of the network manager.

6. Testing

A system test is performed in order to find errors in any component of the VOF document and fix
them. Once fixed, the entire VOF document is recompiled.

Concerns and envisioned support by HATS

Concern (VF-C1). Testability: The functionality of the workflow has to be guaranteed by testing all the
possible paths (T2.5).

Concern (VF-C2). Availability of document-related services: When deploying the VOF document,
it has to be guaranteed that its related services will be available in the network (T2.5).

Concern (VF-C3). Services security: Concerning security, one point to be considered is how to ensure
that a user has access only to the service that it is supposed to. Another security issue is that the new
workflow should not cause significant delay in the network, caused by an unsecured implementation of the
VOF Document. For instance, the VOF Document splits up itself and sends several times to each member
of the VOF (T4.1 and T4.2).

Concern (VF-C4). Analysis: Models of workflows can reach high complexity with respect to the control
flow and the use data types. Hence, workflow and related data models are source of inconsistencies and
defects that could be prevented by analysis techniques applied to the respective models (T1.3).

Concern (VF-C5). Code generation for workflow realization: Today the realization of a new workflow
is concerned with many manual development activities. Code realizing the behavior of a VOF document
cannot be generated so far (T1.4).

4.3.2 Scenario VF2: Add a new device type to the VOF infrastructure

Office workers use different devices during their daily work in the Virtual Office. The probability that a
new device type that has not yet been used within the VOF infrastructure before is very high. A concrete
example could be the integration of an iPhone as a new device type in the environment.

Concrete example

A reference architecture describes the required software components for end devices. The identified end
device type (iPhone) has to be analyzed with respect to the operating system, available programming
platforms (Objective C, Java, etc) and all constraints related to those issues. For instance, memory and
CPU restrictions and library restrictions for programming platforms.

For adding a new device on the network, the following steps are required:

1. Implementation of software components concerning the end device type, if there is no concrete imple-
mentation available. During the development of each software component, module tests are performed
for checking the functionality of each module.

2. The new implemented software product has to be installed on the end device (iPhone). Afterwards,
the device has to join the P2P infrastructure for performing a system test.

32

HATS Deliverable D5.1 Requirements Elicitation

Concerns and envisioned support by HATS

Concern (VF-C6). Portability: We have to generate and offer different platform applications for different
end devices (T1.2).

Concern (VF-C7). Device security: The overall system has to know if the new node is trustable or not
in reference to the provided services and its behavior in the network (T4.1).

Concern (VF-C8). Hybrid analysis for evolvability: New devices are supposed to be integrated to a
VOF infrastructure at runtime. This bears the risk that the integration in a partially unknown environment
leads to runtime errors (T3.3).

4.3.3 Scenario VF3: Realization of a new VOF service

The realization of a workflow for a certain organization can require new functionality to be provided by a
new service.

Concrete example

One concrete example can be a service for the authentication of users in the P2P network. For this, the
following steps are required:

1. First of all, the specification of the service interface has to be done by documenting the method
signature of the service. Concerning the example:

authenticate(user, password) : boolean

2. A concrete implementation of the specification related to existing technologies is required. For instance
an authentication mechanism for LDAP- or database servers, etc.

3. Testing the new implementation of the VOF Service.

Concerns and envisioned support by HATS

Concern (VF-C9). Availability of services: The functionality of the VOF is based on service con-
sumption. It is necessary therefore to guarantee that a high availability of each service (T2.4, T4.3 and
T4.4).

Concern (VF-C10). Variability: Based a on a service specification, we should have a variability point to
be able to select the different implementations (T2.4).

Concern (VF-C11). Correctness: If the implementation of a service specification changes, the function-
ality of the service has to be guaranteed (T4.3).
4.3.4 Scenario VF4: Integration of a new virtual office application

The VOF P2P platform is capable to communicate with local running applications and vice versa, by
providing corresponding interfaces. Based on this, each application can be adapted to connect and use the
VOF P2P platform. The workflow support based on VOF documents is integrated into office applications
like Microsoft Outlook.

Concrete example

As a concrete example, consider the integration of a Thunderbird client instead of Microsoft Outlook.

1. Analyze existing APIs and programming tools for extending the Thunderbird application.

2. Integrate a software component (proxy) in the Thunderbird client to encapsulate the communication
between the mail application and the VOF P2P platform.

33

HATS Deliverable D5.1 Requirements Elicitation

Concerns and envisioned support by HATS

Concern (VF-C12). Test case generation: Automatic generation of test cases in order to verify the
functionality between the new application (Thunderbird) and the platform (T1.4).

Concern (VF-C13). Model mining: The integration of a new office application like Thunderbird bears the
risk that because of incomplete information about the new applications’ realization the integration fails or
is at least error-prone. Model-mining can provide additional information on an application to be integrated
(T3.2).

4.3.5 Scenario VF5: Integration of new functionality in the VOF P2P platform

The architecture of the VOF Middleware consists of a combination of different architectural styles. The
most important one is the layered- and event-driven style to address maintainability and customizability
requirements. Thus, changing or integrating new functionality can be done easily. But the adaptation of
event flows can cause a high effort during implementation and testing phases, because the collaboration
between components via events is hard to understand.

Concrete example

In this example, we integrate a security component for encrypting and decrypting messages between peers.
The new functionality is optional and can be configured during runtime. For this, the following steps are
required:

1. Definition of component interfaces, events, and configurability of the new security component.
2. Identify and adapt affected components related to new event flows.

3. Implementation of a security component prescribed by requirements, architecture and design.
4. Integrate configuration functionality in the UI.

5. Definition and implementation of test cases related to the updated event flow.

6. Build a new release of the VOF Middleware and deliver it to all clients.

Concerns and envisioned support by HATS

Concern (VF-C14). Feature modeling: Interfaces should be defined for the new component, as well as
the related events to describe the behavior (T1.2).

Concern (VF-C15). Variability: Adapt variation points of existing components to guarantee seamless
integration of the new security component (T2.4).

Concern (VF-C16). Verification of general behavior properties: In order to check the correctness of
the updated event flow, a couple of test cases should be generated to guarantee the integration of it with
the overall system (T2.5).

4.3.6 Scenario VF6: Replacement of technologies

To achieve new upcoming requirements, for instance the improvement of communication performance or
becoming standard compliant, it makes sense to replace used technologies in the overall system.

34

HATS Deliverable D5.1 Requirements Elicitation

Concrete example

In this example we replace the proprietary implementation of VOF Services by introducing the web-service
standard. For this, the following steps are required:

1. Change the communication protocol used between peers, to discover VOF Services. For instance, the
unique identification for discovering services has to be changed. Today, a service can be identified by
”peername::servicename”. Using web-services causes a change to: http://peername:port/servicename.

2. Implement and provide components for the realization of the required environment for web-services
(HTTP-Server with web-service container, etc).

3. Adapt all VOF Service implementations to become technology compliant.

4. Generate and replace all proxy components that encapsulate the communication technology, which is
used for service execution.

5. Build a new release of the VOF Middleware and deliver it to all clients.

6. Rebuild and deliver all service implementations.

Concerns and envisioned support by HATS

Concern (VF-C17). Code generation: To keep the compliance among the services in the network, it
should be specified with ABS how each service should behavior with the introduction of a new technology.
It means that parts of the source code should be replaced by code generated using ABS specification (T4.3).

Concern (VF-C18). System derivation: Based on the new introduced communication technology, all
the proxy components should be replaced in order to achieve the compatibility among the VOF applications
and the middleware (T1.4).

Concern (VF-C19). Configurable deployment architecture: Once a new version of the VOF middle-
ware was built, it has to be guaranteed that the version of the VOF middleware was deployed for all the
nodes to avoid incompatibilities (T2.1).

Note that Fraunhofer IESE aims at providing tool-support for the development activities required to
perform each of the scenarios.

4.4 Summary

This chapter introduced the Virtual office of the future case study to be used as validation example in the
HATS project. The case study is an example for a software product line in the information systems domain.
We introduced the available reusable artifacts, for instance, the VOF P2P platform, VOF documents, or
VOF services and in particular 6 scenarios that can be leveraged for the validation of HATS results. The
scenarios describe typical situations we have experienced in working with the Virtual Office prototype and
its evolution over time. The case study provides input to WP1-WP4. Table gives a summary of the
concerns harvested from this case study and Table shows the relationship between concerns identified in
this case study and tasks to be carried out in the HATS project.

35

HATS Deliverable D5.1

Requirements Elicitation

Req. Identifiers ‘ Req. Labels Tasks Reference
VF1: Realize a new workflow

VF-C1 Testability 2.5 Page 32
VFE-C2 Availability of document-related services | 2.5 Page 32
VF-C3 Services security 4.1, 4.2 Page 32
VF-C4 Analysis 1.3 Page [32]
VF-C5 Code generation for workflow realization 14 Page 32
VF2: Add a new device type to the VOF infrastructure

VF-C6 Portability 1.2 Page 33
VF-C7 Device security 4.1 Page 33
VF-C8 Hybrid analysis for evolvability 3.3 Page 33
VF3: Realization of a new VOF service

VF-C9 Availability of services 2.3, 4.3, 4.4 Page 33
VF-C10 Variability 2.4 Page [33]
VFE-C11 Correctness 4.3 Page 33
VF4: Integration of a new virtual office application

VF-C12 Test case generation 1.4 Page 34
VF-C13 Model mining 3.2 Page 34
VF5: Integration of new functionality in the VOF P2P platform

VF-C14 Feature modeling 1.2 Page 34
VF-C15 Variability 2.4 Page [34]
VFE-C16 Verification of general behavior properties | 2.5 Page 34
VF6: Replacement of technologies

VF-C17 Code generation 4.3 Page |35
VF-C18 System derivation 14 Page 35
VFE-C19 Configurable deployment architecture 2.1 Page 35

Table 4.1: High level requirements harvested from the VOF case study

36

HATS Deliverable D5.1 Requirements Elicitation

Work- Concerns harvested from VOF case study

packages VF1 VEF2 VF3 VF4 VF5 VF6
and Tasks | 1|2 |3[4[5]|6[7[s8]o]10|1n|12]13|14][15]16|17[18]19
1 Framework
Task 1.1
Task 1.2 ° °
Task 1.3 °
Task 1.4 . ° °
Task 1.5
2 Variability
Task 2.1 °
Task 2.2
Task 2.3 °
Task 2.4 ° °
Task 2.5 o | o °
Task 2.6
3 Evolvability
Task 3.1
Task 3.2 °
Task 3.3 °
Task 3.4
Task 3.5
4 Trustworthiness
Task 4.1 ° °
Task 4.2 °
Task 4.3 ° ° °
Task 4.4 °

Table 4.2: Overview of the scenarios and concerns of the VOF case study and related tasks

37

Chapter 5

Fredhopper Case Study

In this chapter we present the industrial software system from Fredhopper and study general scenarios based
on this software system. For each scenario we identify corresponding concerns and hint where in the HATS
project these concerns may be addressed.

Specifically in Section we provide an overview of Fredhopper’s software system; in Section we
present several general scenarios that are typical during the development and support process of the Fred-
hopper software system. For each scenario, we detail concerns identified, which may be addressed in the
HATS project.

Web Search Search
Application Engines Engines
/ " Search Engine 1\
| Optimizer
- JE—
T R [
| T Query Engine }
| Targeting | S s
|Diagnostic [
Tool L R e R
| ‘ |Business Manager | Indexer
N ___J R ___J
N]
oo T T T T I

\ | Data Manager /
Rule Data Data
Engine Sources Sources

Figure 5.1: Architecture of Fredhopper Access Server

Data
Sources

5.1 Overview

The Fredhopper Access Server (FAS) is a component-based, service-oriented and server-based software
system, which provides search and merchandising I'T services to e-Commerce companies such as large catalog

38

HATS Deliverable D5.1 Requirements Elicitation

traders, travel booking, managers of classified, etc. For the purpose of the case study, we present the structure
of FAS in the following way: query engine, business manager, indezer, data manager, search engine optimizer
and targeting diagnostic tool. An architectural view of how these components are related in FAS is shown
in Figure In the following paragraphs we describe informally the functionalities of each component:

e Business Manager The business manager component provides to clients the management console for
managing, monitoring and measuring searches, catalogs, navigations and promotions. There is also a
graphical user interface, which allows non-IT business specialist to interact with the component.

e Data Manager The data manager is an Extract, Transform and Load (ETL) toolkit. It provides
mechanisms to extract data from a variety of data sources such as ERP systems, databases etc.; to
transport extracted data and carry out transformation such as normalization and aggregation etc, and
to save transformed data as FAS input XML.

e Indezxer The indexer component is composed of three subcomponents — XML loader, search indexer and
tree builder. The XML loader takes an input textual (XML) description of operations on data items
and performs those operations. Operations include adding items to the FAS index and annotating
(enriching) items with more information. The search indexer is responsible for processing the loaded
raw item into index structure, allowing efficient search. The tree builder is responsible for constructing
tree model index from loaded items, which is then used for faceted navigation within catalogs of items.

e Query Engine The query engine provides the core query and response mechanisms. It serves request
from both (web) search engines and customers.

e Search Engine Optimizer The search engine optimizer component implements a white hat method to
guide (web crawler) search engine when indexing web sites with faceted navigation. Faceted naviga-
tion provides users the technique for accessing a collection of information represented using a faceted
classification, allowing users to explore catalogs by progressively filtering available information.

o Targeting diagnostic tool FAS provides a mechanism allowing end users to specify business rules that
regulate what, how and where the FAS system retrieves and presents content. FAS integrates a third
party rule engine that infers rules at run time. Nevertheless, employing a third party library has
the limitation that the FAS system cannot easily track how the rule engine works. For this reason,
we introduce a diagnostic tool (run time monitor) component to provide the capability to access
information about particular inferencing and provide corresponding debug information such as if and
why a particular business rule did/did not allow displaying of expected /unexpected information.

We fix some basic terminologies when referring to stakeholders to facilitate presentation of the case study.
Figure shows a basic view of stakeholders interactions. Specifically there are two levels of interactions —
between FAS and business clients and their web applications, and between clients and their customers. A
user in this case may be either a client or a customer.

In the following section we describe general scenarios in FAS as evaluation candidate in the HATS project.
The set of scenarios is not meant to be complete. It is the starting point for discussion on FAS in the context
of the work packages. During the HATS project further scenarios should be elaborated depending on the
needs implied by the ongoing work in HATS. If necessary, the scenarios will be elaborated in more detail
before using them in a respective case study or experiment.

5.2 Scenarios
In this section we select several scenarios from the development and support process of FAS, and using which

we details the technical concerns that the HATS framework should address. Below we briefly overview the
scenarios:

39

HATS Deliverable D5.1 Requirements Elicitation

Users Users

Client side
web application

Fredhopper Access Server

Figure 5.2: Basic view of stakeholders interactions

1. In Scenario FP1 we study the need to establish the correctness in sequential programming. This is
described in Section [£.2.1]

2. In Scenario FP2 we study how a new component is integrated to FAS. Unlike Scenario FP1, this
scenario concerns with ensuring correct and safe interaction between components, each of which contain
many classes and methods. This is described in Section [5.2.2

3. In Scenario FP3, we study how testing systems are provided when a new feature is added to an existing
component in FAS. In particular we focus the provision of test system for the targeting diagnostic tool
described in Section [5.1l This scenario is described in Section [£.2.3]

4. While Scenario FP1 concerns with the correctness of sequential behavior of FAS, Scenario FP4 focuses
on concurrency issues in multithreaded code. This scenario is described in Section

5. In Scenario FP5 we study the correctness and integration issues that arise from utilizing third party
libraries. This is described in Section [(.2.5

6. While scenarios FP1 to FP5 concern with functional correctness of FAS, Scenario FP6 focuses on the
performance issues that must be addressed during the development process of FAS. This is described

in Section [5.2.6]

5.2.1 Scenario FP1: Correctness of sequential programs

In this section we study a small fragment of programming code for a critical region of FAS. A critical region
is a fragment that is executed most frequently and which other parts of the programming code highly depend
on. Therefore the correctness of a critical region’s behavior is particularly important. In FAS, behavioral
correctness is checked by performing extensive testing. Testing includes a mixture of unit tests, automated
integration tests, and manual testing. However, software testing is a technique, which can only show the
presence of errors and not their absence. The guarantee provided by software testing hence is not sufficient
when the code in question belongs to a critical region of a software system.

In the following section we consider a small fragment of code from the targeting diagnostic tool. We first
give an overview of the diagnostic tool before describing the particular fragment.

40

HATS Deliverable D5.1 Requirements Elicitation

1 public interface InferenceAnalyser {
2 public void queryTrial(Object query);
s}

Listing 5.1: An excerpt of the public interface InferenceAnalyser

In FAS we use a business rule inferencing engine to define complete business configurations that regulate
how FAS performs queries and how FAS structures its response information. To implement the inferencing
engine, we use a third party implementation of a rule engine, in order to reduce the cost of developing and
maintaining such a complex piece of technology ourselves. However the inferencing process carried out by
the rule engine can be complex. This mean it would be very difficult for business clients to know exactly how
their business rules are evaluated. We therefore provide a targeting diagnostic tool to collect information
about the business rules during the inferencing process. The tool has the goal to display this information
in a usable to the clients manner.

1 public class InferenceAnalyserImpl implements InferenceAnalyser {

2 private RuleEngine ruleEngine = RuleEngines.createEngine();

3 public void queryTrial(Object query) {

4 ruleEngine.publish(query);

5 for (Information stat : CollectorHolder.getCollector().getStats())
6 ServletFactory.getPage() .displayInformation(stat);

7 }

s

Listing 5.2: An excerpt of an implementation of the interface InferenceAnalyser

During diagnosis, a business client submits a query input in the form of a URL to the diagnostic tool.
The tool then publishes input to a third party rule engine for inferencing. While the inferencing process
is being carried out, the targeting diagnostic tool would collect information about each matching business
rule. This information includes the identification of the business rule as well as a break down of the parts
of a business rule that are satisfied and parts that are not.

Listing shows the code fragment to be considered in the following section. It is an excerpt of the
class InferenceAnalyserImpl, which is responsible for accepting the query input from the business client.
To encapsulate our implementation we expose this feature via the InterfaceAnalyser. An excerpt of the
interface InterfaceAnalyser is shown in Listing[5.1] Specifically the method queryTrial() takes an URL
and publishes it to the rule engine, which would carry out the inferencing procedure on this URL against a
set of business rules. During the inferencing, a Collector object is responsible for storing information about
evaluated business rules. The interface Collector is shown in Listing[5.3] After the inferencing, the method
queryTrial () retrieves the information collected during the inferencing session and renders this information
on a web page to the business client. To retrieve the information collected during inferencing the method
queryTrial () calls the static method CollectorHolder.getCollector() in line 5 from Listing

1 public interface Collector {
2 public List<Information> getStats();
s}

Listing 5.3: An excerpt of the public interface Collector

41

HATS Deliverable D5.1 Requirements Elicitation

Concrete example

In this section we use the code fragments introduced above to study the development and support process of
a critical section of a component in FAS. In particular we consider on the current method for guaranteeing
the correctness of the critical section in the following steps:

10

11

1. Before a component is integrated to FAS, corresponding unit tests must be passed. Each unit test

is designed to test a unit of functionality in the component and this includes method level tests. In
general given a class A containing the method X(al,..,an), which returns an object of type B, a
corresponding ATest is implemented with the method testX (), which runs method X(al,..,an) and
make assertion on B. For each input argument al,..,an, either a mock or a fake object is provided
by the test.

Step example: Assuming the set of business rules in the rule engine is nonempty, we must ensure
that the diagnostic tool component displays at least static information about those rules. This means
the call to getStats() (line 5 of Listing in the method body of queryTrial () must return a
nonempty list. A corresponding unit test is written and is shown in Listing[5.4 Lines 2 and 3 of the
listing show declaration of data (fake) objects that are used for these tests. These are predefined URLs,
for testing the diagnostic tool. Note that the ruleEngine contains default nonempty set of business
rules.

. Once both unit tests and integration tests have been carried out for the component, it would be passed

on for performance analysis. Concerns related to performance analysis are discussed in Section
After testing it performs okay, the component is committed to the next release of FAS. If an error is
discovered after the release, the error, along with a test case (instruction) for reproducing the error in
the system, will be reported back to developers, who would attempt to identify the cause of the error
by debugging the system using the test case given. This usually involves setting breakpoints in the
code and stepping through them until the cause of error can be identified. Once the error has been
corrected, new unit tests would be implemented to allow automatic detection any future regressions.

Step example: After a release of FAS including the diagnostic tool, an error was reported by the
business clients. Specifically, there was a null pointer exception during the execution of the method
queryTrial (). By debugging this entire component, it emerges that there was possibility an integer
counter in the Counter object could some time fail to be reset. This has resulted in getStats()
returning a null object. Subsequently the method for collecting information (not shown in the listings)
has been changed and additional data objects were added to the unit test, which could reproduce the
error, to ensure that the updated component does not regress.

public class InferenceAnalyserImplTest {

@DataPoint public Object testqueryl = ...
@DataPoint public Object testquery2 = ...

Q@Theory
public void testqueryTrial(Object query) {
RuleEngine ruleEngine = RuleEngines.createDefaultEngine();
ruleEngine.publish(query);
assertTrue(! CollectorHolder.getCollector().getStats().isEmpty());
}

Listing 5.4: An excerpt of the unit test for InferenceAnalyserImpl

42

HATS Deliverable D5.1 Requirements Elicitation

Concerns and envisioned support by HATS

In the example above we have identified a situation in which it becomes necessary to give complete guarantee
that the call to the get method getStats() in queryTrial() does not return a null object. This requires
method and technique to make formal behavioral assertions (properties) about units of (sequential) code;
a unit here may be a class, an interface, a method or even several lines of code within a method. These
properties may range from more general ones such as termination or to more specific ones about safety
(something bad cannot happen) and liveness (something good must happen). One way of specifying formal
assertions about sequential programs is via preconditions and postconditions. For example, in the concrete
example of Scenario FP1 we would require the ability to assert the postcondition \result != null to the
method getStats (), that is, the returned value cannot be null. Also we would require to assert the following
invariant in between line 4 and line 5 of Listing [5.2]

CollectorHolder.getCollector().getStats().size() > 0

These assertions must then be formally proved to ensure that these assertions are met at all times. To this
end we envisage HATS framework would address two major issues — specification and wverification

Concern (FP-C1). Specification of sequential programs: The HATS framework should provide the
mechanism for specifying behavior of units of code precisely, as identified in the concrete example above.
One way of providing this is to allow the specification of pre/postconditions of units of code. Traditionally
these conditions are asserted as predicate or temporal logic expressions, but this requires knowledge, which
cannot be assumed to be accessible to software developers and testers. Therefore HATS should deliver usable
techniques and tool support to assist the generation of behavioral properties so that formal specification
might become more amenable. In addition HATS should provide the tool support for harvesting behavioral
properties from existing unit tests. (T1.1, T1.3, T1.5 and T4.3)

Concern (FP-C2). Verification of sequential programs: The HATS framework should provide the
mechanism to breach the gap between specifying and verifying program correctness. The need for verification
of behavioral properties has been identified in the concrete example above, where pre and postconditions
of method invocation should be formally proved. Similar to specification, HATS should incorporate usable
techniques and tools (e.g. a model checker) to assist verification processes. However it is known to be
too expensive to carry out verification directly at implementation level. We therefore would expect HATS
to provide the mechanisms to (a) move both verification and respective specification processes up to an
abstract behavirol (ABS) model level, and (b) consequently transfer verified properties back to the code
level. (T1.1, T1.4, T1.5, T3.2 and T4.3)

5.2.2 Scenario FP2: Integration of a new feature component in FAS

In this section we consider a scenario about defining strict protocols for interaction between two components.
Fredhopper defines behavioral interaction between components by using glue code. A piece of glue code of
a component serves three purposes:

e Wiring — invoking functionalities of another component, through class instantiation, method invocation
and interface implementation;

e Listening — reacting to calls such as method invocation and class instantiation from another component;
e Coordinating — defining the behavior in between invocations and reactions.

Very often the interaction of two components would require multiple pieces of glue code and they would not
all be situated in one place in the system but scattered around different components. As a result, it becomes
very difficult to manage the glue code and any changes to any one of the components such as addition and
modification of functionalities would require careful analysis on the corresponding changes to the glue code.

43

HATS Deliverable D5.1 Requirements Elicitation

In the following section, we study how to integrate the new targeting diagnostic tool into the FAS
business manager application. In Section [5.1] we have described the purpose of the targeting diagnostic
tool. Specifically we have developed a diagnostic tool to collect information, such as the internal rule
structure of each inferencing session; a view of the inferencing session is important as we need to provide
useful information to clients about when and why a rule’s action is not executed. Moreover we do not
manage the implementation of the third party rule engine, and we used an aspect-oriented approach [22] to
collect information about when and why a rule’s action is not executed.

Concrete example

This section looks at the process of integrating a new component to FAS in the following steps:

1. Component interaction identification. Before a new component is integrated to FAS, we must under-
stand which existing components from the current system would interact (both invoking and reacting)
with the new component. This must be addressed from the point of view of the new component as
well as the components currently in FAS.

Step example: We must ensure that information collected by the diagnostic tool is properly shown
to the business clients clients. Specifically we want the information collected to be useful and easily
accessible. Furthermore, we want to easily control how the information is presented. For this a new
functionality has been added to the business manager component. This functionality is exposed as a
JavaServer page in the management console.

2. Management of stateful components. If a new component integrated to FAS contains stateful infor-
mation, we must be able to identify when to update this information. This is so that the component
would always process new information and output correct results. The knowledge of when to update
this information is often based on the informal documentation of the new component.

Step example: During an inferencing session, the rule engine evaluates the business rules against the
query supplied by the busienss client. Fach evaluation of a business rule would trigger the diagnostic
tool to record the rule. Note that each business rule might be accessed multiple times by the rule engine
within one inferencing session. Note that information about a business rule does not change within the
same inference session. For diagnostic purposes it is therefore sufficient to only record an evaluated
busines rule once. This means any subsequent evaluation of the rule within the same inference session
would therefore not be monitored. Conwversely, in between any two inferencing sessions, business rules
may be added to and deleted from the rule engine. Moreover, each inferencing session might evaluate
different business rules. Therefore the diagnostic tool must not retain the records of business rules
evaluated in between inferencing sessions. This ensures that our diagnostic tool always contains correct
information about each inferencing session.

3. Semantics of glue code. We define the glue code for enforcing the interaction between the new compo-
nent and existing ones. The semantics of this glue code is derived from the informal documentation
and prototype source code.

Step example: To ensure that the correct information about an inferencing session is displayed to
the business clients, we provide the glue code to coordinate the process. This requires the knowledge of
what and how data is stored in the diagnostic tool. We also need to have knowledge about the types of
data stored in the tool so that data is retrieved and displayed properly to the business clients.

4. Software evolution. If there is a change to a component in FAS, the glue code that defines the
interaction between this component and the rest of the system must be updated so that the change
is incorporated without introducing regression to the component. In FAS, we derive the semantics of
changes in the glue code based on informal documentations and prototype source code.

Step example: During each inferencing session, the diagnostic tool provides information about the
business rules evaluated. However, as the number and the complexity of business rules increases, the

44

HATS Deliverable D5.1 Requirements Elicitation

complexity of the information provided by the diagnostic tool also increases. Therefore it becomes
very difficult for business client utilize the collected information. For example, it becomes difficult to
correlate different business rules evaluated in an inferencing session. To assist this analysis, a graph
visualization feature is added to the diagnostic tool. This feature allows evaluated business rules to be
viewed as a gmp}ﬂ. To cater for this new feature, the glue code between the diagnostic tool and the rest
of the system must be updated. The new glue code must take into consideration how the graph object
should be retrieved and displayed to the business client.

Concerns and envisioned support by HATS

Currently interactions of components are specified and enforced by hard-wiring glue code to components.
Moreover, the glue code is scattered amongst the components in question. Since the definition of the
interactive behavior between these components are based on the intuition of the developers, who have
implemented the components, it is very difficult to enforce any notion of correctness to it. Moreover, a
change to any one of the components in questions by adding new feature or modifying existing one could
result in multiple changes to the glue code. Again implementation of these changes are based on the intuition
of the developers, who have made the changes to the components. From the above scenario and concrete
example we have therefore raised the important question of correctness and maintainability.

Correctness There is a lack of precise understanding of both behavior of individual components and
their interaction. As such it becomes notoriously difficult or even impossible to provide guarantee to the
correctness of the interaction. While testing, discussed in detail in Section may provide certain level
of validation, it is not exhaustive and it is only based on an informal and intuitive understanding of the
intended behavior implemented by the interactions. Therefore, we envisage that the HATS framework would
provide the supports for generation of interaction glue code, such that the following information about the
glue code could be ascertained:

Concern (FP-C3). Correctness of interactions: Whether the interaction behavior is correct with respect
to the intended behavior; This requires a formal specification about the intended behavior. In formal
engineering methods the specification of the intended interaction behavior is called a behavioral contract and
has been studied as a formal notion extensively in the context of service-oriented architecture [8]. Similar
notion of contractual behavior could be introduced in the HATS framework to provide the mechanics for
specifying intended interaction behavior. This specification may then be used to ascertain correctness of
the implementation glue code. Orthogonally while specification is carried out at the model level, HATS
framework should also provide facility to guide the generation of glue code from the model’s specification.
(T1.1, T1.3, T1.4, T1.5 and T4.3)

Concern (FP-C4). Behavioral compatibility: Whether the interaction behavior between components
would invalidate the behavior of individual component; To ascertain this information, it must be possible
to produce a high-level specification of behavior of individual components as well as a formal specification
of the intended interaction behavior. In the area of formal engineering methods correctness of interaction
behavior is known as behavioral compatibility [7], which is a binary relation such that a component P is said
to be compatible with another component @) if and only if P does not cause @ to deadlock where deadlock
freedom is assumed to be a desired property. Using results from studying behavioral contract, the HATS
framework should provide the methodology and technique for reasoning about these properties as well as
generating the implementation code from compatible model. (T1.1, T1.3, T1.4, T1.5 and T4.3)

Concern (FP-C5). Incremental validation: Additional desired properties could be provided about the
interaction behavior by further studying the notion of behavioral compatibility. For example, given three
components P, () and R, it would be useful to show that the interaction behavior between P and @ could
not invalidate the interaction behavior of () and R. This is a notion of incremental development of software

!The rule engine stores business rules as a Rete network [T4].

45

HATS Deliverable D5.1 Requirements Elicitation

systems and has already been studied at a more abstract level [28]. We envisage that one of the results of
from HATS project is the analysis of similar formal notion in the object oriented setting. This is so that not
only these properties could be ascertained at an abstract (ABS) level, but corresponding implementation
code could be generated with the same guarantee. (T1.1, T1.3, T1.4, T1.5 and T4.3)

Maintainability As suggested by our scenario and concrete example, glue code of interactive components
is often scattered around the structure of individual components. This results in low maintainability of the
glue code. Specifically if there are changes in individual components, it would become very difficult to
implement corresponding changes to their glue code. To this end we envisage that the HATS framework
would provide the supports for maintaining the structure of glue code and managing the changes to the glue
code.

Concern (FP-C6). Evolvability and code generation: By modeling the changes to component’s behav-
ior, it should be possible to either deduce the changes to the glue code from both the model of change and
the behavioral contract. This deduction should lead to some form of (guided) code generation. We envisage
the HATS framework would provide the methods and tools for managing such changes. (T1.4, T1.5, T3.1,
T3.3, T3.5 and T4.3)

Concern (FP-C7). Tool support for navigability: The HATS framework should provide the tool support
for managing the structure of glue code of any two interacting components. Unlike correctness concerns, here
we are concerned with improving navigability of the glue code. For example, the HATS framework could
provide the tool support to visually relate a piece of glue code to its corresponding behavioral contract.
As the glue code and its behavioral contract become complex, the provided tool support should ease the
validation and the verification of the glue code. (T1.4, T1.5 and T4.3)

5.2.3 Scenario FP3: Test system provisioning

In this section we consider the scenario on the generation of test systems. In FAS, a test system consists of
the following three testing procedures:

e Automatic unit testing — during development of a component, unit tests are written to validate the
correctness of the component and to detect regressions. A unit test exercises a unit of functionality and
makes assertions about the state after the execution of that unit. Unit tests are written as a program.
They are executed automatically when the component containing the units of code re-compiles. Unit
tests make assumption about the state of the system before the unit’s execution. Therefore these tests
may be run independently from the rest of the system.

e Automatic integration testing — after a component is unit tested, it would be integrated to the rest of
the system. To ensure that this integration does not introduce errors to the system, the integration
must be tested. An integration test exercises several units of functionality across many components
in the system to ensure that components still perform correctly.

e Manual testing — both unit and integration testings are executed automatically each time the system is
re-compiled. After automatic testings, the system must be manually tested. These tests are performed
by testers, who would follow detail test cases to exercise different functionalities of the system.

In this section we focus on the provision of unit tests. Unit tests are somewhat independent from
the “specification” of the component. This means changes to a component would require manual and
idependent changes to its unit tests. When the component does not have a precise specification, it is
difficult to implement “correct” change for its unit test. In the following section, we follow the development
and support process of the targeting diagnostic tool.

46

HATS Deliverable D5.1 Requirements Elicitation

Concrete example

This section looks how we generated and maintained the test systems of the targeting diagnostic tool in the
following steps:

1.

When a component is added to FAS, unit tests are implemented for every unit of functionality of the
component. These unit tests are written manually based on informal documentation of the component.
Each unit is then tested using its unit test before being approved and integrated into FAS.

Step example: Currently we provide a certain level of guarantee about the correctness of the diagnostic
tool by running unit tests on several examples. FEach unit test initializes the diagnostic tool by gen-
erating particular types of rules (rules with/without conjunction, with/without negation, with/without
variables, with/without expression). The unit test asserts expected properties on the inference results
for each example.

. The new component is integrated to FAS and will be made available to clients.

Step example: A business client from a sport webshop has setup a business rule for a product
promotion. The rule specifies that a special offer about running shorts should be displayed if the users
access a page about running shoes. The business client then uses the targeting diagnostic tool to see if
the rule about this promotion is correct. The business client carries out this test by first adding this
business rule to the rule engine; he then submits a URL of a page displaying running shoes to the
tool. The diagnostic tool then sends this URL to the rule engine, which carries out the inferencing on
the URL. The tool collects information about this inferencing session. It let the client knows if the
business rule was evaluated and whether the page displaying the running shoes would also display the
promotion.

. When adding a new feature to a component, new unit tests should be written to specify and validate

the correctness of the feature. Similar to the existing unit tests, the new tests are implemented based
on informal documentation of the component. Existing unit tests may also be changed depending on
whether or not the new feature would change the existing behavior of the component. After the unit
tests has been changed, the component with the new feature must pass the updated unit tests before
being integrated to FAS.

Step example: An update is included in the forthcoming release of the diagnostic tool. This update
adds a graph visualization feature to the tool so that the relationship between different rules submitted
to the rule engine may be viewed as a graph. This feature should not change the existing behaviors of
the diagnostic tool. Therefore it is necessary for the diagnostic tool passes all existing unit tests before
this update is approved.

. Currently when a new feature is added to a component in FAS, the complete software system must

be shut down, that is, the query engine must be stopped. The old version of the component is then
replaced by the updated one before FAS is restarted again.

Step example: To update his copy of the diagnostic tool, the business manager stops the query engine
that is currently running, replace old version of the diagnostic tool with the updated version and restarts
the query engine.

. When an update to FAS introduces a regression, the error, together with instructions to reproduce

the error in FAS, will be reported back to developers. The developers would then attempt to identify
the cause of the error by debugging the system using the given test case. This usually involves setting
breakpoints in the code and stepping through them until the cause of error can be identified. Once
the error has been corrected, new unit tests would be implemented to detect future regression.

Step example: After FAS has been updated, the business client continues to use the targeting diag-
nostic tool to see if the business rule about the promotion on running shorts is correct. However after

47

HATS Deliverable D5.1 Requirements Elicitation

testing the business rule with the URL once, the diagnostic tool no longer renders any information on
any of the subsequent tests. This error is then reported back to the developers. The developers have
consequently spent two person days to identify the cause of the error. The error was eventually fixed
and new unit tests were added.

Concerns and envisioned support by HATS

Through the concrete example in Section we have identified two major issues about the current
approach in test system provision:

Generation of test systems Lack of precise understanding of the component’s semantics and of the
relationship between the components units of functionality. This means one could easily have incorrect
assumptions about the state of the system before invoking a function of the component. At the same
time this also leads to an incorrect assumption about the state of the system after the performance of
that function. The argument for a formal specification has already been put forward through studying
previous scenarios. Once this specification has been obtained, it should be used to assist the generation of
the component’s test system. We believe that such test generation method would provide better coverage
over the state space of the component’s execution. Therefore we envisage that the HATS framework would
provide the supports for generation of test systems:

Concern (FP-C8). Test case generation: Provision for assisting the generation of unit tests and manual
test cases for units of code. While Scenarios FP1 and FP2 have already identified the need for a formal
and complete specification of component’s behavior, the concrete example above identified the need for
generation of test systems from the formal specification of units of code. With a better understanding of
the component behavior, it is more likely that these tests would have better coverage and would produce
less false positive results. Note that we envisage there are times where automatic test generations might not
be possible. In this case the HATS framework should incorporate usable techniques and tools to guide such
tests generation. (T1.1, T1.4, T1.5 and T4.3)

Evolution of test systems Inability to change an existing test system according to the changes of the
component’s implementation. The concrete example shows that there is a lack of understanding to the side
effects produced by changing of component’s behavior. This understanding requires a high-level specification
that allows better change management and consequently provides guidance to generation of corresponding
test systems. To this end we envisage that the HATS framework would provide the supports for modification
of component’s behavior and its test systems:

Concern (FP-C9). Modeling behavioral changes: Modeling of changes to component’s behavior, and
identification of those that could invalidate consistency properties. In software evolution, consistency is a
general safety property about the evolution. For example an evolution of a software system is consistent if its
components remain interoperable. Consider the concrete example described in Section To maintain
the precondition of the tool’s operation, addition of the graphical visualization feature must be consistent.
However, if the change is inconsistent, a developer should be notified about it. This also requires a formal
treatment of the notion of evolution consistency. (T3.1, T3.3 and T4.3)

Concern (FP-C10). Test system evolution: Assisting the generation of test systems for testing consis-
tency properties. While the ideal situation is to be able to prove consistency of changes to components,
this might not be tractable in practice. Consider the concrete example described in Section One way
to identify whether the addition of the graphical visualization feature would invalidate the precondition of
the tool, is to update the test system of the diagnostic tool systematically using a formal model of software
evolution. (T1.1, T1.5, T3.1, T3.3 and T4.3)

48

HATS Deliverable D5.1 Requirements Elicitation

5.2.4 Scenario FP4: Concurrency

In Scenario FP1 of Section[5.2.1] we have identified issues regarding the lack of guarantees about correctness
of sequential code. In this section we consider issues regarding concurrency in FAS. Unlike sequential
programs, for which it is possible could provide test systems, for concurrent program&ﬂ where multiple
threads are accessing shared resources, it is notoriously difficult to generate useful test systems. This is
specifically detrimental when threads access mission critical sections of a component.

As a concrete example, we consider a small fragment of code from the query engine component re-
sponsible for updating the search indexes. Listing shows an excerpt of the class QueryEngine. It
defines the static method receiveIndexUpdate (), which takes an update object, containing some update
instruction and data, and performs the corresponding updates to the search index by calling the method
updateSearchIndex (). Partial definition of the method updateSearchIndex() is shown in Listing[5.6] For
efficiency reason, we ensure that the objects calling receiveIndexUpdate () do not require to wait for the
update to complete, that is, the call to receiveIndexUpdate () does not block the execution of the caller
object itself. Therefore every time the method receiveIndexUpdate() is invoked, a thread is created to
carry out the update to the search index. Note that in definition updateSearchIndex () shown in Listing[5.6]
two level locking is implemented to ensure that atomicity of the update is maintained.

1 public class QueryEngine {
2 public static void receiveIndexUpdate(Update update) {

4 Thread uproc = new Thread(new Runnable() {

5 public void run() {

6 QueryEngine.getSearchIndex () .updateSearchIndex(update) ;
7 }

8 b

9 uproc.start();

10 }

11 }

Listing 5.5: An excerpt of an implementation of the class QueryEngine

1 public class SearchIndex {

2 private final Lock flock, slock;
3 public void updateSearchIndex(Update update) {
4 flock.lock();

5 P

6 slock.lock();

7 .« ..

8 slock.unlock();

9 P

10 flock.unlock();

11 }

12 }

Listing 5.6: An excerpt of an implementation of the class SearchIndex

2FAS is implemented in Java [I6] primarily

49

HATS Deliverable D5.1 Requirements Elicitation

Concrete example

Unlike sequential code, it is very difficult to create test case to exercise concurrent behavior, and if an error
is introduced, it would be equally difficult to identify such error by conventional debugging facilities. For
example, it is difficult to set up breakpoints for multithreaded code as threads interleave by definition.

Step example: Listing [5.7 shows an excerpt of an attempt to define unit test for receiveIndezUpdate().
Specifically the unit test testreceiveIndexzUpdate () invokes a list of updates predefined as data points. The
method then tests if all updates are successful via the method hasAllUpdates (). Unfortunately even if we
“randomize” the rate and the order in which these updates are invoked, it still provides very weak guarantee
to the correctness of the updating procedure, and as a consequence there has been many errors associated
with this procedure.

1 public class QueryEngineTest {

2 Q@Test

3 public void testreceiveIndexUpdate() {

4 List<Update> updates = ... // predefined updates
5 for (Update update : updates)

6 QueryEngine.receiveIndexUpdate (update) ;

7 assertTrue(hasAllUpdates());

8 }

s }

Listing 5.7: An excerpt of the proposed unit test for the class QueryEngine

Concerns and envisioned support by HATS

The cause of the issue identified in the example is that there is no precise specification of the concurrent
behavior of the multithreaded program. This means that it is very difficult to diagnose errors such as
deadlocks or livelocks as well as to derive test(s) for ensuring validity of the concurrent behavior and
detecting regressions. Similar to sequential programming, we would like to be able to assert precise behavioral
correctness about units of code that involve consistency. These properties range from general state safety,
deadlock and livelock freedom to more specific ones about fairness and other liveness properties. Currently
each unit of concurrent code in FAS is tested via unit and integration testings, and these tests would have
to be setup and implemented manually. However testings can only at best show the existence of deadlock
and livelock but they cannot guarantee their absence. Therefore we would advocate the application of
formal verification. In particular concurrent program should be specified formally and be verified against
this specification for correctness. While complete formal verification is a software engineering ideal, existing
methods may be time consuming and therefore cost ineffective. Therefore current verification method must
be coupled with tools and techniques to assist generation of test systems. To this end we envisage that the
HATS framework would provide the following support for concurrent programming:

Concern (FP-C11). Specification of concurrent programs: Similar to the sequential programming case
discussed in Section the HATS framework should provide the mechanism for formally specifying units
of code that exhibit concurrent behavior. One possible way of achieving this is by providing the language and
calculus for modelling concurrent behavior. In the area of formal engineering methods, extensive research
has been carried out towards modeling and reasoning about concurrent behavior. Notable area includes
process algebras [1] in which software systems are modeled as algebraic processes describing their possible
behavior. Behavioral property specifications are then provided as either logical expressions or abstract
processes. The use of a process algebraic approach requires knowledge in abstraction, and this creates a

20

HATS Deliverable D5.1 Requirements Elicitation

conceptual gap in between programming and modeling. A complementary approach is the development of
implementation level language with rigorous formal foundation. This approach not only facilitates formal
reasoning and associated tool support, but it is also much closer to general purpose programming languages
like Java [I6]. Notable research result includes the development of Creol [21]. Creol is an experimental
high-level object-oriented language for distributed objects, and specification in Creol may be translated in
Maude, for which various tools such as a theorem prover have been developed. However, either approach
requires mathematical knowledge, which cannot be assumed to be accessible to software developers and
testers. HATS should therefore incorporate usable techniques and tools to assist the generation of these
behavioral properties such that formal specification becomes more amenable. (T1.1, T1.3, T1.5 and T4.3)

Concern (FP-C12). Verification of concurrent programs: Similar to sequential programming discussed
in Section the HATS framework should provide the mechanism to breach the gap between specifying
and verifying program correctness. The need for verification of behavioral properties has been identified
in the concrete example above and the last paragraph has identified how concurrent behavioral properties
may be specified either algebraically or logically. For HATS framework to be a usable technology, it should
incorporate techniques and automated tools (e.g. a model checker) to assist the verification process. We
would also expect HATS to provide the mechanisms to (a) move both verification and respective specification
processes up to an abstract behavioral model level, and (b) be able to transfer verified properties back to
the code level. (T1.1, T1.4, T1.5, T3.2 and T4.3)

5.2.5 Scenario FP5: Using third party library

This scenario covers the case of FAS utilizing a third party library. During the development of FAS, third
party libraries are used to provide new features at a lower cost. For example, FAS uses many open source
libraries of the Apache project group.

In the next section we look at the utilization of a third party library for graph layout. This library
provides the algorithm to layout the graph representing the internal data structure for capturing business
rules in the rule engine; a brief overview of this graph layout feature is provided in Section

Concrete example

Here we identify the typical steps for utilizing third party library. For each step we provide an example
relating to the concrete example.

1. We identify specific information about the library, such as the version of the library that would be
used; the public and interface methods exposed by the library as well as the corresponding (informal)
documentation about the potential values and types of the input arguments and return values of
methods.

Step example: We identify the version of the graph layout library, the method for creating a graph
object for laying out using the library, and the methods for adding nodes and edges to the graph object.
We also identify the interface, which the library provides for implementing view navigation listeners.
This allows inclusion of additional behavior when a node is clicked during graph visualization.

2. We implement the logic to transform the internal FAS rules data structure to one which could be used
by the graph layout library.

Step example: The diagnostic tool contains information about business rules stored in the rule
engine. We implement the transformation procedure to convert this information into a graph object
for visualiation using the graph layout library.

3. We implement the code to invoke the graph layout library’s functionalities and integrate this code into
our existing component.

o1

HATS Deliverable D5.1 Requirements Elicitation

Step example: To implement the code for setting up the layout, we studied demo programs provided
by the graph layout library. This included identifying the correct algorithm provided by the library
for laying out the nodes of the graph, choosing the color scheme of the layout, and implementing the
listener for allowing the diagnostic tool to provide specific information based on the particular node
pressed. We also implemented the actual selection listener, that contains the programming logic to
relate the diagnostic information with the node selected by a user in the graph visualisation.

4. We write unit tests and manual test cases for both the third party library’s as well as the programming
logic (glue code) that we have implemented for transforming data structure and invoking the library
logic.

Step example: We implement unit tests to validate the following programming logic

e The transformation procedure for converting the business rules stored in the rule engine to the
graph object, which the library accepts. We must ensure that the graph repects how business rules
are related in the rule engine.

o The glue code for setting up the display and implementing the functionalities provided by the
user interface. Specifically when business rules store in the rule engine are visualized as a graph,
each rule is represented as a node in the graph. We must ensure that when a node is selected,
diagnostic information about that business rule is displayed correctly.

5. For every change and version update to the third party library, we review the changes manually
by studying release note and updated documentation on the library’s API. We then implement the
necessary changes to the data transformation procedure and the glue code, as well as the changes to
the test systems. We execute the unit tests on the updated code before approving it to enter the
product.

Step example: A change to the interface for adding nodes and edges to the graph object requires
corresponding changes to the transformation procedure. This updated procedure is then unit tested.

Concerns and envisioned support by HATS

The graph layout library documentation provides informal textual information about the functionality of
its interfaces as well as information about the potential side-effects that may arise from invoking these
interfaces. It is necessary to be a able to provide a more precise description of the third party library’s
functionality. Furthermore, we want to provide means to handle unanticipated changes to library’s internal
and/or external behaviors. In the rest of this section we highlight specific issues about functional correctness,
integration and testing from using third party libraries.

Functional correctness Our components must instantiate the libary classes and invoke its methods
through public interfaces according to the library’s “intended behavior”. That is, we must understand the
functionality of each public interface, and the side-effects that may be caused by invoking these interfaces.
Unlike Scenarios FP1 and FP2, where one might be able to provide precise behavioral description of methods
down to class level, third party libraries are black boxes and as such we have no control with internal behavior
or any behavioral changes. Therefore it is necessary to have the ability to model and specify behavior at
the interface level. To this end we envisage the HATS framework would provide the supports for addressing
these issues at the interface level:

Concern (FP-C13). Partial specification: Modeling of black box components and specification of behav-
ioral properties such as pre/postcondition and invariants about them. Note that unlike the case presented
in Scenario FP1, it is often impossible to provide a complete behavioral specification of a black box com-
ponent. Therefore, the HATS framework should allow models to have formal but incomplete specification.
(T1.1, T1.5 and T4.3)

52

HATS Deliverable D5.1 Requirements Elicitation

Concern (FP-C14). Model mining: Derivation of models (model mining) from black box components
such that black box components may be described in the same way as white box components but with higher
level of abstraction. (T3.2)

Concern (FP-C15). Evolution of black box components: Provision of guidance to model evolution
due to unanticipated changes of black box components. Unlike the case introduced in Scenario FP1, it often
is impossible to enforce boundary of changes to black box components. HATS framework should therefore
identify changes to the black box components via model mining and provide useful information based on
some measure of model difference. (T3.1, T3.2, T3.3 and T3.5)

Integration To integrate a third party library into FAS, we manually provide the programming logic for
two tasks: a) transforming the data models between the third party library and FAS, and b) coordinating
the interaction between the library and FAS. This means the orders in which the library’s interface methods
are invoked.

We aim to factor out the glue code from the components interacting with the third party library. This
would allow better management of the glue code as well as adaptation to changes the third party library’s
APIs. While integration of new components has been addressed in Section it is more difficult to
anticipate the changes of the third party library. These unanticipated changes would make the integration
of the library to FAS much harder. To this end we envisage the HATS framework would provide the following
supports:

Concern (FP-C16). Modeling data transformation: Modeling of the transformation between the data
models of the third party library and that of FAS. For doing so, the HATS framework should provide
(guided) code generation for implementing the transformation procedure. In our concrete example, given
that we have a specification of the abstract syntax of the internal data structure of the rule engine and the
abstract syntax of the graph object for layout, it should be possible to specify declaratively the rules for
transforming between these data models. This declarative specification could then be used to generate the
implementation code of the transformation. (T1.1, T1,4, T1.5 and T4.3)

Concern (FP-C17). Modeling interactions with black box components: Modeling of interacting
behavior between black box components and the rest of the systems. The HATS framework should be
able to provide (guided) generation for the program code for handling the interaction between the black
box components and the rest of the systems. In our concrete example in Section we can see how it
may be difficult to validate the correctness of program code for a) transforming the data models between
the third party library and FAS, and b) coordinating the interaction between the library and FAS. This
becomes extremely difficult without a precise specification of the program code. Therefore we must first
provide a formal specification of the interacting behavior between the third party library and FAS. The
HATS framework should then provide a tool support to assist the generation of the program code. (T1.1,
T1.4, T1.5 and T4.3)

Concern (FP-C18). Propagation of changes: Modeling evolution due to unanticipated changes to black
box components. Specifically evolution must be formally specified and properly propagated to the models
of the program code for a) transforming the data models between the third party library and FAS, and b)
interacting behavior between the third party library and FAS. Similar to the evolution of test systems, how
evolution are propagated to the program code must be formally studied. This is so that evolutions could
maintain consistency property. (T3.1, T3.2, T3.3 and T3.5)

Testing In Section we have identified the need for the HATS framework to provide methodology
and technique to assist the generation of test systems for individual components. This requirement should
be extended to third party libraries. Specifically the HATS framework should provide support to assist
the generation of the test system for the program code for transforming data models between the library
and FAS and for coordinating their interaction. The problem with testing behavior involving third party

23

HATS Deliverable D5.1 Requirements Elicitation

libraries is that tests are often written independently from the third party library’s “specification”. This
means it becomes notoriously difficult to ensure that we do not get false positive results. Furthermore, it is
very difficult to make changes to the test system while preserving consistency properties. To this end we
envisage the HATS framework would provide the following;:

Concern (FP-C19). Test case generation: Provision of (guided) code generation of test systems based on
properties like compatibility specified using the HATS framework. Unlike maintaining consistent evolution
of white box components, it is more difficult to prove total correctness of black box components. In our
concrete example, instead of manually implementing unit tests for the graph layout library and corresponding
transformation procedures and glue code, once a partial specification of the library interfaces has been
obtained, the HATS framework should be able to provide guidance for generating unit tests and manual
integrated test cases for rule engine interface as well as the interaction between the rule engine and the
diagnostic tool. (T1.1,T1.4,T73.1,T3.4 and T3.5)

5.2.6 Scenario FP6: Performance

We now consider the scenario, which covers the performance issues that arise in the development process of
FAS. In the current development of FAS, there are two main metrics for performance benchmark: response
time and queries per second. Those two elements form the FAS’s service level agreement.

Response time For an individual interaction with FAS, the main unit of measurement is response time.
In particular it is the time it takes for a request to enter FAS and FAS to prepare a response to
return to the user. Note that this is not the total time an interaction would take. FAS is a server-
based software system. Therefore clients would normally implement specialised applications to support
such interaction. Consequently the computation of such applications would add overhead to the total
response time. Other overheads such as network latency would also contribute to the total response
time.

Queries per second FAS is a server-based software system, which provides the capability to allow the
client to serve multiple requests concurrently. Queries per second is the number of requests completed
by FAS per second. Note that this measurement is orthogonal to response time of individual request
and as such does not imply bounds to response time. For example, if FAS receives > 20 requests per
second, it guarantees completion of > 20 requests per second, that is, 20 queries per second, while the
response time of individual request might take up to 200 milliseconds to complete.

As a concrete example, we study the development process of FAS, in particular we look at how perfor-
mance analysis is carried out in Fredhopper.

Concrete example

In this section we describe how the performance of a particular functionality of FAS is analysed. To
maintain the service level agreement, rigorous performance analysis has to be carried out at different levels
of granularity. During performance analysis a library of stress test cases are executed. Each test case defines
the workload, number of requests as well as where and when measurements are taken. Measurements are
taken for certain units of activity; here an activity is a sequence of instructions executed in FAS. For each
activity, the following measurements are taken:

e Activity duration — This is the amount of time an activity takes to complete. This is measured by
taking a timestamp via System.currentTimeMillis () before and after the execution of the activity.

e Triggered activity duration — If an activity takes longer than expected, that is, longer than its threshold
value.

54

HATS Deliverable D5.1 Requirements Elicitation

e Activity occurrences — This measures the number of times and/or the number of locations where the
completion of a particular activity may be recorded.

Each piece of measurement is identified with an activity. Identification is in terms of source code location.

e Stack trace location — Stack trace location provides accurate location in the source code, Since the
procedure for obtaining a stack trace of the current thread by calling getStackTrace() of the current
thread object would cost several milliseconds, this would be taken into consideration when carrying
out analysis.

e User-defined location — A unique identifier, specified by the developer/tester, could be assigned to a
particular location

e Request identifier — This is a unique identifier composed of identifier of the current thread and an
integer specifying the number unique of requests processed by this thread.

For every measurement we produce an individual report containing the measurment’s unique identi-
fier, its value, and the location where it is taken. Certain measurements may be aggregated, for example,
if it measures the number of events at the same location. For every test case, some standard statistical
calculations (average, standard deviation etc.) are made on the set of measurements obtained, and also
corresponding (average) response time and (average) queries per second are obtained.

Step example: FAS defines a PageServlet class, which is a subclass of HttpSer’uZetEL for creating a
frontend web page for response for FAS. It overrides the method doGet (), which is called by the server
(via the service method) to allow a serviet to handle a GET request. We would like to measure the time a
GET request [18] would take for FAS to serve. For this measurement instructmentations are inserted at the
beginning and the end of the doGet () method body.

Concerns and envisioned support by HATS

The method for performance analysis described in the example above has a number of shortcomings. It is
time consuming, a stress test case might be long-running, ranging from 30 minutes to several hours, and
this is not scalable under constant changes to the software system behavior such as adding new feature or
modifying existing ones. It is not exhaustive, test cases cannot provide complete guarantee on performance
requirements. It is not extensible, performance requirements are currently hard wired rather modeled
declaratively and the model for specifying requirements is not compositional. To this end we envisage the
HATS framework would provide the theory and tool support for the following:

Concern (FP-C20). Specification and analysis of Performance requirements: The HATS framework
should provide the mechanism and analysis technique for formally specifying performance requirement and
resource guarantee of units of code. Proposed method should both be declarative and extensible by means
of compositionality. In the area of formal cost analysis [26], [12], 2], a program’s cost function are a set of cost
relations, each defined by a set of recurrence equations, in which cost of a program is defined as a function of
its input data size. However the formulation of this model requires knowledge, which cannot be assumed to
be accessible to software developers and testers. HATS should therefore also incorporate usable techniques
and tools to assist the generation of cost models such that formal specification of performance requirement
might become more amenable. (T4.2)

Concern (FP-C21). Verification of performance requirement: The HATS framework should provide
the mechanism to breach the gap between specifying and verifying performance requirement and resource
guarantees. The need for formal and approzimate verification of performance requirement has been identified
to overcome the shortcoming of the inexaustive method of stress testing. This is where performance and

3 An abstract Jave class to be subclassed to create an HT'TP servlet suitable for a Web site.

95

HATS Deliverable D5.1 Requirements Elicitation

resource guarantee of programs are specified in program logic [3], and then formally proved for correctness.
Similar to specification of functional requirements, HATS should incorporate usable techniques and tools to
assist verification process. (T1.5 and T4.2)

5.3 Summary

In this chapter we have presented the industrial software system FAS and used general scenarios with
concrete examples to identify concerns and issues with the development and support process of FAS. We
then suggest where in the HATS project these concerns and issues may be addressed. As mentioned at the
beginning of this chapter, corresponding detail requirement analyses for these scenarios and examples would
be carried out in Task 5.2, using which concrete requirements would be harvested for the HATS framework.

Specifically Scenarios FP1 and FP4 in Sections [5.2.1] and [5.2.4] identified concerns for verifications of
sequential and concurrent behavior; Scenario FP2 in Section identified concerns for components inte-
gration; Scenario FP3 in Section [5.2.3|identified concerns for with generation and evolution of test systems;
Scenario FP5 in Section identified concerns for the utilization of third party libraries, and Scenario
FP6 in Section concerned performance analysis. Table [5.1] gives a summary of the concerns harvested
from this case study and Table shows the relationship between concerns identified in this case study and
tasks to be carried out in the HATS project.

o6

HATS Deliverable D5.1 Requirements Elicitation

Req. Identifiers ‘ Req. Labels Tasks Reference

FP1: Correctness of sequential programs

FP-C1 Specification of sequential programs 1.1, 1.3, 1.5, 4.3 Page (43

FP-C2 Verification of sequential programs 1.1, 1.4, 1.5, 3.2, 4.3 | Page 43

FP2: Integration of a new feature component in FAS

FP-C3 Correctness of interactions 1.1, 1.3, 1.4, 1.5, 4.3 | Page[45

FP-C4 Behavioral compatibility 1.1, 1.3, 1.4, 1.5, 4.3 | Page 45

FP-C5 Incremental validation 1.1, 1.3, 1.4, 1.5, 4.3 | Page 45

FP-C6 Evolvability and code generation 1.4, 1.5, 3.1, 3.3, 3.5, | Page 16

4.3

FP-C7 Tool support for navigability 1.4, 1.5, 4.3 Page 16

FP3: Test system provisioning

FP-C8 Test case generation 1.1, 1.4, 1.5, 4.3 Page 48

FP-C9 Modeling behavioral changes 3.1, 3.3,4.3 Page 18

FP-C10 Test system evolution 1.1, 1.5, 3.1, 3.3, 4.3 | Page 50

FPj: Concurrency

FP-C11 Specification of concurrent programs 1.1, 1.3, 1.5, 4.3 Page |50

FP-C12 Verification of concurrent programs 1.1, 1.4, 1.5, 3.2, 4.3 | Page 51

FP5: Using third party library

FP-C13 Partial specification 1.1, 1.5, 4.3 Page [52

FP-C14 Model mining 3.2 Page [53]

FP-C15 Evolution of black box components 3.1, 3.2, 3.3, 3.5 Page 53

FP-C16 Modeling data transformation 1.1, 1,4, 1.5, 4.3 Page 53

FP-C17 Modeling interactions with black box components | 1.1, 1.4, 1.5, 4.3 Page 53

FP-C18 Propagation of changes 3.1, 3.2, 3.3, 3.5 Page 53

FP-C19 Test case generation 1.1, 1.4, 3.1, 3.4, 3.5 | Page 54

FP6: Performance

FP-C20 Specification and analysis of performance 4.2 Page [65
requirements

FP-C21 Verification of performance requirement 1.5, 4.2 Page 55

Table 5.1: High level requirements harvested from the Fredhopper case study

o7

HATS Deliverable D5.1 Requirements Elicitation

Work- Concerns harvested from Fredhopper case study
packages FP1 FP2 FP3 FP4 FP5 FP6
and Tasks | 1|2 |3 |a|5|6][7]|s[of10]11 12|13 14[15]16][17]18][19]20 |21

1 Framework

Task 1.1 o oo 0@ ° . ° ° . ° ° °
Task 1.2
Task 1.3 ° o o | e °

Task 1.4 oo o o e |e0]|e ° o | o °

Task 1.5 o | o | e |0 0o 0|06 o [o | o | @ o | o °
2 Variability
Task 2.1
Task 2.2
Task 2.3
Task 2.4
Task 2.5
Task 2.6
3 Evolvability
Task 3.1 ° o | o ° o | o
Task 3.2 ° ° o | o °
Task 3.3 ° o | o ° °
Task 3.4 °
Task 3.5 ° ° o | o
4 Trustworthiness
Task 4.1
Task 4.2 ° °
Task 4.3 | e | e | e | e | e | e |0 |0 |0 ¢ | ¢ | o | @ e [o

Task 4.4

Table 5.2: Overview of the scenarios and concerns of the Fredhopper case study and related tasks

o8

Chapter 6

Summary

This document provides the description of abstract requirements for the HATS method. The requirements are
divided into methodological requirements, which are described from an industry and a research perspective,
and concrete requirements, coming from different scenarios of the three case studies.

The methodological requirements can be seen as general high-level requirements, which should be sup-
ported by the HATS method in order to be accepted by the research community and by industry.

The requirements of the case studies are elicited by means of different scenarios, which cover different
challenges and problems for each case study. As the three case studies greatly differ in profile, size, and
application area, they cover very different aspects of the software development life cycle. Tables
and together give the complete overview of the scenarios and concerns identified via the case studies
and their corresponding work packages and tasks. As can be seen, the scenarios and concerns provide a
complete task coverage, where the different case studies vary in focus.

The Trading System case study is an academic system. It is small enough to be completely modeled
by ABS. It will be used to apply nearly all techniques developed in HATS. The different scenarios of the
Trading System case study are thus designed to cover most problem domains, which are addressed by HATS.
In particular, it will be used to evaluate tasks that are not addressed by the other two case studies. However,
being an academic system it cannot serve as a realistic example from industry, as the elicited requirements
are artificial and not driven by real customer needs.

The Virtual Office of the Future case study is a research system, coming from a semi-industrial domain.
The system is in particular challenging for ABS because of its highly distributed system structure. The
scenarios of this case study have no main focus and cover aspects of all work packages. As the VOF
case study is developed by standard industry methods, it will be an important case study to validate the
integration of HATS framework into existing development methods.

Finally, the Fredhopper case study is a system used and developed in industry. This case study differs
in two main points from the other ones. The first is that it is in active use by many customers and that it
is constantly evolving and adapted. The second is, being an industry system, it relies on many third party
software components. Thus it cannot be assumed that the whole program source is available. This introduces
several interesting challenges to the HATS framework, which might, however, not all be solvable in the scope
of HATS. In particular, it requires that the ABS language is able to modularly describe and verify certain
parts of a software system and to abstract from a concrete environment and the implementation of other
software parts. The main focus of the case study, however, is evolvability. In particular, the Fredhopper case
study provides evolution steps, which are driven by customer needs and are thus not artificial. Evolution in
the Fredhopper system is critical in several aspects. First, evolution is required for Fredhopper in order to
keep their product competitive. Second, evolution has to be applied to systems, which are already deployed
and are running. And third, evolution must not introduce bugs, resulting in down times of systems deployed
at customers.

Deliverable D5.1 is the starting point for the validation of the HATS framework. The requirements
collected in this document are described on a rather abstract level. These requirements will be refined and

29

HATS Deliverable D5.1 Requirements Elicitation

scoped in the later validation phases, starting with D5.2, which will validate the Core ABS language.

60

Bibliography

1]

2]

L. Aceto and A. D. Gordon, editors. Proceedings of the Workshop Algebraic Process Calculi: The First
Twenty Five Years and Beyond, volume 162 of ENTCS, 2006.

Elvira Albert, Puri Arenas, Samir Genaim, German Puebla, and Damiano Zanardini. Cost Analysis
of Java Bytecode. In Rocco De Nicola, editor, 16th Furopean Symposium on Programming, ESOP’07,
volume 4421 of Lecture Notes in Computer Science, pages 157—172. Springer-Verlag, March 2007.

D. Aspinall, L. Beringer, M. Hofmann, H-W. Loidl, and A. Momigliano. A program logic for resource
verification. In 17th International Conference on Theorem Proving in Higher Order Logics, volume
3223 of LNCS, 2004.

C. Atkinson, J. Bayer, C. Bunse, E. Kamsties, O. Laitenberger, R. Laqua, D. Muthig, B. Paech,
J. Wiist, and J. Zettel. Component-based product line engineering with UML. Addison-Wesley Longman
Publishing Co., Inc., Boston, MA, USA, 2002.

J. Bayer, C. Gacek, D. Muthig, and T. Widen. Pulse-i: Deriving instances from a product line in-
frastructure. Engineering of Computer-Based Systems, IEEE International Conference on the, 0:237,
2000.

S. Becker, W. Hasselbring, A. Paul, M. Boskovic, H. Koziolek, J. Ploski, A. Dhama, H. Lipskoch,
M. Rohr, D. Winteler, S. Giesecke, R. Meyer, M. Swaminathan, J. Happe, M. Muhle, and T. Warns.

Trustworthy software systems: a discussion of basic concepts and terminology. SIGSOFT Software
Engineering Notes0, 31(6), 2006.

C. Canal, E. Pimentel, and J. M. Troya. Compatibility and inheritance in software architectures.
Science of Computer Programming, 41(2):105-138, 2001.

S. Carpineti, G. Castagna, C. Laneve, and L. Padovani. A formal account of contracts for web services.
In WS-FM’06, volume 4184 of LNCS, 2006.

P. Clements and L. Northrop. Software Product Lines: Practices and Patterns. Addison Wesley
Longman, 2001.

The CoCoME Website, July 2009. http://www.cocome.org.

K. Czarnecki, U. Eisenecker, and K. Czarnecki. Generative Programming: Methods, Tools, and Appli-
cations. Addison-Wesley Professional, 2000.

S. K. Debray and N. W. Lin. Cost analysis of logic programs. TOPLAS, 15, 1993.

Sophia Drossopoulou, editor. ECOOP 2009 - Object-Oriented Programming, 23rd European Conference,
Genoa, Italy, July 6-10, 2009. Proceedings, volume 5653 of Lecture Notes in Computer Science. Springer,
20009.

C. Forgy. On the efficient implementation of production systems. PhD thesis, Carnegie-Mellon Univer-
sity, 1979.

61

http://www.cocome.org

HATS Deliverable D5.1 Requirements Elicitation

[15]
[16]
[17]

[18]
[19]
[20]

[21]

[22]

[23]

Fredhopper Product. http://www.fredhopper. com.
J. Gosling, B. Joy, and G. Steele. The Java Language Specification. Addison-Wesley, 1996.

Highly Adaptable and Trustworthy Software using Formal Methods, March 2009. http://www.
hats-project.eul

Hypertext Transfer Protocol - HTTP/1.1. http://www.w3.org/Protocols/rfc2616/rfc2616.html.
D. Jackson. A direct path to dependable software. Comm. ACM, 52(4):78-88, 2009.

M. Jazayeri, A. Ran, and F. van der Linden. Software architecture for product families: principles and
practice. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 2000.

Einar Broch Johnsen, Olaf Owe, and Ingrid Chieh Yu. Creol: A type-safe object-oriented model for
distributed concurrent systems. Theoretical Computer Science, 365(1-2):23-66, November 2006.

G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Lopes, J. Loingtier, and J. Irwin. Aspect-oriented
programming. In Proceedings of the European Conference on Object-Oriented Programming, volume
1241 of LNCS, 1997.

C. Larman. Applying UML and Patterns: An Introduction to Object-Oriented Analysis and Design and
Iterative Development. Prentice Hall, 3rd edition, 2004.

D. Muthig. A Lightweight Approach Facilitating an Evolutionary Transition Towards Software Product
Lines. PhD thesis, University of Kaiserslautern, 2002.

K. Pohl, G. Bockle, and F. Van Der Linden. Software Product Line Engineering: Foundations, Princi-
ples, and Techniques. Springer, Heidelberg, 2005.

F. A. Rabhi and G. A. Manson. Using complexity functions to control parallelism in functional pro-
grams. Technical Report TR. CS-90-1, Department of Computer Science, University of Sheffield, UK,
1990.

A. Rausch, R. Reussner, R. Mirandola, and F. Plasil, editors. The Common Component Modeling Exam-
ple: Comparing Software Component Models [result from the Dagstuhl research seminar for CoCoME,
August 1-3, 2007], volume 5153 of LNCS. Springer, 2008. Preliminary version of the chapter describing
the Trading System is available at: http://agrausch.informatik.uni-k1.de/CoCoME/downloads/
documentation/cocome.pdfl

J. N. Reed, J. E. Sinclair, and A. W. Roscoe. Responsiveness of interoperating components. Form.
Asp. Comput., 16(4):394-411, 2004.

Steffen Thiel and Klaus Pohl, editors. Software Product Lines, 12th International Conference, SPLC
2008, Limerick, Ireland, September 8-12, 2008, Proceedings. Second Volume (Workshops). Lero Int.
Science Centre, University of Limerick, Ireland, 2008.

Research Highlight: Virtual Office of the Future. http://www.iese.fraunhofer.de/research/vof/
vof. jsp.

62

http://www.fredhopper.com
http://www.hats-project.eu
http://www.hats-project.eu
http://www.w3.org/Protocols/rfc2616/rfc2616.html
http://agrausch.informatik.uni-kl.de/CoCoME/downloads/documentation/cocome.pdf
http://agrausch.informatik.uni-kl.de/CoCoME/downloads/documentation/cocome.pdf
http://www.iese.fraunhofer.de/research/vof/vof.jsp
http://www.iese.fraunhofer.de/research/vof/vof.jsp

Glossary

Terms and Abbreviations

ABS Abstract Behavioral Specification language. An executable class-based, concurrent, object-oriented
modeling language based on Creol, created for the HATS project.

AE See Application engineering

API Application programming interface, provided by a component to enable communication with other
components.

Application engineering Application engineering is a process that builds a single product by reusing
artifacts in the product line artifact base.

Artifact An artifact in a product line is the output of the product line engineering process. Artifacts
encompass requirements, architecture, components, tests etc.

ELT Extract, Transform and Load Toolkit.

Family engineering Family engineering is a process that builds reusable artifacts that are stored in a
product line artifact base. See also Product line artifact base.

FAS See Fredhopper access server
FE See Family engineering

Feature Generally, an increment in software functionality. On the level of feature models it is merely a
label with no inherent semantic meaning.

Feature model An expression of the variability within product lines. Abstractly it may be seen as a
system of constraints on the set of possible feature configurations.

Fredhopper access server Fredhopper access server is a component-based, service-oriented and server-
based software system, which provides search and merchandising I'T services to e-Commerce companies
such as large catalog traders, travel booking, managers of classified, etc.

PLE See Product line engineering.
Product line artifact base A repository in a software product line containing all reusable artifacts.

Product line engineering A development methodology for software product family. It splits develop-
ment into Family engineering and Application engineering processes. See also Family engineering and
Application engineering.

Queries per second Queries per second is the number of requests completed by FAS per second. See also
FAS.

63

HATS Deliverable D5.1 Requirements Elicitation

Response time Response time is the time that is required for a request to enter FAS and FAS to prepare
a response to return to the user.

Service level agreement Service level agreement is a part of a service contract where the level of service
is formally defined.

Software product family A family of software systems with well-defined commonalities and variabilities.
SWPF See Software product family.
UML Unified Modeling Language

Virtual office of the future A P2P framework that enables office workers to perform their office tasks
seamlessly independent of their current location.

VOF See Virtual office of the future

64

	1 Introduction
	1.1 Goal of the deliverable
	1.2 Structure of document
	1.2.1 Methodological requirements
	1.2.2 Case studies
	1.2.3 Labeling
	1.2.4 Scope and structure

	2 Methodological Requirements
	2.1 Product line engineering
	2.2 Organization: Fraunhofer IESE perspective
	2.2.1 Managers' perspective
	2.2.2 Users' perspective

	2.3 Industrial applicability: Fredhopper's perspective
	2.3.1 Developing an evolving product
	2.3.2 Server software
	2.3.3 Software as a service
	2.3.4 Integrated tools development environment

	2.4 End-user panel perspective
	2.5 Summary

	3 Trading System Case Study
	3.1 Overview
	3.2 Scenarios
	3.2.1 Scenario TS1: Coupon handling feature
	3.2.2 Scenario TS2: Cash desk variability
	3.2.3 Scenario TS3: Dependability property
	3.2.4 Scenario TS4: Authentication policies
	3.2.5 Scenario TS5: Feature evolution - Loyalty system

	3.3 Summary

	4 Virtual Office of the Future Case Study
	4.1 Overview
	4.2 Reusable artifacts
	4.3 Scenarios
	4.3.1 Scenario VF1: Realize a new workflow
	4.3.2 Scenario VF2: Add a new device type to the VOF infrastructure
	4.3.3 Scenario VF3: Realization of a new VOF service
	4.3.4 Scenario VF4: Integration of a new virtual office application
	4.3.5 Scenario VF5: Integration of new functionality in the VOF P2P platform
	4.3.6 Scenario VF6: Replacement of technologies

	4.4 Summary

	5 Fredhopper Case Study
	5.1 Overview
	5.2 Scenarios
	5.2.1 Scenario FP1: Correctness of sequential programs
	5.2.2 Scenario FP2: Integration of a new feature component in FAS
	5.2.3 Scenario FP3: Test system provisioning
	5.2.4 Scenario FP4: Concurrency
	5.2.5 Scenario FP5: Using third party library
	5.2.6 Scenario FP6: Performance

	5.3 Summary

	6 Summary
	Bibliography
	Glossary

