
FlexSoC: Combining Flexibility and Efficiency
in SoC Designs

John Hughes‡, Kjell Jeppson†, Per Larsson-Edefors,
Mary Sheeran‡, Per Stenström, Lars “J.” Svensson

Computer Engineering, †Microelectronics, ‡Computing Science
Chalmers University of Technology, SE-412 96 Göteborg, Sweden

http://www.cs.chalmers.se/˜flexsoc

Abstract

The FlexSoC project aims at developing a design
framework that makes it possible to combine the computa-
tional speed and energy-efficiency of specialized hardware
accelerators with the flexibility of programmable proces-
sors. FlexSoC approaches this problem by defining a
uniform programming interface across the heterogeneous
structure of processing resources. This paper justifies our
approach and also discusses the central research issues
we will focus on in the areas of VLSI design, computer
architecture, and programming and verification.

1 Introduction

Dedicated, application-specific, single-task processing el-
ements (or specialized blocks, or accelerators) can im-
prove overall computation speed and energy efficiency
when used in addition to general-purpose processor (GPP)
cores in a System-on-a-Chip (SoC). Most SoC visions rely
on such specialized blocks to carry out compute-intensive
tasks, such as filtering, transforms, or encryption. Then,
clear performance benefits in terms of processing speed
and energy-efficiency are achievable when compared to
software implementations hosted on GPP or digital signal
processor (DSP) cores. These benefits may vanish, how-
ever, if a slight variation of the original algorithm is to be
implemented instead. Thus, efficiency and programmabil-
ity would seem to be at odds. Moreover, SoCs containing
both GPP cores and accelerators do not interface well with
traditional software development tools, such as compilers
and debuggers. This makes software development chal-
lenging.

The objective of the FlexSoC research effort is to com-
bine the efficiency of special-purpose hardware with the
programmability offered by a GPP. We envision proces-
sors that simultaneously offer both programmability simi-
lar to that of a GPP and efficiency similar to that of special-
purpose hardware. Our research will be directed towards a
homogeneous way to handle heterogeneous processor ar-
chitectures, including the following benefits, which are all
taken for granted by users of traditional GPPs and DSPs:

• A semi-opaque processor architecture, which the pro-

The authors gratefully acknowledge the support of the Swedish
Foundation for Strategic Research (SSF).

grammer may, but does not have to, know in detail.

• A software-independent way to augment the under-
lying processor architecture for increased computa-
tional capacity.

• Unified mechanisms to disable unrequired hardware
resources during periods of light computational load
to save energy.

• Improved resource utilization by automatic re-use of
hardware resources across unrelated computations.

Our work will also provide a compact representation of
the instruction stream, which will serve to reduce applica-
tion memory-footprint and instruction-bandwidth require-
ments, leading to improved area and energy efficiency.

We will first outline the general approach of the Flex-
SoC project in Section 2. We then discuss the central re-
search issues we plan to address and the methodological
approach chosen in Sections 3 and 4, respectively, before
we conclude in Section 5.

2 Approach

In traditional GPPs, a fixed Instruction Set Architecture
(ISA) provides a hardware/software interface that is the
same for all applications. For a heterogeneous SoC pro-
cessor, the use of a single hardware/software interface is
not expected to work well: since such an ISA would con-
tain a significantly larger number of instructions, the re-
sulting code would consume large amounts of memory
and instruction bandwidth. Moreover, maintaining code
compatibility would make it difficult to add new hardware
structures. Furthermore, the fixed-ISA concept does not fit
well with the heterogeneous processors foreseen for high-
functionality SoCs. The specialized blocks used for fil-
tering, encryption, and other compute-intensive tasks are
rarely controlled directly via an instruction set but rather
indirectly, through explicit configuration. Thus, the price
paid for a fixed-ISA hardware/software interface in this
context is inefficiency on both sides of the interface.

FlexSoC aims to mitigate these inefficiencies through
a novel hardware-software interface concept. Our focus
on processors embedded on SoCs makes it possible to de-
part from the traditional, compatibility-constrained ISAs.
Thus, a FlexSoC processor has a native ISA (N-ISA), ca-
pable of fine-grain control of all computational resources,



?

Expansion

AS-ISA 1

?

Expansion

AS-ISA 2 Program
m

em
ory

? ?

I-cache

Decoding

?

∗
��

PP

+

? ? ? ? D
atapath

-
-

-
-
-

-

Figure 1. Instructions in two different AS-ISAs are
expanded into the N-ISA in the I-cache.

as well as one or more application-specific ISAs (AS-
ISAs), each of which could be tuned to a class of appli-
cations with similar computational requirements. Transla-
tion from each AS-ISA to the N-ISA is carried out on-the-
fly by reconfigurable logic circuits. Thus, AS-ISAs can be
defined to fit a new application; the N-ISA and the transla-
tion process stay fixed, providing the foundation on which
the AS-ISAs are built.

To efficiently accomplish all their tasks, SoC proces-
sors will include special-purpose hardware blocks to sup-
port time-consuming computational kernels. The follow-
ing observation has far-reaching consequences: Each task
will only use a small subset of the functionality offered by
the complete processor. A properly selected AS-ISA can
therefore be much more densely coded than the N-ISA. In
fact, a recent study [1] that characterized the instruction
usage in Java bytecodes observed that only 45 out of 256
bytecodes account for 90% of the execution. This sug-
gests that executable code will occupy less memory and
require a lower instruction bandwidth using the FlexSoC
approach. In fact, the selection of the AS-ISA adds an-
other dimension to the optimization space available to the
compiler: it may be preferable to use a sequence of in-
structions which are already available instead of a single
instruction that would expand the AS-ISA.

A possible controller strategy to implement the AS-
ISA-to-N-ISA translation is illustrated in Figure 1. To
reduce the influence of the time spent to translate an
application-specific instruction to a native instruction, our
intention is to carry out this translation on instruction
cache misses only, and cache the translated instructions.

Figure 1 shows only a simple translation case. Several
extensions of this scheme readily suggest themselves:

• For a multi-level instruction cache, translation from
the AS-ISA to the N-ISA could be distributed across
each cache level. As a consequence, the two ISA lev-
els would be replaced by a deeper hierarchy.

• If one AS-ISA instruction is allowed to correspond
to a sequence of N-ISA instructions, the expressive
power per byte in the AS-ISA grows even more, fur-
ther improving instruction density. The allowable
clock rates at different cache levels will naturally in-
fluence the maximum length of such instruction se-
quences.

• A single instruction cache hierarchy may support
several instruction streams, in much the same way
as a traditional GPP may share caches with a co-
located DSP in a heterogeneous multiprocessor [2].
Provided that the synchronization issues can be han-
dled, a FlexSoC processor can additionally re-use
datapath blocks across instruction streams, as several
AS-ISAs may map to the same N-ISA.

Since the N-ISA is completely hidden to the application
code, it can be changed if functionality is added. Thus,
new hardware functionality can be added without being
constrained by a fixed-size ISA. The N-ISA can also pro-
vide a more expressive interface to the compiler. This can
be exploited by offering more powerful primitives to con-
trol the heterogeneous processor with the goal of saving
power and adapting resources to the application needs.

3 Research issues

While the hardware/software interface outlined above
clearly offers flexibility to embedded heterogeneous pro-
cessors, there are many open questions concerning how to
implement the interface efficiently. These questions moti-
vate research on both sides of the interface in a concerted
fashion. We outline some of the issues below.

3.1 VLSI design issues

The success of the FlexSoC program depends on solving
several challenging circuit-design and micro-architecture
problems. The implementation of the instruction-cache
hierarchy is quite different from that of most traditional
GPPs and DSPs. First, instruction decoding is distributed
across the memory hierarchy, with a minimum of two de-
coding stages. Second, the decoding circuitry itself is to be
reconfigurable to support several AS-ISAs. Third, for fast
AS-ISA swaps, several configuration-data sets should be
stored as close to the decoding logic as possible. Fourth,
if one AS-ISA instruction is allowed to correspond to a
sequence of N-ISA instructions, multi-rate clocking is re-
quired.

Instruction decoding distributed across the first-level I-
cache is a well-known technique. For example, modern
implementations of the ubiquitous Intel architecture de-
code the x86 instructions to “micro-ops” (RISC-style in-
structions) which are then stored in the instruction trace
caches. In FlexSoC, the technique is generalized to sev-
eral levels of on-the-fly translation; selecting the right



number of levels is an important design task. The “best”
number of decoding stages will likely be found only
through thorough architectural analysis and simulation,
where detailed performance models of the critical VLSI
blocks determine the optimum parameter values.

Several recent academic research efforts have focused
on the use of reconfigurable logic in the datapaths
of general-purpose processors (Zhou and Martonosi [3]
present a good overview). The FlexSoC effort is com-
plementary to these approaches, in that reconfigurability
is restricted to the instruction stream processing, where
latency can be partly hidden under cache misses.

Configuration-data storage is an important considera-
tion. To load the data sets from main memory every time
would reduce the “agility” of the processor—its ability to
quickly adapt to a new workload. A high AS-ISA swap la-
tency can be expected to result in AS-ISA bloat, since the
compiler layer would attempt to extend an existing AS-
ISA rather than introduce a new AS-ISA when needed.
A natural approach seems to be to save the configuration
data in the cache memory array itself, essentially treating
it like other dynamic data, which will be loaded on de-
mand, locked in memory if AS-ISA switch latency is im-
portant, and flushed from memory when no longer needed.
Thus, instruction cache space can be seamlessly traded off
for configuration data space through adaption of the com-
mon memory resource.

3.2 Computer architecture issues

On-the-fly translation, code compression, and avoidance
of code expansion in using compiler optimizations all
stress how to support the translation process in an efficient
yet flexible way. FlexSoC will focus on this issue.

On-the-fly instruction translation finds many applica-
tions beyond the FlexSoC approach. One example is in
supporting virtual machines in Just-In-Time (JIT) compi-
lation of Java code [4]. In a JIT compiler, code is trans-
lated on the fly by software. In contrast, in our approach,
most of the translation and optimization is done at com-
pile time and a much less compute-intensive translation
between AS-ISA and N-ISA instructions is postponed to
run-time. Yet, a critical issue is to find schemes to sup-
port the on-the-fly translation process which impose the
least possible overhead in terms of execution time and en-
ergy. As discussed above, it is desirable to carry out the
instruction translation as close to the processors as pos-
sible as that will be most effective in preserving memory
space and instruction bandwidth. However, the closer the
translation is, the more execution overhead it can cause.
One way to reduce the overhead would be to perform the
translation in a speculative manner using branch predic-
tion. The question is how effectively that can be done.

A second example of on-the-fly translation is when in-
structions are compressed in memory so as to reduce the
memory space needed to store the program [5]. Since an
AS-ISA instruction can represent a sequence of N-ISA
instructions, the FlexSoC framework enables powerful
compression schemes guided by static (compiler) and dy-
namic analysis (e.g., profiling). The compiler could for
example identify recurring code sequences [6] and seman-

tically associate an AS-ISA instruction with them, just like
a procedure call. When such an instruction is encountered,
it is expanded so that it acts as if the procedure is inlined.
The power of such compression approaches was recently
demonstrated in the DISE project [7, 8]. DISE applies
static analysis to the binary only; FlexSoC enables much
more aggressive compression as the compiler can have full
control of the coding.

Many compiler optimizations increase the static code
size and the FlexSoC approach can afford them without
this code expansion. In addition to the abovementioned
procedure inlining, loop unrolling is another example. A
loop to be unrolled could be associated with a special AS-
ISA instruction. That instruction could in the translation
process unroll the loop and load it into the first-level cache.

3.3 Programming and verification issues

The union of requirements of FlexSoC programmers is
likely to be very large and difficult to fulfill in its entirety,
just as is the case for GPPs. At one extreme, a program-
mer may insist on detailed control of hardware usage, and
at the other extreme, the programmer may prefer the com-
pilation system to make all hardware allocation decisions.
The challenge is to provide a way to satisfy both these de-
mands, and develop a programming paradigm where what
can be automated well, is automated, and what cannot be,
can be specified by the programmer in a high-level way.

We plan to develop this paradigm in a series of stages.
The first stage is to develop a configuration design lan-
guage, whereby processor configurations—the translation
rules from AS-ISA to N-ISA—can be described by a pro-
grammer, analyzed for performance and power properties,
and verified for correctness. The second stage is to use
these configuration descriptions together with application
code to generate AS-ISA code. In the third stage, we will
automate appropriate aspects of the configuration prob-
lem: identify aspects suitable for automation, and find
good optimization routines to handle those. We will con-
sider using simulation feedback to direct the configuration
selection, if appropriate.

Our approach to research this FlexSoC programming
interface is to work with domain-specific embedded lan-
guages, implemented as libraries in the functional pro-
gramming language Haskell [9]. The approach com-
bines the advantages of a very-high-level programming
language with fine low-level control, and above all en-
ables us to experiment with the design without the over-
heads of developing a special compiler. We are following
the approach of Elliott, Finne and de Moor’s Pan system
[10], which generates optimized C code for graphics trans-
forms from high-level Haskell descriptions, or Claessen
and Sheeran’s Lava system [11], which generates FPGA
configurations from Haskell descriptions.

The flexibility inherent in the FlexSoC approach to
processor design means that performance trade-offs must
be made across several levels of abstraction, including
hardware and software levels. To verify the equivalence
of the choices being considered, it will be necessary to de-
velop ways to reason about processor configurations, that
is, about the logic functions used to translate from an AS-



Performance
data

Architecture
designer

input

Circuit
designer

input

Architecture
description

Performance
models

Executable
code

Processor
conf.

Source
code

Algorithm
designer

input

Simulator

�
�

�
�

Compiler

�
�

�
�

?

- �

?

?

?

? 6

? ?

6 6

�

��� - ��

Figure 2. The experimental framework.

ISA to the N-ISA of the FlexSoC processor. The Lava
system [12], developed at Chalmers and Xilinx, is cou-
pled to a variety of formal verification tools, with partic-
ular emphasis on automatic verification using satisfiabil-
ity solvers. Several extensions of the Lava system will be
necessary to handle the full range of FlexSoC processors,
such as those using multiple clock rates.

4 Methodological Approach

Our approach draws on novel cache-memory circuit de-
sign ideas; unique use of reconfigurable logic for instruc-
tion decoding; novel ways to distribute the instruction
decoding logic across the datapath and memory subsys-
tem; new principles for on-the-fly translation; and sup-
porting methods for program compilation, transformation,
and verification. An experimental framework (Figure 2),
built around an architecture-simulator core, will allow us
to capture and verify functional, performance, and power
behavior of a FlexSoC processor. Parameterized timing
and power models for hardware blocks, based on VLSI-
design experiments, will provide the data necessary for
performance evaluation. A programming interface will
allow co-evaluation and co-verification of configurable
hardware, configuration data, and the executable code.

In constructing the architecture-simulator core, we will
draw on our experience in implementing highly efficient
architecture simulation systems. In recent work [13], we
have designed a simulation framework in which processor
and memory architecture simulators can be constructed
for functional, timing, and power modeling of processors
at the register transfer level. We will extend this frame-
work with a configuration module that models the on-the-
fly translation architectural mechanisms.

The hardware-block performance models will be based
on circuit simulations; selected blocks will be fabricated
and tested to verify the analysis and to calibrate the simu-
lations. The construction of abstract register-transfer level
models from large amounts of simulation data is a topic of
ongoing research within the group [14].

Our driving application examples will, in addition to

GPP-like functionality, also include specialized hardware
blocks to support time-consuming computational kernels.
We intend to select examples similar to those found in the
MediaBench suite [15].

5 Conclusions

The FlexSoC initiative addresses the efficient design of
embedded programmable processors that include special-
purpose datapath components together with the funda-
ments of the programmable processor. The problem com-
plex has attracted much attention in academia as well as
in industry. Compared with previous efforts, the FlexSoC
initiative brings a unique focus on instruction-stream man-
agement and the cross-disciplinary competence needed to
consider the problem in its entirety.

References

[1] Radhakrishnan et al. Java run-time systems: Characterization and
architectural implications. IEEE Trans. on Computers, vol. 50, no
2, Feb 2001, pp. 131–146.

[2] L. Hammond, B. Nayfeh, and K. Olukotun. A single-chip multi-
processor. IEEE Computer, vol 30, no 9, Sep 1997, pp. 79–85.

[3] X. Zhou and M. Martonosi. Augmenting modern superscalar ar-
chitectures with configurable extended instructions. Presented at
the Reconfigurable Architectures Workshop (RAW 2000), Cancun,
Mexico. Available at http://ipdps.eece.unm.edu/
2000/raw/18000943.pdf

[4] Cramer et al. Compiling Java just in time. IEEE Micro, vol. 17, no
2, March/April 1997, pp. 45–53.

[5] C. Lefurgy, E Piccininni, and T. Mudge. Reducing code size
with run-time decompression. In Proc. of 6th Int. Symp. on High-
Performance Computer Architecture, Jan 2000, pp. 218–227.

[6] S. Debray, W. Evans, R. Muth, and B. De Sutter. Compiler Tech-
niques for Code Compaction. ACM Trans. on Programming Lan-
guages and Systems, Vol. 22, No. 1, 2000, pp. 378–415.

[7] M.L. Corliss, E.C. Lewis and A. Roth. DISE: A programmable
macro engine for customizing applications. In Proc. of 30th
IEEE/ACM Symp. on Computer Architecture, Jun. 9-11, 2003.

[8] M.L. Corliss, E.C. Lewis and A. Roth. A DISE implementation
of dynamic code decompression. In Proc. of the ACM/SIGPLAN
2003 Int. Conf. on Languages, Compilers, and Tools for Embedded
Systems (LCTES-03), Jun. 11–13, 2003.

[9] P. Hudak. Modular domain specific languages and tools. In Pro-
ceedings of Fifth International Conference on Software Reuse,
IEEE Computer Society, June 1999.

[10] C. Elliott et al. Compiling embedded languages. In Semantics, Ap-
plications and Implementation of Program Generation workshop
(SAIG 2000), Springer Verlag LNCS, 2000.

[11] P. Bjesse et al. Lava: Hardware design in Haskell. In Proc. Int.
Conf. on Functional Programming (ICFP’98), ACM Press, 1998.

[12] K. Claessen, M. Sheeran, and S. Singh. The design and verification
of a sorter core. In Proceedings of the International Conference on
Correct Hardware Design and Verification Methods, CHARME’01,
Springer Verlag, LNCS, 2001.

[13] J. Chen, M. Dubois, and P. Stenström. SimWattch: An Approach
to Integrate Complete-System with User-Level Performance/Power
Simulators. In Proc. of IEEE ISPASS-2003, March 2003.

[14] D. Eckerbert and P. Larsson-Edefors. A Deep Submicron Power
Estimation Methodology Adaptable to Variations Between Power
Characterization and Estimation. In Proceedings of Asia South-
Pacific Design Automation Conference (ASPDAC), Kitakyushu,
Japan, Jan. 21–24, 2003, pp. 716–719.

[15] C. Lee, M. Potkonjak, W.H. Mangione-Smith. MediaBench: a tool
for evaluating and synthesizing multimedia and communications
systems. In Proc. of 30th IEEE Ann. Int. Symp. on Microarchitec-
ture, 1997, pp. 316–321.


