
FlexSoC - Past, Present & Future
Magnus Själander, Martin Thuresson, Per Larsson-Edefors, and Per Stenström

Computer Science and Engineering

Chalmers University of Technology

A

A

A

A

H

H

H A A A

A A A A

A A

A

A A A

A A

A

A

A

A

A

H

H

H

H

X

A

A

A A

A

A

H

H

H

X

A

A

A A

A

A

AHHalf adderFull adder XXOR gate A2 AND gates AND gate

p40p50p60p70

p41p51p61p71

p42p52p62p72

p43p53p63p73

p04p14p24p34

p05p15p25p35

p06p16p26p36

p07p17p27p37

p44p54p64p74

p45p55p65p75

p46p56p66p76

p47p57p67p77

x4x5x6x7

y4y5y6y7

s8s9s10s11s12s13s14s15

p00p10p20p30

p01p11p21p31

p02p12p22p32

p03p13p23p33

x0x1x2x3

y0y1y2y3

s0s1s2s3s4s5s6s7

benchmark

gzip gcc mcf parser perlbmk bzip2

A
ve

ra
ge

 b
its

/w
or

d.

0

2

4

6

8

10

12

14

16

18

20

22

24

26

misses oh

misses

lsb hits oh

lsb hits

idx

below co oh

below co

swc

Acknowledgement

Background

Twin-Precision Multiplier Static Code Compression

Memory Compression

Simulator and evaluation framework

http://www.flexsoc.org

When performing an N/2-bit multi-
plication only one quarter of the
partial products of an N-bit multipli-
cation is used (blue).
This opens up the possibility of per-
forming a second N/2-bit multiplica-
tion in parallel.

'1' for 8
bit

'1' for 4
bit

'1' for 4
bit

H

H

H

H

H

Invert Invert

H

H

H

X

Final

H

H

X

Adder

Partial product for the
two 4-b multiplications

H Half adder

Full adder

X XOR gate

0

15

Forcing inactive partial products to
zero (gray) enables the possibility
of computing a second N/2-bit mul-
tiplication in parallel (red). To im-
prove the delay of the N/2-bit
multiplicaions the active partial
products (red&blue) are placed in
the reduction tree close to the final
adder.

To further reduce the power dissi-
pation, power gating of incative
adder cells can be applied. This
eliminates the dynamic power as
well as reduces the static power
dissipation.

A flexible power grid for turning off
inactive logic has been presented.

Simulations done with a 16-bit twin-
precision multiplier shows a power
reduction of more then three times,
when performing signed 8-bit multi-
plications.

✓ 0.13µm technology
✓ VDD = 1.2 V
✓ Temperature = 80° C

Memory is an important component in embedded devices and by reducing the static code
size of the applications we can: dissipate less energy, reduce cost of system, and get high-
er performance.

Traditional dictionary based compression identifies identical sequences of instructions in
the code and stores them only once, in the dictionary. In the extended schemes, the dictio-
nary entries may also be generated from similary sequences of instructions. Bitmask Echo
and DICE are two previously proposed schemes that allows mismatch in complete instruc-
tions and operands.

We have evaluated dictionary-based compression and proposed a flexible scheme that al-
lows for a more efficiant execution of a compressed program. Our evaluation shows that the
operand flexibility is more efficiant than complete instructions, if used alone. We also show
that the combination of the two allows for a more efficient format to be executed.

Decompression engine inside the instruction fetch pipeline

Continuing the work on efficient
storage and execution, we are
looking into ways to efficiently
transfer not only instructions, but
also data. Our current studies look
at the data transfered between
CPU and memory, but a long term
goal is to use the same efficient
representation at other levels in
the memory hierarchy as well. Our
initial results shows that signifi-
cance based compression is a well
suited tool for this.

This research has been sponsored by the Swedish Foundation for Strategic Research (SSF) under the FlexSoC program. The
FlexSoC project consists of the following members: Per Stenström, Per Larsson-Edefors, Kjell Jeppson, Mary Sheeran, Lars
Svensson, John Hughes, Magnus Själander, and Martin Thuresson.

Average number of bits/transfered word on a
64-bit sparch Architecture using on signifi-
cance width compression and a 16-entry
cache with frequent values.

4.0

3.5

3.0

2.5

2.0

1.5

1.0

0.5

0.0

mW

359%

100%
126% 112%

Conventional Twin-precisionTwin-precisionConventional
power gated16-bit 8-bit

The FlexSoC program, launched in 2003, aims to develop new architectural techniques and program-
ming models for high performance System on Chip. The target platforms are embedded systems where
long battery life, high performance, and the flexibility to adapt to new protocols and standards are im-
portant. ASIC design makes it possible to tailor the hardware for a specific application thus achieving
an efficient solution with the lowest power dissipation but the total lack of flexibility makes it costly to
adapt to new standards. GPPs on the other hand offers flexibility at the cost of high power dissipation
and lower performance.

FlexSoC exposes a more fine-grained control and a richer native ISA than a GPP. The proposed idea
is to generate an application specific ISA as a subset of the native ISA. That way we hope to gain in
performance and power efficiency and also to store programs in a more compact way.

Arch desc

Arch.
designer

Perf mod

Circuit
designer

CompilerSource Algorithm
designer

Simulator

Code Config

Perf data

