
FlexSoC
Past, Present & Future

Magnus Själander∗, Martin Thuresson†

∗ VLSI Research Group, Department of Computer Science and Engineering, Chalmers
University of Technology, Sweden
† High Performance Computer Architecture Group, Department of Computer Science
and Engineering, Chalmers University of Technology, Sweden

ABSTRACT

The FlexSoC program, launched in 2003, aims to develop new architectural techniques and pro-
gramming models for high performance System on Chip (SoC). The target platforms for FlexSoC
are embedded systems such as PDAs and high performance mobile phones. Important properties
for embedded systems are long battery life, high performance and the flexibility to adapt to new
protocols and standards. This abstract presents some of the work conducted by the participants of
the FlexSoC program.

KEYWORDS: System on Chip, Embedded, Reconfigurable, Compression

1 FlexSoC

The design-spectrum for embedded systems ranges from custom ASICs to general purpose
processors (GPPs). Using an ASIC solution makes it possible to tailor the hardware for the
specific application thus achieving an efficient solution with the lowest power dissipation
that meets required performance. The downside is the total lack of flexibility which makes
it costly to adapt to new standards. GPPs on the other hand offers flexibility but at the cost
of high power dissipation which is often related to the instruction fetch and decode. Todays
embedded systems are often built around one or several GPPs that controls a number of
hardware accelerators which is used for computational intensive tasks. With this approach
flexibility and programming becomes a difficult issue.

The proposed idea [HJLE+03] is to replace the fixed instruction set architecture (ISA) with
the possibility to tune the instruction set per application (AS-ISA2). This could then in real-
time be converted to a native ISA that is executed on the hardware. An obvious advantage
of this approach is that the program could be efficiently stored in memory and reduce the
power dissipation for instruction fetch and decode.

For further information about the FlexSoC program please visit our web site3.

1E-mail: {hms,martin}@ce.chalmers.se
2Application Specific ISA
3http://www.flexsoc.org

http://www.flexsoc.org


2 VLSI Issues4

The aim of the FlexSoC program is to design flexible System on Chip (SoC). In our work
we have taken a bottom up approach by starting to look at the datapath components and
how they can be made flexible. We have especially addressed the potential of adjusting the
computational width depending on actual operand size. In traditional design the datapath
components is created for the maximum operand size making them slow and power dissi-
pating when operating on smaller operand sizes, which is often the case.

2.1 Twin-Precision Multiplier

In our work we have shown how to design an efficient twin-precision multiplier [SELE04]
that is capable of adjusting the computational width to smaller operand sizes. In a single
instruction multiple data (SIMD) like fashion the twin-precision multiplier is also capable of
performing two small multiplications in parallel.

The idea behind the twin-precision multiplier is that when performing an N/2-bit mul-
tiplication 5 in an N-bit multiplier only one quarter of the partial products are used. For a
radix-2 tree multiplier the number of adders doing any useful computation for an N/2-bit
multiplication is also roughly one quarter of the total number of adders. By forcing the un-
used partial products to zero when doing an N/2-bit multiplication the dynamic power can
be eliminated in the adders not doing any useful computation. When forcing unused partial
products to zero the critical path delay is also reduced. The shorter path delay can be har-
nessed in a flexible system by either increasing the clock speed for higher performance or
lowering the supply voltage to achieve even higher power dissipation reduction.

We have also shown that by applying reconfigurable power gating it is possible to reduce
static power dissipation in different regions of a twin-precision functional unit [SDLEE05].
This was done by using the super cutoff CMOS (SCCMOS) technique on the adders in the
reduction tree of the twin-precision multiplier and a tailored supply grid.

The results show that the power dissipation of a 16-bit twin-precision multiplier oper-
ating on 8-bit operands can be more than three times lower than for a conventional 16-bit
multiplier.

2.2 Future Work

On the way up towards efficient instruction decoding we are currently looking into audio
decoders as a set of applications that can be run on a flexible datapath. The main issues that
will be address in this work are: i) organization of application specific functional units ii)
flexible interconnect structures and iii) flexible control.

The envisioned datapath will consist of application specific functional units such as the
discrete cosine transform (DCT) and Huffman decoder, which is commonly used in audio
applications. The functional units have to be connected with a flexible interconnect structure
in order to make it possible to create different pipeline combinations. It is also possible that a
general purpose processor (GPP) is needed to run application code that can not be mapped
onto a specific functional unit.

4Work primarily done by Magnus Själander
5Multiplication with half the operand size as of an N-bit multiplier



3 Architectural Issues6

There are many architectural challenges that could be addressed in our framework. Back-
ground and application studies has shown that memory is an important component in our
target systems and we have chosen to start by addressing the static code size. By reducing
the amount of memory for program code, we not only dissipate less memory, the cost of the
system may also be smaller and the cache hierarchy can be more efficiently utilized.

3.1 Static Code Size Compression

In our work [TS05] we have evaluated different schemes for static code compression with
dynamic decompression in the instruction fetch pipeline stage. Our focus has been on dic-
tionary based compression schemes. In the baseline algorithm, identical sections of code
inside the program are stored as one copy in one location, the dictionary, and the original in-
structions are replaced with codewords that identify the correct dictionary entry. This simple
compression scheme allows efficient storage and execution with low performance overhead.

Previous work has looked at different ways of allowing more instructions to be candidate
for the dictionary using more flexible codewords. Instead of identical sequences of instruc-
tions, they are allowed to differ in either full instructions [LSSC03] or operands [CLR03].
We have compared these and analyzed what type of flexibility in the codewords that has
the largest gain in compression ratio and introduced a framework in which the previous
schemes can be combined.

Our results show that operand parameters alone are most efficient in compressing the
programs. We also noted that with our combined approach, we can achieve the same com-
pressibility with smaller dictionary and less codewords. This makes it possible to execute
the programs more efficiently. This work also shows that the general instruction set archi-
tecture is not an efficient representation of the algorithm. The fact that the dictionaries of
various applications look quite different from each other also support our idea of AS-ISAs.

3.2 Future Work

Continuing the work on efficient storage and execution, we are looking into ways to effi-
ciently transfer not only instructions, but also data. Our current studies look at the data
transfered between CPU and memory, but a long term goal is to use the same efficient rep-
resentation at other levels in the memory hierarchy as well. Our initial results shows that
significance based compression is a well suited tool for this.

4 Acknowledgment

This research has been sponsored by the Swedish Foundation for Strategic Research (SSF)
under the FlexSoC program.

6Work primarily done by Martin Thuresson



References

[CLR03] Marc L. Corliss, E. Christopher Lewis, and Amir Roth. DISE: a programmable
macro engine for customizing applications. In Doug DeGroot, editor, ISCA ’03:
Proceedings of the 30th annual international symposium on Computer architecture, vol-
ume 31, 2 of Computer Architecture News, pages 362–373. ACM Press, June 2003.

[HJLE+03] John Hughes, Kjell Jeppson, Per Larsson-Edefors, Mar y Sheeran, Per Stenström,
and Lars "J." Svensson. FlexSoC: Combining Flexibility and Efficiency in SoC
Designs . In Proceedings of the IEEE NorChip Conference, 2003.

[LSSC03] Jeremy Lau, Stefan Schoenmackers, Timothy Sherwood, and Brad Calder. Re-
ducing code size with echo instructions. In Proceedings of the international con-
ference on Compilers, architectures and synthesis for embedded systems, pages 84–94.
ACM Press, 2003.

[SDLEE05] M. Själander, M. Drazdziulis, P. Larsson-Edefors, and H. Eriksson. A low-
leakage twin-precision multiplier using reconfigurable power gating. In Pro-
ceedings of the 2005 IEEE International Symposium on Circuits and Systems, 2005.

[SELE04] M. Själander, H. Eriksson, and P. Larsson-Edefors. An efficient twin-precision
multiplier. In Proceedings of the 2004 International Conference on Computer Design,
October 2004.

[TS05] Martin Thuresson and Per Stenstrom. Evaluation of extended dictionary based
static code compression schemes. In Proceedings of the International Conference on
Computing Frontiers, pages 77–86. ACM, ACM Press, 2005.


	FlexSoC
	VLSI IssuesWork primarily done by Magnus Själander
	Twin-Precision Multiplier
	Future Work

	Architectural IssuesWork primarily done by Martin Thuresson
	Static Code Size Compression
	Future Work

	Acknowledgment

