
Information-Flow Control for Database-backed Applications

Abstract—Securing database-backed applications requires
tracking information across the program and the database
together, since securing each component in isolation may
still result in an overall insecure system. Current research
extends language-based techniques with models capturing
the database’s behavior. Previous work, however, relies on
simplistic database models, which ignore security-relevant
features that may leak sensitive information.

We propose a novel security monitor for database-backed
applications. The monitor tracks fine-grained dependencies
between variables and database tuples by leveraging
database theory concepts like disclosure lattices and query
determinacy. It also accounts for a realistic database model
that supports security-critical constructs like triggers and
dynamic policies. The monitor automatically synthesizes
program-level code that replicates the behavior of database
features like triggers, thereby tracking information flows
inside the database. We also introduce symbolic tuples, an ef-
ficient approximation of dependency-tracking over disclosure
lattices. We implement the monitor for SCALA programs
and demonstrate its effectiveness on four case studies.

1. Introduction

Database-backed applications are programs that
interact with databases to store and retrieve information.
These applications are commonly used in settings like
e-commerce, e-health, and social networks, and often
handle sensitive data where security is a concern.

Securing database-backed applications is challenging:
the security of the program and the database in isolation is
insufficient to ensure the security of the overall system. For
instance, program-level information, such as the sensitive
context of a function call that triggers a query, is lost at the
time of database-level enforcement. Conversely, database-
level information, such as fine-grained security labels, is
lost at the time of program-level enforcement, when infor-
mation from the database is manipulated by the application.

Security models for database-backed applications must
therefore account for both the program’s and the database’s
semantics. Following this approach, existing information-
flow control (IFC) solutions [20], [18], [9], [30], [48], [43],
[15], [16] extend programs with database models and apply
standard IFC techniques, such as security type systems [42],
[18], symbolic execution [15], or faceted values [48], to
track information flows across the program and the data-
base, with the goal of providing end-to-end security.

These approaches, however, are inadequate to secure
modern database-backed applications. They only consider
simplistic database models and often ignore features like
dynamic policies and triggers. These features are available
in most database systems and can be exploited to violate

the database’s confidentiality [24]. Ignoring them, therefore,
means ignoring possible information leaks.

Another challenge, when it comes to tracking informa-
tion flows across the program-database boundary, is ana-
lyzing queries. Some approaches [42], [9] perform simple
syntactic checks on table and column identifiers to derive
the queries’ security levels. As modern query languages
like SQL are very expressive, this may result in coarse
approximations that make the analyses imprecise. Addi-
tionally, these approaches do not support common policy
idioms used in database security, such as row-level policies.

In summary, effectively securing database-backed
applications requires (1) realistic database models that
capture the security-critical features offered by modern
databases, and (2) specialized techniques, rooted in
database theory, to analyze queries.
Contributions. We develop a novel IFC solution that (1)
builds on top of a realistic database model accounting for
a large class of security-relevant features, and (2) tracks
fine-grained dependencies between variables and tuples by
using database theory concepts.

First, we develop a foundation for IFC for database-
backed applications using WHILESQL, a simple imperative
language extended with querying capabilities. WHILESQL
builds on a state-of-the-art database operational semantics
developed by Guarnieri et al. [24] and supports database
features like triggers, views, and dynamic policies. We pro-
pose a novel security condition for WHILESQL programs
that accounts for dynamic policy changes.

Second, we develop a novel IFC monitor for WHI-
LESQL programs and prove it sound with respect to
our security condition. The monitor enforces security by
tracking fine-grained dependencies between variables and
queries across program-level computations and blocking
outputs that could potentially leak sensitive information.
For checking policy violations, the monitor relies on dis-
closure lattices [10] and query determinacy [34]. The
monitor supports row-level policies, a common class of
database policies used in many fine-grained access control
models [13], [47], [36], [23]. Additionally, it supports
security-critical database features, such as triggers and
policy changes, that are not supported by existing mech-
anisms [20], [42], [18], [30], [48], [43]. To address the
mismatch between program code and database features like
triggers and integrity constraints, the monitor automatically
synthesizes WHILESQL code mimicking these features’
behavior, thereby enabling IFC techniques to track infor-
mation flows inside the database.

Third, we implement our approach in DAISY (DAta-
base and Information-flow SecuritY), a security moni-
tor for database-backed SCALA programs. To overcome
the undecidability issues over disclosure lattices, DAISY
precisely approximates them using symbolic tuples. We
demonstrate the precision and feasibility of our approach

in four case studies implementing (i) a social network, (ii)
an assignment grading system, (iii) a calendar application,
and (iv) a conference-management system. The case studies
confirm that DAISY successfully prevents leaks of sensitive
information in the presence of realistic database constructs
without being overly restrictive. Our experiments also show
that symbolic tuples can be used to efficiently track fine-
grained dependencies. Concretely, DAISY introduces an
overhead between 5% and 10% in our case studies.

2. Overview

We now present our approach via an example. First,
we introduce the system model and the setting of our
example. Next, we motivate the need for realistic database
models for IFC. Finally, we illustrate how our tool,
DAISY, prevents leaks of sensitive information.
System model. The system consists of users, whose
interaction with the database is mediated by a program like
a web application. Each user is uniquely associated with
a user account that is used to authenticate the user and re-
trieve information from the database. We assume that users
execute programs using their own accounts. An attacker
is a user who can interact with the database only through
programs. He cannot learn the results of the queries issued
by the program unless they are part of the program’s output.

A security policy is defined at the database level using
access control policies, which specify the access permis-
sions of each user account for the database tables and views.
The system does not include an access control mechanism
that enforces read permissions over tables and views. How-
ever, we assume that the system correctly enforces write
permissions, e.g., a user can insert a tuple in a table T only
if the policy says so. This allows us to study what it means
for a system to be secure, independently of the enforcement.
That is, we interpret the read permissions over tables and
views as information-flow policies, and we enforce them in
an end-to-end fashion across the program and the database.
Setting. We consider a social network allowing users to
review books, publish their reviews, and share them with
friends. The database contains six tables: book, user,
friends, review, likes, and stats. The table book
contains information about books, the table user contains
the users’ information, the table friends encodes the
friendship relation among users, the table review contains
the users’ reviews, the table likes stores information
about reviews liked by users, and the table stats contains
statistics about the users and reviews. Furthermore, we
assume that for each user u there is a database view
reviewu containing user u’s reviews, i.e., the results of
the query SELECT ∗ FROM review WHERE userId = u.

The security policy is as follows: all users can read the
content of the tables book, user, friends, likes, and
stats but they can only read their friends’ reviews. The
first requirement can be implemented by granting SELECT
permissions over the respective tables. The second require-
ment can be implemented using row-level policies, which
disclose only a subset of the tuples in a table. Row-level
policies are a widely used policy idiom in database secu-
rity, and they are employed in many fine-grained database
access control models [13], [47], [36], [23]. In our setting,
we model the second requirement by granting SELECT

permissions over the view reviewu1
to u2 whenever 〈u1,

u2〉 is in the table friends. We remark that our goal is
reasoning about the above policy as an information-flow
policy, not as an access control policy.

Motivating example. We consider three users Alice , Bob,
and Carl . We assume that Alice is a friend of Bob and
Carl , but Bob and Carl are not friends with each other.
That is, Alice can read Bob’s and Carl ’s reviews, but Bob
cannot read Carl ’s reviews.

Consider the simple program below. First, Carl reviews
the novel “War and Peace” by Leo Tolstoy. Next, Alice
reads Carl’s review, which she appreciates, and creates an
entry in the table likes associated with it. Finally, Bob
retrieves from stats the statistics of all his friends.
//Executed by Carl
x← INSERT INTO review(id, user, book, text, score)

VALUES (1,Carl ,"War and Peace","..", 10)
//Executed by Alice
y ← SELECT revId, text, score FROM review WHERE

book = "War and Peace" AND userID = Carl
out(Alice, y)
z ← INSERT INTO likes VALUES (y.revId ,

"War and Peace",Carl ,Alice)
//Executed by Bob
f ← SELECT u2 FROM friends WHERE u1 = Bob
S ← SELECT genre FROM stats WHERE userId = Bob
for (fr : f ; g : S)
v ← SELECT v FROM stats WHERE userId = fr

AND genre = g
out(Bob, 〈fr, g, v〉)

The program is secure since all information flows comply
with the policy. Specifically, Alice observes one of Carl ’s
reviews. This is allowed by the policy since they are friends.
Moreover, Bob’s computation depends only on the public
tables friends and stats.

Why are realistic database models essentials? The above
example relies only on basic database features like SELECT
and INSERT commands. Modern databases, however, sup-
port many security-critical features, such as dynamic poli-
cies and triggers, that may introduce additional information
flows. As a result, a seemingly secure program may actually
be insecure when features like triggers are accounted for.

To illustrate this, we extend our social network with
a trigger, that is, a piece of SQL code that is executed
automatically by the database in response to queries. Con-
cretely, our social network collects several statistics about
users’ reviews in the table stats. Among other things, the
social network collects, for each user u and genre g, the
sum of all reviews’ scores for those reviews of books whose
genre is g that have been liked by u. Instead of computing
this data on the fly, the statistics are stored in the database
and updated using triggers. The following trigger, which
is executed under the database administrator’s privileges,
increments the score’s counter whenever a new tuple is
inserted in the table likes.
CREATE TRIGGER tr ON likes AFTER INSERT DO
UPDATE stats SET v = v + (SELECT score FROM
reviews WHERE id = NEW.revid)

WHERE user = NEW.user AND genre IN (SELECT genre
FROM book WHERE book = NEW.book)

Specifically, whenever someone inserts a tuple 〈revId ,
book , revAuthor , user〉 in likes, the trigger increments

the counter associated with the user user and book ’s genre
by the score associated with the review with identifier
revId . In the above trigger, we write NEW.x to refer to the
attribute x of the tuple just inserted in likes.

Our program is no longer secure when the trigger tr is
in the database. Indeed, now the information observed by
Bob depends on Carl ’s review. This flow of information,
however, is not allowed by our security policy since Bob
can only read his friends’ reviews. In more detail, when
Alice inserts the tuple in the table likes, the trigger tr is
executed and one of the counters in stats is incremented
by the score in Carl ’s review. Moreover, since Carl is
one of Alice’s friends, this information influences Bob’s
computation, thereby violating the security policy.

DAISY to the rescue. Ignoring advanced database features
may lead to a false sense of security. Indeed, a seemingly
secure program may still leak sensitive information due
to additional information flows introduced by triggers and
other database features. As a result, reasoning about the
security of database-backed applications requires to ac-
count for realistic database models and for common policy
idioms used in database security. Unfortunately, existing
solutions [20], [18], [9], [30], [48], [43], [15], [16], [42] ei-
ther ignore relevant security-critical database features (like
triggers and dynamic policies) or adopt imprecise analyses
when handling queries (cf. §8). This severely limits their
ability to secure applications and to enforce natural policy
idioms like row-level policies. To address this, we propose
DAISY, a security monitor that leverages disclosure lattices
and query determinacy to track fine-grained tuple-level
dependencies. DAISY monitors the program’s execution,
tracks dependencies between variables and tuples, and stops
the program whenever sensitive information may be leaked.

How does DAISY work? DAISY tracks dependencies be-
tween queries and program variables and stops the program
whenever it detects a possible leak of sensitive informa-
tion. For instance, whenever information is retrieved from
the database, DAISY determines which tuples may have
influenced the query result and it tracks how the retrieved
information flows through the program. To concisely rep-
resents sets of tuples, we develop symbolic tuples, an effi-
cient approximation of disclosure lattices (cf. §6), which
represent sets of concrete tuples using logical formulae.

Consider the program from our example. When Alice
retrieves the review, DAISY records that the content of
the variable y depends on Carl ’s review. More pre-
cisely, DAISY labels y with the symbolic tuple 〈review,
userId = Carl ∧ book = "War and Peace"〉, which
denotes that y’s content depends on the values of all tuples
in the table review satisfying the constraint userId =
Carl ∧book = "War and Peace". When Alice inserts
a tuple in the table likes, DAISY tracks the information
flow caused by the trigger and it determines that some
of the values in the table stats now depend on Carl ’s
review. This is done by propagating the label 〈review,
userId = Carl ∧ book = "War and Peace"〉 to
the tuples in table stats that store Alice’s counters.
DAISY also tracks the label 〈review, userId = Carl ∧
book = "War and Peace"〉 across the computation
performed by Bob. Finally, before executing the output
statement out(Bob, 〈Alice, novel, v〉), DAISY compares
〈Alice, novel, v〉’s label, which contains, among other

labels, the symbolic tuple 〈review, userId = Carl ∧
book = "War and Peace"〉, with the permissions
granted by the current security policy to the user Bob.
Concretely, Bob’s permissions are also represented using
symbolic tuples. In particular, the labels 〈book,>〉, 〈user,
>〉, 〈friends,>〉, 〈likes,>〉, and 〈stats,>〉 denote
that Bob has full access to the tables book, user, friends,
likes, and stats (the constraint > is trivially satisfied by
all concrete tuples). Moreover, there is one label 〈review,
authorId = u〉 for each user u who is Bob’s friend.

When comparing labels, DAISY checks whether
〈Alice, novel, v〉’s content depends on data that is
authorized with respect to the security policy. Using
query determinacy, DAISY checks if the symbolic tuples
associated with 〈Alice, novel, v〉 can be derived from
those associated with Bob’s permissions. Since Bob cannot
access reviewCarl , there is no symbolic tuple among Bob’s
permissions that discloses the information represented
by 〈Alice, novel, v〉’ label 〈review, userId = Carl ∧
book = "War and Peace"〉. Hence, DAISY stops the
program and prevents the leak of sensitive information.
Organization. We formalize WHILESQL in §3 and our
security condition in §4. We present our monitor in §5 and
symbolic tuples in §6. We present DAISY and our case
studies in §7, we discuss related work in §8, and we draw
conclusions in §9. Figure 6 summarizes the notation used
in the paper. A technical report with complete proofs of all
results is available at [3], while DAISY is available at [2].

3. WHILESQL

3.1. Syntax and notation

Syntax. WHILESQL is an imperative language with query-
ing capabilities, whose syntax is in Figure 7. Its imperative
fragment consists of assignments, conditionals, loops, and
output statements out(u, e), which print the value of an
expression e to a user u. Database queries are modeled
as statements of the form x ← q that execute an SQL
command q, which may contain program variables, and
assign the result to a variable x. Observe that each SQL
command either returns the query’s result or an error mes-
sage. Error messages indicate whether queries violate secu-
rity constraints or integrity constraints, such as a DELETE
command not allowed by the current security policy or an
INSERT command that violates a primary key constraint.
WHILESQL supports SQL’s core features, such as SELECT,
INSERT, DELETE, GRANT, and REVOKE commands, as well
as advanced features like triggers and views.
Database features. WHILESQL relies on the state-of-the-
art database semantics from Guarnieri et al. [24], which
supports security-critical features like dynamic policies
and triggers. Hence, following [24], we make various
simplifications to our query language.

WHILESQL supports the retrieval of information from
the database using SELECT commands. Rather than us-
ing SQL’s data query language, we rely on the relational
calculus (i.e., function-free first-order logic), which has a
simple and well-defined semantics [1].

WHILESQL allows changes to the database’s content
using INSERT and DELETE commands. Specifically, we
support INSERT and DELETE commands that explicitly

Basic Types
(Table Ids) T ∈T
(View Ids) V ∈V
(Relation Ids) R ∈T ∪ V
(Trigger Ids) tr ∈TR
(Variables) x ∈Var
(Values) n ∈Val
(User identifiers) u ∈U
(Formulae) ϕ ∈RC

Syntax
(Privileges) p := SELECT ON R | INSERT ON T | DELETE ON T

| CREATE VIEW | CREATE TRIGGER ON T
(Actions) a := INSERT e1, . . . , en INTO T | DELETE e1, . . . , en FROM T

| GRANT p TO u | REVOKE p FROM u
| GRANT p TO u WITH GRANT OPTION

(SQL commands) q := a | SELECT ϕ | CREATE VIEW V : SELECT ϕ
| CREATE TRIGGER tr ON T AFTER (INS | DEL) IF ϕ DO a

(Expressions) e :=n | x | ¬e1 | e1 ⊕ e2

(Statements) c := ε | x← q | x := e | out(u, e) | if e then c1 else c2
| while e do c | c1 ; c2

Figure 1: WHILESQL’s syntax

identify the tuple to be inserted or deleted, i.e., commands
of the form INSERT INTO table(x1, . . . , xn) VALUES
(v1, . . . , vn) and DELETE FROM table WHERE x1 = v1∧
. . .∧xn = vn, where x1, . . . , xn are table’s attributes and
v1, . . . , vn are the tuple’s values. More complex commands
can be simulated by combining SELECT, INSERT, and
DELETE commands.

WHILESQL also supports the administration of dy-
namically changing security policies. We support GRANT
commands to add permissions to a security policy. We
also support delegation through GRANT commands with
GRANT OPTION. Moreover, privileges can be revoked
using REVOKE commands. Note that we only consider
REVOKE commands with the CASCADE OPTION, i.e.,
when a user revokes a privilege, he also revokes all the
privileges that depend on it [46], [39].

Our model also supports triggers, which are procedures
automatically executed by the database system in response
to user commands. In particular, we support only AFTER
triggers on INSERT and DELETE events, i.e., triggers
that are executed in response to INSERT and DELETE
commands. In our model, triggers are executed under the
privileges of the trigger’s owner. Moreover, the triggers’
WHEN conditions (which specify whether a trigger is en-
abled or not) are arbitrary boolean queries and their actions
are INSERT or DELETE commands. Note that database
systems usually impose severe restrictions on the WHEN
clause, such as it must not contain sub-queries. However,
most systems can express arbitrary conditions on triggers
by combining control flow statements with SELECT com-
mands inside the trigger’s body. Thus, we support the class
of triggers whose body is of the form BEGIN IF expr
THEN act END, where expr is a boolean query and act
is a GRANT, REVOKE, INSERT, or DELETE command.
Following [24], we only consider triggers that do not
recursively activate other triggers.

We also support database views, i.e., virtual tables
defined through SELECT queries, executed under the
privileges of the view’s owner. Additionally, we support
CREATE commands for creating new triggers and views.
Finally, we support two kinds of integrity constraints:
functional dependencies and inclusion dependencies
[1]. They model the most widely used SQL integrity
constraints, i.e., the UNIQUE, PRIMARY KEY, and
FOREIGN KEY constraints.
Sequences. For a set S, S∗ is the set of all finite sequences
over S. Given a sequence s ∈ S∗, we denote by |s| its
length, by sj , where j ∈ N, its prefix of length j, and by
s|j its j-th element (if it exists). We also denote by ε the
empty sequence, by s1·s2 the concatenation of s1 and s2,

and by s1 � s2 that s1 is a prefix of s2.
Users. The set U of all users is UID ∪ {public}, where
UID is a set of user identifiers and public is a designated
user identifier.

3.2. Local semantics

We define here the semantics of WHILESQL programs
executed in isolation. A WHILESQL program is defined
with respect to a database configuration 〈D,Γ〉, where
D is a database schema, i.e., a set of table identifiers
with the corresponding arities, and Γ is a set of integrity
constraints. Here, we fix a configuration M = 〈D,Γ〉.

Following [24], we define a security policy to be a
finite set of GRANT statements. Given a policy sec and
a user u, we denote by auth(sec, u) the set of all tables
and views that u is authorized to read according to sec.
A system state is a tuple 〈db, U, sec, T, V 〉, where db is a
database state, U ⊂ UID is a finite set of users, sec is a
security policy, T is a finite set of triggers, and V is a finite
set of views. Note that we lift auth from policies to system
states, i.e., auth(〈db, U, sec, T, V 〉, u) = auth(sec, u). A
context ctx describes the database’s history, the scheduled
triggers that must be executed, and how to modify the
database’s state in case a roll-back occurs. We refer the
reader to [24] for a formal definition of contexts. A runtime
state is a tuple 〈s, ctx 〉, where s is a system state and ctx
is a context. The set of all runtime states is denoted by
ΩM and ε denotes the empty context. In the following, we
use s to refer to both system and runtime states when this
is clear from the context, and we use 〈s, ctx 〉 otherwise.

A memory m ∈ Mem is a function mapping variables
to values, i.e., Mem = Var → Val . A local configura-
tion 〈c,m, 〈s, ctx 〉〉 consists of a command c ∈ Com, a
memory m ∈ Mem, and a runtime state 〈s, ctx 〉 ∈ ΩM .
A configuration is initial iff ctx = ε.

In WHILESQL, there are two ways of producing
observations. First, out(u, e) statements can be used
to output information to users. Second, successfully
executing GRANT, REVOKE, and CREATE commands
produces public observations notifying all users of the
configuration’s changes. Formally, an observation is a
tuple 〈u, o〉, where u ∈ U is a user and o is a value in
Val or a GRANT, REVOKE, or CREATE command, and
Obs denotes the set of all observations.

Given a user u ∈ UID , the relation →u ⊆ (Com ×
Mem × ΩM)× Obs × (Com ×Mem × ΩM) formalizes
the local operational semantics of programs executed by u.
A run r is an alternating sequence of configurations and
observations that starts with an initial configuration and

E-QUERYOK
{v1, . . . , vn} = vars(q)

Jq′K(〈s, ctx〉, u) = 〈〈s′, ctx ′〉, r, ε〉
q′ = q[v1 7→ Jv1K(m), . . . , vn 7→ JvnK(m)]

〈x← q,m, 〈s, ctx〉〉 obs(q′)−−−−−→u 〈ε,m[x 7→ r], 〈s′, ctx ′〉〉

E-QUERYEX
{v1, . . . , vn} = vars(q)

Jq′K(〈s, ctx〉, u) = 〈〈s′, ctx ′〉, r, em〉 em 6= ε
q′ = q[v1 7→ Jv1K(m), . . . , vn 7→ JvnK(m)]

〈x← q,m, 〈s, ctx〉〉 −→u 〈ε,m[x 7→ em], 〈s′, ctx ′〉〉

Figure 2: Rules handling the query’s execution

respects the rules defining →u. Given a run r, we denote
by ri, where i ∈ N, the run obtained by truncating r at the
i-th state. A trace is an element of Obs∗. The trace τ of a
run r, denoted by trace(r), is obtained by concatenating
all observations in the run.

We rely on [24] for the semantics of SQL statements.
Our operational semantics uses the function JqK(〈s, ctx 〉, u)
(defined in Appendix E) to connect the WHILESQL’s
semantics with the database’s semantics. The function
JqK(〈s, ctx 〉, u) takes as input an SQL command q, a run-
time state 〈s, ctx 〉 ∈ ΩM , and the user u ∈ UID executing
the command, and it returns a tuple 〈〈s′, ctx ′〉, r, em〉,
where 〈s′, ctx ′〉 ∈ ΩM is the new runtime state, r is q’s
result, and em is an error message. We also write JeK(m)
to denote the evaluation of an expression e in memory m.
It is always clear from context if J·K(·) refers to queries
or expressions.

Figure 2 depicts the rules regulating the query
execution. The rule E-QUERYOK handles the successful
execution of queries. It first replaces the free variables
in the query with their values. Afterwards, it executes
the query (using JqK(〈s, ctx 〉, u)) and it stores the query’s
result in the memory. The rule relies on the function
obs(q), which takes as input a query q, to conditionally
produce a public observation 〈public, q〉 in case the
command q modifies the database configuration. Formally,
obs(q) = 〈public, q〉 in case q is a GRANT, REVOKE, or
CREATE command, and ε otherwise. Hence, the rule
guarantees that configuration changes are visible to all
users. The rule E-QUERYEX handles queries that fail, e.g.,
due to an integrity constraint’s violation. Instead of storing
the query result, the rule stores the error message in the
memory. The rules for the other WHILESQL statements
are standard and full details are given in Appendix E.

3.3. Global semantics

We denote the set of commands together with the
executing user by ComUID = UID × Com and the set
of pairs of users and memories as MemUID = UID ×
Mem . To model a system state where multiple WHILESQL
programs run in parallel and share a common database, we
introduce global configurations. A global configuration is a
tuple 〈C,M, 〈s, ctx 〉,S〉 ∈ GlConf , where C ∈ Com∗UID

is a sequence of WHILESQL programs with the executing
users, M ∈ Mem∗UID is a sequence of memories, 〈s,
ctx 〉 ∈ ΩM is the runtime state of the shared database,
and S is a scheduler formalizing the interleaving of the
programs in C. We consider only configurations 〈C,M,
〈s, ctx 〉,S〉 such that |C| = |M | and for all 1 ≤ i ≤ |C|,

C|i = 〈u, c〉 and M |i = 〈u,m〉. Furthermore, a global
state is a pair 〈M, s〉, where M ∈ Mem∗UID and s is a
system state. Our global semantics is standard and we
formalize it in Appendix E. For simplicity, we assume
that each user is associated with at most one program
and that different programs use disjoint sets of variable
identifiers. Moreover, we assume that all expressions are
well-typed, and all SQL commands refer either to tables
in the database schema or to previously created views.

4. Security model

We introduce our security model in terms of the knowl-
edge of a user that observes outputs and public events
from a program execution. To ease the presentation, we
assume that only the database’s content is sensitive, while
the initial memory’s content is known by all users. This is
without loss of generality, since sensitive information can
be loaded from the database at the start of the computation.
In our technical report [3], we consider the more general
case where the memory content may be sensitive.

4.1. Preliminaries

Memory equivalence. Two sequences of memories M1,
M2 ∈ Mem∗UID are equivalent for a user u iff they have the
same length, they involve the same users, and the memory
associated with u is identical in M1 and M2. Formally, M1

and M2 are u-equivalent, written M1 ≈u M2, iff |M1| =
|M2| and for all 1 ≤ i ≤ |M1|, ui1 = ui2 and if ui1 = u,
then mi

1 = mi
2, where Mj |i = 〈uij ,mi

j〉 for j ∈ {1, 2}.
Database equivalence. Given two database states db and
db′ and a set S of tables and views, db ≈S db′ iff the
contents of all tables and views in S are the same in db
and db′. For the equivalence of system states, we employ
data-indistinguishability from [24]. Informally, two system
states s and s′ are equivalent for a user u iff the users,
policies, triggers, and views in s and s′ are the same and
the content of the tables and views that u is authorized to
read is the same in s and s′. Formally, two system states
s = 〈db, U, sec, T, V 〉 and s′ = 〈db′, U ′, sec′, T ′, V ′〉 are
u-equivalent, written s ≈u s′, iff (1) U = U ′, (2) sec =
sec′, (3) T = T ′, (4) V = V ′, and (5) db ≈auth(sec,u) db′.
Global state equivalence. Two global states 〈M, s〉 and
〈M ′, s′〉 are u-equivalent for a user u, written 〈M, s〉 ≈u
〈M ′, s′〉, iff M ≈u M ′ and s ≈u s′. We denote by [〈M,
s〉]≈u the set {〈M ′, s′〉 | 〈M ′, s′〉 ≈u 〈M, s〉} of global
states that are u-equivalent to 〈M, s〉.
Trace equivalence. To formalize equivalence between
traces, we first define the projection of a trace τ for a user
u, written τ�u, as follows: ε�u = ε, (〈u′, o〉·τ ′)�u = 〈u′,
o〉·τ ′�u if u′ = public or u′ = u, and (〈u′, o〉·τ ′)�u = τ ′�u
otherwise. Two traces τ1 and τ2 are u-equivalent, written
τ1 ∼u τ2, iff one of the u-projections is the prefix of the
other one, i.e., τ1�u � τ2�u or τ2�u � τ1�u.

4.2. Knowledge

Following [5], [45], we characterize what a user can
infer from an execution in terms of his knowledge, i.e.,
the set of global states consistent with his observations.

Definition 1. The knowledge Ku(〈M0, s0〉, C,S, τ) of a
user u for a global state 〈M0, s0〉, a sequence of programs
C, a scheduler S, and a trace τ is {〈M, s〉 | 〈M, s〉 ≈u
〈M0, s0〉∧∀ctx ′, τ ′, C ′,M ′, s′,S ′. (〈C,M, 〈s, ε〉,S〉 τ ′−→∗
〈C ′,M ′, 〈s′, ctx ′〉,S ′〉 ⇒ τ ∼u τ ′)}.

A user u’s knowledge is the set of initial global states
that u considers possible after having observed τ�u. Thus,
a smaller set indicates a more precise knowledge.

Def. 1 is progress-insensitive as it ignores information
leaks due to the progress of computation, i.e., information
that can be inferred solely by observing how many out-
puts the program produces. We achieve this by requiring
that any execution starting from a u-equivalent global
state only produces traces τ ′ that are u-equivalent to the
original trace τ . There are different flavors of progress-
insensitivity in the literature. Some definitions consider
program termination/divergence an observable event [6],
[25], while other definitions, in line with ours, do not [5],
[45], thus ignoring pure progress leaks, i.e., progress leaks
not related to divergence/termination.

4.3. Security condition

Our security condition ensures that changes in a user’s
knowledge comply with the current security policy. The
condition is inspired by existing IFC conditions for dy-
namic policies [5], [12].

We interpret security policies with respect to initial
global states. The allowed knowledge Au,sec determines
the set of initial global states that a user u considers
possible for a given policy sec. Given a sequence of
memories M0 ∈ Mem∗UID , a system state s0 = 〈db0, U0,
sec0, T0, V0〉, a security policy sec, and a user u, we define
the set Au,sec(M0, s0) as {〈M, s〉 | s ≈sec,u s0 ∧M ≈u
M0}, where 〈db′, U ′, sec′, T ′, V ′〉 ≈sec,u 〈db′′, U ′′, sec′′,
T ′′, V ′′〉 iff db′ ≈auth(sec,u) db′′. We call Au,sec(M0, s0)
allowed knowledge since it represents the knowledge of the
initial global state that the user u is permitted to learn given
the policy sec. In contrast to [〈M0, s0〉]≈u

, Au,sec(M0, s0)
contains the global states that agree with 〈M0, s0〉 with
respect to the policy sec instead of the policy in s0.

We now introduce our security condition.

Definition 2. A sequence of programs C ∈ Com∗UID is
secure with respect to a user u for a scheduler S , a system
state s0, and a sequence of memories M0 ∈ Mem∗UID

iff whenever r = 〈C,M0, 〈s0, ε〉,S〉
τ−→
n
〈C ′,M ′, 〈s′,

ctx ′〉,S ′〉, then for all 1 ≤ i ≤ n, Ku(〈M0, s0〉, C,
S, trace(ri−1)) ∩ Au,sec(M0, s0) ⊆ Ku(〈M0, s0〉, C,S,
trace(ri)), where the database in r’s (i− 1)-th configura-
tion is 〈db, U, sec, T, V 〉.

Our condition ensures that a user’s knowledge after
observing trace(ri) is no more precise than his previous
knowledge combined with the allowed knowledge from
r’s (i− 1)-th configuration, i.e., the knowledge increase
is allowed by the current policy.

5. Enforcement

We now present a monitor that provably secures WHI-
LESQL programs. To achieve end-to-end security across

the database and applications, our monitor tracks depen-
dencies at the database level (between tuples and queries)
and at the program level (between variables), and ensures
that the information released by output statements and
public events complies with the current security policy.

The monitor instruments WHILESQL programs to
track dependencies between variables, and it blocks the
execution of statements that may leak sensitive information.
Moreover, the monitor intercepts each database command
and expands it into WHILESQL code to prevent leaks
caused by triggers and other database side-effects. While
executing the code produced during expansion, the monitor
tracks the dependencies between variables and queries.

This approach cleanly separates the application’s
code and the security policy, thus putting trust in the
security monitor instead of the application. This trust is
formally justified by proving that the security monitor
satisfies our security condition. Our monitor also supports
a rich class of policies, including dynamic policy changes.
The policies are expressed using GRANT and REVOKE
commands, and the monitor ensures their end-to-end
interpretation through the application-database boundary.
This approach is transparent to the applications and does
not require customized database support.

5.1. Preliminaries

We leverage disclosure lattices to reason about the
information disclosed by sets of queries [10]. Recall that a
security policy defines a set of database tables and views
that a user is authorized to read. Hence, policies can
be seen as sets of database queries, which are elements
of a disclosure lattice. This natural connection between
disclosure lattices, queries, and policies allows us to track
cumulative information disclosures across multiple queries
and determine whether a new query would increase the total
amount of information beyond what is actually allowed
by the policy. Additionally, disclosure lattices allow us to
track fine-grained dependencies across the application and
the database. This is needed to enforce realistic security
policies, such as row-level database policies. We discuss
the benefits of using disclosure lattices for IFC in §5.3. In
the following, we fix a database configuration 〈D,Γ〉.
Predicate queries. A predicate query is a query of the
form T (v) where T is a table identifier in D and v ∈
Val |T |. A predicate query represents a single tuple in the
database. The set of all predicate queries is RC pred .
Determinacy. Query determinacy [34] is the task of deter-
mining, given two sets of queries Q and Q′, if the results
of the queries in Q are always sufficient to determine the
result of the queries in Q′. Formally, Q determines Q′,
written D,Γ ` Q� Q′, iff for all database states db, db′,
if [q]db = [q]db

′
for all q ∈ Q, then [q′]db = [q′]db

′
for all

q′ ∈ Q′, where [q]db denotes q’s result in db. For instance,
the set {T (1), R(2)} determines the query T (1)∨R(2). In
general, determinacy is different from logical entailment,
e.g., T (1) |= T (1) ∨R(2) but T (1) 6� T (1) ∨R(2).
Query support. The support of a query q contains all
tuples that may influence q’s results. To precisely cap-
ture a query’s support, we first introduce the notion of
minimal determinacy. A set of predicate queries Q mini-
mally determines q, denoted minDetD,Γ(Q, q), iff Q is the

cl({T (1), R(2)})
cl({T (1)}) cl({R(2)})

⊥

Figure 3: Disclosure lattice for the queries T (1) and R(2).

smallest set that determines q. Formally, minDetD,Γ(Q,
q) iff D,Γ ` Q � q and there is no Q′ ⊂ Q such that
D,Γ ` Q′ � q. The support of q, denoted suppD,Γ(q),
contains all sets of tuples that minimally determine q, i.e.,
suppD,Γ(q) := {Q ∈ 2RC pred | minDetD,Γ(Q, q)}. That
is, suppD,Γ(q) contains all and only those tuples that may
influence q’s outcome. For instance, the query T (1)∨R(2)
is minimally determined by {T (1), R(2)}. Hence, its sup-
port is {{T (1), R(2)}}. We consider only sets of integrity
constraints Γ such that suppD,Γ(q) = {{q}} for all q ∈
RC pred . Integrity constraints commonly used in practice,
such as primary and foreign keys, satisfy this requirement,
which guarantees that the information associated with a
predicate query depends just on the query itself.
Disclosure orders and lattices. Bender et al. [10] recently
introduced disclosure orders and lattices to reason about the
information disclosed by queries. Given two sets of queries
Q1 and Q2, disclosure lattices provide a precise model for
answering the questions such as “Does Q1 reveal more
information than Q2?” or “What is the combined and the
common information that is disclosed by both Q1 and Q2?”

A disclosure order [10] is a binary relation � over
sets of queries (i.e., over 2RC where RC is the set of all
queries), such that: (1) for all Q,Q′ ∈ 2RC , if Q ⊆ Q′,
then Q � Q′, (2) for all Q,Q′, Q′′ ∈ 2RC , if Q � Q′ and
Q′ � Q′′, then Q � Q′′, and (3) for all Q,Q′, Q′′ ∈ 2RC ,
if Q � Q′′ and Q′ � Q′′, then Q ∪Q′ � Q′′.

A disclosure order � is, in general, not anti-symmetric.
Hence, as standard in lattice theory [19], we introduce the
concept of closure, which we use to construct a lattice.
Given a set of queries Q and a disclosure order �, the
closure of Q, written cl(Q), is {q ∈ RC | {q} � Q}.
The �-disclosure lattice [10] is a tuple 〈L,v,t,u,⊥,>〉
where (1) L = {cl(Q) | Q ∈ 2RC}, (2) cl(Q) v cl(Q′) iff
Q � Q′, (3) cl(Q)ucl(Q′) = cl(Q)∩cl(Q′), (4) cl(Q)t
cl(Q′) = cl(Q∪Q′), (5) ⊥ = cl(∅), and (6) > = cl(RC).

Determinacy induces an ordering on the information
content of queries. Hence, it is a good candidate for defin-
ing disclosure lattices. Formally, we define the determinacy-
based disclosure order using the relation ��D,Γ: given Q,
Q′ ∈ 2RC , Q ��D,Γ Q′ iff D,Γ ` Q′ � Q. Note that
Q ��D,Γ Q′ means that Q is less informative than Q′. As
shown in [10], ��D,Γ is a disclosure order and the corre-
sponding disclosure lattice is complete. Figure 3 depicts the
portion of the lattice involving the queries T (1) and R(2).

5.2. Security monitor

We now present our dynamic security monitor. For
simplicity, we consider a single attacker, denoted by the
user atk . We denote by Varatk the set of variables in
atk ’s program and by sec0 the initial security policy.
Security lattice. Our security monitor uses the disclosure
lattice to track information. To handle both queries and
memory variables, we extend the database schema D with

a propositional symbol MEM x for each variable x occur-
ring in the monitored programs. We denote by Dext the
extended database schema. Formally, our security lattice is
the disclosure lattice 〈L,v,t,u,⊥,>〉 defined over Dext ,
where v is ��Dext ,Γ. Note that we use labels of the form
MEM x to abstractly represent the information initially
stored in the program memories, which does not come
from the database. Also observe that query determinacy is
undecidable in general [34]. In §6, we present a practical
approximation for handling disclosure lattices.
Monitor states. A monitor state ∆ is a function Var ∪
RC pred ∪ {pcu | u ∈ UID} → L that associates each
variable and predicate query (which represents a tuple) with
a label. The monitor state also stores the label associated
with the security context of each program. Since each user
u executes only one program, we formalize the program’s
security context using identifiers of the form pcu, where
u ∈ UID is the user executing the program. For example,
∆(pcBob) captures the label associated with the condition
of an if statement if Bob’s program is executing a branch
of the if statement. We lift ∆ to expressions: ∆(e) =⊔
x∈vars(e) ∆(x), where e is an expression and vars(e)

are its free variables. The monitor’s initial state ∆0 is as
follows: (a) for each x ∈ Var , ∆0(x) = MEM x, (b) for all
q ∈ RC pred , then ∆0(q) = cl(q), and (c) for all u ∈ UID ,
∆0(pcu) = ⊥.
Mapping queries to labels. Our security monitor
tracks only dependencies between predicate queries,
i.e., tuples. Hence, we use the function LQ to derive
the label associated with general queries: LQ(∆,
q) =

⊔
Q∈supp(q)

⊔
q′∈Q ∆(q′). The function associates

to a query q the join of the labels associated with all
predicate queries in q’s support. This ensures that LQ(∆,
q) accounts for the labels of all predicate queries that may
influence q’s results. For instance, given a monitor state ∆,
the query T (1)∨R(2), whose support is {{T (1), R(2)}},
is associated with the label ∆(T (1)) t ∆(R(2)), thus
capturing that it reveals information about T (1) and R(2).
For predicate queries T (v), LQ(∆, T (v)) = ∆(T (v)).
Mapping users to labels. The function LU maps users
to labels in our security lattice. Since we are interested
in end-to-end security guarantees, we associate to the
attacker atk the set of tables and views he is authorized to
read according to the current access control policy and to
the initial policy sec0 along with the labels MEM x where
x ∈ Varatk . Formally, LU (s, u) = > for any u /∈ {atk ,
public}. For the attacker atk , LU (s, atk) = cl(auth(s,
atk) ∪ auth(sec0, atk) ∪

⋃
x∈Varatk

{MEM x}). Finally,
LU (s, public) = LU (s, atk). For example, given a
security policy sec0 stating that the attacker atk can
read the table T but not the table R, Lsec0

U (s, atk) =⊔
v∈Val cl(T (v))t

⊔
x∈Varatk

cl(MEM x). In the following,
we omit the reference to sec0 when this is clear from the
context, i.e., we write LU (s, u) instead of Lsec0

U (s, u).
The mappings LQ and LU allow us to reason about

information disclosure. For instance, if the above attacker
observes the result of the query q = SELECT T (1) ∨R(2)
when the monitor state is ∆0, this violates the security
policy. In fact, LQ(∆0, q) 6v LU (s, atk) since cl({T (1),
R(2)}) 6v

⊔
v∈Val cl(T (v)) t

⊔
x∈Varatk

cl(MEM x).
Expansion process. To correctly handle triggers, our mon-
itor rewrites each SQL command into WHILESQL state-

ments encoding the triggers’ execution. We do so using
the expand(s,m, u, x← q) function, which takes as input
a system state s, a memory m, a user u, and a statement
x ← q, and produces as output the statements modeling
the triggers’ execution and database’s other side effects.

In a nutshell, the expand function works as follows.
First, depending on the query q and the database configu-
ration in s, expand computes all possible execution paths,
which are sequences of queries and triggers together with
their results. In particular, a query may be successfully ex-
ecuted or may generate an integrity or a security exception.
Triggers additionally may not be enabled, that is they are
not executed since their condition is not satisfied. After-
ward, expand translates each execution path into an if state-
ment. For each execution path, the if’s body contains the
WHILESQL statements implementing the execution of the
queries and the triggers as described in the path. In contrast,
the if’s condition checks whether the weakest precondition
for the actual execution of the path is met. For instance, the
code checks whether the condition of an enabled trigger is
actually satisfied or whether executing a command would
lead to an integrity exception if the execution path says so.
To achieve this, we designed a procedure for computing the
weakest precondition starting from execution paths. This
can always be automatically computed since execution
paths are loop-free. We formalize expand(s,m, u, x← q)
and prove its correctness in Appendix F. Example 1 con-
cretely illustrates how expand works.

Additional queries and statements. Our monitor extends
WHILESQL with two designated queries T ⊕ e and T 	 e,
and four designated statements asuser(u′, c), ‖x ← q‖,
[c], and set pc to l. The T ⊕ e (respectively T 	 e)
query inserts (respectively deletes) the tuple e into the
table T without firing triggers or throwing exceptions in
case integrity constraints are violated. The asuser(u′, c)
statement is used to execute the command c as the user u′
(inside the session of the user u executing the asuser(u′,
c) statement). Finally, the ‖x← q‖ statement, where x is a
variable and q is a query, denotes a query statement that has
already been processed by expand . All the above queries
and statements are used during the expansion process.

To avoid internal timing leaks caused by executing
multiple programs in parallel [38], the monitor’s semantics
executes branching statements atomically, i.e., without
interleaving the execution of other programs whenever a
program is executing a branching statement. To do so, we
introduce statements of the form [c], which denote that the
command c should be executed atomically, and set pc to l,
where l is a label in L, which are used to update the label
associated to the program’s context.

Enforcement rules. Figure 4 presents selected rules from
our monitor’s semantics. The rules use the auxiliary func-
tions LU and LQ to derive the security labels associated
with users and queries. We present the full operational
semantics in Appendix F.

The rule F-ASSIGN updates the monitor’s state when-
ever there is an assignment. The rule prevents leaks us-
ing No-Sensitive Upgrade (NSU) checks [49]. The rule
F-OUT ensures that the monitor produces only secure
output events. It outputs the value of the expression e
to the user u′ only if the security labels associated with
e and the program counter are authorized to flow to u′,

i.e., ∆(e) t ∆(pcu) v LU (s, u′). The rule F-IFTRUE,
instead, executes the then branch c1 in an if statement
and updates the labels of pcu based on the label of the
if’s condition. The rule relies on the set pc to l command
to reset the label of pcu when leaving the then branch.
Note that the rule encapsulates both the then branch c1
and the set pc to l statement inside an atomic statement
[c1 ; set pc to l] to prevent internal timing channels caused
by the scheduler. We remark that the above rules implement
standard dynamic information-flow tracking [37].

The rule F-EXPAND ensures that triggers as well as
integrity constraint checking is de-sugared into WHILESQL
code using the expand function. The F-SELECT rule en-
sures, using NSU checks, that the queries’ results are stored
only in variables with the proper security labels. The rule,
finally, updates the label of the variable storing the query’s
result to correctly propagate the flow of information.

The rule F-UPDATECONFIGURATIONOK handles con-
figuration commands, i.e., GRANT, REVOKE, and CREATE
commands. Since configuration changes are visible to atk
(i.e., the rule produces a public observation), the rule
ensures that such changes are performed only in contexts
that are initially low for the attacker, i.e., ∆(pcu) v
cl(auth(sec0, atk)). Furthermore, the rule prevents leaks
of sensitive information using the free variables in the
commands by checking that `cmd v cl(auth(sec0, atk)).
The rule also uses NSU checks to ensure that the query’s
results are stored only in variables with the proper security
labels. The rule uses the predicate isCfgCmd(q), which
returns > iff q is a configuration command. Finally, the
rule F-UPDATEDATABASEOK handles queries that modify
the database content. The rule ensures that there are no
changes to the security labels based on secret information
using NSU checks. Furthermore, the rule keeps track of
the labels associated with the information stored in the
database by updating the monitor’s state ∆.

In WHILESQL, policy changes are publicly visible.
This eliminates leaks through authorization channels [4],
and no checks (cf. channel context bounds [5]) are needed.

Theorem 1, proven in Appendix H, states that our mon-
itor is sound, i.e., it satisfies Def. 2 with as evaluation
relation.

Theorem 1. For all sequences of programs C ∈ Com∗UID ,
schedulers S, sequences of memories M ∈ Mem∗UID ,
and system states s, whenever r = 〈∆0, C,M, 〈s, ε〉,
S〉 τ n 〈∆′, C ′,M ′, 〈s′, ctx′〉,S ′〉, then for all 1 ≤ i ≤
n, K atk (〈M, s〉, C,S, trace(ri−1)) ∩ Aatk ,sec(M, s) ⊆
K atk (〈M, s〉, C,S, trace(ri)), where K atk refers to Def.
1 with as evaluation relation and the system state in
r’s (i− 1)-th configuration is 〈db, U, sec, T, V 〉.
Example 1. Let T, V, Z be three tables, t be the trig-
ger defined by the administrator using the command
CREATE TRIGGER t ON T AFTER INSERT IF V (1)
DO {INSERT 1 INTO Z}, and s be a state containing t.
In this context, the statement x ← INSERT 2 INTO T
is expanded as follows (provided that all commands are
authorized by the policy and there are no integrity con-
straints): ‖y ← SELECT V (1)‖; if y then {‖x ← T ⊕
2‖; asuser(admin, ‖z ← Z ⊕ 1‖)} else {‖x← T ⊕ 2‖}.

Suppose the attacker atk executes x ←
INSERT 2 INTO T ;w ← SELECT Z(1); out(atk , w) from
a system state s0 where the tables T and Z are empty

F-ASSIGN
∆(pcu) v ∆(x) ∆′ = ∆[x 7→ ∆(pcu) t∆(e)]

〈∆, x := e,m, s〉 u 〈∆′, ε,m[x 7→ JeK(m)], s〉

F-OUT
∆(e) t∆(pcu) v LU (s, u′)

〈∆, out(u′, e),m, s〉
〈u′,JeK(m)〉

u 〈∆, ε,m, s〉

F-EXPAND
ce = expand(s, x, q, u)

〈∆, x← q,m, s〉 u 〈∆, [ce],m, s〉

F-IFTRUE
JeK(m) = tt c′ = [c1 ; set pc to ∆(pcu)] ∆′ = ∆[pcu 7→ ∆(e) t∆(pcu)]

〈∆, if e then c1 else c2,m, s〉 u 〈∆′, c′,m, s〉

F-SELECT
{v1, . . . , vn} = vars(ϕ) ϕ′ = ϕ[v1 7→ Jv1K(m), . . . , vn 7→ JvnK(m)]

q = SELECT ϕ JqK(s, u) = 〈s′, r, ε〉 `ϕ = LQ(∆, ϕ) t
⊔

v∈vars(ϕ)

∆(v) ∆(pcu) v ∆(x)

〈∆, ‖x← SELECT ϕ‖,m, s〉 u 〈∆[x 7→ ∆(pcu) t `ϕ], ε,m[x 7→ r], s′〉

F-UPDATEDATABASEOK
v = 〈Je1K(m), . . . , JenK(m)〉

⊗ ∈ {⊕,	} JT ⊗ vK(s, u) = 〈s′, r, ε〉 `e =
⊔

1≤i≤n

∆(ei) `e v ∆(T (v)) ∆(pcu) v ∆(T (v)) ∆(pcu) v ∆(x)

〈∆, ‖x← T ⊗ 〈e1, . . . , en〉‖,m, s〉 u 〈∆[T (v) 7→ ∆(pcu) t `e, x 7→ ∆(pcu) t `e], ε,m[x 7→ r], s′〉

F-UPDATECONFIGURATIONOK
{v1, . . . , vn} = vars(q) q′ = q[v1 7→ Jv1K(m), . . . , vn 7→ JvnK(m)] isCfgCmd(q′)

Jq′K(s, u) = 〈s′, r, ε〉 `cmd =
⊔

1≤i≤n

∆(vi) `cmd v cl(auth(sec0, atk)) ∆(pcu) v cl(auth(sec0, atk)) ∆(pcu) v ∆(x)

〈∆, ‖x← q‖,m, s〉
〈public,q′〉

u 〈∆[x 7→ ∆(pcu) t `cmd], ε,m[x 7→ r], s′〉
Figure 4: Security monitor – selected rules.

and the table V contains a single record with value 1. We
illustrate the monitor’s behavior for the security policy
where atk cannot read V but can read and modify T and
Z. In this case, the program is insecure since the presence
of 1 in Z depends (implicitly) on the presence of 1 in V ,
which atk cannot read.

Consider the program execution with the initial
state s0 as above, and initial monitor state ∆0 such
that ∆0(x) = MEM x, ∆0(w) = MEMw, ∆0(y) =
∆0(z) = > (since y and z do not occur in atk ’s
program), and ∆0(pcatk) = ⊥. The attacker’s label
is LU (s0, atk) =

⊔
v∈Val cl(T (v)) t

⊔
v∈Val cl(Z(v)) t

cl({MEM x,MEMw}). The monitor would apply the rules
F-EXPAND (explained above), F-SELECT, F-IFTRUE,
F-UPDATEDATABASEOK, F-ASUSER (not shown), F-
UPDATEDATABASEOK, F-SETPC (not shown), F-SELECT,
and F-OUT. The evaluation of the first SELECT state-
ment yields ∆′ = ∆0[y 7→ ∆(V (1)) t ⊥], i.e., ∆′(y) =
cl(V (1)). The evaluation of the boolean condition y yields
∆′ = ∆[y 7→ cl(V (1)), pcatk 7→ cl(V (1))]. For the
subsequent database update, the monitor checks whether
∆′(pcatk) v ∆′(T (2)), namely, whether cl(V (1)) v
cl(T (2)). Since this is not the case, the monitor stops the
execution and prevents the leakage. �

5.3. Discussion

Supported policies. Our monitor supports dynamic poli-
cies expressed using GRANT and REVOKE commands. It
also supports row-level policies, which can be expressed
using views that disclose a subset of the tuples in a table.

Our monitor associates security labels with tuples. It
does not label columns and therefore it cannot enforce
column-level policies, which disclose only selected at-
tributes of a table, in their full generality. Despite that,
many column-level policies can be translated into equiva-
lent row-level policies by carefully refactoring the database

schema. We illustrate this with an example. Consider a
table PERSON(id,name,salary), with primary key
id, where the attributes id and name are public, while
the attribute salary is secret. We can refactor the table
PERSON into two tables PERSONpublic(id,name) and
PERSONsecret(id,salary). Then, the column-level
policy can be enforced using row-level policies by granting
access only to PERSONpublic and not to PERSONsecret.
More generally, column-level policies can be encoded as
row-level policies (and enforced by our monitor) whenever
the table’s primary key is public, and the column-level
policy does not change during the execution.
Disclosure lattices. Disclosure lattices allow one to ex-
press fine-grained tuple-level dependencies between data
and variables, such as “the value of the variable x may
depend on the initial values of the queries T (1) and V (2),
but not on the value of the query R(3).” Our monitor
leverages disclosure lattices to record all the data that
may have influenced a variable’s current value. In contrast,
existing approaches, such as [9], [42], track column-level
dependencies using the standard “low” and “high” labels.

While these two approaches are incomparable precision-
wise (see Appendix A), by tracking tuple-level dependen-
cies, we can directly support row-level policies, which are
a common policy idiom from database security, and are at
the basis of many fine-grained database access control mod-
els [13], [47], [36], [23]. Row-level policies cannot be eas-
ily supported using column-level dependency tracking since
there is no way to assign distinct security labels to subsets
of tuples in a table. Additionally, we can also enforce static
column-level policies by refactoring the database schema.
Multiple attackers. To ease the presentation, our monitor
considers a fixed attacker atk . In particular, Theorem 1
guarantees that atk does not have access to sensitive
information and that other users’ programs do not reveal
sensitive information to atk .

To handle arbitrary attackers, one can replace all checks

of the form ` v cl(auth(sec0, atk)) with
∧
u∈U ` v

cl(auth(sec0, u)), all checks of the form ` v LU (s, public)
with

∧
u∈U ` v LU (s, u), and all checks of the form

` v LU (s, u), where u 6= public, with ` v cl(auth(sec0,
u)∪auth(sec, u)∪{MEM x | x ∈ Varu}), where U is the
set of users, sec0 is the initial policy, sec is the policy in
the state s, and Varu are the variables in u’s program. This
guarantees that each user accesses only the information
he is authorized to by the policy, i.e., it ensures that our
security condition is satisfied for all users u.

6. Disclosure lattices in practice

Our monitor tracks fine-grained dependencies between
tuples and variables using disclosure lattices. However,
directly handling disclosure lattices is challenging. For
instance, both checking l1 v l2 and computing LQ(∆, q)
requires solving query determinacy, which is an undecid-
able task in general. We now propose a practical way of
approximating computations over disclosure lattices.

6.1. Approximating disclosure lattices

Our security monitor in §5 relies on disclosure lattices
for several purposes. The monitor state ∆ maps variables
and tuples to labels in the lattice L. Additionally, security
checks are implemented using the lattice’s ordering relation
v, and label updates are implemented using the lattice’s
join operator t. Finally, we map queries and users to labels
using the LQ, LU , and auth functions.

An approximation of the (determinacy-based) disclo-
sure lattice provides lower and upper bounds for each of the
aforementioned components. Formally, an approximation is
a tuple 〈Labs ,vabs ,tabs ,∆abs

0 , Labs
Q , Labs

U , authabs , γ−,
γ+〉, where Labs is the set of abstract labels, vabs is a
preorder over abstract labels, tabs is the join operator
over abstract labels, Labs

Q maps abstract monitor states and
queries to abstract labels, Labs

U maps system states and
users to abstract labels, and authabs maps policies and
users to abstract labels. Finally, γ− : Labs → L and γ+ :
Labs → L provide respectively lower and upper bounds on
the information content of abstract labels in terms of the
disclosure lattice L. An abstract label ` ∈ Labs represents
all concrete labels l ∈ L such that γ−(`) v l v γ+(`). We
remark that we need both under- and over-approximations
to soundly check containment between labels since abstract
labels may occur on both sides of vabs .

6.2. Symbolic tuples

Symbolic tuples. Our approximation relies on symbolic
tuples, which concisely represent sets of concrete tuples
(i.e., predicate queries) using logical formulae. Formally, a
symbolic tuple is a pair 〈T, ϕ〉, where T is a table identifier
of arity n and ϕ is a boolean combination of equality and
inequality constraints over variables in {x1, . . . , xn} and
values in Val . We denote by STD the set of all symbolic
tuples defined over the database schema D. The semantics
of a symbolic tuple 〈T, ϕ〉, denoted γ(〈T, ϕ〉), is the set
{T (v1, . . . , v|T |) | v1, . . . , v|T | ∈ Val ∧ |=ϕ[x1 7→ v1,
. . . , x|T | 7→ v|T |]} containing all possible concrete tuples
that satisfy the constraint ϕ, where |=ϕ denotes that ϕ

is a valid formula. For instance, the symbolic tuple 〈T,
x1 6= x2〉 represents the set of all concrete tuples T (v1,
v2) such that v1 6= v2.

Abstract labels. In our approximation, we track lower
and upper bounds using two sets of symbolic tuples
and symbols of the form MEM x. Formally, a label `
is a pair 〈S−, S+〉 such that S− and S+ are subsets
of P(STD ∪ {MEM x | x ∈ Var}). The former cap-
tures `’s lower bounds whereas the latter captures `’s
upper bounds. Given a label ` = 〈S−, S+〉, we de-
note by `|− (respectively `|+) the set S− (respectively
S+). We can now formalize the lower and upper bound
functions γ− and γ+. For an abstract label `, γ−(`) =
cl(
⋃
〈T,ϕ〉∈`|− γ(〈T, ϕ〉) ∪ {MEM x ∈ `|− | x ∈ Var})

and γ+(`) = cl(
⋃
〈T,ϕ〉∈`|+ γ(〈T, ϕ〉) ∪ {MEM x ∈ `|+ |

x ∈ Var}). The set Labs of all abstract labels is {〈S−,
S+〉 ∈ P(STD ∪ {MEM x | x ∈ Var})2 | γ−(〈S−,
S+〉) v γ+(〈S−, S+〉)}. We also define two distinguished
elements >abs = 〈∅,STD ∪ {MEM x | x ∈ Var}〉 and
⊥abs = 〈∅, ∅〉.

Consider the abstract label ` = 〈{〈T, x1 = 2〉}, {〈T,
>〉, 〈R,>〉}〉. It represents all concrete labels l such that
cl({T (2, x2) | x2 ∈ Val}) v l v cl({T (x1, x2) | x1, x2 ∈
Val})tcl({R(x1) | x1 ∈ Val}). This implies, for instance,
that ` at most contains as much information as the tables T
and R. However `′′ = 〈{〈T,>〉, 〈R,>〉}, {〈T, x1 = 2〉}〉
is not a valid abstract label since γ−(`′′) 6v γ+(`′′).

Ordering relation. The abstract ordering relation vabs

is as follows: 〈S−1 , S
+
1 〉 vabs 〈S−2 , S

+
2 〉 iff (1) for all

symbolic tuples 〈T, ϕ〉 ∈ S+
1 , there is a symbolic tuple

〈T, ϕ′〉 ∈ S−2 such that ϕ |= ϕ′, where ϕ |= ϕ′ denotes
that any assignment that satisfies ϕ also satisfies ϕ′ (this
is equivalent to requiring that γ(〈T, ϕ〉) ⊆ γ(〈T, ϕ′〉)),
and (2) for all symbols MEM x ∈ S+

1 , then MEM x ∈ S−2 .
This ensures that whenever 〈S−1 , S

+
1 〉 vabs 〈S−2 , S

+
2 〉 is

satisfied, then γ+(〈S−1 , S
+
1 〉) v γ−(〈S−2 , S

+
2 〉) holds as

well. Hence, the concrete tuples represented by 〈S−1 , S
+
1 〉

are below those represented by 〈S−2 , S
+
2 〉.

To illustrate, consider the abstract labels `1 = 〈∅, {〈T,
x1 = 2 ∧ x2 6= x1〉}〉 and `2 = 〈{〈T, x1 = 2〉}, {〈T,>〉,
〈R,>〉}〉. It is easy to see that `1 vabs `2 holds: any
concrete tuple in the upper bounds of `1 also belongs to
the lower bounds of `2 since any satisfying assignment
for x1 = 2 ∧ x2 6= x1 also satisfies x1 = 2. In contrast,
`2 6vabs `1. For instance, T (1, 1) belongs to γ+(`2) but
not to γ−(`1).

Join operator. The join operator between abstract labels
is the pairwise union of their components: given two labels
〈S−1 , S

+
1 〉, 〈S

−
2 , S

+
2 〉 ∈ Labs , their join 〈S−1 , S

+
1 〉tabs〈S

−
2 ,

S+
2 〉 is 〈S−1 ∪ S

−
2 , S

+
1 ∪ S

+
2 〉.

Labeling queries. To map queries to labels, we need both
lower and upper bounds for LQ. In the following, let ∆abs

be an abstract monitor state and q be a query. Moreover,
we denote LQ’s lower and upper bounds respectively by
`−
∆abs ,q

and `+
∆abs ,q

. Namely, Labs
Q (∆abs , q) = 〈`−

∆abs ,q
,

`+
∆abs ,q

〉. We formalize `−
∆abs ,q

and `+
∆abs ,q

below. Without
loss of generality, we assume that universally quantified
statements ∀x. ϕ are expressed as ¬∃x.¬ϕ.

Over-approximating queries. We compute the upper
bound of LQ in two steps. We first extract the symbolic

tuples from the query q. We then compute `+
∆abs ,q

by
accounting for the labels in ∆abs .

Given a query q, the function cstrs(q) extracts the
symbolic tuples from q. We denote by subs(q) the set
of q’s immediate sub-formulae that contain predicate
symbols. Moreover, nf (q) denotes that q is of the form
T (x) ∧ ϕ, where ϕ is a (possibly empty) boolean com-
bination of equalities and inequalities over variables in
x and values in Val . The set cstrs(q) is recursively de-
fined as cstrs(q) =

⋃
q′∈subs(q)∧¬nf (q) cstrs(q′) ∪ {〈T,

ϕ〉 | nf (q) ∧ q = (T (x) ∧ ϕ)}. Observe that the concrete
tuples represented by the symbolic tuples in cstrs(q) con-
tain those in q’s support.

Given a symbolic tuple 〈T, ϕ〉 and a finite set M of
predicate queries of the form T (v), we denote by R(〈T,
ϕ〉,M) the most precise symbolic tuple 〈T, ϕ′〉 such that
(γ(〈T, ϕ〉) \M) ⊆ γ(〈T, ϕ′〉).

Given an abstract state ∆abs and a query q, we compute
`+
∆abs ,q

as:

⋃
〈T,ϕ〉∈cstrs(q′)

 ⋃
T (v)∈γ(〈T,ϕ〉)∩MT

∆abs(T (v))|+ ∪ {R(〈T, ϕ〉,MT)}

where q′ is the query obtained by recursively replacing
views with their definitions and MT is the set {T (v) ∈
RC pred | ∆abs(T (v))|+ 6= ∆abs

0 (T (v))|+} of all predicate
queries whose upper bound is different from the initial one.

To illustrate, consider the query q defined as ∃x.(T (2,
x) ∧ (x = 3 ∨ x = 4)) ∧ ∀x. R(x) → ∃y. S(3, y). Com-
puting cstrs(q) produces the symbolic tuples: {〈T, x1 =
2∧(x2 = 3∨x2 = 4)〉, 〈R,>〉, 〈S, x1 = 3〉}. Given a mon-
itor state ∆abs such that ∆abs(T (2, 3))|+ 6= ∆abs

0 (T (2,
3))|+ results in `+

∆abs ,q
being: ∆abs(T (2, 3))|+ ∪ {〈T,

x1 = 2 ∧ x2 = 4〉, 〈R,>〉, 〈S, x1 = 3〉}.
Under-approximating queries. Producing useful lower
bounds for queries is more difficult than finding upper
bounds. In particular, computing non-trivial lower bounds
for a query q is, in general, as difficult as determining
whether q is unsatisfiable. Here, we target a restricted class
of queries satisfying specific syntactic properties.

We say that a query q is well-formed if it is a boolean
combination of formulae ∃x. ψ such that (1) nf (ψ) holds,
(2) the formula ψ is satisfiable, (3) for any two distinct
sub-formulae ∃x. T (x)∧ψ and ∃x. T (x)∧ψ′, there is no
v satisfying both ψ and ψ′, and (4) there are no integrity
constraints involving tables occurring in q. The first re-
quirement ensures that we can precisely extract symbolic
tuples using the cstrs(q) function described above. The
second requirement ensures that each symbolic tuple rep-
resents at least one concrete tuple. The third requirement
ensures that the symbolic tuples represent disjoint sets of
concrete tuples. The fourth requirement, finally, guarantees
that integrity constraints do not affect the symbolic tuples
in cstrs(q). These requirements guarantee that cstrs(q)
correctly identifies a set of tuples that belong to q’s support.

For a well-formed query q, we com-
pute the under-approximation `−

∆abs ,q
as⋃

〈T,ϕ〉∈cstrs(q)

(⋃
T (v)∈γ(〈T,ϕ〉) ∆abs(T (v))|−

)
. If q is

not well-formed, then `−
∆abs ,q

= ∅. Finally, if q refers to
views, then `−

∆abs ,q
= `−

∆abs ,q′
, where q′ is the query ob-

tained by recursively replacing views with their definitions.

Consider the following query q: S(1, 2) ∨ ¬∃x. T (1,
x) ∨ ∃x. T (2, x). The query satisfies our well-formedness
criteria. For instance, the two sub-formulae ∃x. T (1,
x) and ∃x. T (2, x) depend on disjoint sets of tuples in
the table T . Computing cstrs(q) results in the set {〈S,
x1 = 1 ∧ x2 = 2〉, 〈T, x1 = 1〉, 〈T, x1 = 2〉}. Hence,
`−
∆abs ,q

is ∆abs(S(1, 2))|− ∪
⋃
v∈Val ∆abs(T (1, v))|− ∪⋃

x∈Val ∆abs(T (2, v))|−.
Labeling users. For the abstract mapping from users to
labels, we first define authabs and afterwards derive Labs

U .
Let sec be a security policy and u ∈ UID be a user. The
mapping authabs(sec, u) is 〈{〈T,>〉 | T ∈ auth(s, u) ∩
T} ∪ {〈T, ϕ〉 | V is a view ∧ V ∈ auth(s, u) ∧ def (V) =
(T (x) ∧ ϕ) ∧ nf (def (V))},STD ∪ {MEM x | x ∈ Var}〉.
In contrast, the abstract mapping Labs

U from system
states and users to labels is as follows. For the attacker
atk , Labs

U (s, atk) = authabs(sec0, atk) tabs authabs(sec,
atk) tabs 〈{MEM x | x ∈ Varatk},STD ∪ {MEM x |
x ∈ Var}〉, where sec0 is the initial policy and sec is the
current policy in s. For the public user public, Labs

U (s,
public) = Labs

U (s, atk). Finally, for other users u distinct
from atk and public, Labs

U (s, u) = 〈STD∪{MEM x | x ∈
Var},STD ∪ {MEM x | x ∈ Var}〉. Note that the upper
bounds for authabs(sec, u) and Labs

U (s, atk) are always
STD ∪ {MEM x | x ∈ Var}, i.e., they represent the >
element in the disclosure lattice. This does not affect our
monitor’s precision since both authabs(sec, u) and Labs

U (s,
atk) only occur on the left-hand side of vabs , so the
monitor never uses their upper bounds.

Consider a policy sec where the user u is authorized to
read the table T and the views V (defined as {x, y | T (x,
y) ∧R(x)}) and W (defined as {x, y | S(x, y) ∧ x 6= y}).
The function authabs maps sec and u to the label 〈{〈T,
>〉, 〈S, x1 6= x2〉},STD ∪{MEM x | x ∈ Var}〉. Observe
that the view V has been ignored in authabs(sec, u) since
it cannot be under-approximated using symbolic tuples.
Initial monitor state. The initial abstract state ∆abs

0 is
as follows: for all T (v) ∈ RC pred , ∆abs

0 (T (v)) = 〈{〈T,∧
1≤i≤|T | xi = vi〉}, {〈T,

∧
1≤i≤|T | xi = vi〉}〉, for all x ∈

Var , ∆abs
0 (x) = 〈{MEM x}, {MEM x}〉, and for all u ∈

UID , ∆(pcu) = 〈∅, ∅〉.
Soundness. In Appendix I, we prove that the above ap-
proximation preserves the monitor’s security guarantees.
In the next section, we implement this approach in DAISY
and evaluate it through different case studies.

7. Implementation and case studies

7.1. Securing SCALA programs

We now present DAISY (available at [2]), a security
monitor for database-backed SCALA programs, which im-
plements the monitor presented in §5 with the approxima-
tion from §6. DAISY enforces end-to-end security across
application-database boundaries while supporting advanced
database features and dynamic security policies.
Implementation. We implement DAISY via monitor in-
lining [17] using SCALA’s macro facilities [14]. This
allows a programmer to write normal SCALA code that
will then be augmented with information-flow checks for
both application-level code and database queries simply

by adding a @daisy annotation on a class, object, or
function definition. Moreover, DAISY relies on the Z3
SMT solver [21] to compare symbolic tuples.
Supported fragment. To match the monitor presented in
§5, DAISY only handles the imperative subset of SCALA
(including all WHILESQL’s features) with limited support
for higher-order functions. To express queries, DAISY
relies on the query language supported by WHILESQL,
and it translates queries into SQL commands. The
scheduling of threads is currently handled explicitly
using the designated function asUser. DAISY can easily
be extended to directly use SCALA’s multi-threading
facilities.We refer the reader to DAISY’s documentation
for a precise definition of the supported fragment.
Extensions. DAISY extends our monitor from §5 with
configuration functions, and multi-table symbolic tuples.

DAISY allows database administrators to specify func-
tions that modify the database configuration. These func-
tions are annotated with the @configuration annota-
tion, and users can invoke them inside their code. Addi-
tionally, these functions receive as input the identifier of
the user invoking them. To avoid leaks, DAISY enforces
the following restrictions: (a) functions annotated with
@configuration can be executed only when ∆(pc) =
⊥, and (b) they can only execute GRANT, REVOKE, and
CREATE commands.

In DAISY, we implement a simple generalization of
symbolic tuples that allows us to track dependencies across
multiple tables, such as those introduced when joining sev-
eral tables. In addition to symbolic tuples of the form 〈T,
ϕ〉, DAISY also supports symbolic tuples of the form 〈T,
ϕ〉, where T = T1· . . . ·Tn is a sequence of table identifiers
and ϕ is a boolean combination of equality and inequality
constraints over T1× . . .×Tn. Informally, 〈T1· . . . ·Tn, ϕ〉
represents a set of concrete tuples over the Cartesian prod-
uct of the tables T1, . . . , Tn. Here, we discuss how we ex-
tend vabs to handle multi-table symbolic tuples. The other
operators are extended in a straightforward way. Given
two labels 〈S−1 , S

+
1 〉 and 〈S−2 , S

+
2 〉, 〈S

−
1 , S

+
1 〉 vabs 〈S−2 ,

S+
2 〉 iff for all symbolic tuples 〈T, ϕ〉 ∈ S+

1 , there are
symbolic tuples 〈T1, ϕ1〉, . . . , 〈Tn, ϕn〉 in S−2 such that
T = T1· . . . ·Tn and ϕ |= ϕ′1 ∧ . . . ∧ ϕ′n (where ϕ′i is ob-
tained from ϕi by renaming xj as xj+∑

i<j(Ti|0+...+Ti||Ti|).

7.2. Case studies

To evaluate DAISY, we carried out four case studies
(available at [2]): (i) a social network, (ii) an assignment
grading system, (iii) a calendar application, and (iv) a
conference management system. Note that we only focus
on the security-critical parts of the applications. Our
evaluation has three objectives: (1) validate that DAISY
provides the desired security guarantees, (2) confirm
that our approximation is not overly restrictive, and (3)
evaluate DAISY’s overhead.

7.2.1. Social network. We implemented in SCALA the
social network model from §2. Without the trigger, DAISY
considers the program from §2 as secure, since there is no
leak of sensitive information. When the trigger is in place,
DAISY correctly identifies the leak of sensitive informa-
tion. Specifically, by leveraging our expansion procedure,

DAISY successfully tracks the flows of information across
the program-database boundaries and correctly rejects the
program as insecure. Existing approaches ignore the leaks
caused by triggers and would accept the program as secure.
Moreover, our approximation is sufficiently precise to
correctly enforce the row-level policy “each user can read
only his friends’ reviews”, which cannot be enforced by
existing approaches that track column-level dependencies.

7.2.2. Assignment grading system. We model a system
inspired by one of URFLOW’s case studies [15]. The
system allows students to hand-in assignments that are
graded by teaching assistants (TAs), who only have access
to students’ pseudonyms.
Database schema. The table students holds the students’
data. The table codes maps students to their pseudonyms.
The table tas stores TAs’ names, and handins(ID, txt)
records student submissions. The table grades(ID, grade)
stores the hand-ins’ grades, and owner(ID, studID)
associates the hand-ins with pseudonyms.
Security policy. Students are authorized to read their own
pseudonym, but they cannot read other entries in the table
codes. Moreover, they can read the grades only of their
own submissions. In contrast, TAs can read the handins
table and can read and modify the grades table. Thus,
according to our policy, a TA cannot leak information
about a student s to a different student. We implement this
policy using views and GRANT commands; see [2].
Examples. In the following, a student submits a hand-in, a
TA grades it, and, then, the same student reads the grade.

asUser("stud1") {submitHandin("stud1",
"GoodSubmission")}

// TA inspects submission and grades it
asUser("ta") {
val firstSubmission = viewSubmissions().head
outputTo("ta", firstSubmission)
grade(firstSubmission, "Good")

} // student reads the grade:
asUser("stud1") { viewGrade("stud1") }

The example uses the helper functions submitHandin,
grade, viewGrade, and viewSubmissions, which encapsu-
late the interaction with the database. For example, the
viewSubmissions function is as follows:

def viewSubmissions() = select("{id, text |
handins(id, text)}")

DAISY accepts this program as secure and successfully
enforces the row-level policy “each student can read his
grades.” Note that UR/FLOW would also consider the above
program as secure.

Now, consider the same program where the function
viewSubmissions is defined as select("{id, text |

handins(id, text)AND codes(’stud1’, ’xyz’}"). The
program violates our policy: observing the output of
viewSubmissions leaks information about codes to the
TA. DAISY correctly detects such a leak and rejects the
program as insecure. UR/FLOW, however, would accept
the program as secure, since it ignores implicit leaks in-
troduced by queries [15].

Finally, the TA tries to output the grades to a student
stud2 . DAISY prevents this since grades contains infor-
mation about stud1 that should not flow to stud2 .

asUser("ta") { // TA tries to leak everything:
val gr = select("{id, gr | grades(id, gr)}")
outputTo("stud2", gr) }

7.2.3. Calendar. We implement a calendar application
that supports creating events and adding other users as
attendees. We use DAISY to enforce the following policy:
each user u can read the information about an event’s
participants only if u is attending the event. As a result, if
the event’s organizer removes an attendee, that attendee can
no longer view the event’s other attendees. We implement
the calendar application as well as examples that comply
with and violate the above policy. See [2] for further details.

7.2.4. Conference management system. We model the
key aspects of a conference management system.
Database schema. The table user(ID, name) holds
the users’ data. The table paper(paperID, confID,
title) stores the papers’ information, whereas the
table authors(paperID, authorID) maps pa-
pers to authors and reviewer(confID, revID)
associates conferences with reviewers. The table
review(paperID, revID, decision) stores re-
views’ information.
Security policy. In our system, we have two roles: re-
viewers and authors. As an author, a user u can access
only the reviews of his own papers. To encode this, for
each user u, we introduce the view reviewAu = {p, r,
d | review(p, r, d) ∧ author(p, u)}}. As a reviewer, a
user u can access the reviews of all papers submitted to
conferences where he is a reviewer. This is implemented
using the view reviewRu = {p, r, d | review(p, r, d)∧∃c,
t. (paper(p, c, t)∧ reviewer(c, u))}. We can now define
the permissions. Whenever a user u acts as author, he can
read reviewAu. In contrast, when a user u acts as reviewer,
he can read reviewRu. Moreover, users can always read
the tables user, author, and reviewer. We model
users logging in as authors or as reviewers using the
configuration functions asAuthor and asReviewer,
which are executed under the administrator’s privileges
and modify the policy as expected.
Examples. In the following snippet, a user u logs into the
application as an author (modeled using the asAuthor
function) and retrieves the reviews of his EuroS&P papers.

asAuthor()
val revs = extractReviews("u", "EuroS&P 2019")
outputTo("u", revs)

This example relies on the extractReviews helper
function, which returns the result of the query SELECT {p,
t, d | reviews(p, c, t, d) ∧ author(p, c, u)}, where u
and c are the user and the conference given as input.
Symbolic tuples are precise enough to determine that
revs’ content depends only on authorized information.
Hence, DAISY correctly accepts this program as secure.
Approaches based on column-level dependencies would
reject this program as insecure.

To illustrate dynamic policies, consider the following
snippet, where a user u logs in as a reviewer, stores all
reviews of all papers in the conferences where he is a
program committee member in a variable data , switches
his role to author, and prints the data.

asReviewer()
val data = conferenceData("u")
asAuthor()
outputTo("u", data)

This example relies on the conferenceData helper
function that returns the result of the query SELECT {p, t,
d | review(p, c, t, d)∧reviewer(c, u)}, where u is the
user given as input. The example violates our policy. While
the function conferenceData accesses only authorized data
when u is logged as a reviewer, the information is disclosed
only after the privileges have been revoked. DAISY detects
that the information stored in the variable data is no
longer authorized in the last statement and correctly stops
the execution. Hence, DAISY correctly handles dynamic
policies and tracks dependencies across policy changes.

7.2.5. Performance. We benchmarked our case studies
(each one comprising roughly 100 lines of code) on a
64-bit i7-4600U CPU running ArchLinux with OpenJDK
version 1.8.0 144. In our experiments, DAISY introduces
an overhead between 5% and 10% compared to unmon-
itored execution of the same code, which we believe is
acceptable for a proof-of-concept implementation.

8. Related work

IFC for database-backed applications. We compare our
work with existing IFC solutions for database-backed appli-
cations [27], [16], [30], [43], [18], [15], [9], [48] w.r.t. three
aspects: (1) the database model, (2) the supported security
policies, and (3) whether the solution has been proved
sound. Figure 5 summarises how existing approaches fare
with respect to the aforementioned criteria.

SIF [16] enforces IFC policies for Java web applica-
tions, whereas Li and Zdancewic [30] present a system
for statically checking IFC policies for database-backed
applications. Both approaches are type-based, require pro-
grammers to manually annotate programs with typing
annotations, and consider only simple database models
and column-level policies. Another type-based approach is
IFDB [43], a system supporting decentralized IFC across
databases and applications. Its Query by Label model ex-
tends the work on multi-level secure (MLS) databases [32]
and provides abstractions for dealing with expressive IFC
policies. It supports complex database features and poli-
cies. Similarly to other MLS approaches, it relies on poly-
instantiation [29], which is not supported by the SQL stan-
dard and requires ad-hoc extensions [22], [41]. Moreover,
it has neither a formal semantics nor a soundness proof.
In contrast to these type-based approaches, we do not
require program annotations, we support more complex
dynamic row-level policies, and our solution comes with a
soundness proof of security for a realistic database model.

JSLINQ [9], SELINKS [18], [44], and SELINQ [42]
secure applications that interact with databases through
language-integrated queries. In contrast to DAISY, these
works consider simpler database models and ignore con-
structs like triggers and integrity constraints. Moreover,
JSLINQ and SELINQ only support column-level policies,
while SELINKS can also support row-level policies. How-
ever, none of them support row-level policies where privi-
leges can be granted and revoked as we do. Lourenço and

DATABASE FEATURES SECURITY POLICIES Soundness
proofINSERT - Dynamic Triggers Integrity Views Column Row

DELETE policies constraints level level
SIF [16] X X1 X X
Li et al. [30] X1 X
IFDB [43] X X1 X X X X X
JSLINQ [9] X1 X X
SELINKS [18] X X1 X X X
SELINQ [42] X X
Lourenço et al. [31] X X X X
URFLOW [15] X X X
LWEB [35] X X1 X X X
JACQUELINE [48] X X X X X
DAISY X X X X X X2 X X

1Only declassification 2Only static column-level policies
Figure 5: Comparison with other IFC approaches for database-backed applications

Caires [31] introduce dependent information flow types
which allow the types’ security levels to depend on runtime
values, thus enabling row-level policies. Their main goal
is using dependent types for IFC, therefore they ignore
the challenges posed by advanced database features and
dynamic policies.

URFLOW [15] is a static information flow analysis tool
for UR/WEB applications. It supports policies expressed
as SQL queries that leverage the users’ runtime knowledge.
The enforcement is done by symbolic execution over a
model of the web application. DAISY can enforce similar
policies and it supports features like triggers and dynamic
policies. Moreover, URFLOW provides no precise security
guarantees, as it ignores some implicit flows.

LWEB [35] is a framework for developing secure multi-
tier applications in Haskell. LWEB enforces data-dependent
column- and row-level policies (expressed in Haskell),
where the labels associated with columns and tuples may
depend on the tuples’ values. Similarly to LWEB, we also
support data-dependent row-level policies, which can be
formalized using views, and a restricted class of column-
level policies. In contrast to our work, LWEB ignore ad-
vanced database features, like triggers, and it supports only
declassification, while DAISY supports dynamic policies
where permissions can be granted and revoked at runtime.

JACQUELINE [48] presents an IFC approach that se-
cures database-backed applications using faceted execu-
tion [7]. JACQUELINE adopts a policy-agnostic program-
ming model, where the language runtime modifies the com-
putation to produce policy compliant results. In contrast to
modifying the results, our monitor prevents leaks by termi-
nating the execution. In JACQUELINE, security policies are
formalized as program functions and both row-level and
column-level policies are supported. However, JACQUE-
LINE consider a simpler database model than our work and
it ignores security-critical database features like triggers.

To summarise, existing works consider unrealistic data-
base models, ignore dynamic policies where permissions
can be granted and revoked, or provide informal soundness
arguments. In contrast, our work has the following distin-
guishing features: (1) a realistic database model, which
accounts for security-critical constructs like triggers, views,
and dynamic policies, (2) a monitor combining information-
flow tracking with disclosure lattices that can enforce dy-
namic row-level and static column-level policies, and (3) a
soundness proof of security for a realistic database model.

Security conditions. Our security condition is inspired by
existing knowledge-based notions for dynamic policies [5],
[8], [12]. While the semantics for dynamic policies remains
an open research problem, our security condition captures
security with respect to a perfect recall attacker. Askarov
and Chong [5] propose security conditions against all
attackers. We conjecture that our security monitor also
enforces security against all attackers. Hicks et al. [26]
propose non-interference between updates which ensures
non-interference between policy changes, while ignoring
information leaks across such changes. We refer the reader
to Broberg et al. [12] for a survey of dynamic policies.

Label models. The universal lattice [28] allows one to
express dependencies between variables, where the lattice’s
elements are sets of variables and the order relationship is
set containment. In contrast, disclosure lattices allow us to
reason about dependencies between queries. By directly
combining disclosure lattices with dynamic information-
flow tracking, we track tuple-level dependencies between
variables and queries, which would otherwise be lost using
simpler label models, e.g., the “high” and “low” lattice.
This allows us to support dynamic row-level policies and
static column-level policies.

Database access control. Many security conditions have
been proposed for attackers that can issue only SELECT
queries [47], [36], [23], [11], [10]. Guarnieri et al. [24]
extend database access control by supporting advanced fea-
tures, such as triggers and dynamic policies. WHILESQL’s
database model builds on top of Guarnieri et al.’s database
semantics. Bender et al. [11], [10] introduce disclosure lat-
tices to reason about fine-grained security policies in data-
bases. We leverage disclosure lattices to track information-
flows through the application and database boundary.

QAPLA [33] is a database access control middleware
supporting complex security policies, such as linking and
aggregation policies, that go beyond what is supported by
commercial database systems. Our monitor supports only
policies that can be expressed in the SQL access control
model. Hence, it does not support policies like linking or
aggregation. QAPLA, however, cannot enforce end-to-end
IFC policies across the application/database boundary.

Research on mandatory database access control has
historically focused on Multi-Level Security [22], [32],
where both the data and the users are associated with
security levels. In contrast to WHILESQL, MLS systems
consider, in general, fixed security policies (cf. the tran-

quility principle [40]) and rely on poly-instantiation [29].

9. Conclusion
Securing database-backed applications requires reason-

ing about the program and the database as a whole. Moti-
vated by the severe limitations of existing approaches, we
developed a novel security monitor that enforces security
policies in an end-to-end fashion across the application-
database boundary. In contrast to existing approaches,
our monitor accounts for realistic database model, and
it leverages disclosure lattices to track fine-grained tuple-
level dependencies between variables and tuples and to
enforce expressive dynamic policies. DAISY implements
our security monitor for SCALA programs, and it relies
on symbolic tuples, a novel efficient approximation of
disclosure lattices. DAISY demonstrates how realistic data-
base models and database theory can be combined with
language-based security techniques to effectively protect
systems against larger classes of attacks.

References

[1] S. Abiteboul, R. Hull, and V. Vianu, Foundations of databases.
Addison-Wesley Reading, 1995, vol. 8.

[2] Anonymized, “DAISY: DAtabase and Information-flow SecuritY,”
https://sites.google.com/site/databaseifc/, 2018.

[3] ——, “Information-Flow Control for Database-backed Applications
– Technical Report,” https://sites.google.com/site/databaseifc/, 2018.

[4] O. Arden, J. Liu, and A. C. Myers, “Flow-limited authorization,”
in CSF, 2015.

[5] A. Askarov and S. Chong, “Learning is change in knowledge:
Knowledge-based security for dynamic policies,” in CSF, 2012.

[6] A. Askarov, S. Hunt, A. Sabelfeld, and D. Sands, “Termination-
insensitive noninterference leaks more than just a bit,” in ESORICS,
2008.

[7] T. H. Austin and C. Flanagan, “Multiple facets for dynamic infor-
mation flow,” in ACM Sigplan Notices, vol. 47, no. 1. ACM, 2012,
pp. 165–178.

[8] M. Balliu, “A logic for information flow analysis of distributed
programs,” in NordSec, 2013.

[9] M. Balliu, B. Liebe, D. Schoepe, and A. Sabelfeld, “Jslinq: Building
secure applications across tiers,” in CODASPY, 2016.

[10] G. Bender, L. Kot, and J. Gehrke, “Explainable security for relational
databases,” in SIGMOD, 2014.

[11] G. Bender, L. Kot, J. Gehrke, and C. Koch, “Fine-grained disclosure
control for app ecosystems,” in SIGMOD, 2013.

[12] N. Broberg, B. van Delft, and D. Sands, “The anatomy and facets
of dynamic policies,” in CSF, 2015.

[13] K. Browder and M. Davidson, “The virtual private database in
Oracle9iR2,” Oracle Technical White Paper, Oracle Corporation,
vol. 500, 2002.

[14] E. Burmako, “Scala macros: let our powers combine!: on how
rich syntax and static types work with metaprogramming,” in
SCALA@ECOOP, 2013.

[15] A. Chlipala, “Static Checking of Dynamically-Varying Security
Policies in Database-Backed Applications.” in OSDI, 2010.

[16] S. Chong, K. Vikram, and A. C. Myers, “SIF: Enforcing Confi-
dentiality and Integrity in Web Applications,” in USENIX Security,
2007.

[17] A. Chudnov and D. A. Naumann, “Information flow monitor inlin-
ing,” in CSF, 2010.

[18] B. J. Corcoran, N. Swamy, and M. W. Hicks, “Cross-tier, label-based
security enforcement for web applications.” in SIGMOD, 2009.

[19] B. A. Davey and H. A. Priestley, Introduction to lattices and order.
Cambridge university press, 2002.

[20] B. Davis and H. Chen, “DBTaint: cross-application information
flow tracking via databases,” in WebApps, 2010.

[21] L. De Moura and N. Bjørner, “Z3: An efficient smt solver,” in
TACAS’08, 2008.

[22] D. E. Denning and T. F. Lunt, “A multilevel relational data model,”
in S&P, 1987.

[23] M. Guarnieri and D. Basin, “Optimal security-aware query process-
ing,” in VLDB, 2014.

[24] M. Guarnieri, S. Marinovic, and D. Basin, “Strong and provably
secure database access control,” in EuroS&P, 2016.

[25] D. Hedin and A. Sabelfeld, “A perspective on information-flow
control,” in Software Safety and Security - Tools for Analysis and
Verification, 2012, pp. 319–347.

[26] M. Hicks, S. Tse, B. Hicks, and S. Zdancewic, “Dynamic updating
of information-flow policies,” in FCS, 2005.

[27] Y.-W. Huang, F. Yu, C. Hang, C.-H. Tsai, D.-T. Lee, and S.-Y.
Kuo, “Securing web application code by static analysis and runtime
protection.” in WWW, 2004.

[28] S. Hunt and D. Sands, “On flow-sensitive security types,” in POPL,
2006.

[29] S. Jajodia and R. Sandhu, “Polyinstantiation integrity in multilevel
relations,” in S&P, 1990.

[30] P. Li and S. Zdancewic, “Practical information flow control in web-
based information systems,” in CSF, 2005.

[31] L. Lourenço and L. Caires, “Dependent information flow types,” in
POPL’15, 2015.

[32] T. F. Lunt, D. E. Denning, R. R. Schell, M. Heckman, and W. R.
Shockley, “The seaview security model,” TSE, vol. 16, no. 6, 1990.

[33] A. Mehta, E. Elnikety, K. Harvey, D. Garg, and P. Druschel, “Qapla:
Policy compliance for database-backed systems,” in USENIX Secu-
rity, 2017.

[34] A. Nash, L. Segoufin, and V. Vianu, “Views and queries: Determi-
nacy and rewriting,” TODS, vol. 35, no. 3, p. 21, 2010.

[35] J. Parker, N. Vazou, and M. Hicks, “LWeb: Information flow security
for multi-tier web applications,” in POPL’19, 2019.

[36] S. Rizvi, A. Mendelzon, S. Sudarshan, and P. Roy, “Extending query
rewriting techniques for fine-grained access control,” in SIGMOD,
2004.

[37] A. Russo and A. Sabelfeld, “Dynamic vs. static flow-sensitive
security analysis,” in CSF, 2010.

[38] A. Sabelfeld and D. Sands, “Probabilistic noninterference for multi-
threaded programs,” in CSFW, 2000.

[39] P. Samarati, “Recursive revoke,” in Encyclopedia of Cryptography
and Security. Springer, 2011, pp. 1035–1037.

[40] P. Samarati and S. Capitani de Vimercati, “Access Control: Policies,
Models, and Mechanisms,” Springer LNCS, vol. 2171, 2001.

[41] R. Sandhu and F. Chen, “The multilevel relational (MLR) data
model,” TISSEC, vol. 1, no. 1, 1998.

[42] D. Schoepe, D. Hedin, and A. Sabelfeld, “Selinq: Tracking infor-
mation across application-database boundaries,” in ICFP, 2014.

[43] D. Schultz and B. Liskov, “IFDB: decentralized information flow
control for databases,” in EuroSys, 2013.

[44] N. Swamy, B. J. Corcoran, and M. Hicks, “Fable: A language for
enforcing user-defined security policies,” in S&P’08, 2008.

[45] B. van Delft, S. Hunt, and D. Sands, “Very static enforcement of
dynamic policies,” in POST, 2015.

[46] S. D. C. d. Vimercati and G. Livraga, “Sql access control model,”
in Encyclopedia of Cryptography and Security. Springer, 2011,
pp. 1248–1251.

[47] Q. Wang, T. Yu, N. Li, J. Lobo, E. Bertino, K. Irwin, and J.-W.
Byun, “On the correctness criteria of fine-grained access control in
relational databases,” in VLDB, 2007.

[48] J. Yang, T. Hance, T. H. Austin, A. Solar-Lezama, C. Flanagan,
and S. Chong, “Precise, dynamic information flow for database-
backed applications,” in PLDI, 2016.

[49] S. A. Zdancewic, “Programming languages for information security,”
Ph.D. dissertation, Cornell University, Ithaca, NY, USA, 2002.

https://sites.google.com/site/databaseifc/
https://sites.google.com/site/databaseifc/

System and runtime states (§3) WHILESQL (§3)
D database schema Var ,Val variables and values
Γ set of integrity constraints c ∈ Com WHILESQL program
M = 〈D,Γ〉 system configuration m ∈ Mem memories
db database state 〈c,m, 〈s, ctx〉〉 ∈ Conf local configuration
U set of users ComUID = UID × Com programs and executing users
sec security policy MemUID = UID ×Mem memories and executing users
T set of triggers C ∈ Com∗UID sequence of programs
V set of views M ∈ Mem∗UID sequence of memories
s = 〈db, U, sec, T, V 〉 system state S scheduler
ctx database context 〈C,M, 〈s, ctx〉,S〉 ∈ GlConf global configurations
〈s, ctx〉 ∈ ΩM runtime state 〈M, s〉 global state
Security monitor (§5) −→u local semantics
q query −→ global semantics
Q set of queries r run
T (v) ∈ RC pred predicate query 〈u, o〉 observation
supp(q) support of query q trace(r) r’s observations
cl(q) closure of query q Security condition (§4)
L disclosure lattice Ku(〈M0, s0〉, C,S, τ) attacker’s knowledge
D,Γ ` Q� Q′ Q determines Q′ given D,Γ Au,sec(M0, s0) allowed knowledge given sec
Q′ ��

D,Γ Q disclosure order (iff D,Γ ` Q� Q′) Approximation (§6)
v order in the lattice 〈T, ϕ〉 symbolic tuple
t join operator in the lattice 〈S−, S+〉 ∈ Labs abstract label
∆0,∆ (initial) monitor state vabs order over abstract labels
pcu u’s program context tabs join operator over abstract labels
LQ(∆, q) mapping queries to labels ∆abs abstract monitor state
LU (s, u) mapping users to labels Labs

Q (∆abs , q) mapping queries to abstract labels
 u monitor’s local semantics Labs

U (s, u) mapping users to abstract labels
 monitor’s global semantics cstrs(q) symbolic tuples extracted from query q

Figure 6: Table of notation

Appendix A.
Tracking dependencies between tuples and columns

By leveraging disclosure lattices, our monitor tracks dependencies at the tuple-level. In contrast, other approaches,
such as [9], [42], track dependencies at the column-level. These two approaches are incomparable precision-wise. We
now illustrate the advantages and drawbacks of these two approaches.

Tracking dependencies at the tuple-level allows one to differentiate between tuples in the same table when checking
for possible leaks. For instance, consider the following snippet, where high is a variable containing information that atk
is not authorized to read:

x← INSERT 〈1, high〉 INTO T
y ← SELECT T (2, 2)
out(atk , y)

The above snippet is always secure, since the SELECT query’s result does not depend on high . An IFC mechanism that
tracks dependencies at the tuple-level, such as our monitor, can determine this, since it can differentiate between the
tuples T (2, 2) and T (1, high). In contrast, mechanisms that track dependencies at column-level, such as [9], [42], cannot
distinguish between these two tuples, and thereby reject the above snippet as insecure.

Column-level dependency tracking allows one to track whether sensitive information has been inserted in specific
columns. Consider the following snippet:

x← INSERT 〈1, high〉 INTO T
y ← SELECT ∃z. T (1, z)
out(atk , y)

Again, this snippet is secure. A mechanism that tracks dependencies at the column-level can determine that the SELECT
query’s result does not depend on the value z, which belongs to the column containing sensitive information. Tuple-level
dependency tracking, however, is not sufficiently precise to differentiate between different columns. Hence, mechanisms
tracking dependency at the tuple-level, such as our monitor, reject the above snippet as insecure.

To summarize, tuple-level and column-level dependency tracking are orthogonal and incomparable. The former allows
one to track sensitive information across tables (abstracting away from columns), whereas the latter allows the tracking
of sensitive information in specific columns (but across tuples). We believe that a closer integration of tuple-level and
column-level dependency tracking may lead to improvements in IFC precision. We leave this as future work.

Appendix B.
Progress-sensitivity

Theorem 1 states that our monitor from §5 is sound for our progress-insensitive security condition. A progress-
sensitive variant of our security condition can be obtained by replacing the knowledge Ku(〈M0, s0〉, C,S, τ) with the

progress-sensitive knowledge PK u(〈M0, s0〉, C,S, τ) = {〈M, s〉 | s ≈u s0 ∧M ≈u M0 ∧ ∃ctx ′, τ ′, C ′,M ′, s′,S ′. 〈C,
M, 〈s, ε〉,S〉 τ ′−→∗ 〈C ′,M ′, 〈s′, ctx ′〉,S ′〉 ∧ τ�db(u) = τ ′�db(u)} in Def. 2.

To achieve progress-sensitive security, it suffices to ensure that branching statements are executed only in case the
level of the statement’s condition is “low”, i.e., one can simply add the check ∆′(pcu) v LU (s, atk) to the F-IFTRUE,
F-IFFALSE, F-WHILETRUE, and F-WHILEFALSE rules.

Appendix C.
Relaxing NSU checks

In our monitor from §5, NSU checks of the form ∆(pcu) v ∆(x) can be replaced with checks of the form
∆(pcu) v cl(auth(sec0, atk))∨∆(pcu) v ∆(x), where sec0 is the initial security policy, without affecting the monitor’s
soundness. This check exploits the initial policy sec0 to determine which labels can be considered as permanently “low”,
no matter how the policy changes at runtime. This improves our monitor’s permissiveness. In our experiments in §7,
we did not face precision issues. However, precision issues, e.g., due to NSU checks, can be solved by code annotations.

Appendix D.
Social Networking example

Here, we encode the programs from §2 in the SCALA’s fragment supported by DAISY.
The first program P1 retrieves all the friends of the user user that is executing the program. For each of user ’s

friends u1, P1 retrieves all reviews of books that both user and u1 have read and forwards them to mutual friends of
user and u1. We assume that SQL injection vulnerabilities, such as through the string interpolation s"..$user..", are
prevented by a separate mechanism.

val friends = select(s"{ x | EXISTS y. ((friends(y, x) AND y = ’$user’)) }").map(_.head)
val reviews = select(s"{ b | EXISTS u,r. ((reviews(b, u, r) AND u = ’$user’)) }").map(_.head)
friends.foreach { friend =>
val friendReviews = select(s"{ b, r | EXISTS u. ((reviews(b, u, r) AND u = ’$friend’)) }")
val friendFriends = select(s"{ uu | EXISTS u. ((friends(u, uu) AND u = ’$friend’)) }").map(_.head)
(friendFriends intersect friends).foreach { u2 =>
friendReviews.foreach { r =>
if (reviews contains r.head) { outputTo(u2, r) } } } }

The program is secure, since the information that flows to other users through the output statements comply with the
security policy, and DAISY correctly accepts it as secure.

The second program P2 models the behavior of an attacker that (1) becomes friends with another user (denoted by
target) and (2) discloses publicly the target’s reviews. The program P2, executed by atk , is as follows:

asAdmin { addFriend("attacker", "target") }
val reviews = select("{ b, r | EXISTS u. ((reviews(b, u, r) AND u = ’target’)) }")
reviews.foreach { review => outputTo("public", review) }

This program violates our security policy since the attacker atk leaks the reviews of target publicly, and DAISY
correctly blocks the program’s execution. This example demonstrates that the presented approach can track the interplay
of database features and information flow tracking at application level.

Basic Types
(Table Ids) T ∈ T (Variables) x ∈ Var (Trigger Ids) tr ∈ TR
(View Ids) V ∈ V (Values) n ∈ Val (Formulae) ϕ ∈ RC
(Relation Ids) R ∈ T ∪ V (User identifiers) u ∈ U (Error Messages) em ∈ EM

Syntax
(User Context) uc := OWNER | INVOKER
(Privileges) p := SELECT ON R | INSERT ON T | DELETE ON T | CREATE VIEW | CREATE TRIGGER ON T
(Actions) a := INSERT e1, . . . , en INTO T | DELETE e1, . . . , en FROM T

| GRANT p TO u | GRANT p TO u WITH GRANT OPTION | REVOKE p FROM u
(SQL commands) q := a | SELECT ϕ | ADD USER u | CREATE VIEW V : SELECT ϕ

| CREATE TRIGGER tr ON T AFTER (INS|DEL) IF ϕ DO a
(Expressions) e := n | x | ¬e | e1 ⊕ e2

(Statements) c := ε | x← q | x := e | out(u, e) | if e then c1 else c2 | while e do c | c1 ; c2

Figure 7: WHILESQL’s syntax.

Appendix E.
WHILESQL

WHILESQL is a simple language that captures the main features of both programming languages extended with
querying constructs and procedural extensions of the SQL standard, such as Oracle’s PL/SQL or Microsoft TRANSACT-SQL.
At the same time, it simplifies some subtle aspects of their semantics, while still capturing the main security-critical features.

E.1. Syntax

Figure 7 depicts WHILESQL’s syntax. Let T, V, and TR be three countably infinite sets representing table identifiers,
view identifiers, and trigger identifiers. Furthermore, let Var and Val be countably infinite sets of variables and values.
We assume that all these sets are pairwise disjoint.

As shown in Figure 7, a WHILESQL program is an imperative program extended with querying capabilities, i.e.,
statements of the form x← q. A statement x← q executes the SQL command q and assigns its result to the variable x.
WHILESQL supports SQL’s core features, such as SELECT, INSERT, DELETE, GRANT, and REVOKE commands, as
well as advanced database features such as triggers and views. Additionally, WHILESQL programs support assignments
and standard control flow statements. WHILESQL also supports out(u, e) statements to output the value of the expression
e to the user u. For simplicity, we assume that all expressions are well-typed and all SQL statements refer either to
tables in the database schema or to previously created views.

WHILESQL builds on top of the database operational semantics developed by Guarnieri et al. [24]. Hence, it
supports the same fragment of SQL supported by Guarnieri et al.’s database semantics. We now recall the restrictions
and simplifications inherited from our operational semantics. For SELECT commands, instead of using SQL, we rely
on the relational calculus. Moreover, we support only INSERT and DELETE commands that explicitly identify the
tuple to be inserted or deleted. Finally, we support only triggers that are executed in response to INSERT and DELETE
commands. We assume that a trigger’s body has the form IF ϕ DO a, where ϕ is a boolean query and a is an INSERT
or DELETE command.

Each SQL command either returns the query result or an error message em ∈ EM . Error messages indicate whether
queries (or triggers) violate security constraints, like a query that is not allowed by the current security policy, or integrity
constraints, such as an INSERT statement that violates a primary key constraint. Note that error messages are values,
i.e., EM ⊆ Val .

E.2. Local Semantics

Here, we define the semantics of a WHILESQL program executed in isolation. A WHILESQL program is defined
with respect to a system configuration M = 〈D,Γ〉, where D = 〈Σ,dom〉 is a database schema and Γ is a set of
integrity constraints. We assume that dom ⊆ Val and that only values in dom are used to construct queries. For
simplicity, we fix a configuration M = 〈D,Γ〉 for the rest of the section.
Databases. WHILESQL reuses the database model and the notion of system and runtime states from [24]. Here, we
recall only the main concepts that we use in the rest of the chapter. We refer the reader to [24] for more details on
security policies and our database model.

A security policy is a finite set of GRANT statements. Given a policy sec and a user u, we denote by auth(sec,
u) the set of all tables and views with the owner’s privileges that u is authorized to read according to the GRANT
statements in sec. A system state is a tuple 〈db, U, sec, T, V 〉 where db is a database state, U ⊂ UID is a finite set of
users, T is a finite set of triggers, V is a finite set of views, and sec is a security policy. Note that we lift auth from
policies to system states, i.e., auth(〈db, U, sec, T, V 〉, u) = auth(sec, u). A context ctx describes the database’s history,

E-SKIP

〈skip,m, s〉 −→u 〈ε,m, s〉

E-ASSIGN

〈x := e,m, s〉 −→u 〈ε,m[x 7→ JeK(m)], s〉

E-QUERYOK

{v1, . . . , vn} = vars(q)
q′ = q[v1 7→ Jv1K(m), . . . , vn 7→ JvnK(m)]

Jq′K(s, u) = 〈s′, r, ε〉

〈x← q,m, s〉 obs(q′)−−−−→u 〈ε,m[x 7→ r], s′〉

E-QUERYEX

{v1, . . . , vn} = vars(q)
q′ = q[v1 7→ Jv1K(m), . . . , vn 7→ JvnK(m)]

Jq′K(s, u) = 〈s′, r, em〉
em 6= ε

〈x← q,m, s〉 −→u 〈ε,m[x 7→ em], s′〉

E-OUT

〈out(u′, e),m, s〉 〈u
′,JeK(m)〉−−−−−−−→u 〈ε,m, s〉

E-IFTRUE
JeK(m) = tt

〈if e then c1 else c2,m, s〉 −→u 〈c1,m, s〉

E-IFFALSE
JeK(m) = ff

〈if e then c1 else c2,m, s〉 −→u 〈c2,m, s〉

E-WHILETRUE
JeK(m) = tt

〈while e do c,m, s〉 −→u 〈c ; while e do c,m, s〉

E-WHILEFALSE
JeK(m) = ff

〈while e do c,m, s〉 −→u 〈ε,m, s〉

E-SEQ

〈c1,m, s〉
τ−→u 〈c′1,m′, s′〉

〈c1 ; c2,m, s〉
τ−→u 〈c′1 ; c2,m

′, s′〉

E-SEQEMPTY

〈ε ; c,m, s〉 −→u 〈c,m, s〉

Figure 8: WHILESQL’s local operational semantics.

the scheduled triggers that must be executed, and how to modify the database’s state in case a roll-back occurs. A
runtime state is a tuple 〈s, ctx 〉 where s is a system state and ctx is a context. The set of all runtime states is denoted
by ΩM and we denote by ε the empty context. In the following, we use s to refer to both system states and runtime
states whenever this is clear from the context, and we use the notation 〈s, ctx 〉 otherwise.

Memories and Configurations. A memory m ∈ Mem is a partial function mapping variables to values, i.e. Mem :
Var → Val . A local configuration 〈c,m, 〈s, ctx 〉〉 consists of a command c ∈ Com , a memory m ∈ Mem , and a runtime
state 〈s, ctx 〉 ∈ ΩM . A local configuration is initial iff its context ctx is ε and the database state s is an initial database
state as defined in [24]. We denote by Conf the set of all configurations.

Users. Let UID be a countably infinite set representing all user identifiers. In addition to users in UID , we add a
designated user public that can observe only public events (i.e., changes to the database configuration).

Observations. In WHILESQL, there are only two ways of producing observations. First, out(u, e) statements can be
used to programmatically output information to users. Second, successfully executing GRANT, REVOKE, and CREATE
commands produces public observations notifying all users of the configurations’ changes. Formally, an observation
is a tuple 〈u, o〉, where u ∈ U is a user identifier and o is either a value in Val or a GRANT, REVOKE, or CREATE
command. We denote by Obs the set of all observations.

Semantics. Given a user u ∈ UID , the relation →u ⊆ (Com ×Mem ×ΩM)×Obs × (Com ×Mem ×ΩM) formalizes
the small-step local operational semantics of WHILESQL programs executed by u. A run r is an alternating sequence
of configurations and observations that starts with an initial configuration and respects the rules defining →u. Given a
run r, we denote by ri, where i ∈ N, the run obtained by truncating r at the i-th state. A trace is an element of Obs∗.
The trace τ associated to a run r, denoted by trace(r), is obtained by concatenating all observations in the run.

As noted above, the operational semantics of SQL statements relies on the operational semantics given in [24]. We
use the function JqK(〈s, ctx 〉, u) (defined in Appendix E.4) to connect WHILESQL’s operational semantics with the
database operational semantics from [24]. The function JqK(〈s, ctx 〉, u) takes as input an SQL command q, a runtime
state 〈s, ctx 〉 ∈ ΩM , and the user u ∈ UID executing the command, and it returns a tuple 〈〈s, ctx 〉′, r, em〉, where 〈s′,
ctx ′〉 ∈ ΩM is the new runtime state, r is q’s result, and em is an error message. Note that em is ε in case executing
the command does not generate error messages. We also write JeK(m) to denote the evaluation of an expression e in
memory m. It is always clear from context if J·K(·) refers to query or expression evaluation.

Figure 8 depicts the rules defining WHILESQL’s local semantics. Most of the rules are standard. The only non-
standard rules are E-QUERYOK and E-QUERYEX, which regulate the execution of SQL commands. The rule E-
QUERYOK models the successful execution of SQL commands. It first replaces the free variables in the query with their
actual values. Afterwards, it executes the query and it stores the query result in the memory. The rule relies on the
function obs(q) to produce observations associated with the successful execution of GRANT, REVOKE, and CREATE
commands. Formally, obs(q) is 〈public, q〉 in case q is a GRANT, REVOKE, or CREATE command, and obs(q) is the

M-EVAL-STEP
∀i ∈ {1, . . . , |C|}, u′ ∈ UID . C|i 6= 〈u′, ε〉 n = 1 + (n′ mod |C|) C|n = 〈u, c〉 M |n = 〈u,m〉

|C| = |M | 〈c,m, s〉 τ−→u 〈c′,m′, s′〉 C ′ = C|1· . . . ·C|n−1·〈u, c′〉·C|n+1· . . . ·C||C|
M ′ = M |1· . . . ·M |n−1·〈u,m′〉·M |n+1· . . . ·M ||C|

〈C,M, s, n′·S〉 τ−→ 〈C ′,M ′, s′,S〉

M-EVAL-END
1 ≤ n ≤ |C| ∀n′ < n, u′ ∈ UID . C|n′ 6= 〈u′, ε〉 C|n = 〈u, ε〉 |C| = |M |

C ′ = C|1· . . . ·C|n−1·C|n+1· . . . ·C||C| M ′ = M |1· . . . ·M |n−1·M |n+1· . . . ·M ||C|
〈C,M, s,S〉 τ−→ 〈C ′,M ′, s,S〉

Figure 9: WHILESQL’s global operational semantics

empty trace ε otherwise. The rule E-QUERYEX, instead, models the failed execution of a query. The rule executes the
query, retrieves the error message, and stores it in the memory.

E.3. Global Semantics

To model realistic scenarios, where attackers and honest users each run their own programs which may access
a common database, we assume that programs do not share memory, whereas the database is shared. We now present
a global semantics capturing the parallel execution of WHILESQL programs.
Schedulers. We model a scheduler as an infinite sequence of natural numbers S ∈ Nω . In the global semantics, we use
the scheduler to determine which program has to be executed at each point in the execution.
Global Configurations. We denote the set of commands together with the executing user by ComUID = UID × Com
and the set of pairs of users and memories as MemUID = UID ×Mem. To model a system state where multiple
WHILESQL programs run in parallel and share a common database, we introduce global configurations. A global
configuration is a tuple 〈C,M, 〈s, ctx 〉,S〉 ∈ GlConf , where C ∈ Com∗UID is a sequence of WHILESQL programs
with the executing users, M ∈ Mem∗UID is a sequence of memories (one per program in C), 〈s, ctx 〉 ∈ ΩM is the
runtime state of the shared database, and S is a scheduler formalizing the interleaving of the programs in C. We consider
only configurations 〈C,M, s,S〉 such that |C| = |M | and for all 1 ≤ i ≤ |C|, C|i = 〈u, c〉, M |i = 〈u′,m〉, and u = u′.
Furthermore, a global state is a pair 〈M, s〉, where M ∈ Mem∗UID and s is a system state.
Semantics. The relation −→ ⊆ GlConf ×Obs ×GlConf , shown in Figure 9, formalizes the global operational semantics
of a database system that runs multiple WHILESQL programs in parallel. Given a global configuration 〈C,M, s,S〉, the
global operational semantics uses the scheduler S to select which of the programs in C to execute. This is done by
extracting the first number n′ from the scheduler S and identifying the associated program 〈u, c〉 and memory 〈u,m〉 in
C and M respectively. The rule M-EVAL-STEP identifies the WHILESQL program that should be executed according to
the scheduler, it executes one step of the local semantics, and it updates the global state accordingly. The rule M-EVAL-
END, instead, removes the terminated programs from the global configuration. Given a run r, we denote by conf (r) the
global configuration in the last state in the run. Furthermore, trace(r) denotes the trace associated with the run r, and
db(r) denotes the database state in the global configuration conf (r).

E.4. From WHILESQL to the database operational semantics of [24]

The WHILESQL’s operational semantics builds on top of the database operational semantics formalized in [24]. In
particular, in the WHILESQL semantics, the execution of the database commands is delegated to the function JqK(s, u),
which takes as input an SQL statement q, a runtime state s ∈ ΩM , and the user u ∈ UID executing the command, and
it returns a tuple 〈s′, r, em〉, where s′ ∈ ΩM is the new runtime state, r is q’s result, em is an error message. Note
that em = ε in case there is no error message. The function JqK(s, u) is defined in Figures 10–12 and it relies on the
transition relation →f from [24], where f is a PDP. In the following, we instantiate f to be the PDP fint developed
in [24]. This PDP ensures the integrity of the database, e.g., by avoiding unauthorized changes, but it does not provide
confidentiality guarantees. Furthermore, we re-use various functions from [24], e.g., we reuse the functions res , Ex , and
secEx to extract the outcomes of the command’s execution from a runtime state, and we lift the auth function from
system states to runtime states, i.e., auth(〈s, ctx 〉, u) is simply auth(s, u).

We remark that JqK(〈s, ctx 〉, u) guarantees that the trigger transaction, which has been defined in [24], in the resulting
runtime state 〈s′, ctx ′〉 is always ε. This, combined with the fact that the context for initial states is ε, ensures the correct
execution of queries. As a consequence of this, JqK(〈s, ctx 〉, u) = JqK(〈s, ctx ′〉, u) for any two contexts ctx , ctx ′ such
that the trigger transaction is ε.

For SELECT queries, JqK(s, u) is defined only for boolean queries because the operational semantics in [24] supports
only boolean queries. We refer the reader to [24] for a discussion on how to handle non-boolean queries.

JSELECT φK(s, u) =

〈s′, res(s′), ε〉 if s
〈u,SELECT,φ〉−−−−−−−−→f s

′ ∧ ¬secEx (s′)

〈s′, †, 〈SecEx, ∅〉〉 if s
〈u,SELECT,φ〉−−−−−−−−→f s

′ ∧ secEx (s′)

JCREATE obj K(s, u) =

〈s′, res(s′), ε〉 if s
〈u,CREATE,obj 〉−−−−−−−−−→f s

′ ∧ ¬secEx (s′)

〈s′, †, 〈SecEx, ∅〉, ε〉 if s
〈u,CREATE,obj 〉−−−−−−−−−→f s

′ ∧ secEx (s′)

JGRANT p TO u′K(s, u) =

〈s′, res(s′), ε〉 if s
〈⊕,u,p,u′〉−−−−−−→f s

′ ∧ ¬secEx (s′)

〈s′, †, 〈SecEx, ∅〉, ε〉 if s
〈⊕,u,p,u′〉−−−−−−→f s

′ ∧ secEx (s′)

JGRANT∗ p TO u′K(s, u) =

〈s′, res(s′), ε〉 if s
〈⊕∗,u,p,u′〉−−−−−−−→f s

′ ∧ ¬secEx (s′)

〈s′, †, 〈SecEx, ∅〉, ε〉 if s
〈⊕∗,u,p,u′〉−−−−−−−→f s

′ ∧ secEx (s′)

JREVOKE p FROM u′K(s, u) =

〈s′, res(s′), ε〉 if s
〈	,u,p,u′〉−−−−−−→f s

′ ∧ ¬secEx (s′)

〈s′, †, 〈SecEx, ∅〉, ε〉 if s
〈	,u,p,u′〉−−−−−−→f s

′ ∧ secEx (s′)

Figure 10: Definition of the JqK(s, u) function – part 1.

JqK(s, u) =

〈s′, r, ε〉 if s
〈u,INSERT,T,t〉−−−−−−−−→f s

′ ∧ triggers(s′) = ε

〈s′, r, ε〉 if ∃s1, . . . , sn ∈ ΩM . ∃t1, . . . , tn ∈ T RIGGER.

s
〈u,INSERT,T,t〉−−−−−−−−→f s1

t1−→f s2
t2−→f . . . sn

tn−→f s
′∧

r = res(s1) ∧ Ex (s1) = ∅ ∧ ¬secEx (s1)∧∧
1≤i<n (Ex (si+1) = ∅ ∧ acA(si+1) ∧ acC (si+1))∧

triggers(s′) = ε ∧ ¬secEx (s′) ∧ Ex (s′) = ∅

〈s′, †, 〈SecEx, ∅〉〉 if s
〈u,INSERT,T,t〉−−−−−−−−→f s

′ ∧ secEx (s′) ∧ triggers(s′) = ε

〈s′, †, 〈IntEx,Ex (s′)〉〉 if s
〈u,INSERT,T,t〉−−−−−−−−→f s

′ ∧ Ex (s′) 6= ∅ ∧ triggers(s′) = ε

〈s′, †, 〈t, B, IntEx,Ex (s′)〉〉 if ∃s1, . . . , sn ∈ ΩM . ∃t1, . . . , tn−1 ∈ T RIGGER.

s
〈u,INSERT,T,t〉−−−−−−−−→f s1

t1−→f s2
t2−→f . . .

tn−1−−−→f sn
t−→f s

′∧
Ex (s1) = ∅ ∧ ¬secEx (s1)∧∧

1≤i<n (Ex (si+1) = ∅ ∧ acA(si+1) ∧ acC (si+1))∧
acA(s′) ∧ acC (s′) ∧ Ex (s′) 6= ∅ ∧ triggers(s′) = ε

〈s′, †, 〈t, W,SecEx, ∅〉〉 if ∃s1, . . . , sn ∈ ΩM . ∃t1, . . . , tn−1 ∈ T RIGGER.

s
〈u,INSERT,T,t〉−−−−−−−−→f s1

t1−→f s2
t2−→f . . .

tn−1−−−→f sn
t−→f s

′∧
Ex (s1) = ∅ ∧ ¬secEx (s1)∧∧

1≤i<n (Ex (si+1) = ∅ ∧ acA(si+1) ∧ acC (si+1))∧
¬acC (s′) ∧ triggers(s′) = ε

〈s′, †, 〈t, B,SecEx, ∅〉〉 if ∃s1, . . . , sn ∈ ΩM . ∃t1, . . . , tn−1 ∈ T RIGGER.

s
〈u,INSERT,T,t〉−−−−−−−−→f s1

t1−→f s2
t2−→f . . .

tn−1−−−→f sn
t−→f s

′∧
Ex (s1) = ∅ ∧ ¬secEx (s1)∧∧

1≤i<n (Ex (si+1) = ∅ ∧ acA(si+1) ∧ acC (si+1))∧
acC (s′) ∧ ¬acA(s′) ∧ triggers(s′) = ε

Figure 11: Definition of the JqK(s, u) function – part 2. Note that q = INSERT t INTO T .

For INSERT and DELETE queries, JqK(s, u) accounts for the execution of triggers as well. It also relies on the
functions acC and acA that take as input a runtime state and retrieve the access control decisions associated with the
trigger’s condition and the trigger’s action. We refer the reader to [24] for a formalization of these functions.

JqK(s, u) =

〈s′, r, ε〉 if s
〈u,DELETE,T,t〉−−−−−−−−→f s

′ ∧ secEx (s′)

〈s′, r, ε〉 if ∃s1, . . . , sn ∈ ΩM . ∃t1, . . . , tn ∈ T RIGGER.

s
〈u,DELETE,T,t〉−−−−−−−−→f s1

t1−→f s2
t2−→f . . . sn

tn−→f s
′∧

r = res(s1) ∧ Ex (s1) = ∅ ∧ ¬secEx (s1)∧∧
1≤i<n (Ex (si+1) = ∅ ∧ acA(si+1) ∧ acC (si+1))∧

triggers(s′) = ε ∧ ¬secEx (s′) ∧ Ex (s′) = ∅

〈s′, †, 〈SecEx, ∅〉〉 if s
〈u,DELETE,T,t〉−−−−−−−−→f s

′ ∧ secEx (s′) ∧ triggers(s′) = ε

〈s′, †, 〈IntEx,Ex (s′)〉〉 if s
〈u,DELETE,T,t〉−−−−−−−−→f s

′ ∧ Ex (s′) 6= ∅ ∧ triggers(s′) = ε

〈s′, †, 〈t, B, IntEx,Ex (s′)〉〉 if ∃s1, . . . , sn ∈ ΩM . ∃t1, . . . , tn−1 ∈ T RIGGER.

s
〈u,DELETE,T,t〉−−−−−−−−→f s1

t1−→f s2
t2−→f . . .

tn−1−−−→f sn
t−→f s

′∧
Ex (s1) = ∅ ∧ ¬secEx (s1)∧∧

1≤i<n (Ex (si+1) = ∅ ∧ acA(si+1) ∧ acC (si+1))∧
acA(s′) ∧ acC (s′) ∧ Ex (s′) 6= ∅ ∧ triggers(s′) = ε

〈s′, †, 〈t, W,SecEx, ∅〉〉 if ∃s1, . . . , sn ∈ ΩM . ∃t1, . . . , tn−1 ∈ T RIGGER.

s
〈u,DELETE,T,t〉−−−−−−−−→f s1

t1−→f s2
t2−→f . . .

tn−1−−−→f sn
t−→f s

′∧
Ex (s1) = ∅ ∧ ¬secEx (s1)∧∧

1≤i<n (Ex (si+1) = ∅ ∧ acA(si+1) ∧ acC (si+1))∧
¬acC (s′) ∧ triggers(s′) = ε

〈s′, †, 〈t, B,SecEx, ∅〉〉 if ∃s1, . . . , sn ∈ ΩM . ∃t1, . . . , tn−1 ∈ T RIGGER.

s
〈u,DELETE,T,t〉−−−−−−−−→f s1

t1−→f s2
t2−→f . . .

tn−1−−−→f sn
t−→f s

′∧
Ex (s1) = ∅ ∧ ¬secEx (s1)∧∧

1≤i<n (Ex (si+1) = ∅ ∧ acA(si+1) ∧ acC (si+1))∧
acC (s′) ∧ ¬acA(s′) ∧ triggers(s′) = ε

Figure 12: Definition of the JqK(s, u) function – part 3. Note that q = DELETE t FROM T .

JT ⊕ tK(s, u) =

〈s′′, res(s′), ε〉 if s

〈u,INSERT,T,t〉−−−−−−−−−→f s
′ ∧ ¬secEx (s′) ∧ s = 〈db, U, S, T, V, ctx 〉∧

s′′ = 〈db[R⊕ t], U, S, T, V, ctx 〉

〈s, †, 〈SecEx, ∅〉〉 if s
〈u,INSERT,T,t〉−−−−−−−−−→f s

′ ∧ secEx (s′)

JT 	 tK(s, u) =

〈s′′, res(rs′), ε〉 if s

〈u,DELETE,T,t〉−−−−−−−−−→f s
′ ∧ ¬secEx (s′) ∧ s = 〈db, U, S, T, V, ctx 〉∧

s′′ = 〈db[R	 t], U, S, T, V, ctx 〉

〈s, †, 〈SecEx, ∅〉〉 if s
〈u,DELETE,T,t〉−−−−−−−−−→f s

′ ∧ secEx (s′)

Figure 13: Definition of the JqK(s, u) function – part 4.

Appendix F.
Enforcement – Extended version

F.1. Enforcement Operational Semantics

Here we provide the full operational semantics of our security monitor. Again, in the following atk denotes the user
identifier associated with the attacker and sec0 denotes the initial security policy.
Preliminaries. The auxiliary function atomic(c) takes as input a WHILESQL program and returns > if there are c′, c′′
such that c = [c′] or c = [c′] ; c′′. The auxiliary function query(c) takes as input an extended WHILESQL program and
returns > if there are x, q such that c = x← q or c = ‖x← q‖. Finally, Figure 13 illustrates how the queries of the
form T ⊗ v, where ⊗ ∈ {⊕,	}, are handled by the underlying database.
Relaxed no-sensitive upgrade checks. Our enforcement mechanism is a dynamic security monitor. A common
technique for preventing implicit leaks of sensitive information in this setting is using no-sensitive upgrade (NSU)
checks [49]. Intuitively, a NSU check restricts the changes only to the variables whose label is at least that of the
current execution’s context, i.e., only for variables x such that ∆(pcu) v ∆(x). This guarantees that changes to “low”
variables never happen in “high” execution contexts. NSU checks, however, are rather restrictive: they may block
executions that do not leak information. This is particularly relevant for security lattices with many labels, such as
our disclosure lattice, where many labels are simply unrelated and NSU checks often fail.

To address this, we propose a simple relaxation of NSU checks that still prevents leaks of sensitive information. In
particular, our relaxed NSU checks exploit the fact that the initial security policy sec0 can be used to determine which
labels can be considered as permanently “low”, no matter how the policy is modified during the execution. In more detail,
given a variable x, the relaxed NSU check is defined as follows: ∆(pcu) v cl(auth(sec0, atk))∨∆(pcu) v ∆(x), where
sec0 is the initial security policy. Our relaxed NSU check is satisfied whenever the standard NSU check is. Additionally,
our relaxed NSU check allows flows of information whenever the security context pcu is permanently low, i.e., ∆(pcu) v
cl(auth(sec0, atk)). In the following, we denote by nsu(x, pc) the predicate ∆(pc) v cl(auth(sec0, atk)) ∨∆(pc) v
∆(x), where x is either a variable identifier or a predicate query, pc is an identifier of the form pcu, and u is a user identifier.

To illustrate, our relaxed NSU check allows changes to a variable x whose label is, say, cl(T (1)) in an execution context
such that ∆(pcu) = cl(V (2)) whenever the attacker atk is authorized to read both the table T and V with respect to the
initial policy sec0. A standard NSU check, instead, would have prevented the assignment since cl(V (1)) 6v cl(T (1)).
Enforcement Rules. The relation u, where u is a user in UID , shown in Figures 14–17, formalizes the local operational
semantics of our dynamic monitor. Figure 18 presents the security monitor rules for the global semantics. These rules
rely on the auxiliary function updateLabel(c), which takes as input a WHILESQL program c and returns > iff the first
statement in c is a statement of the form set pc to l. The rules F-EVAL-STEP and F-EVAL-END are similar to the
WHILESQL semantics. Additionally, the monitor uses the F-ATOMIC-STATEMENT rule to handle the atomic execution
of code. Observe that the atomic execution does not consume the scheduler.

F.2. Expansion Process

Here we illustrate our expansion process for queries.
Extracting triggers. Our expansion process uses the function triggers : ΩM ×Q×U → (T RIGGER×U ×Q×Q×
U × U)∗ that provides an interface to the database and returns the triggers in the form of tuples 〈t, u, cond , act , invk ,
owner〉, where t is the trigger’s identifier, u specifies the user under which privileges the triggers is to be executed
(i.e., u is either the trigger’s owner or the trigger’s invoker depending on the trigger’s definition), cond specifies t’s
WHEN condition, act is t’s action, invk is the user that fired the trigger, and owner is the trigger’s owner. Note that the
variables associated with the tuple in the original command have already been replaced in both cond and act . Therefore,
if the original command contains program variables, then cond and act may both contain program variables. Observe
that the triggers function can be implemented on top of the functions provided in [24]. Given a trigger represented as
t = 〈t, u, cond , act , invk , owner〉, we denote by id(t) the identifier id , by user(t) the user u, by cond(t) the condition
cond , by act(t) the action act , by invoker(t) the invoker invk , and by owner(t) the user owner .

F-SKIP

〈∆, skip,m, s〉 u 〈∆, ε,m, s〉

F-ASSIGN
nsu(x, pcu) ∆′ = ∆[x 7→ ∆(pcu) t∆(e)]

〈∆, x := e,m, s〉 u 〈∆′, ε,m[x 7→ JeK(m)], s〉

F-OUT
∆(e) t∆(pcu) v LU (s, u′)

〈∆, out(u′, e),m, s〉 〈u
′,JeK(m)〉

u 〈∆, ε,m, s〉

F-SEQ

〈∆, c1,m, s〉 τ u 〈∆′, c′1,m′, s′〉
〈∆, c1 ; c2,m, s〉 τ u 〈∆′, c′1 ; c2,m

′, s′〉

F-SEQEMPTY

〈∆, ε ; c,m, s〉 u 〈∆, c,m, s〉

F-IFTRUE
JeK(m) = tt

c′ = [c1 ; set pc to ∆(pcu)]
∆′ = ∆[pcu 7→ ∆(e) t∆(pcu)]

〈∆, if e then c1 else c2,m, s〉 u 〈∆′, c′,m, s〉

F-IFFALSE
JeK(m) = ff

c′ = [c2 ; set pc to ∆(pcu)]
∆′ = ∆[pcu 7→ ∆(e) t∆(pcu)]

〈∆, if e then c1 else c2,m, s〉 u 〈∆′, c′,m, s〉

F-WHILETRUE
JeK(m) = tt

c′ = [c ; while e do c ; set pc to ∆(pcu)]
∆′ = ∆[pcu 7→ ∆(e) t∆(pcu)]

〈∆,while e do c,m, s〉 u 〈∆′, c′,m, s〉

F-WHILEFALSE
JeK(m) = ff

c′ = [set pc to ∆(pcu)]
∆′ = ∆[pcu 7→ ∆(e) t∆(pcu)]

〈∆,while e do c,m, s〉 u 〈∆′, c′,m, s〉

Figure 14: Security monitor – local operational semantics for assignments, out, and control flow statements.

F-EXPANDEDCODE

〈∆, c,m, s〉 τ u 〈∆′, c′,m′, s′〉
〈∆, [c],m, s〉 τ u 〈∆′, [c′],m′, s′〉

F-REMOVEEXPANDEDCODE

〈∆, [ε],m, s〉 u 〈∆, ε,m, s〉

Figure 15: Security monitor – local operational semantics for atomic statements.

Instrumented Commands. An instrumented command is a pair 〈c, r〉 such that c is an INSERT command, a DELETE
command, or a trigger (represented as specified above using a 4-tuple), and r ∈ {ok, dis, secEx, ex}. Note that both
commands and triggers may contain program variables. Given an instrumented command 〈c, r〉, first(〈c, r〉) = c and
second(〈c, r〉) = r.
Constructing the execution paths. Let t be a sequence of commands and triggers. We denote by paths(t) the following
function:

paths(ε) = ∅
paths(c) = {〈c, ok〉, 〈c, secEx〉, 〈c, ex〉} where c is an SQL command
paths(t) = {〈t, ok〉, 〈t, dis〉, 〈t, secEx〉, 〈t, ex〉} where t is a trigger
paths(t·t) = merge(paths(t), paths(t))

merge(S1, S2) = {s1·s2 | s1 ∈ S1 ∧ s2 ∈ S2 ∧ ¬∃s′1, o. (s1 = s′1·〈o, ex〉 ∨ s1 = s′1·〈o, secEx〉)}

Configuration-consistent Execution Paths. The execution paths computed through the paths function may, in general,
contain unfeasible paths. For instance, they may contain commands terminating in a security exception even though this
may not happen given the current security policy. To take this into account, we define the notion of a configuration-
consistent execution path. Note that there is no analogous of configuration-consistent path for integrity exceptions caused

F-UPDATELABELS

〈∆, set pc to l,m, s〉 u 〈∆[pcu 7→ l], ε,m, s〉

F-ASUSER
query(c) 〈∆[pcu′ 7→ ∆(pcu)], c,m, s〉 u′ 〈∆′, c′,m′, s′〉
〈∆, asuser(u′, c),m, s〉 u 〈∆′[pcu′ 7→ ∆(pcu′)], c

′,m′, s′〉

Figure 16: Security monitor – local operational semantics for set pc and asuser statements.

F-EXPAND
ce = expand(s, x, q, u)

〈∆, x← q,m, s〉 u 〈∆, [ce],m, s〉

F-SELECT
{v1, . . . , vn} = vars(ϕ) ϕ′ = ϕ[v1 7→ Jv1K(m), . . . , vn 7→ JvnK(m)]

q = SELECT ϕ JqK(s, u) = 〈s′, r, ε〉 `ϕ = LQ(∆, ϕ) t
⊔

v∈vars(ϕ)

∆(v) nsu(x, pcu)

〈∆, ‖x← SELECT ϕ‖,m, s〉 u 〈∆[x 7→ ∆(pcu) t `ϕ], ε,m[x 7→ r], s′〉

F-UPDATEDATABASEOK
v = 〈Je1K(m), . . . , JenK(m)〉 ⊗ ∈ {⊕,	}

q = T ⊗ v JqK(s, u) = 〈s′, r, ε〉 `e =
⊔

1≤i≤n

∆(ei) nsu(T (v), pcu) `e v ∆(T (v)) nsu(x, pcu)

〈∆, ‖x← T ⊗ {e1, . . . , en}‖,m, s〉 u 〈∆[T (v) 7→ ∆(pcu) t `e, x 7→ ∆(pcu) t `e], ε,m[x 7→ r], s′〉

F-UPDATECONFIGURATIONOK
{v1, . . . , vn} = vars(q) q′ = q[v1 7→ Jv1K(m), . . . , vn 7→ JvnK(m)] isCfgCmd(q′) Jq′K(s, u) = 〈s′, r, ε〉

`cmd =
⊔

1≤i≤n

∆(vi) `cmd v cl(auth(sec0, atk)) ∆(pcu) v cl(auth(sec0, atk)) nsu(x, pcu)

〈∆, ‖x← q‖,m, s〉 〈public,q
′〉
u 〈∆[x 7→ ∆(pcu) t `cmd], ε,m[x 7→ r], s′〉

Figure 17: Security monitor – local operational semantics for database operations.

F-EVAL-STEP
∀i ∈ {1, . . . , |C|}, u′ ∈ UID . C|n 6= 〈u′, ε〉 |C| = |M |

n = 1 + (n′ mod |C|) C|n = 〈u, c〉 M |n = 〈u,m〉 〈∆, c,m, s〉 τ u 〈∆′, c′,m′, s′〉 ¬atomic(c′)
C ′ = C|1· . . . ·C|n−1·〈u, c′〉·C|n+1· . . . ·C||C| M ′ = M |1· . . . ·M |n−1·〈u,m′〉·M |n+1· . . . ·M ||C|

〈∆, C,M, s, n′·S〉 τ 〈∆′, C ′,M ′, s′,S〉

F-ATOMIC-STATEMENT
∀i ∈ {1, . . . , |C|}, u ∈ UID . C|i 6= 〈u′, ε〉

|C| = |M | n = 1 + (n′ mod |C|) C|n = 〈u, c〉 M |n = 〈u,m〉 〈∆, c,m, s〉 τ u 〈∆′, c′,m′, s′〉
atomic(c′) C ′ = C|1· . . . ·C|n−1·〈u, c′〉·C|n+1· . . . ·C||C| M ′ = M |1· . . . ·M |n−1·〈u,m′〉·M |n+1· . . . ·M ||C|

〈∆, C,M, s, n′·S〉 τ 〈∆′, C ′,M ′, s′, n′·S〉

F-EVAL-END
1 ≤ n ≤ |C| ∀n′ < n, u′ ∈ UID . C|n′ 6= 〈u′, ε〉 C|n = 〈u, ε〉

|C| = |M | C ′ = C|1· . . . ·C|n−1·C|n+1· . . . ·C||C| M ′ = M |1· . . . ·M |n−1·M |n+1· . . . ·M ||C|
〈∆, C,M, s,S〉 τ−→ 〈∆, C ′,M ′, s,S〉

Figure 18: Security monitor – global operational semantics.

by INSERT and DELETE commands. The reason is that these exceptions depend on the database content and are directly
handled by the expansion process.

In the following, let s be a runtime state, m be a memory, u be a user, t be a sequence of instrumented commands
(i.e., an execution path), c be a database command, and t be a trigger. Furthermore, given a command (or trigger) o
containing program variables, we denote by o(m) the command (or trigger) obtained from o by replacing all program
variables with the corresponding values in m. The configuration-consistency relation is defined as follows:

1) s,m, u |=cfg 〈c, ok〉 if allowed(s, u, c(m)).
2) s,m, u |=cfg 〈c, ex〉 if allowed(s, u, c(m)) and c is an INSERT or DELETE command.
3) s,m, u |=cfg 〈c, secEx〉 if ¬allowed(s, u, c(m)).
4) s,m, u |=cfg 〈t, ok〉 if allowed(s, u, t(m)).
5) s,m, u |=cfg 〈t, ex〉 if allowed(s, u, t(m)) and t’s action is an INSERT or DELETE command.
6) s,m, u |=cfg 〈t, secEx〉 if ¬allowed(s, u, t(m)).
7) s,m, u |=cfg 〈t, dis〉.
8) s,m, u |=cfg 〈o, r〉·t iff t 6= ε, s,m, u |=cfg 〈o, r〉, r 6= dis, and apply(s, o(m)),m, u |=cfg t.
9) s,m, u |=cfg 〈o, dis〉·t iff t 6= ε, s,m, u |=cfg 〈o, dis〉 and s,m, u |=cfg t.

allowed(s, u, SELECT φ) =

> if s
〈u,SELECT,φ〉−−−−−−−−→f s

′ ∧ ¬secEx (s′)

⊥ if s
〈u,SELECT,φ〉−−−−−−−−→f s

′ ∧ secEx (s′)

allowed(s, u, GRANT p TO u′) =

> if s
〈⊕,u,p,u′〉−−−−−−→f s

′ ∧ ¬secEx (s′)

⊥ if s
〈⊕,u,p,u′〉−−−−−−→f s

′ ∧ secEx (s′)

allowed(s, u, GRANT p TO u′ WITH GRANT OPTION) =

> if s
〈⊕∗,u,p,u′〉−−−−−−−→f s

′ ∧ ¬secEx (s′)

⊥ if s
〈⊕∗,u,p,u′〉−−−−−−−→f s

′ ∧ secEx (s′)

allowed(s, u, REVOKE p FROM u′) =

> if s
〈	,u,p,u′〉−−−−−−→f s

′ ∧ ¬secEx (s′)

⊥ if s
〈	,u,p,u′〉−−−−−−→f s

′ ∧ secEx (s′)

allowed(s, u, INSERT v INTO T) =

> if s
〈u,INSERT,T,v〉−−−−−−−−−→f s

′ ∧ ¬secEx (s′)

⊥ if s
〈u,INSERT,T,v〉−−−−−−−−−→f s

′ ∧ secEx (s′)

allowed(s, u, DELETE v FROM T) =

> if s
〈u,DELETE,T,v〉−−−−−−−−−→f s

′ ∧ ¬secEx (s′)

⊥ if s
〈u,DELETE,T,v〉−−−−−−−−−→f s

′ ∧ secEx (s′)

allowed(s, u, CREATE obj) =

> if s
〈u,CREATE,obj 〉−−−−−−−−−→f s

′ ∧ ¬secEx (s′)

⊥ if s
〈u,CREATE,obj 〉−−−−−−−−−→f s

′ ∧ secEx (s′)

allowed(s, u, t) = allowed(s, owner(t), act(t)) if t is a trigger with owner’s privileges

Figure 19: allowed function for the expansion process.

apply(s, u, SELECT φ) = s

apply(s, u, GRANT p TO u′) = s′ where s
〈⊕,u′,p,u〉−−−−−−→f s

′

apply(s, u, GRANT p TO u′ WITH GRANT OPTION) = s′ where s
〈⊕∗,u′,p,u〉−−−−−−−→f s

′

apply(s, u, REVOKE p FROM u′) = s′ where s
〈	,u′,p,u〉−−−−−−→f s

′

apply(s, u, INSERT v INTO T) = s
apply(s, u, DELETE v FROM T) = s

apply(s, u, CREATE obj) = s′ where s
〈u,CREATE,obj 〉−−−−−−−−−→f s

′

apply(s, u, t) = apply(s, user(t), act(t)) if t is a trigger

Figure 20: apply function for the expansion process. Note that we are interested only in changes to the database
configuration, not to the database state. Therefore, the function does not update the database on INSERT and DELETE
commands.

The above definition relies on the functions allowed and apply , which are formalized in Figures 19 and 20. Let t be a
sequence of commands and triggers (possibly containing program variables), s be a database state, m be a memory, and
u be a user. We denote by consPaths(t, s, ¸u) the set of all configuration-consistent paths derivable from t. Formally,
consPaths(t, s,m, u) = {t′ ∈ paths(t) | s,m, u |=cfg t′}.
Weakest precondition for database updates. We now introduce weakest preconditions for INSERT and DELETE
operations on databases. In the following, we assume that constants are not used inside predicate symbols. E.g., the
formula T (v) is expressed as ∃x. T (x) ∧ x = v. Let φ be a relational calculus sentence that does not refer to views
(for formulae that refer to views, one can first replace the views with their definitions and later compute the weakest
precondition). Furthermore, we denote by T ⊕ v (respectively T 	 v) an insertion (respectively deletion) operation on the
database. Note that v may contain program variables. The weakest precondition of φ given T ⊕ v, written wp(φ, T ⊕ v),
is obtained by replacing all occurrences of T (x) with (T (x) ∨ x = v). Similarly, the weakest precondition of φ given
T 	 v, written wp(φ, T 	 v), is obtained by replacing all occurrences of T (x) with (T (x) ∧ x 6= v).

Weakest precondition for execution paths. In Figure 21, we extend weakest preconditions from single INSERT and

wp(φ, ε) = φ

wp(φ, t′·ic) = wp(wp(φ, ic), t′)

where ic is an instrumented command and t′ is a sequence of instrumented commands
wp(φ, 〈INSERT T INTO e, ok〉) = wp(φ, T ⊕ e)
wp(φ, 〈INSERT T INTO e, ex〉) = wp(φ, T ⊕ e)
wp(φ, 〈INSERT T INTO e, secEx〉) = φ

wp(φ, 〈DELETE T FROM e, ok〉) = wp(φ, T 	 e)
wp(φ, 〈DELETE T FROM e, ex〉) = wp(φ, T 	 e)
wp(φ, 〈DELETE T FROM e, secEx〉) = φ

wp(φ, 〈c, r〉) = φ where c is a SELECT, GRANT, REVOKE, or CREATE command
wp(φ, 〈t, ok〉) = wp(φ, act(t)) where t is a trigger
wp(φ, 〈t, ex〉) = wp(φ, act(t)) where t is a trigger
wp(φ, 〈t, secEx〉) = φ where t is a trigger
wp(φ, 〈t, dis〉) = φ where t is a trigger

Figure 21: Weakest precondition for sequences of instrumented commands.

Expansion Procedure.

expand(s,m, u, x← q) = decls(s,m, u, x← q) ; body(s,m, u, x← q)

Shorthands.
tq = triggers(s, u, q) first(〈a, b〉) = a EP s,m,u,q = toList(consPaths(q·tq, s, u))

Γ = {γ1, . . . , γn} are the integrity constraints LΓ = toList(2{γ1,...,γn})

throwsEx (t) = ∃o. (t||t| = 〈o, ex〉 ∨ t||t| = 〈o, secEx〉) secEx (t) = ∃o. t||t| = 〈o, secEx〉

isCfgCmd(q) = > iff q is an GRANT, REVOKE, ADD USER, or CREATE command

isInsDel(q) = > iff q is an INSERT or DELETE command

isSelect(q) = > iff q is a SELECT command

isTrigger(o) = > iff o is a trigger

Computing the expansion’s auxiliary declarations.

decls(s,m, u, x← q) = ;(map(gs,m,u,q, EP s,m,u,q))

gs,m,u,q(t) = hs,m,u,q,t(1); . . . ;hs,m,u,q,t(|t|)
hs,m,u,q,t(i) = ‖xti,γ1

← SELECT wp(γ1, t
i
)‖; . . . ; ‖xti,γn ← SELECT wp(γn, t

i
)‖

where t|i is not a trigger and xti,γ1
, . . . , xti,γn are fresh variables

hs,m,u,q,t(i) = ‖xti,cond ← SELECT wp(ϕ, t
i−1

)‖; ‖xti,γ1
← SELECT wp(γ1, t

i
)‖; . . . ; ‖xti,γn ← SELECT wp(γn, t

i
)‖

where t|i is a trigger, ϕ is t|i’s condition, and xti,cond , x
t
i,γ1

, . . . , xti,γn are fresh variables

Figure 22: Expansion process – 1.

DELETE commands to sequences of instrumented commands.
Expansion procedure. Finally, the expansion procedure is shown in Figures 22 and 23. In the figures, s is a database
state, m is a memory, u is a user identifier, and x← q is an SQL command. Without loss of generality, we assume that
x 6∈ free(q) (if this is not the case, one can just introduce an additional temporary variable). Furthermore, given a list
c1· . . . ·cn of WHILESQL statements, we denote by ;(c1· . . . ·cn) the statement c1; c2; . . . ; cn. Similarly, given a list of
WHILESQL expressions e1· . . . ·en, we denote by ∧(e1· . . . ·en) the expression e1 ∧ e2 ∧ . . . ∧ en.

Computing the expansion’s body.

body(s,m, u, x← q) = ;(map(ds,m,u,x,q, EP s,m,u,x,q))

ds,m,u,x,q(t) = if conds,m,u,x,q(t) then bodys,m,u,x,q(t) else skip
conds,m,u,x,q(t) = ∧(map(cs,m,u,x,q,t, 1· . . . ·|t|))
cs,m,u,x,q,t(i) = xti,γ1

∧ . . . ∧ xti,γn where t|i = 〈c, ok〉 and c is not a trigger

cs,m,u,x,q,t(i) = ¬(xti,γ1
∧ . . . ∧ xti,γn) where t|i = 〈c, ex〉 and c is not a trigger

cs,m,u,x,q,t(i) = > where t|i = 〈c, secEx〉 and c is not a trigger

cs,m,u,x,q,t(i) = xti,cond ∧ xti,γ1
∧ . . . ∧ xti,γn where t|i = 〈t, ok〉 and t is a trigger

cs,m,u,x,q,t(i) = xti,cond ∧ ¬(xti,γ1
∧ . . . ∧ xti,γn) where t|i = 〈t, ex〉 and t is a trigger

cs,m,u,x,q,t(i) = xti,cond where t|i = 〈t, secEx〉 and t is a trigger

cs,m,u,x,q,t(i) = ¬xti,cond where t|i = 〈t, dis〉 and t is a trigger

bodys,m,u,x,q(t) =

x = 〈SecEx, ∅〉 if t|1 = 〈o, secEx〉 and
o is not a trigger

x = 〈id(first(t||t|)),SecEx, ∅〉 if t||t| = 〈o, secEx〉 and
o is a trigger

;(map(es,m,u,x,q,t, LΓ)) if t||t| = 〈o, ex〉
; (map(bs,m,u,x,q,t, 1· . . . ·|t|)) otherwise

bs,m,u,x,q,t(i) = ‖x← T ⊕ e‖ where t|i = 〈INSERT T INTO e, ok〉
bs,m,u,x,q,t(i) = ‖x← T 	 e‖ where t|i = 〈DELETE T FROM e, ok〉
bs,m,u,x,q,t(i) = ‖x← q′‖ where t|i = 〈q′, ok〉, isTrigger(q′) = ⊥, and isInsDel(q′) = ⊥
bs,m,u,x,q,t(i) = asuser(user(t), ‖y ← T ⊕ e‖) where t|i = 〈t, ok〉, t is a trigger,

act(t) = INSERT T INTO e, and y is a fresh variable
bs,m,u,x,q,t(i) = asuser(user(t), ‖y ← T 	 e‖) where t|i = 〈t, ok〉, t is a trigger,

act(t) = DELETE T FROM e, and y is a fresh variable
bs,m,u,x,q,t(i) = asuser(user(t), ‖y ← act(t)‖) where t|i = 〈t, ok〉, t is a trigger,

isInsDel(act(t)) = ⊥, and y is a fresh variable
bs,m,u,x,q,t(i) = skip where t|i = 〈t, dis〉

es,m,u,x,q,t(Θ) = if
∧
γ∈Θ

¬xt|t|,γ ∧
∧

γ∈Γ\Θ

xt|t|,γ then e′s,m,u,x,q,t(Θ) else skip

e′s,m,u,x,q,t(Θ) =

{
x = 〈IntEx,Θ〉 if |t| = 1

x = 〈id(first(t||t|)), IntEx,Θ〉 if |t| > 1

Figure 23: Expansion process – 2.

Appendix G.
Monitor’s transparency

Here, we show that the monitor of §5 is transparent. In more detail, we prove that the monitor’s local semantics is
transparent. Furthermore, we also show that for sequential schedulers the monitor’s global semantics is transparent as well.

G.1. Local semantics

Before proving the correctness of the local semantics, we introduce some terminology and notation. Given an
extended WHILESQL program c, we denote by strip(c) the program obtained by (1) removing statements of the form
set pc to l, ‖x← q‖, and asuser(u, c′) and (2) replacing [c] with c. Furthermore, we write safe(c) iff strip(c) is not
of the form x← q, x← q ; c′, asuser(u, c′), asuser(u, c′) ; c′′, ‖x← q‖, or ‖x← q‖ ; c′′.

In Lemma G.1 we prove the correctness of the weakest precondition operator for INSERT and DELETE commands.

Lemma G.1. Let φ be a sentence that does not refer to views, m be a memory, and db a database state. For all well-
formed assignments ν for φ, the following facts hold:

1) [wp(φ, T ⊕v(m))ν]db holds iff [φν]db
′

holds, where db′(R) = db(R) for all R 6= T and db′(T) = db(T)∪{v(m)}.
2) [wp(φ, T 	v(m))ν]db holds iff [φν]db

′
holds, where db′(R) = db(R) for all R 6= T and db′(T) = db(T)\{v(m)}.

3) [¬wp(φ, c)ν]db = [wp(¬φ, c)ν]db .

Proof. Let φ be a sentence that does not refer to views, m be a memory, and db a database state.
Proof of (1). Let db′ be the database state such that db′(R) = db(R) for all R 6= T and db′(T) = db(T) ∪ {v(m)}.

For the if direction, we assume that for all well-formed assignments ν for φ, [wp(φ, T ⊕ v(m))ν]db = >. We now
prove, by structural induction on φ, that [φν]db

′
= >. There are two base cases:

• φ is R(x). If R 6= T , then wp(φ, T ⊕v(m)) = φ and the claim trivially holds since db(R) = db′(R). If R = T , then
wp(φ, T ⊕ v(m)) = R(x) ∨ x = v(m). From this and [wp(φ, T ⊕ v(m))ν]db = >, it follows that ν(x) ∈ db(T) or
ν(x) = v(m). If ν(x) ∈ db(T), then ν(x) ∈ db′(T) as well. If ν(x) = v(m), then ν(x) ∈ db′(T) by construction.
Hence, [φν]db

′
= >.

• φ is x1 = x2. Then, wp(φ, T ⊕ v(m)) = φ and the claim trivially holds.
• φ is x1 = c. Then, wp(φ, T ⊕ v(m)) = φ and the claim trivially holds.

For the induction step, we assume that the claim holds for all sub-formulae of φ and we show that it holds for φ as
well. There are several cases:
• φ is ψ∧γ. From [wp(φ, T⊕v(m))ν]db = > and wp(φ, T⊕v(m)) = wp(ψ, T⊕v(m))∧wp(γ, T⊕v(m)), it follows

that [wp(ψ, T ⊕ v(m))ν]db = > and [wp(γ, T ⊕ v(m))ν]db = >. From this, ν is a well-formed assignment for ψ
and γ, and the induction hypothesis, it follows that [ψν]db

′
= > and [γν]db

′
= >. From this, [(ψ ∧ γ)ν]db

′
= >

and therefore [φν]db
′

= >.
• φ is ψ ∨ γ. From [wp(φ, T ⊕ v(m))ν]db = > and wp(φ, T ⊕ v(m)) = wp(ψ, T ⊕ v(m)) ∨ wp(γ, T ⊕ v(m)), it

follows that [wp(ψ, T ⊕ v(m))ν]db = > or [wp(γ, T ⊕ v(m))ν]db = >. From this, ν is a well-formed assignment
for ψ and γ, and the induction hypothesis, it follows that [ψν]db

′
= > or [γν]db

′
= >. From this, [(ψ∨γ)ν]db

′
= >

and therefore [φν]db
′

= >.
• φ is ¬ψ. From [wp(φ, T ⊕ v(m))ν]db = > and wp(φ, T ⊕ v(m)) = ¬wp(ψ, T ⊕ v(m)), it follows that [wp(ψ,
T⊕v(m))ν]db = ⊥. From this and the induction hypothesis, it follows that [ψν]db

′
= ⊥. From this, [(¬ψ)ν]db

′
= >

and therefore [φν]db
′

= >.
• φ is ∃x. ψ. From [wp(φ, T⊕v(m))ν]db = > and wp(φ, T⊕v(m)) = ∃x. wp(ψ, T⊕v(m)), it follows that there is a

value v ∈ dom such that [wp(ψ, T⊕v(m))ν[x 7→ v]]db = >. From this, ν[x 7→ v] is a well-formed assignment for ψ,
and the induction hypothesis, it follows that [ψν]db

′
= >. From this, [(∃x. ψ)ν]db

′
= > and therefore [φν]db

′
= >.

• φ is ∀x. ψ. The proof of this case is similar to the ∃x. ψ case.
This concludes the proof of the if direction.

For the only if direction, we assume that for all well-formed assignments ν for φ, [φν]db
′

= >. We now prove, by
structural induction on φ, that [wp(φ, T ⊕ v(m))ν]db = >. There are two base cases:
• φ is R(x). If R 6= T , then wp(φ, T ⊕ v(m)) = φ and the claim trivially holds since db(R) = db′(R). If R = T ,

then [φν]db
′

= >. From this and db′(T) = db(T) ∪ {v(m)}, it follows that ν(x) ∈ db(T) or ν(x) = v(m). From
this, [(T (x) ∨ x = v(m))ν]db = >. Hence, [wp(φ, T ⊕ v(m))ν]db = >.

• φ is x1 = x2. Then, wp(φ, T ⊕ v(m)) = φ and the claim trivially holds.
• φ is x1 = c. Then, wp(φ, T ⊕ v(m)) = φ and the claim trivially holds.

For the induction step, we assume that the claim holds for all sub-formulae of φ and we show that it holds for φ as
well. There are several cases:
• φ is ψ ∧ γ. From [φν]db

′
= >, it follows [ψν]db

′
= > and [γν]db

′
= >. From this and the induction hypothesis,

[wp(ψ, T⊕v(m))ν]db = > and [wp(γ, T⊕v(m))ν]db = >. Hence, [wp(ψ, T⊕v(m))ν∧wp(γ, T⊕v(m))ν]db = >
and therefore [wp(φ, T ⊕ v(m))ν]db = >.

• φ is ψ ∨ γ. The proof of this case is similar to that of ψ ∧ γ.
• φ is ¬ψ. From [φ]db

′
= >, it follows that [ψ]db

′
= ⊥. From this and the induction hypothesis, it follows that

[wp(ψ, T ⊕ v(m))ν]db = ⊥. From this and wp(φ, T ⊕ v(m)) = ¬wp(ψ, T ⊕ v(m)), [wp(φ, T ⊕ v(m))ν]db = >.

• φ is ∃x. ψ. From [φν]db
′

= >, it follows that there is a value v ∈ dom such that [ψν[x 7→ v]]db
′

= >. From this,
ν[x 7→ v] is a well-formed assignment for ψ, and the induction hypothesis, it follows that [wp(ψ, T ⊕ v(m))ν[x 7→
v]]db = >. From this and wp(φ, T ⊕ v(m)) = ∃x. wp(ψ, T ⊕ v(m)), it follows that [wp(φ, T ⊕ v(m))ν]db = >.

• φ is ∀x. ψ. The proof of this case is similar to the ∃x. ψ case.
This completes the proof of the only if direction.
Proof of (2). The proof for (2) is similar to that of (1). The only difference is the base case R(x) in case R = T .
We show how the proof works for this case. For the if direction, assume that [wp(φ, T 	 v(m))ν]db = >. From this
and wp(φ, T 	 v(m)) = T (x) ∧ x 6= v(m), it follows that [(T (x) ∧ x 6= v(m))ν]db = >. From this, ν(x) ∈ db(T) and
ν(x) 6= v(m). From this, ν(x) ∈ db(T) \ {v(m)}. Hence, [T (x)ν]db

′
= >.

For the only if direction, assume that [φν]db
′

= >. From this and db′(T) = db(T) \ {v(m)}, it follows that
ν(x) ∈ db(T) and ν(x) 6= v(m). From this, [(T (x) ∧ x 6= v(m))ν]db = >. Hence, [wp(φ, T 	 v(m))ν]db = >.
Proof of (3). The third claim immediately follows from (1) and (2).

Lemma G.2 states that the rules handling the expansion procedure are correct, i.e., that they mimic the operational
semantics of the WHILESQL statements of the form x← q.

Lemma G.2. Let m ∈ Mem be a memory, 〈s, ctx 〉 be a runtime state such that trigger(ctx) = ε, u ∈ UID be

a user, and ∆ be a monitor state. Whenever 〈∆, x ← q,m, 〈s, ctx 〉〉 τ ′
∗

u 〈∆′, ε,m′, 〈s′, ctx ′〉〉, then 〈x ← q,m, 〈s,
ctx 〉〉 τ ′′−−→u 〈ε,m′′, 〈s′′, ctx ′′〉〉 and the following conditions hold: (1) m′(x) = m′′(x), (2) s′ = s′′, (3) triggers(ctx ′) =
triggers(ctx ′′) = ε, and (4) τ ′ = τ ′′.

Proof. Let m ∈ Mem be a memory, 〈s, ctx 〉 be a runtime state such that trigger(ctx) = ε, u ∈ UID be a user, and ∆ be

a monitor state. Furthermore, we assume that 〈∆, x← q,m, 〈s, ctx 〉〉 τ
′ ∗

u 〈∆′, ε,m′, 〈s′, ctx ′〉〉. In the computation, we
applied the rule F-EXPAND once, the rule F-EXPANDEDCODE multiple times, and the rule F-REMOVEEXPANDEDCODE

once. Hence, 〈∆, x ← q,m, 〈s, ctx 〉〉 τ ′
∗

u 〈∆′, ε,m′, 〈s′, ctx ′〉〉 iff 〈∆, [c],m, 〈s, ctx 〉〉 τ ′
∗

u 〈∆′, [ε],m′, 〈s′, ctx ′〉〉,
where c = expand(〈s, ctx 〉, x, q, u). This, in turn, happens iff 〈∆, c,m, 〈s, ctx 〉〉 τ ′

∗

u 〈∆′, ε,m′, 〈s′, ctx ′〉〉, where
c = expand(〈s, ctx 〉, x, q, u). From expand ’s definition, it follows that c = decls(〈s, ctx 〉,m, u, x← q) ; body(s,m, u,
x← q), where decls(〈s, ctx 〉,m, u, x← q) is a sequence of SELECT queries and body(s,m, u, x← q) is a sequence of
if statements. We claim that (1) at least one of the conditions of the if statements in body(s,m, u, x← q) is satisfied, and
(2) the conditions in the if statements in body(s,m, u, x← q) are mutually exclusive, i.e., in each execution we execute
only one of the if statements. Let c′ be the if statement associated with the satisfied condition. From expand ’s definition,
c′ = if cond 〈s,ctx〉,m,u,x,q(t) then body〈s,ctx〉,m,u,x,q(t) else skip, where t is a configuration-consistent execution path.
We additionally claim that (3) if cond 〈s,ctx〉,m,u,x,q(t) is satisfied, then the configuration-consistent execution path t
represents an actual execution of the command and the corresponding triggers, and (4) body〈s,ctx〉,m,u,x,q(t) correctly

implements the semantics of the execution path t. From (3) and (4), it follows that 〈x← q,m, 〈s, ctx 〉〉 τ ′′−−→u 〈ε,m′′,
〈s′′, ctx ′′〉〉, m′(x) = m′′(x), s′ = s′′, τ ′ = τ ′′. Finally, triggers(ctx ′) = triggers(ctx ′′) = ε, directly follows from the
WHILESQL and monitor’s semantics.
At least one condition is satisfied. Here we prove our claim that at least one condition in the if statements in body(s,m,
u, x← q) is satisfied. First, observe that there is always at least one configuration-consistent execution path. If 〈q, secEx〉
is configuration-consistent, then the claim trivially holds as there is an if statement with condition >, which is trivially
satisfied. Assume now that 〈q, secEx〉 is not configuration-consistent. We observe that the encoding is such that all
possible combinations of variables are covered. Namely, for a query q, there are two if statements: one checking whether
the integrity constraints are satisfied and one checking whether the constraints are not satisfied. Similarly, for a trigger t,
there are four possible if statements: one checking if the trigger is enabled and the constraints are satisfied, one checking
if the trigger is enabled and the constraints are not satisfied, one checking if the trigger is enabled, and one checking if
the trigger is not enabled. From these observations, it follows that there is always at least one satisfied condition.
Mutually exclusive conditions. Here we prove our claim that the conditions in the if statements in body(s,m, u, x← q)
are mutually exclusive. Assume, for contradiction’s sake, that this is not the case. This requires that there are two distinct
configuration-consistent execution paths t and t′ such that both cond 〈s,ctx〉,m,u,x,q(t) and cond 〈s,ctx〉,m,u,x,q(t

′
) are satis-

fied. Since cond 〈s,ctx〉,m,u,x,q(t) and cond 〈s,ctx〉,m,u,x,q(t
′
) are ∧(map(cs,m,u,x,q,t, 1· . . . ·|t|)) and ∧(map(cs,m,u,x,q,t′ ,

1· . . . ·|t′|)), this requires that all cs,m,u,x,q,t(i) and cs,m,u,x,q,t′(j) are satisfied for 1 ≤ i ≤ |t| and 1 ≤ j ≤ |t′|. Let k
be the first position where t and t′ differ. There are two cases:

1) k = 1. Then, the two paths differ on the initial query q. There are 6 cases depending on the values for t(1) and t′(1):
a) t|1 = 〈q, ok〉 and t|1 = 〈q, secEx〉. Since t and t′ are configuration-consistent paths, it follows that allowed(s,
u, q) and ¬allowed(s, u, q), leading to a contradiction.

b) t|1 = 〈q, ok〉 and t|1 = 〈q, ex〉. Therefore, cs,m,u,x,q,t(1) = xt1,γ1
∧ . . . ∧ xt1,γn and cs,m,u,x,q,t′(1) = ¬(xt

′

1,γ1
∧

. . . ∧ xt
′

1,γn). From decls’s definition, it follows that xt1,γi and xt
′

1,γi are respectively initialized by the statements

xt1,γi ← SELECT wp(γi, t
1
) and xt

′

1,γi ← SELECT wp(γi, t
′1

). From this, t|1 = 〈q, ok〉, t|1 = 〈q, ex〉, and

wp’s definition, it follows that wp(γi, t
1
) = wp(γi, t

′1
) for all γi ∈ Γ. This combined with cs,m,u,x,q,t(1) =

xt1,γ1
∧ . . . ∧ xt1,γn and cs,m,u,x,q,t′(1) = ¬(xt

′

1,γ1
∧ . . . ∧ xt

′

1,γn), leads to a contradiction (since the result of the
queries are the same given that in decls we just executed SELECT queries).

c) t|1 = 〈q, secEx〉 and t|1 = 〈q, ok〉. Since t and t′ are configuration-consistent paths, it follows that ¬allowed(s,
u, q) and allowed(s, u, q), leading to a contradiction.

d) t|1 = 〈q, secEx〉 and t|1 = 〈q, ex〉. Since t and t′ are configuration-consistent paths, it follows that ¬allowed(s,
u, q) and allowed(s, u, q), leading to a contradiction.

e) t|1 = 〈q, ex〉 and t|1 = 〈q, ok〉. Then, cs,m,u,x,q,t(1) = ¬(xt1,γ1
∧ . . .∧xt1,γn) and cs,m,u,x,q,t′(1) = xt

′

1,γ1
∧ . . .∧

xt
′

1,γn . From decls’s definition, it follows that xt1,γi and xt
′

1,γi are respectively initialized by the statements xt1,γi ←
SELECT wp(γi, t

1
) and xt

′

1,γi ← SELECT wp(γi, t
′1

). From this, t|1 = 〈q, ok〉, t|1 = 〈q, ex〉, and wp’s definition,

it follows that wp(γi, t
1
) = wp(γi, t

′1
) for all γi ∈ Γ. This combined with cs,m,u,x,q,t(1) = ¬(xt1,γ1

∧ . . .∧xt1,γn)

and cs,m,u,x,q,t′(1) = xt
′

1,γ1
∧ . . . ∧ xt

′

1,γn , leads to a contradiction (since the result of the queries are the same
given that in decls we just executed SELECT queries).

f) t|1 = 〈q, ex〉 and t|1 = 〈q, secEx〉. Since t and t′ are configuration-consistent paths, it follows that ¬allowed(s,
u, q) and allowed(s, u, q), leading to a contradiction.

2) k > 1. Then the two paths differ on the (k − 1)-th scheduled trigger t. There are 9 cases depending on the values
t(k) and t′(k):
a) t|k = 〈t, ok〉 and t|k = 〈t, secEx〉. Since t and t′ are configuration-consistent paths, it follows that allowed(s,
u, t(m)) and ¬allowed(s, u, t(m)), leading to a contradiction.

b) t|k = 〈t, ok〉 and t|k = 〈t, ex〉. Then, cs,m,u,x,q,t(k) = xtk,cond∧xtk,γ1
∧. . .∧xtk,γn and cs,m,u,x,q,t′(k) = xt

′

k,cond∧
¬(xt

′

k,γ1
∧ . . .∧ xt

′

k,γn
). From decls’s definition, the variables are initialized as follows: xtk,cond ← SELECT wp(ϕ,

t
k−1

), xt
′

k,cond ← SELECT wp(ϕ, t
′k−1

), xtk,γi ← SELECT wp(γi, t
k
), and xt

′

k,γi
← SELECT wp(γi, t

′k
) for all

γi ∈ Γ. From this and t and t′ differ only on the k-th element, it follows that wp(ϕ, t
k−1

) = wp(ϕ, t
′k−1

). From
t|k = 〈t, ok〉 and t|k = 〈t, ex〉, it follows that wp(γi, t

k
) = wp(γi, t

′k
) for all γi ∈ Γ. Hence, all the variables are

initialized using the same queries. Since during decls we execute only SELECT queries, the variables are initialized
to the same values. This combined with cs,m,u,x,q,t(k) = xtk,cond ∧ xtk,γ1

∧ . . . ∧ xtk,γn and cs,m,u,x,q,t′(k) =

xt
′

k,cond ∧¬(xt
′

k,γ1
∧ . . .∧xt

′

k,γn
) leads to a contradiction (since just one of the conditions could have been satisfied).

c) t|k = 〈t, ok〉 and t|k = 〈t, dis〉. Then, cs,m,u,x,q,t(k) = xtk,cond ∧ xtk,γ1
∧ . . . ∧ xtk,γn and cs,m,u,x,q,t′(k) =

¬xt
′

k,cond . From decls’s definition, the variables are initialized as follows: xtk,cond ← SELECT wp(ϕ, t
k−1

), and

xt
′

k,cond ← SELECT wp(ϕ, t
′k−1

). From this and t and t′ differ only on the k-th element, it follows that wp(ϕ,

t
k−1

) = wp(ϕ, t
′k−1

). Hence, all the variables xtk,cond and xt
′

k,cond are initialized using the same queries. Since
during decls we execute only SELECT queries, the variables are initialized to the same values. This combined
with cs,m,u,x,q,t(k) = xtk,cond ∧xtk,γ1

∧ . . .∧xtk,γn and cs,m,u,x,q,t′(k) = ¬xt
′

k,cond leads to a contradiction (since
just one of the conditions could have been satisfied).

d) t|k = 〈t, secEx〉 and t|k = 〈t, ok〉. The proof of this case is similar to that of t|k = 〈t, ok〉 and t|k = 〈t, secEx〉.
e) t|k = 〈t, secEx〉 and t|k = 〈t, ex〉. Since t and t′ are configuration-consistent paths, it follows that ¬allowed(s,
u, t(m)) and allowed(s, u, t(m)), leading to a contradiction.

f) t|k = 〈t, secEx〉 and t|k = 〈t, dis〉. Then, cs,m,u,x,q,t(k) = xtk,cond and cs,m,u,x,q,t′(k) = ¬xt
′

k,cond . From decls’s
definition, the variables are initialized as follows: xtk,cond ← SELECT wp(ϕ, t

k−1
), and xt

′

k,cond ← SELECT wp(ϕ,

t
′k−1

). From this and t and t′ differ only on the k-th element, it follows that wp(ϕ, t
k−1

) = wp(ϕ, t
′k−1

). Hence,
all the variables xtk,cond and xt

′

k,cond are initialized using the same queries. Since during decls we execute only
SELECT queries, the variables are initialized to the same values. This combined with cs,m,u,x,q,t(k) = xtk,cond
and cs,m,u,x,q,t′(k) = ¬xt

′

k,cond leads to a contradiction (since just one of the conditions could have been satisfied).
g) t|k = 〈t, ex〉 and t|k = 〈t, ok〉. The proof of this case is similar to that of t|k = 〈t, ex〉 and t|k = 〈t, ok〉.
h) t|k = 〈t, ex〉 and t|k = 〈t, secEx〉. Since t and t′ are configuration-consistent paths, it follows that allowed(s,
u, t(m)) and ¬allowed(s, u, t(m)), leading to a contradiction.

i) t|k = 〈t, ex〉 and t|k = 〈t, dis〉. Then, cs,m,u,x,q,t(k) = xtk,cond ∧ ¬(xtk,γ1
∧ . . . ∧ xtk,γn) and cs,m,u,x,q,t′(k) =

¬xt
′

k,cond . From decls’s definition, the variables are initialized as follows: xtk,cond ← SELECT wp(ϕ, t
k−1

), and

xt
′

k,cond ← SELECT wp(ϕ, t
′k−1

). From this and t and t′ differ only on the k-th element, it follows that wp(ϕ,

t
k−1

) = wp(ϕ, t
′k−1

). Hence, all the variables xtk,cond and xt
′

k,cond are initialized using the same queries. Since
during decls we execute only SELECT queries, the variables are initialized to the same values. This combined
with cs,m,u,x,q,t(k) = xtk,cond ∧ ¬(xtk,γ1

∧ . . . ∧ xtk,γn) and cs,m,u,x,q,t′(k) = ¬xt
′

k,cond leads to a contradiction
(since just one of the conditions could have been satisfied).

j) t|k = 〈t, dis〉 and t|k = 〈t, ok〉. The proof of this case is similar to that of t|k = 〈t, ok〉 and t|k = 〈t, dis〉.
k) t|k = 〈t, dis〉 and t|k = 〈t, secEx〉. The proof of this case is similar to that of t|k = 〈t, secEx〉 and t|k = 〈t, dis〉.

l) t|k = 〈t, dis〉 and t|k = 〈t, ex〉. The proof of this case is similar to that of t|k = 〈t, ex〉 and t|k = 〈t, dis〉.
Since all cases lead to a contradiction, we proved our claim.
Conditions and execution paths. Here we prove our claim that if cond 〈s,ctx〉,m,u,x,q(t) is satisfied, then the configuration-
consistent execution path t represents an actual execution of the command and the corresponding triggers. Let t be an
execution path such that cond 〈s,ctx〉,m,u,x,q(t) is satisfied in the local state 〈m, s〉. We now show that each prefix of t
corresponds to a computation on the database (i.e., correspond to a run in the database). We show this by induction on
the prefix’s length.

For the base case, let t′ be the prefix of length 1. Then, t′ is 〈q, r〉, where r ∈ {secEx, ok, ex}.
If r = secEx, it follows that allowed(s, u, q) = ⊥. From this and allowed ’s definition, it follows that executing the

command on the database throws a security exception.
If r = ex, it follows that allowed(s, u, q) = >. From this and allowed ’s definition, it follows that executing the

command on the database does not throw a security exception. Furthermore, from r = ex, it follows that (1) t = t
′, and (2)

cond 〈s,ctx〉,m,u,x,q(t) = ¬(xt1,γ1
∧. . .∧xt1,γn). From (1), (2), and cond 〈s,ctx〉,m,u,x,q(t) is satisfied in the local state 〈m, s〉,

it follows that one of {xt1,γ1
, . . . , xt1,γn} evaluates to ⊥. From this and decls’s definition, there is a γi such that the result of

SELECT wp(γi, t
k
) on the database s is ⊥. From this and Lemma G.1, executing the query q throws an integrity exception.

Finally, if r = ok, it follows that allowed(s, u, q) = >. From this and allowed ’s definition, it follows that executing
the command on the database does not throw a security exception. Furthermore, it follows that one of the conjuncts in
cond 〈s,ctx〉,m,u,x,q(t) is xt1,γ1

∧ . . .∧ xt1,γn . From (1), (2), and cond 〈s,ctx〉,m,u,x,q(t) is satisfied in the local state 〈m, s〉,
it follows that all variables in {xt1,γ1

, . . . , xt1,γn} evaluates to ⊥. From this and decls’s definition, it follows that for all
γi ∈ Γ, the result of SELECT wp(γi, t

k
) on the database s is >. From this and Lemma G.1, executing the query q does

not throw an integrity exception.
For the induction step, we assume that all prefixes of length less than k correspond to actual computations. We now

show that the same holds for prefixes of length k. Then, t′ = t
′′·〈t, r〉, where r ∈ {secEx, ok, ex, dis}.

If r = secEx, it follows that allowed(s, u, q) = ⊥. From this and allowed ’s definition, it follows that executing the
trigger on the database throws a security exception. Furthermore, cond 〈s,ctx〉,m,u,x,q(t) contains the conjunct xtk,cond .
From this and cond 〈s,ctx〉,m,u,x,q(t) is satisfied in the local state 〈m, s〉, it follows that xtk,cond ’s value is >. From this
and decls’s definition, the result of SELECT wp(φ, t

k−1
) on the database s is >, where φ is the trigger’s condition. From

the induction hypothesis, it follows that tk−1 represents a computation. From this, the result of SELECT wp(ψ, t
k−1

) on
the database s is >, and Lemma G.1, it follows that the trigger is enabled in the computation.

If r = ex, it follows that allowed(s, u, q) = >. From this and allowed ’s definition, it follows that executing the trigger
on the database does not throw a security exception. Furthermore, from r = ex, it follows that cond 〈s,ctx〉,m,u,x,q(t)

contains the conjunct xtk,cond ∧ ¬(xtk,γ1
∧ . . . ∧ xtk,γn). From this and cond 〈s,ctx〉,m,u,x,q(t) is satisfied in the local state

〈m, s〉, it follows that xtk,cond ’s value is >. From this and decls’s definition, the result of SELECT wp(φ, t
k−1

) on the
database s is >, where φ is the trigger’s condition. From the induction hypothesis, it follows that tk−1 represents a
computation. From this, the result of SELECT wp(ψ, t

k−1
) on the database s is >, and Lemma G.1, it follows that the

trigger is enabled in the computation. Furthermore, there is one of {xt1,γ1
, . . . , xt1,γn} that evaluates to ⊥. From this

and decls’s definition, there is a γi such that the result of SELECT wp(γi, t
k
) on the database s is ⊥. From this and

Lemma G.1, executing the trigger t throws an integrity exception.
If r = dis, cond 〈s,ctx〉,m,u,x,q(t) contains the conjunct ¬xtk,cond . From this and cond 〈s,ctx〉,m,u,x,q(t) is satisfied in

the local state 〈m, s〉, it follows that xtk,cond ’s value is ⊥. From this and decls’s definition, the result of SELECT wp(φ,

t
k−1

) on the database s is ⊥, where φ is the trigger’s condition. From the induction hypothesis, it follows that tk−1

represents a computation. From this, the result of SELECT wp(ψ, t
k−1

) on the database s is ⊥, and Lemma G.1, it
follows that the trigger is disabled in the computation.

Finally, if r = ok, it follows that allowed(s, u, q) = >. From this and allowed ’s definition, it follows that
executing the trigger on the database does not throw a security exception. Furthermore, from r = ex, it follows that
cond 〈s,ctx〉,m,u,x,q(t) contains the conjunct xtk,cond ∧xtk,γ1

∧ . . .∧xtk,γn . From this and cond 〈s,ctx〉,m,u,x,q(t) is satisfied
in the local state 〈m, s〉, it follows that the values of xtk,cond , x

t
k,γ1

, . . . , xtk,γn are >. From this and decls’s definition,
the results of SELECT wp(φ, t

k−1
), SELECT wp(γ1, t

k
), . . . , SELECT wp(γn, t

k
) on the database s are >, where φ is the

trigger’s condition. From the induction hypothesis, it follows that tk−1 represents a computation. From this, the results of
SELECT wp(φ, t

k−1
), SELECT wp(γ1, t

k
), . . . , SELECT wp(γn, t

k
) on the database s are >, and Lemma G.1, it follows

that (1) the trigger t is enabled and (2) executing the trigger t does not throw integrity exceptions.
Encoding and execution paths. Here, we show that body〈s,ctx〉,m,u,x,q(t) correctly implements the semantics of the
execution path t. Let t be a configuration-consistent execution path. If t = 〈q, secEx〉, then the produced code only
assigns 〈SecEx, ∅〉 to x and does not modify the database. If t = 〈q, ex〉, then the produced code only assigns 〈IntEx,
θ〉 to x, where θ is the set of violated constraints, and does not modify the database. Since we use the weakest
precondition, θ contains exactly the violated constraints. If t does not ends in ex or secEx and |t = 1|, the generated
code modifies the database state as described in t, and sets the correct value for x. If t does not ends in ex or secEx

and |t = 1|, the generated code modifies the database state as described in t, and sets the correct value for x. Note also
that the generated code produces the correct public observation if the command is a GRANT, REVOKE, or CREATE.
If |t| > 1 and t ends in ex, then the generated code stores in x the error message 〈t, IntEx, θ〉 (which contains the
trigger t that has thrown the exception and the set θ of all violated integrity constraints) and produces the associated
database-level event. Finally, if |t| > 1 and t ends in secEx, then the generated code stores in x the error message
〈t,SecEx, ∅〉 (which contains the trigger t that has thrown the exception).

Lemma G.3 states that the local semantics of the security monitor correctly mimics the operational semantics of
WHILESQL for all statements that are not queries x← q.

Lemma G.3. Let c ∈ Com be an extended WHILESQL program such that safe(c), m ∈ Mem be a memory, 〈s,
ctx 〉 be a runtime state such that trigger(ctx) = ε, and u ∈ UID be a user. Furthermore, let ∆ be a monitor

state. If 〈∆, c,m, 〈s, ctx 〉〉 τ ′

u 〈∆′, c′,m′, 〈s′, ctx ′〉〉, then 〈strip(c),m, 〈s, ctx 〉〉 τ ′′−−→
R

u 〈strip(c′),m′′, 〈s′′, ctx ′′〉〉 and
the following conditions hold: (1) for all variables x occurring in strip(c), then m′(x) = m′′(x), (2) s′ = s′′, (3)
triggers(ctx ′) = triggers(ctx ′′) = ε, and (4) τ ′ = τ ′′, where −→R

u is the reflexive closure of −→u.

Proof. Let c ∈ Com be an extended WHILESQL program such that safe(c), m ∈ Mem be a memory, 〈s, ctx 〉 be a
runtime state such that trigger(ctx) = ε, u ∈ UID be a user, and ∆ be a monitor state. Assume that 〈∆, c,m, 〈s,
ctx 〉〉 τ

′

u 〈∆′, c′,m′, 〈s′, ctx ′〉〉. We prove our claim by structural induction on the rules defining τ ′

u.
Base case. There are several cases depending on the rule used in the computation:
• Rule F-SKIP. From the rule, it follows that c = skip, ∆ = ∆′, c′ = ε, m = m′, 〈s, ctx 〉 = 〈s′, ctx ′〉, and τ ′ = ε.

By applying the E-SKIP rule to 〈c,m, 〈s, ctx 〉〉, where c = skip, we obtain that 〈c,m, 〈s, ctx 〉〉 τ ′′−−→u 〈c′′,m′′, 〈s′′,
ctx ′′〉〉, where τ ′′ = ε, c′′ = ε, m′′ = m, and 〈s, ctx 〉 = 〈s′′, ctx ′′〉. Therefore, c′ = c′′, m′ = m′′, 〈s′, ctx ′〉 = 〈s′′,
ctx ′′〉, triggers(ctx ′) = triggers(ctx ′′) = ε, and τ ′ = τ ′′.

• Rule F-ASSIGN. From the rule, it follows that c = x := e, c′ = ε, m′ = m[x 7→ JeK(m)], 〈s′, ctx ′〉 = 〈s, ctx 〉, and
τ ′ = ε. By applying the E-ASSIGN rule to 〈c,m, 〈s, ctx 〉〉, where c = x := e, we obtain 〈c,m, 〈s, ctx 〉〉 τ ′′−−→u 〈c′′,
m′′, 〈s′′, ctx ′′〉〉, where τ ′′ = ε, c′′ = ε, m′′ = m[x 7→ JeK(m)], and 〈s, ctx 〉 = 〈s′′, ctx ′′〉. Therefore, c′ = c′′,
m′ = m′′, 〈s′, ctx ′〉 = 〈s′′, ctx ′′〉, triggers(ctx ′) = triggers(ctx ′′) = ε, and τ ′ = τ ′′.

• Rule F-OUT. From the rule, it follows that c = out(u′, e), c′ = ε, m′ = m, 〈s′, ctx ′〉 = 〈s, ctx 〉, and τ ′ = 〈u′,
JeK(m)〉. By applying the E-OUT rule to 〈c,m, 〈s, ctx 〉〉, where c = out(u′, e), we obtain 〈c,m, 〈s, ctx 〉〉 τ ′′−−→u 〈c′′,
m′′, 〈s′′, ctx ′′〉〉, where τ ′′ = 〈u′, JeK(m)〉, c′′ = ε, m′′ = m, and 〈s, ctx 〉 = 〈s′′, ctx ′′〉. Therefore, c′ = c′′,
m′ = m′′, 〈s′, ctx ′〉 = 〈s′′, ctx ′′〉, triggers(ctx ′) = triggers(ctx ′′) = ε, and τ ′ = τ ′′.

• Rule F-IFTRUE. From the rule, it follows that c = if e then c1 else c2, JeK(m) = >, c′ = [c1 ; set pc to ∆(pcu)],
m′ = m, 〈s′, ctx ′〉 = 〈s, ctx 〉, and τ ′ = ε. By applying the E-IFTRUE rule to 〈c,m, 〈s, ctx 〉〉, where c =

if e then c1 else c2, we obtain 〈strip(c),m, 〈s, ctx 〉〉 τ ′′−−→u 〈strip(c′),m′′, 〈s′′, ctx ′′〉〉, where τ ′′ = ε, m′′ = m, and
〈s, ctx 〉 = 〈s′′, ctx ′′〉 (because JeK(m) = >, strip(c) = if e then strip(c1) else strip(c2), and strip(c′) = strip(c1)).
Therefore, m′ = m′′, 〈s′, ctx ′〉 = 〈s′′, ctx ′′〉, triggers(ctx ′) = triggers(ctx ′′) = ε, and τ ′ = τ ′′.

• Rule F-IFFALSE. The proof of this case is similar to that of the F-IFTRUE case.
• Rule F-WHILETRUE. The proof of this case is similar to that of the F-IFTRUE case.
• Rule F-WHILEFALSE. The proof of this case is similar to that of the F-IFTRUE case.
• Rule F-SEQEMPTY. From the rule, it follows that c = ε ; c1, c′ = c1, m = m′, 〈s, ctx 〉 = 〈s′, ctx ′〉, and τ ′ = ε. By

applying the E-SEQEMPTY rule to 〈c,m, 〈s, ctx 〉〉, where c = ε ; c1, we obtain 〈c,m, 〈s, ctx 〉〉 τ ′′−−→u 〈c′′,m′′, 〈s′′,
ctx ′′〉〉, where τ ′′ = ε, c′′ = c1, m′′ = m, and 〈s, ctx 〉 = 〈s′′, ctx ′′〉. Therefore, c′ = c′′, m′ = m′′, 〈s′, ctx ′〉 = 〈s′′,
ctx ′′〉, triggers(ctx ′) = triggers(ctx ′′) = ε, and τ ′ = τ ′′.

• Rule F-REMOVEEXPANDEDCODE. The proof of this case is similar to that of the F-SEQEMPTY case.
• Rule F-UPDATELABELS. From the rule, it follows that c = set pc to l, c′ = ε, m′ = m, 〈s′, ctx ′〉 = 〈s,

ctx 〉, and τ ′ = ε. Since the rule modifies only the monitor configuration and strip(c) = strip(c′) = ε, it
follows that 〈strip(c),m, 〈s, ctx 〉〉 −→R

u 〈strip(c′),m′′, 〈s′′, ctx ′′〉〉, where m′ = m′′, 〈s′, ctx ′〉 = 〈s′′, ctx ′′〉, and
triggers(ctx ′) = triggers(ctx ′′) = ε.

This completes the proof of the base step.
Induction Step. For the induction step, we consider only the F-SEQ and F-EXPANDEDCODE rules.
• Rule F-SEQ. From the rule, it follows that c = c1 ; c2 and 〈∆, c1,m, 〈s, ctx 〉〉 τ ′

u 〈∆, c′1,m′′, 〈s′′, ctx ′′〉〉.
Furthermore, from safe(c), it follows that we can apply the induction hypothesis. From 〈∆, c1,m, 〈s, ctx 〉〉 τ

′

u 〈∆,

c′1,m
′′, 〈s′′, ctx ′′〉〉 and the induction’s hypothesis, it follows that 〈strip(c1),m, 〈s, ctx 〉〉 τ ′′−−→

R

u 〈strip(c′1),m′′′, 〈s′′′,
ctx ′′′〉〉 such that m′′′ and m′′ agree on all variables occurring in strip(c), τ ′′ = τ ′, s′′ = s′′′, and triggers(ctx ′′) =
triggers(ctx ′′′) = ε. Observe also that strip(c1; c2) = strip(c1); strip(c2). There are two cases:
– the first statement executed in c1 is of the form set pc to l. Therefore, m′′′ = m′′ = m, 〈s, ctx 〉 = 〈s′′,

ctx ′′〉 = 〈s′′′, ctx ′′′〉, and τ ′ = τ ′′ = ε. From this, it directly follows that 〈(strip(c1) ; strip(c2)),m, 〈s,

ctx 〉〉 τ ′−→
R

u 〈strip(c′1) ; strip(c2),m′′′, 〈s′′′, ctx ′′′〉〉.

– the first statement executed in c1 is not of the form set pc to l. By applying the E-SEQ rule to 〈∆, strip(c1 ; c2),

m, 〈s, ctx 〉〉 (given that (1) 〈strip(c1),m, 〈s, ctx 〉〉 τ ′

u 〈strip(c′1),m′′′, 〈s′′′, ctx ′′′〉〉, and (2) strip(c1 ; c2) =

strip(c1) ; strip(c2)) we obtain 〈(strip(c1) ; strip(c2)),m, 〈s, ctx 〉〉 τ ′−→u 〈strip(c′1) ; strip(c2),m′′′, 〈s′′′,
ctx ′′′〉〉. Our claim directly follows from (1) m′′′ and m′′ agree on all variables modified in the computation, (2)
τ ′′ = τ ′, (3) s′′ = s′′′, and (4) triggers(ctx ′′) = triggers(ctx ′′′) = ε.

• Rule F-EXPANDEDCODE. From the rule, it follows that c = [c1] and 〈∆, c1,m, 〈s, ctx 〉〉 τ ′

u 〈∆, c′1,m′′, 〈s′′,
ctx ′′〉〉. Furthermore, from safe(c), it follows that we can apply the induction hypothesis. From 〈∆, c1,m, 〈s,

ctx 〉〉 τ ′

u 〈∆, c′1,m′′, 〈s′′, ctx ′′〉〉 and the induction’s hypothesis, it follows that 〈strip(c1),m, 〈s, ctx 〉〉 τ ′′−−→
R

u

〈strip(c′1),m′′′, 〈s′′′, ctx ′′′〉〉 such that m′′′ and m′′ agree on all variables occurring in strip(c), τ ′′ = τ ′, s′′ = s′′′,
and triggers(ctx ′′) = triggers(ctx ′′′) = ε (since strip([c]) = strip(c)).

This completes the proof of the induction step.

Finally, Theorem 2 states that the local semantics of the security monitor correctly implements the local semantics
of WHILESQL.

Theorem 2. Let c ∈ Com be a WHILESQL program (without extended commands from §5), m ∈ Mem be a memory,
〈s, ctx 〉 be a runtime state such that trigger(ctx) = ε, and u ∈ UID be a user. Furthermore, let ∆ be a monitor state. If

〈∆, c,m, 〈s, ctx 〉〉 τ
′ ∗

u 〈∆′, ε,m′, 〈s′, ctx ′〉〉, then 〈c,m, 〈s, ctx 〉〉 τ ′′−−→∗u 〈ε,m′′, 〈s′′, ctx ′′〉〉 and the following conditions
hold: (1) for all variables x occurring in c, then m′(x) = m′′(x), (2) s′ = s′′, (3) triggers(ctx ′) = triggers(ctx ′′) = ε,
and (4) τ ′ = τ ′′.

Proof. This claim directly follows from Lemma G.2, Lemma G.3. In particular, Lemma G.2 is used to handle statements
of the form x← q, whereas Lemma G.3 is used to handle all other statements.

G.2. Global semantics

Theorem 3 shows that the monitor’s global semantics is transparent for sequential schedulers. We remark, however,
that the monitor’s global semantics is, in general, not transparent as the monitor modifies the scheduling of commands
to avoid timing leaks that may be introduced by the parallel execution of multiple WHILESQL programs.

Theorem 3. Let C ∈ Com∗UID be a sequence of WHILESQL programs (without the extended commands from §5),
M ∈ Mem∗UID be a sequence of memories, s be a system state, and S be the sequential scheduler 0∞. Whenever
〈∆, C,M, 〈s, ε〉,S〉 τ ∗ 〈∆′, ε,M ′, 〈s′, ctx ′〉,S ′〉 then 〈C,M, 〈s, ε〉,S〉 τ−→∗ 〈ε,M ′′, 〈s′′, ctx ′′〉,S ′′〉 and the following
conditions hold: (1) for all 1 ≤ i ≤ |M |, for all variables that occur in C|i, then M ′|i(x) = M ′′|i(x), (2) s′ = s′′, (3)
triggers(ctx) = triggers(ctx ′) = ε, and (4) S ′ = S ′′.

Proof. The claim directly follows from (1) the use of the sequential scheduler, (2) the application of Theorem 2 to the
execution of each program in C, and (3) the fact that the monitor’s global semantics does not add new observations to
the trace.

deps(〈u′, JeK(m)〉, 〈∆, out(u′, e),m, s〉 〈u
′,JeK(m)〉

u 〈∆, ε,m, s〉) = vars(e)

deps(〈u, v′, o′, τ ′〉, conf
〈public,q′〉

u conf ′) = vars(q)

where conf = 〈∆, ‖x← q‖,m, s〉, conf ′ = 〈∆, ε,m, s〉, q is a GRANT, REVOKE, or CREATE command

deps(obs, 〈∆, c1 ; c2,m, s〉 obs
u 〈∆′, c′1 ; c2,m

′, s′〉) = deps(obs, 〈∆, c1,m, s〉 obs
u 〈∆′, c′1,m′, s′〉)

deps(obs, 〈∆, asuser(u′, c),m, s〉 obs
u 〈∆′, c′,m′, s′〉) = deps(obs, 〈∆, c,m, s〉 obs

u′ 〈∆′, c′,m′, s′〉)
where query(c) = >

deps(obs, 〈∆, [c],m, s〉 obs
u 〈∆′, [c′],m′, s′〉) = deps(obs, 〈∆, c,m, s〉 obs

u 〈∆′, c′,m′, s′〉)

deps(obs, 〈∆, C,M, s, n′ · S〉 obs 〈∆′, C ′,M ′, s′,S ′〉) = deps(obs, 〈∆, c,m, s〉 obs
u 〈∆′, c′,m′, s′〉)

where n = 1 + (n′ mod |C|), C|n = 〈u, c〉, and M |n = 〈u,m〉
deps(obs, conf τ conf ′) = ∅ for any obs and conf τ conf ′ not matching the above cases

Figure 24: Direct dependencies.

Appendix H.
Monitor’s soundness

Here, we prove the main result of §5, namely that our enforcement mechanism is sound with respect to our security
condition for external attackers. In the following, let 〈D,Γ〉 be a system configuration such that the constraints in Γ are
well-formed.

H.1. Auxiliary notation

Let obs be either an observation. We denote by user(obs) the user associated with the observation. Namely, user(〈u,
o〉) = u if u 6= public and user(〈public, o〉) = atk .

Let obs be either an observation and conf obs conf ′ be a step of the local or global semantics. The direct
dependencies of obs given conf obs conf ′ are defined in Figure 24.

Let c be a WHILESQL extended program. The function first(c) returns the first statement to be executed in c. Formally:

first(c) =

first(c1) if ∃c1. c = [c1]

first(c1) if ∃c1, c2. c = c1 ; c2
first(c1) if ∃u, c1. c = asuser(u, c1)

c otherwise

H.2. Equivalence definitions

We now introduce a number of equivalence relations that we use throughout the proofs. We first introduce equivalence
relations between monitor state, database states, and memories.

Definition 3. Let ∆,∆′ be two monitor states, 〈m, s〉, 〈m′, s′〉 be two local states, and u be a user.
We say that ∆ and ∆′ are L-equivalent, where L is a subset of Var ∪RC pred ∪{pcu | u ∈ UID}, written ∆ ≈L ∆′,

iff for all x ∈ L, ∆(x) = ∆′(x).
We say that s = 〈db, U, S, T, V 〉 and s′ = 〈db′, U ′, S′, T ′, V ′〉 are configuration equivalent, written s ≡cfg s′, iff

U = U ′, S = S′, T = T ′, and V = V ′.
We say that 〈m, s〉 and 〈m′, s′〉 are (V,Q)-equivalent, where V ⊆ Var and Q ⊆ RC , written 〈m, s〉 ≈V,Q 〈m′,

s′〉, iff (1) for all x ∈ V , m(x) = m′(x), and (2) for all q ∈ Q , [q]db = [q]db
′
, where s = 〈db, U, sec, T, V 〉 and

s′ = 〈db′, U ′, S′, T ′, V ′〉.
We now formalize equivalence of local configurations.

Definition 4. Let 〈∆, c,m, 〈s, ctx 〉〉, 〈∆′, c′,m′, 〈s′, ctx ′〉〉 be two local configurations and ` ∈ L be a label. We say that
〈∆, c,m, 〈s, ctx 〉〉 and 〈∆′, c′,m′, 〈s′, ctx ′〉〉 are `-equivalent, written 〈∆, c,m, 〈s, ctx 〉〉 ≈` 〈∆′, c′,m′, 〈s′, ctx ′〉〉 iff
• for all x ∈ Var ∪ {pcu | u ∈ UID}, ∆(x) v ` iff ∆′(x) v `,
• for all q ∈ RC pred , ∆(q) v ` iff ∆′(q) v `,
• 〈m, s〉 ≈V,Q 〈m′, s′〉, where V = {x ∈ Var | ∆(x) v `} and Q = {q ∈ RC | LQ(∆, q) v `}, and
• ∆ ≈L ∆′, where L = {x ∈ Var | ∆(x) v `} ∪ {q ∈ RC pred | ∆(q) v `} ∪ {pcu | u ∈ UID}.

Similarly, we say that two global configurations 〈∆, C,M, 〈s, ctx 〉,S〉 and 〈∆′, C ′,M ′, 〈s′, ctx ′〉,S ′〉 are `-equivalent,
written 〈∆, C,M, 〈s, ctx 〉,S〉 ≈` 〈∆′, C ′,M ′, 〈s′, ctx ′〉,S ′〉, iff |C| = |C ′|, |M | = |M ′|, and for all 1 ≤ i ≤ |C|, 〈∆,
C|i,M |i, 〈s, ctx 〉〉 ≈` 〈∆′, C ′|i,M ′|i, 〈s′, ctx ′〉〉

H.3. Results about t

Here we show a simple property of joins in our disclosure lattice, namely that l1 t l2 v l3 holds iff both l1 v l3 and
l2 v l3 hold. While one of the directions (namely l1t l2 v l3 ⇒ l1 v l3∧ l2 v l3) holds for disclosure lattices in general,
the other one (i.e., l1 v l3∧l2 v l3 ⇒ l1tl2 v l3) holds specifically for the determinacy-based lattice. We do not explicitly
refer to Proposition H.1 in the rest of the proofs. Observe that from Proposition H.1 it follows that

∧
i(li v l) iff (

⊔
i li) v l.

Proposition H.1. Let D be a database schema, Γ be a set of integrity constraints, ��D,Γ be the relation such that
Q ��D,Γ Q′ iff D,Γ ` Q′ � Q. Furthermore, the ��D,Γ-disclosure lattice is 〈L,v,t,u,⊥,>〉, where v is ��D,Γ. For
any l1, l2, l3 ∈ L, the following properties hold:
• If l1 t l2 v l3, then l1 v l3 and l2 v l3.
• If l1 v l3 and l2 v l3, then l1 t l2 v l3.

Proof. Let D be a database schema, Γ be a set of integrity constraints, ��D,Γ be the relation such that Q ��D,Γ Q′ iff
D,Γ ` Q′ � Q. Furthermore, the ��D,Γ-disclosure lattice is 〈L,v,t,u,⊥,>〉, where v is ��D,Γ.

First statement. Let l1, l2, l3 be three elements in L such that l1 t l2 v l3. From this and L’s definition, it follows
that there are three sets of queries Q1, Q2, Q3 ∈ PRC such that li = cl(Qi) for 1 ≤ i ≤ 3. From this and l1 t l2 v l3,
it follows that cl(Q1) t cl(Q2) v cl(Q3). From this and t’s definition, it follows that cl(Q1 ∪Q2) v cl(Q3). From
the definition of closure, cl(Q1) ⊆ cl(Q1 ∪ Q2) and cl(Q2) ⊆ cl(Q1 ∪ Q2). From this and the notion of disclosure
order, cl(Q1) v cl(Q1 ∪Q2) and cl(Q2) v cl(Q1 ∪Q2). From this and cl(Q1 ∪Q2) v cl(Q3), cl(Q1) v cl(Q3) and
cl(Q2) v cl(Q3). Hence, l1 v l3 and l2 v l3.

Second statement. Let l1, l2, l3 be three elements in L such that l1 v l3 and l2 v l3. From this and L’s definition,
it follows that there are three sets of queries Q1, Q2, Q3 ∈ PRC such that li = cl(Qi) for 1 ≤ i ≤ 3. From
cl(Q1) v cl(Q3), cl(Q2) v cl(Q3), and property (2) of disclosure lattices, it follows that Q1 ��D,Γ Q3 and Q2 ��D,Γ Q3.
From this and ��D,Γ’s definition, D,Γ ` Q3 � Q1 and D,Γ ` Q3 � Q2. We claim that D,Γ ` Q3 � Q1 ∪ Q2.
From this, Q1 ∪Q2 ��D,Γ Q3. From this and property (2) of disclosure lattices, cl(Q1 ∪Q2) v cl(Q3). From this and
cl(Q1) t cl(Q2) = cl(Q1 ∪Q2), cl(Q1) t cl(Q2) v cl(Q3).

We now prove our claim that D,Γ ` Q3 � Q1 and D,Γ ` Q3 � Q2 imply D,Γ ` Q3 � Q1∪Q2. Let Q1, Q2 and
Q3 be three sets of queries in PRC such that D,Γ ` Q3 � Q1 and D,Γ ` Q3 � Q2. Assume, for contradiction’s sake,
that D,Γ ` Q3 � Q1 ∪Q2 does not hold. From this, it follows that there are two database states db and db′ and a query
q′ ∈ Q1 ∪Q2 such that [q]db = [q]db

′
for all q ∈ Q3 and [q′]db 6= [q′]db

′
. If q′ ∈ Q1, then there are two database states

db and db′ and a query q′ ∈ Q1 such that [q]db = [q]db
′

for all q ∈ Q3 and [q′]db 6= [q′]db
′
. Therefore, D,Γ ` Q3 � Q1

does not hold, leading to a contradiction. Similarly, if q′ ∈ Q2, then there are two database states db and db′ and a
query q′ ∈ Q2 such that [q]db = [q]db

′
for all q ∈ Q3 and [q′]db 6= [q′]db

′
. Therefore, D,Γ ` Q3 � Q2 does not hold,

leading to a contradiction. Since both cases lead to a contradiction, this completes the proof of our claim.

H.4. Results about LQ

Here we state some simple facts about LQ.

Proposition H.2. Let ∆ and ∆′ be two monitor states. If ∆(q) v ` iff ∆′(q) v ` for all q ∈ RC pred , then LQ(∆,
q) v ` iff LQ(∆′, q) v ` for all q ∈ RC .

Proof. Let ∆ and ∆′ be two monitor states such that ∆(q) v ` iff ∆′(q) v ` for all q ∈ RC pred .

(⇒). Assume that LQ(∆, q) v ` holds. From this,
⊔
Q∈suppD,Γ(q)

⊔
q′∈Q ∆(q′) v `. From this, it follows that∧

Q∈suppD,Γ(q)

∧
q′∈Q ∆(q′) v `. From this and ∆(q) v ` iff ∆′(q) v ` for all q ∈ RC pred , it follows that∧

Q∈suppD,Γ(q)

∧
q′∈Q ∆′(q′) v `. From this, it follows that

⊔
Q∈suppD,Γ(q)

⊔
q′∈Q ∆′(q′) v `. From this, LQ(∆′, q) v `.

(⇐). Assume that LQ(∆′, q) v ` holds. From this,
⊔
Q∈suppD,Γ(q)

⊔
q′∈Q ∆′(q′) v `. From this, it follows that∧

Q∈suppD,Γ(q)

∧
q′∈Q ∆′(q′) v `. From this and ∆(q) v ` iff ∆′(q) v ` for all q ∈ RC pred , it follows that∧

Q∈suppD,Γ(q)

∧
q′∈Q ∆(q′) v `. From this, it follows that

⊔
Q∈suppD,Γ(q)

⊔
q′∈Q ∆(q′) v `. From this, LQ(∆,

q) v `.

Proposition H.3. Given a monitor state ∆ and a predicate query q ∈ RC pred , ∆(q) = LQ(∆, q).

Proof. Let ∆ be a monitor state and q ∈ RC pred be a predicate query. From the definition of LQ(∆, q), it follows
that LQ(∆, q) =

⊔
Q∈suppD,Γ(q)

⊔
q′∈Q ∆(q′). Since Γ is a set of well-formed integrity constraints and q ∈ RC pred ,

suppD,Γ(q) = {{q}}. From this, LQ(∆, q) = ∆(q).

H.5. Results about relaxed NSU checks

We now prove some simple results about relaxed NSU checks.

Proposition H.4. Let sec0 be the initial policy, ` be a label such that cl(auth(sec0, atk)) v `, and ∆ be a monitor
state. If nsu(x, pcu) is satisfied for ∆ and ∆(x) v `, then ∆(pcu) v `.

Proof. Let sec0 be the initial policy, ` be a label such that cl(auth(sec0, atk)) v `, and ∆ be a monitor state.
Furthermore, assume that nsu(x, pcu) is satisfied for ∆ and ∆(x) v `. From this, it follows that ∆(pcu) v cl(auth(sec0,
atk)) ∨∆(pcu) v ∆(x). There are two cases:

1) ∆(pcu) v cl(auth(sec0, atk)) holds. From this and cl(auth(sec0, atk)) v `, it follows that ∆(pcu) v `.
2) ∆(pcu) v ∆(x) holds. From this and ∆(x) v `, it follows that ∆(pcu) v `.

This completes the proof.

H.6. Lemmas about the local semantics

Here we present some auxiliary results about the local semantics of our enforcement mechanism.
Lemma H.1 states that whenever the security monitor produces an output, the labels associated with pc and with the

event’s dependencies are less than (or equal to) the label associated with the user that can observe the event. We remark
that this lemma directly implies two facts: (1) observable events for atk occur only in low contexts, i.e., in contexts
such that ∆(pcu) v LU (s, atk), and (2) all direct flows are authorized, namely atk observes only events that directly
depend on information at a lower (or equal) level in the security lattice.

Lemma H.1. Whenever r = 〈∆, c,m, s〉 obs
u 〈∆′, c′,m′, s′〉 and obs 6= ε, we have ∆(deps(obs, r))t∆(pcu) v LU (s,

user(obs)).

Proof. Let 〈∆, c,m, s〉 and 〈∆′, c′,m′, s′〉 be local configurations such that 〈∆, c,m, s〉 obs
u 〈∆′, c′,m′, s′〉 and obs 6= ε.

In the following, we denote 〈∆, c,m, s〉 obs
u 〈∆′, c′,m′, s′〉 as r. We now prove, by structural induction on τ

u,
that ∆(deps(obs, r)) t ∆(pcu) v LU (s, user(obs)). In the following we consider only on those rules that produce
observations. Proving the claim for rules not producing outputs is trivial.
Base Case. There are two cases depending on the rule used to produce the event.
• Rule F-OUT. From the rule, it directly follows that (1) obs = 〈u′, JeK(m)〉, and (2) ∆(e) t∆(pcu) v LU (s, u′).

From user ’s definition, there are two cases.
If u′ 6= public, then user(〈u′, JeK(m)〉) = u′. From this and ∆(e) t∆(pcu) v LU (s, u′), it follows that ∆(e) t
∆(pcu) v LU (s, user(〈u′, JeK(m)〉)). From this, deps(〈u′, JeK(m)〉, r) = free(e), and ∆(free(e)) = ∆(e), it
follows that ∆(deps(〈u′, JeK(m)), r〉)t∆(pcu) v LU (s, user(〈u′, JeK(m)〉)). Hence, ∆(deps(obs, r))t∆(pcu) v
LU (s, user(obs)).
If u′ = public, then user(〈u′, JeK(m)〉) = atk . Moreover, from LU ’s definition, LU (s, public) = LU (s, atk). From
this and ∆(e) t ∆(pcu) v LU (s, u′), it follows that ∆(e) t ∆(pcu) v LU (s, user(〈u′, JeK(m)〉)). From this,
deps(〈u′, JeK(m)〉, r) = free(e), and ∆(free(e)) = ∆(e), it follows that ∆(deps(〈u′, JeK(m)), r〉)t∆(pcu) v LU (s,
user(〈u′, JeK(m)〉)). Hence, ∆(deps(obs, r)) t∆(pcu) v LU (s, user(obs)).

• Rule F-UPDATECONFIGURATIONOK. From the rule, it follows that (1) obs = 〈public, q′〉, where q′ = q[v1 7→
Jv1K(m), . . . , vn 7→ JvnK(m)] and vars(q) = {v1, . . . , vn}, (2)

⊔
1≤i≤n ∆(vi) v cl(auth(sec0, atk)), and (3)

∆(pcu) v cl(auth(sec0, atk)). Moreover, cl(auth(sec0, atk)) v LU (s, atk). Hence,
⊔

1≤i≤n ∆(vi) v LU (s, atk)
and ∆(pcu) v LU (s, atk). From

⊔
1≤i≤n ∆(vi) v LU (s, atk) and deps’ definition, we have ∆(deps(obs, r)) v

LU (s, atk). Hence, ∆(deps(obs, r))t∆(pcu) v LU (s, atk). From this and user(〈public, q′〉) = atk , ∆(deps(obs,
r)) t∆(pcu) v LU (s, atk). From this and 〈public, q′〉 = obs , ∆(deps(obs, r)) t∆(pcu) v LU (s, user(obs)).

This completes the proof of the base case.
Induction Step. The proof for the induction step directly follows from the induction hypothesis (since the rules do not
further introduce events).

Lemma H.2 states that, given a label `, whenever pcu becomes high with respect to `, this is caused by a branching
statement, a loop statement, or a set-label statement.

Lemma H.2. Let ` ∈ L be a label. Whenever 〈∆, c,m, 〈s, ctx 〉〉 τ
u 〈∆′, c′,m′, 〈s′, ctx ′〉〉, if ∆(pcu) v ` and

∆′(pcu) 6v `, then one of the following conditions hold:
• first(c) = if e then c1 else c2 and ∆(e) 6v `,
• first(c) = while e do c1 and ∆(e) 6v `, or
• first(c) = set pc to `1 and `1 6v `.

Proof. Let c be a WHILESQL program, ` ∈ L be a label, and 〈∆, c,m, 〈s, ctx 〉〉 and 〈∆′, c′,m′, 〈s′, ctx ′〉〉 be two local
configurations such that (1) 〈∆, c,m, 〈s, ctx 〉〉 τ

u 〈∆′, c′,m′, 〈s′, ctx ′〉〉, and (2) ∆(pcu) v ` and ∆′(pcu) 6v `. We
now prove, by structural induction on u, that our claim holds. In the following, we focus only on the rules that directly
modify ∆(pcu). The proof for the other cases is trivial.

Base Case. There are several cases depending on the rule used to derive 〈∆, c,m, 〈s, ctx 〉〉 τ u 〈∆′, c′,m′, 〈s′, ctx ′〉〉.
• Rule F-UPDATELABELS. Then, first(c) = set pc to `1. From the rule, it follows that ∆′(pcu) = `1. From this

and ∆′(pcu) 6v `, it follows that `1 6v `.
• Rule F-IFTRUE. Then, first(c) = if e then c1 else c2. Furthermore, from ∆(pcu) v `, ∆′(pcu) 6v `, and

∆′(pcu) = ∆(e) t∆(pcu), it follows that ∆(e) 6v `.
• Rule F-IFFALSE. The proof of this case is similar to that of F-IFTRUE.
• Rule F-WHILETRUE. The proof of this case is similar to that of F-IFTRUE.
• Rule F-WHILEFALSE. The proof of this case is similar to that of F-IFTRUE.

Induction Step. The proof of the induction step directly follows from the induction hypothesis.

Lemmas H.3 states that, given a label `, whenever we are in a high context (i.e., ∆(pcu) 6v `), there are no changes
to the values associated with all variables and queries whose labels are lower than (or equal to) `.

Lemma H.3. Let sec0 be the policy used to initialize the monitor and ` ∈ L be a security label such that cl(auth(sec0,
atk)) v `. Whenever 〈∆, c,m, 〈s, ctx 〉〉 τ

u 〈∆′, c′,m′, 〈s′, ctx ′〉〉, if ∆(pcu) 6v `, then 〈m, s〉 ≈V,Q 〈m′, s′〉, where
V = {x ∈ Var | ∆(x) v `} and Q = {q ∈ RC | LQ(∆, q) v `}.

Proof. Let sec0 be the policy used to initialize the monitor and ` ∈ L be a security label such that cl(auth(sec0,
atk)) v `. Furthermore, let u ∈ UID be a user and 〈∆, c,m, 〈s, ctx 〉〉, 〈∆′, c′,m′, 〈s′, ctx ′〉〉 be two local configurations
such that (1) 〈∆, c,m, 〈s, ctx 〉〉 τ u 〈∆′, c′,m′, 〈s′, ctx ′〉〉, and (2) ∆(pcu) 6v `. Finally, let V = {x ∈ Var | ∆(x) v `}
and Q = {q ∈ RC | LQ(∆, q) v `}. We now show, by structural induction on the rules defining u, that 〈m,
s〉 ≈V,Q 〈m′, s′〉. In the following, we consider only those rules that modify the memory m or the database state s. For
the other rules, the claim holds trivially (since 〈m, s〉 = 〈m′, s′〉).
Base Case. There are several cases depending on the applied rule:

1) Rule F-ASSIGN. Assume, for contradiction’s sake, that 〈m, s〉 6≈V,Q 〈m′, s′〉. From the rule, it follows that s = s′

and m′ = m[x 7→ JeK(m)]. From this, 〈m, s〉 6≈V,Q 〈m′, s′〉, and ≈V,Q’s definition, it follows that (1) x ∈ V
and, therefore, ∆(x) v `, and (2) m(x) 6= m′(x). From the rule, it follows that nsu(x, pcu) holds. From this,
cl(auth(sec0, atk)) v `, ∆(x) v `, and Proposition H.4, it follows that ∆(pcu) v `. This, however, contradicts
our assumption that ∆(pcu) 6v `.

2) Rule F-SELECT. Assume, for contradiction’s sake, that 〈m, s〉 6≈V,Q 〈m′, s′〉. From the rule, it follows that s = s′

and m′ = m[x 7→ r], where 〈〈s, ctx ′〉, r, ε〉 = JqK(s, u). From this, 〈m, s〉 6≈V,Q 〈m′, s′〉, and ≈V,Q’s definition, it
follows that (1) x ∈ V and, therefore, ∆(x) v `, and (2) m(x) 6= m′(x). From the rule, it follows that nsu(x, pcu).
From this, cl(auth(sec0, atk)) v `, ∆(x) v `, and Proposition H.4, it follows that ∆(pcu) v `. This, however,
contradicts our assumption that ∆(pcu) 6v `.

3) Rule F-UPDATEDATABASEOK. Without loss of generality, we assume that q = T ′⊕e and that v is the tuple inserted
in the database (after evaluating all the expressions). Assume, for contradiction’s sake, that 〈m, s〉 6≈V,Q 〈m′, s′〉.
From the rule, it follows that JqK(s, u) = 〈〈s′, ctx ′〉, r, ε〉 and m′ = m[x 7→ r]. From this, 〈m, s〉 6≈V,Q 〈m′, s′〉,
and ≈V,Q’s definition, it follows that there are two cases:
a) x ∈ V and m(x) 6= m′(x). From x ∈ V and V ’s definition, it follows that ∆(x) v `. From the rule, it follows

that nsu(x, pcu). From this, cl(auth(sec0, atk)) v `, ∆(x) v `, and Proposition H.4, it follows that ∆(pcu) v `.
This, however, contradicts our assumption that ∆(pcu) 6v `.

b) There is a query q′ ∈ Q such that [q′]s 6= [q′]s
′
. From q′ ∈ Q, LQ(∆, q′) v `. From this,⊔

Q∈suppD,Γ(q′)

⊔
q′′∈Q ∆(q′′) v `. We claim that that for all Q ∈ suppD,Γ(q′), T ′(v) ∈ Q. From this and⊔

Q∈suppD,Γ(q′)

⊔
q′′∈Q ∆(q′′) v `, it follows that ∆(T ′(v)) v `. From the rule, it follows that nsu(T ′(v), pcu).

From this, cl(auth(sec0, atk)) v `, ∆(T ′(v)) v `, and Proposition H.4, it follows that ∆(pcu) v `. This,
however, contradicts our assumption that ∆(pcu) 6v `.
We now prove our claim that for all Q ∈ suppD,Γ(q′), T ′(v) ∈ Q. Assume that there exists a Q ∈ suppD,Γ(q′)
such that T ′(v) 6∈ Q. From suppD,Γ’s definition, it follows that the predicate queries in Q determine q′. From the
database semantics, the result of all queries in Q is the same in s and s′ (since we modify only T ′(v)). From this
and Q determines q′, it follows that the result of q′ is the same in s and s′. This, however, contradicts [q′]s 6= [q′]s

′
.

4) Rule F-UPDATECONFIGURATIONOK. The proof of this case is similar to the F-SELECT case.
Induction Step. The proof for the induction step directly follows from the induction hypothesis (since the rules do not
further modify the memory and the database).

Lemma H.4 states that, given a label `, whenever we are in a high context (i.e., ∆(pcu) 6v `), then (1) there are no
changes to the labels associated with variables and queries whose labels are initially below `, and (2) the label of a
variable (or query) is initially below ` iff it is below ` also at the end of the computation.

Lemma H.4. Let sec0 be the policy used to initialize the monitor and ` ∈ L be a security label such that cl(auth(sec0,
atk)) v `. Whenever 〈∆, c,m, 〈s, ctx 〉〉 τ u 〈∆′, c′,m′, 〈s′, ctx ′〉〉, if ∆(pcu) 6v `, then the following conditions hold:
• for all x ∈ Var , ∆(x) v ` iff ∆′(x) v `,
• for all q ∈ RC pred , ∆(q) v ` iff ∆′(q) v `,
• ∆ ≈L ∆′, where L = {x ∈ Var | ∆(x) v `} ∪ {q ∈ RC pred | ∆(q) v `}.

Proof. Let sec0 be the policy used to initialize the monitor, ` ∈ L be a security label such that cl(auth(sec0, atk)) v `,
u ∈ UID be a user, and 〈∆, c,m, 〈s, ctx 〉〉, 〈∆′, c′,m′, 〈s′, ctx ′〉〉 be two local configurations such that (1) 〈∆, c,m, 〈s,
ctx 〉〉 τ u 〈∆′, c′,m′, 〈s′, ctx ′〉〉, and (2) ∆(pcu) 6v `. We prove our claim by structural induction on the rules defining
 u. In the following, we consider only those rules that modify the monitor state ∆ for the identifiers in Var ∪RC pred .
For the other rules, the claim holds trivially.
Base Case. There are several cases depending on the applied rule:

1) Rule F-ASSIGN. From the rule, it follows that (1) ∆′ = ∆[x 7→ ∆(pcu) t∆(e)], and (2) nsu(x, pcu). Assume,
for contradiction’s sake, that our claim does not hold. From ∆′ = ∆[x 7→ ∆(pcu) t∆(e)], there are three cases:
• ∆(x) v ` and ∆′(x) 6v `. From ∆(x) v `, nsu(x, pcu), cl(auth(sec0, atk)) v `, and Proposition H.4, it follows

that ∆(pcu) v `. This contradicts our assumption that ∆(pcu) 6v `.
• ∆(x) 6v ` and ∆′(x) v `. From ∆′(x) = ∆(pcu) t∆(e) and ∆′(x) v `, it follows that ∆(pcu) t∆(e) v `.

From this, it follows that ∆(pcu) v `. This contradicts our assumption that ∆(pcu) 6v `.
• ∆(x) v `, ∆′(x) v `, and ∆(x) 6= ∆′(x). From ∆(x) v `, nsu(x, pcu), cl(auth(sec0, atk)) v `, and

Proposition H.4, it follows that ∆(pcu) v `. This contradicts our assumption that ∆(pcu) 6v `.
2) Rule F-SELECT. From the rule, it follows that ∆′ = ∆[x 7→ ∆(pcu) t `ϕ], where `ϕ = LQ(∆, SELECT ϕ) t⊔

v∈vars(ϕ) ∆(v), and nsu(x, pcu). Assume, for contradiction’s sake, that our claim does not hold. From ∆′ =
∆[x 7→ ∆(pcu) t `ϕ], there are three cases:
• ∆(x) v ` and ∆′(x) 6v `. From ∆(x) v `, nsu(x, pcu), cl(auth(sec0, atk)) v `, and Proposition H.4, it follows

that ∆(pcu) v `. This contradicts our assumption that ∆(pcu) 6v `.
• ∆(x) 6v ` and ∆′(x) v `. From ∆′(x) = ∆(pcu) t `ϕ and ∆′(x) v `, it follows that ∆(pcu) t `ϕ v `. From

this, it follows that ∆(pcu) v `. This contradicts our assumption that ∆(pcu) 6v `.
• ∆(x) v `, ∆′(x) v `, and ∆(x) 6= ∆′(x). From ∆(x) v `, nsu(x, pcu), cl(auth(sec0, atk)) v `, and

Proposition H.4, it follows that ∆(pcu) v `. This contradicts our assumption that ∆(pcu) 6v `.
3) Rule F-UPDATEDATABASEOK. From the rule, it follows that (1) ∆′ = ∆[T (v) 7→ ∆(pcu)t `e, x 7→ ∆(pcu)t `e],

where `e =
⊔

1≤i≤|T |∆(ei), (2) nsu(T (v), pcu), and (3) nsu(x, pcu). Assume, for contradiction’s sake, that our
claim does not hold. From ∆′ = ∆[T (v) 7→ ∆(pcu) t `e, x 7→ ∆(pcu) t `e], there are six cases:
• ∆(x) v ` and ∆′(x) 6v `. From ∆(x) v `, nsu(x, pcu), cl(auth(sec0, atk)) v `, and Proposition H.4, it follows

that ∆(pcu) v `. This contradicts our assumption that ∆(pcu) 6v `.
• ∆(x) 6v ` and ∆′(x) v `. From ∆′(x) = ∆(pcu) t `e and ∆′(x) v `, it follows that ∆(pcu) v `. This

contradicts our assumption that ∆(pcu) 6v `.
• ∆(x) v `, ∆′(x) v `, and ∆(x) 6= ∆′(x). From ∆(x) v `, nsu(x, pcu), cl(auth(sec0, atk)) v `, and

Proposition H.4, it follows that ∆(pcu) v `. This contradicts our assumption that ∆(pcu) 6v `.
• ∆(T (v)) v ` and ∆′(T (v)) 6v `. From the rule, nsu(T (v), pcu). From this, ∆(T (v)) v `, cl(auth(sec0,

atk)) v `, and Proposition H.4, it follows that ∆(pcu) v `. This contradicts our assumption that ∆(pcu) 6v `.
• ∆(T (v)) 6v ` and ∆′(T (v)) v `. From ∆′(T (v)) = ∆(pcu) t `e and ∆′(T (v)) v `, it follows that ∆(pcu) v `.

This contradicts our assumption that ∆(pcu) 6v `.
• ∆(T (v)) v `, ∆′(T (v)) v `, and ∆(T (v)) 6= ∆′(T (v)). From ∆′(T (v)) v ` and ∆′(T (v)) = ∆(pcu) t `e, it

follows that ∆(pcu) v `. This contradicts our assumption that ∆(pcu) 6v `.
4) Rule F-UPDATECONFIGURATION-OK. The proof of this case is similar to that of F-SELECT.

Induction Step. The proof for the induction step directly follows from the induction hypothesis (since the rules do not
further modify the memory and the database).

Lemma H.5 states that whenever ∆(pcu) 6v ` and cl(auth(sec0, atk)) v ` then there are no changes to the database
configuration.

Lemma H.5. Let sec0 be the policy used to initialize the monitor and ` ∈ L be a security label. Whenever 〈∆, c,m, 〈s,
ctx 〉〉 τ u 〈∆′, c′,m′, 〈s′, ctx ′〉〉, if ∆(pcu) 6v ` and cl(auth(sec0, atk)) v `, then s ≡cfg s′.

Proof. Let sec0 be the policy used to initialize the monitor and ` ∈ L be a security label. Furthermore, let u ∈ UID be a
user and 〈∆, c,m, 〈s, ctx 〉〉, 〈∆′, c′,m′, 〈s′, ctx ′〉〉 be two local configurations such that (1) 〈∆, c,m, 〈s, ctx 〉〉 τ u 〈∆′,
c′,m′, 〈s′, ctx ′〉〉, (2) ∆(pcu) 6v `, and (3) cl(auth(sec0, atk)) v `. We now show, by structural induction on the rules
defining u, that s ≡cfg s′. In the following, we consider only those rules that modify the database configuration. For
the other rules, the claim holds trivially (since the configuration is the same in s and s′).
Base Case. There only interesting case is the rule F-UPDATECONFIGURATION-OK. From the rule, it follows that
∆(pcu) v cl(auth(sec0, atk)). From this and cl(auth(sec0, atk)) v `, it follows that ∆(pcu) v `, leading to a
contradiction.
Induction Step. The proof of the induction step follows from the induction hypothesis.

Lemma H.6 states that, under appropriate conditions, executing the same command on two `-equivalent states
produces outputs that are indistinguishable for the attacker atk .

Lemma H.6. Let sec0 be the policy used to initialize the monitor, 〈∆1, c1,m1, 〈s1, ctx 1〉〉, 〈∆′1, c′1,m′1, 〈s′1, ctx ′1〉〉,
〈∆2, c2,m2, 〈s2, ctx 2〉〉, and 〈∆′2, c′2,m′2, 〈s′2, ctx ′2〉〉 be four local configurations, and ` ∈ L be a label. If the following
conditions hold:

1) s1 ≡cfg s2,
2) 〈∆1, c1,m1, 〈s1, ctx 1〉〉 ≈` 〈∆2, c2,m2, 〈s2, ctx 2〉〉,
3) LU (s1, atk) v ` and LU (s2, atk) v `,
4) c1 = c2,
5) 〈∆1, c1,m1, 〈s1, ctx 1〉〉

τ1
u 〈∆′1, c′1,m′1, 〈s′1, ctx ′1〉〉,

6) 〈∆2, c2,m2, 〈s2, ctx 2〉〉
τ2
u 〈∆′2, c′2,m′2, 〈s′2, ctx ′2〉〉,

then τ1�atk = τ2�atk .

Proof. Let sec0 be the policy used to initialize the monitor, 〈∆1, c1,m1, 〈s1, ctx 1〉〉, 〈∆′1, c′1,m′1, 〈s′1, ctx ′1〉〉, 〈∆2, c2,
m2, 〈s2, ctx 2〉〉, and 〈∆′2, c′2,m′2, 〈s′2, ctx ′2〉〉 be four local configurations, and ` ∈ L be a label such that the following
conditions hold: (1) s1 ≡cfg s2, (2) 〈∆1, c1,m1, 〈s1, ctx 1〉〉 ≈` 〈∆2, c2,m2, 〈s2, ctx 2〉〉, (3) LU (s1, atk) v ` and LU (s2,

atk) v `, (4) c1 = c2, (5) 〈∆1, c1,m1, 〈s1, ctx 1〉〉
τ1
u 〈∆′1, c′1,m′1, 〈s′1, ctx ′1〉〉, (6) 〈∆2, c2,m2, 〈s2, ctx 2〉〉

τ2
u 〈∆′2,

c′2,m
′
2, 〈s′2, ctx ′2〉〉, We prove our claim by induction on the rules defining u. Without loss of generality, we focus

only on the rules producing observations. The claim trivially holds for all rules that do not produce observations.

Base Case. There are a number of cases depending on the rule applied to derive 〈∆1, c1,m1, 〈s1, ctx 1〉〉
τ1
u 〈∆′1, c′1,

m′1, 〈s′1, ctx ′1〉〉.
• Rule F-OUT. From the rule, it follows that c1 = out(u′, e). From this and (4), it follows that c2 = out(u′, e).

In the following, we assume that u′ = atk . If u′ = public, then the proof is identical, whereas if u′ /∈ {atk ,

public}, then the proof is trivial. From 〈∆1, c1,m1, 〈s1, ctx 1〉〉
τ1
u 〈∆′1, c′1,m′1, 〈s′1, ctx ′1〉〉 and c1 = out(atk , e),

it follows that ∆1 = ∆′1, m1 = m′1, τ1 = 〈u′, JeK(m1)〉, c′1 = ε, and 〈s1, ctx 1〉 = 〈s′1, ctx ′1〉. From 〈∆2, c2,m2,

〈s2, ctx 2〉〉
τ2
u 〈∆′2, c′2,m′2, 〈s′2, ctx ′2〉〉, c2 = out(u′, e), and the F-OUT rule, it follows that ∆2 = ∆′2, m2 = m′2,

τ2 = 〈u′, JeK(m2)〉, c′2 = ε, and 〈s2, ctx 2〉 = 〈s′2, ctx ′2〉. From the rule, it also follows that ∆1(e) t∆1(pcu) v
LU (s1, atk) and ∆2(e) t∆2(pcu) v LU (s2, atk). From this, it follows that

∧
y∈free(e) ∆1(y) v LU (s1, atk) and∧

y∈free(e) ∆2(y) v LU (s2, atk). From this, (2), and (3), it follows that
∧
y∈free(e)m1(y) = m2(y). From this, it

follows that JeK(m1) = JeK(m2). From this, τ1 = 〈u′, JeK(m1)〉, and τ2 = 〈u′, JeK(m2)〉, it follows that τ1 = τ2.
Therefore, τ1�atk = τ2�atk .

• Rule F-UPDATECONFIGURATIONOK. From the rule, it follows that c1 = ‖x← q‖. From this and (4), it follows that
c2 = ‖x← q‖. From 〈∆1, c1,m1, 〈s1, ctx 1〉〉

τ1
u 〈∆′1, c′1,m′1, 〈s′1, ctx ′1〉〉 and c1 = ‖x← q‖, it follows that ∆′1 =

∆1[x 7→ ∆1(pcu) t
⊔
v∈vars(q) ∆1(v)], m′1 = m1[x 7→ r′], τ1 = 〈public, q[v1 7→ Jv1K(m1), . . . , vn 7→ JvnK(m1)]〉,

c′1 = ε, and 〈s1, ctx 1〉 = 〈s′1, ctx ′1〉. From 〈∆2, c2,m2, 〈s2, ctx 2〉〉
τ2
u 〈∆′2, c′2,m′2, 〈s′2, ctx ′2〉〉, c2 = out(u′,

e), and the F-UPDATECONFIGURATIONOK rule, it follows that ∆′2 = ∆2[x 7→ ∆2(pcu) t
⊔
v∈vars(q) ∆2(v)],

m′2 = m2[x 7→ r′′], τ2 = 〈public, q[v1 7→ Jv1K(m2), . . . , vn 7→ JvnK(m2)]〉, c′2 = ε, and 〈s2, ctx 2〉 = 〈s′2, ctx ′2〉.
From the rule, it also follows that

⊔
v∈vars(q) ∆1(v) v cl(auth(sec0, atk)) and

⊔
v∈vars(q) ∆2(v) v cl(auth(sec0,

atk)). Hence, cl(auth(sec0, atk)) v LU (s1, atk), and cl(auth(sec0, atk)) v LU (s2, atk). From this, (2), and (3),
it follows that

∧
v∈vars(q)m1(v) = m2(v). From this, q[v1 7→ Jv1K(m1), . . . , vn 7→ JvnK(m1)] = q[v1 7→ Jv1K(m2),

. . . , vn 7→ JvnK(m2)]. Hence, τ1 = τ2. Therefore, τ1�atk = τ2�atk .
Induction Step. The proof of the induction step directly follows from the induction hypothesis.

Lemma H.7 states that, under appropriate conditions, executing the same command on two `-equivalent states
modifies the database configuration in the same way.

Lemma H.7. Let sec0 be the policy used to initialize the monitor, 〈∆1, c1,m1, 〈s1, ctx 1〉〉, 〈∆′1, c′1,m′1, 〈s′1, ctx ′1〉〉,
〈∆2, c2,m2, 〈s2, ctx 2〉〉, and 〈∆′2, c′2,m′2, 〈s′2, ctx ′2〉〉 be four local configurations, and ` ∈ L be a label. If the following
conditions hold:

1) s1 ≡cfg s2,
2) 〈∆1, c1,m1, 〈s1, ctx 1〉〉 ≈` 〈∆2, c2,m2, 〈s2, ctx 2〉〉,
3) c1 = c2,
4) 〈∆1, c1,m1, 〈s1, ctx 1〉〉

τ1
u 〈∆′1, c′1,m′1, 〈s′1, ctx ′1〉〉,

5) 〈∆2, c2,m2, 〈s2, ctx 2〉〉
τ2
u 〈∆′2, c′2,m′2, 〈s′2, ctx ′2〉〉,

6) cl(auth(sec0, atk)) v `,
then s′1 ≡cfg s′2.

Proof. Let sec0 be the policy used to initialize the monitor, 〈∆1, c1,m1, 〈s1, ctx 1〉〉, 〈∆′1, c′1,m′1, 〈s′1, ctx ′1〉〉, 〈∆2, c2,
m2, 〈s2, ctx 2〉〉, and 〈∆′2, c′2,m′2, 〈s′2, ctx ′2〉〉 be four local configurations, and ` ∈ L be a label such that the following
conditions hold: 1) s1 ≡cfg s2, 2) 〈∆1, c1,m1, 〈s1, ctx 1〉〉 ≈` 〈∆2, c2,m2, 〈s2, ctx 2〉〉, 3) c1 = c2, 4) 〈∆1, c1,m1, 〈s1,

ctx 1〉〉
τ1
u 〈∆′1, c′1,m′1, 〈s′1, ctx ′1〉〉, 5) 〈∆2, c2,m2, 〈s2, ctx 2〉〉

τ2
u 〈∆′2, c′2,m′2, 〈s′2, ctx ′2〉〉, 6) cl(auth(sec0, atk)) v `.

We prove our claim by induction on the rules defining u. In the following, we focus only on rules that modify the
database configuration. For rules that do not modify the database configuration, the claim directly follows from s1 ≡cfg s2.
Base Case. The only interesting case is the rule F-UPDATECONFIGURATIONOK. From the rule, it follows that
c1 = ‖x← q‖, where q is a configuration command. From this and (3), it follows that c2 = ‖x← q‖. From 〈∆1, c1,m1,

〈s1, ctx 1〉〉
τ1
u 〈∆′1, c′1,m′1, 〈s′1, ctx ′1〉〉 and c1 = ‖x← q‖, it follows that ∆′1 = ∆1[x 7→ ∆1(pcu)t

⊔
v∈vars(q) ∆1(v)],

m′1 = m1[x 7→ r1], vars(q) = {v1, . . . , vn}, q′1 = q[v1 7→ Jv1K(m1), . . . , vn 7→ JvnK(m)], τ1 = 〈public, q′1〉, c′1 = ε,
and Jq′1K(〈s1, ctx 1〉) = 〈〈s′1, ctx ′1〉, r1, ε〉. Similarly, from 〈∆2, c2,m2, 〈s2, ctx 2〉〉

τ2
u 〈∆′2, c′2,m′2, 〈s′2, ctx ′2〉〉 and

c2 = ‖x ← q‖, it follows that ∆′2 = ∆2[x 7→ ∆2(pcu) t
⊔
v∈vars(q) ∆2(v)], m′2 = m2[x 7→ r2], vars(q) = {v1, . . . ,

vn}, q′2 = q[v1 7→ Jv1K(m1), . . . , vn 7→ JvnK(m)], τ2 = 〈public, q′2〉, c′2 = ε, and Jq′2K(〈s2, ctx 2〉) = 〈〈s′2, ctx ′2〉, r2, ε〉.
From the rule, it follows that

⊔
v∈vars(q) ∆1(v) v cl(auth(sec0, atk)). From this, it follows that

∧
v∈vars(q) ∆1(v) v

cl(auth(sec0, atk)). From this and (6), it follows that
∧
v∈vars(q) ∆1(v) v `. From this and (2), it follows that∧

v∈vars(q)m1(v) = m2(v). From this, q′1 = q′2. From this, (1), Jq′1K(〈s1, ctx 1〉) = 〈〈s′1, ctx ′1〉, r1, ε〉, and Jq′2K(〈s2,

ctx 2〉) = 〈〈s′2, ctx ′2〉, r2, ε〉, it directly follows that s′1 ≡cfg s′2 (since the initial configuration is the same and the database
semantics is deterministic).
Induction Step. The proof of the induction step directly follows from the induction hypothesis.

Lemma H.8 states that, given a label `, whenever we are in a low context (i.e., ∆(pcu) v `), then executing the
same command on two `-equivalent states produces to `-equivalent states.

Lemma H.8. Let sec0 be the policy used to initialize the monitor, 〈∆1, c1,m1, 〈s1, ctx 1〉〉, 〈∆′1, c′1,m′1, 〈s′1, ctx ′1〉〉,
〈∆2, c2,m2, 〈s2, ctx 2〉〉, and 〈∆′2, c′2,m′2, 〈s′2, ctx ′2〉〉 be four local configurations, and ` ∈ L be a label. If the following
conditions hold:

1) s1 ≡cfg s2,
2) 〈∆1, c1,m1, 〈s1, ctx 1〉〉 ≈` 〈∆2, c2,m2, 〈s2, ctx 2〉〉,
3) ∆1(pcu) v ` and ∆2(pcu) v `,
4) c1 = c2,
5) 〈∆1, c1,m1, 〈s1, ctx 1〉〉

τ1
u 〈∆′1, c′1,m′1, 〈s′1, ctx ′1〉〉,

6) 〈∆2, c2,m2, 〈s2, ctx 2〉〉
τ2
u 〈∆′2, c′2,m′2, 〈s′2, ctx ′2〉〉,

then 〈∆′1, c′1,m′1, 〈s′1, ctx ′1〉〉 ≈` 〈∆′2, c′2,m′2, 〈s′2, ctx ′2〉〉.

Proof. Let sec0 be the policy used to initialize the monitor, 〈∆1, c1,m1, 〈s1, ctx 1〉〉, 〈∆′1, c′1,m′1, 〈s′1, ctx ′1〉〉, 〈∆2, c2,
m2, 〈s2, ctx 2〉〉, and 〈∆′2, c′2,m′2, 〈s′2, ctx ′2〉〉 be four local configurations, and ` ∈ L be a label such that the following
conditions hold:

1) s1 ≡cfg s2,
2) 〈∆1, c1,m1, 〈s1, ctx 1〉〉 ≈` 〈∆2, c2,m2, 〈s2, ctx 2〉〉,
3) ∆1(pcu) v ` and ∆2(pcu) v `,
4) c1 = c2,
5) 〈∆1, c1,m1, 〈s1, ctx 1〉〉

τ1
u 〈∆′1, c′1,m′1, 〈s′1, ctx ′1〉〉,

6) 〈∆2, c2,m2, 〈s2, ctx 2〉〉
τ2
u 〈∆′2, c′2,m′2, 〈s′2, ctx ′2〉〉.

We prove our claim by induction on the rules defining u. In the following, we focus only on those rules that modify
the monitor state, the database, or the memory. For the other rules, the claim directly follows from (2).

Base Case. There are a number of cases depending on the rule applied to derive 〈∆1, c1,m1, 〈s1, ctx 1〉〉
τ1
u 〈∆′1, c′1,

m′1, 〈s′1, ctx ′1〉〉.
• Rule F-UPDATELABELS. From the rule, it follows that c1 = set pc to l. From this and (4), it follows that
c2 = set pc to l. From 〈∆1, c1,m1, 〈s1, ctx 1〉〉

τ1
u 〈∆′1, c′1,m′1, 〈s′1, ctx ′1〉〉 and c1 = set pc to l, it follows that

∆′1 = ∆1[pcu 7→ l], m1 = m′1, τ1 = ε, c′1 = ε, and 〈s1, ctx 1〉 = 〈s′1, ctx ′1〉. Similarly, from 〈∆2, c2,m2, 〈s2,

ctx 2〉〉
τ2
u 〈∆′2, c′2,m′2, 〈s′2, ctx ′2〉〉 and c2 = set pc to l, it follows that ∆′2 = ∆2[pcu 7→ l], m2 = m′2, τ2 = ε, c′2 =

ε, and 〈s2, ctx 2〉 = 〈s′2, ctx ′2〉. Assume, for contradiction’s sake, that 〈∆′1, c′1,m′1, 〈s′1, ctx ′1〉〉 6≈` 〈∆′2, c′2,m′2, 〈s′2,
ctx ′2〉〉. From this, m1 = m′1, m2 = m′2, 〈s1, ctx 1〉 = 〈s′1, ctx ′1〉, 〈s2, ctx 2〉 = 〈s′2, ctx ′2〉, and (2), there are two cases:
– ∆′1(pcu) v ` and ∆′2(pcu) 6v ` (or vice versa). From ∆′1 = ∆1[pcu 7→ l] and ∆′2 = ∆2[pcu 7→ l], it follows

that ∆′1(pcu) = ∆′2(pcu). From this and ∆′1(pcu) v `, it follows that ∆′2(pcu) v `, leading to a contradiction.
– ∆′1(pcu) v `, ∆′2(pcu) v `, and ∆′1(pcu) 6= ∆′2(pcu). From ∆′1 = ∆1[pcu 7→ l] and ∆′2 = ∆2[pcu 7→ l], it

follows that ∆′1(pcu) = ∆′2(pcu), leading to a contradiction.
• Rule F-ASSIGN. From the rule, it follows that c1 = x := e. From this and (4), it follows that c2 = x := e. From 〈∆1,

c1,m1, 〈s1, ctx 1〉〉
τ1
u 〈∆′1, c′1,m′1, 〈s′1, ctx ′1〉〉 and c1 = x := e, it follows that ∆′1 = ∆1[x 7→ ∆1(pcu) t∆1(e)],

m′1 = m1[x 7→ JeK(m1)], τ1 = ε, c′1 = ε, and 〈s1, ctx 1〉 = 〈s′1, ctx ′1〉. Similarly, from 〈∆2, c2,m2, 〈s2, ctx 2〉〉
τ2
u

〈∆′2, c′2,m′2, 〈s′2, ctx ′2〉〉 and c2 = x := e, it follows that ∆′2 = ∆2[x 7→ ∆2(pcu)t∆2(e)], m′2 = m2[x 7→ JeK(m2)],
τ2 = ε, c′2 = ε, and 〈s2, ctx 2〉 = 〈s′2, ctx ′2〉. Assume, for contradiction’s sake, that 〈∆′1, c′1,m′1, 〈s′1, ctx ′1〉〉 6≈` 〈∆′2,
c′2,m

′
2, 〈s′2, ctx ′2〉〉. From this, 〈s1, ctx 1〉 = 〈s′1, ctx ′1〉, 〈s2, ctx 2〉 = 〈s′2, ctx ′2〉, and (2), there are three cases:

– ∆′1(x) v ` and ∆′2(x) 6v ` (or vice versa). From the rule, it follows that ∆′1 = ∆1[x 7→ ∆1(pcu) t ∆1(e)]
and ∆′2 = ∆2[x 7→ ∆2(pcu) t∆2(e)]. From this and ∆′1(x) v `, it follows that ∆1(pcu) t∆1(e) v `. From
this, ∆1(pcu) v ` and

∧
y∈free(e) ∆1(y) v `. From ∆1(pcu) v ` and (2), it follows that ∆1(pcu) = ∆2(pcu).

From
∧
y∈free(e) ∆1(y) v ` and (2), it follows that

∧
y∈free(e) ∆1(y) = ∆2(y). From ∆1(pcu) = ∆2(pcu) and∧

y∈free(e) ∆1(y) = ∆2(y), it follows that ∆1(pcu) t ∆1(e) = ∆2(pcu) t ∆2(e). From this, ∆′1 = ∆1[x 7→
∆1(pcu) t ∆1(e)], and ∆′2 = ∆2[x 7→ ∆2(pcu) t ∆2(e)], it follows that ∆′2(x) = ∆′1(x). From this and
∆′1(x) v `, it follows that ∆′2(x) v `, leading to a contradiction.

– ∆′1(x) v `, ∆′2(x) v `, and ∆′1(x) 6= ∆′2(x). We have already shown above that from ∆′1(x) v ` and (2), it
follows ∆′2(x) = ∆′1(x), which contradicts ∆′1(x) 6= ∆′2(x).

– ∆′1(x) v `, ∆′2(x) v `, and m′1(x) 6= m′2(x). From the rule, it follows that ∆′1 = ∆1[x 7→ ∆1(pcu)t∆1(e)] and
∆′2 = ∆2[x 7→ ∆2(pcu)t∆2(e)]. From this and ∆′1(x) v `, it follows that

∧
y∈free(e) ∆1(y) v `. From this and

(2), it follows that
∧
y∈free(e) ∆2(y) v `. From

∧
y∈free(e) ∆1(y) v `,

∧
y∈free(e) ∆2(y) v `, and (2), it follows that∧

y∈free(e)m1(y) = m2(y). From this, it follows that JeK(m1) = JeK(m2). From this, m′1 = m1[x 7→ JeK(m1)],
and m′2 = m2[x 7→ JeK(m2)], it follows that m′1(x) = m′2(x), leading to a contradiction.

• Rule F-IFTRUE. From the rule, it follows that c1 = if e then c′ else c′′. From this and (4), it follows that
c2 = if e then c′ else c′′. From 〈∆1, c1,m1, 〈s1, ctx 1〉〉

τ1
u 〈∆′1, c′1,m′1, 〈s′1, ctx ′1〉〉 and c1 = if e then c′ else c′′,

it follows that ∆′1 = ∆1[pcu 7→ ∆1(pcu) t ∆1(e)], m1 = m′1, τ1 = ε, c′1 = c′ ; set pc to ∆1(pcu), and 〈s1,
ctx 1〉 = 〈s′1, ctx ′1〉. From the rule, it also follows that JeK(m1) = tt. There are two cases:
– JeK(m2) = tt. From this, 〈∆2, c2,m2, 〈s2, ctx 2〉〉

τ2
u 〈∆′2, c′2,m′2, 〈s′2, ctx ′2〉〉 and c2 = if e then c′ else c′′, it

follows that ∆′2 = ∆2[pcu 7→ ∆2(pcu) t ∆2(e)], m2 = m′2, τ2 = ε, c′2 = c′ ; set pc to ∆2(pcu), and 〈s2,
ctx 2〉 = 〈s′2, ctx ′2〉. Assume, for contradiction’s sake, that 〈∆′1, c′1,m′1, 〈s′1, ctx ′1〉〉 6≈` 〈∆′2, c′2,m′2, 〈s′2, ctx ′2〉〉.
From this, m1 = m′1, m2 = m′2, 〈s1, ctx 1〉 = 〈s′1, ctx ′1〉, 〈s2, ctx 2〉 = 〈s′2, ctx ′2〉, and (2), there are two cases:
∗ ∆′1(pcu) v ` and ∆′2(pcu) 6v ` (or vice versa). From the rule, it follows that ∆′1 = ∆1[pcu 7→ ∆1(pcu) t

∆1(e)] and ∆′2 = ∆2[pcu 7→ ∆2(pcu) t ∆2(e)]. From this and ∆′1(pcu) v `, it follows that ∆1(pcu) t
∆1(e) v `. From this, ∆1(pcu) v ` and

∧
y∈free(e) ∆1(y) v `. From ∆1(pcu) v ` and (2), it follows that

∆1(pcu) = ∆2(pcu). From
∧
y∈free(e) ∆1(y) v ` and (2), it follows that

∧
y∈free(e) ∆1(y) = ∆2(y). From

∆1(pcu) = ∆2(pcu) and
∧
y∈free(e) ∆1(y) = ∆2(y), it follows that ∆1(pcu) t∆1(e) = ∆2(pcu) t∆2(e).

From this, ∆′1 = ∆1[pcu 7→ ∆1(pcu) t ∆1(e)], and ∆′2 = ∆2[pcu 7→ ∆2(pcu) t ∆2(e)], it follows that
∆′2(x) = ∆′1(x). From this and ∆′1(pcu) v `, it follows that ∆′2(pcu) v `, leading to a contradiction.
∗ ∆′1(pcu) v `, ∆′2(pcu) v `, and ∆′1(pcu) 6= ∆′2(pcu). We have already shown above that from ∆′1(pcu) v `

and (2), it follows ∆′2(pcu) = ∆′1(pcu), which contradicts ∆′1(pcu) 6= ∆′2(pcu).
– JeK(m2) = ff. From this, 〈∆2, c2,m2, 〈s2, ctx 2〉〉

τ2
u 〈∆′2, c′2,m′2, 〈s′2, ctx ′2〉〉 and c2 = if e then c′ else c′′, it

follows that ∆′2 = ∆2[pcu 7→ ∆2(pcu) t ∆2(e)], m2 = m′2, τ2 = ε, c′2 = c′′ ; set pc to ∆2(pcu), and 〈s2,
ctx 2〉 = 〈s′2, ctx ′2〉. The rest of the proof is similar to the case above.

• Rule F-IFFALSE. The proof of this case is similar to that of F-IFTRUE.
• Rule F-WHILETRUE. The proof of this case is similar to that of F-IFTRUE.
• Rule F-WHILEFALSE. The proof of this case is similar to that of F-IFTRUE.
• Rule F-SELECT. From the rule, it follows that c1 = ‖x ← SELECT ϕ‖. From this and (4), it follows that
c2 = ‖x← SELECT ϕ‖. From 〈∆1, c1,m1, 〈s1, ctx 1〉〉

τ1
u 〈∆′1, c′1,m′1, 〈s′1, ctx ′1〉〉 and c1 = ‖x← q‖, it follows

that ∆′1 = ∆1[x 7→ ∆1(pcu) t LQ(∆1, q1) t
⊔
v∈free(ϕ) ∆1(v)], m′1 = m1[x 7→ r1], τ1 = ε, c′1 = ε, where

free(ϕ) = {v1, . . . , vn}, q1 = SELECT ϕ[v1 7→ Jv1K(m1), . . . , vn 7→ JvnK(m1),], and Jq1K(〈s1, ctx 1〉) = 〈〈s′1,
ctx ′1〉, r1, ε〉. From 〈∆2, c2,m2, 〈s2, ctx 2〉〉

τ2
u 〈∆′2, c′2,m′2, 〈s′2, ctx ′2〉〉 and c2 = ‖x ← q‖, it follows that ∆′2 =

∆2[x 7→ ∆2(pcu)tLQ(∆2, q2)t
⊔
v∈free(ϕ) ∆2(v)], m′2 = m2[x 7→ r2], τ2 = ε, c′2 = ε, where free(ϕ) = {v1, . . . ,

vn}, q2 = SELECT ϕ[v1 7→ Jv1K(m2), . . . , vn 7→ JvnK(m2),], and Jq2K(〈s2, ctx 2〉) = 〈〈s′2, ctx ′2〉, r2, ε〉. Assume, for
contradiction’s sake, that 〈∆′1, c′1,m′1, 〈s′1, ctx ′1〉〉 6≈` 〈∆′2, c′2,m′2, 〈s′2, ctx ′2〉〉. From this and (2), there are three cases:
– ∆′1(x) v ` and ∆′2(x) 6v ` (or vice versa). From ∆′1(x) v ` and ∆′1 = ∆1[x 7→ ∆1(pcu) t LQ(∆1, q1) t⊔

v∈free(ϕ) ∆1(v)], it follows that ∆1(pcu) t LQ(∆1, q1) t
⊔
v∈free(ϕ) ∆1(v) v `. From this, it follows that

∆1(pcu) v `, LQ(∆1, q1) v `, and
∧
v∈free(ϕ) ∆1(v) v `. From ∆1(pcu) v ` and (2), it follows that ∆2(pcu) v

`. From
∧
v∈free(ϕ) ∆1(v) v ` and (2), it follows that

∧
v∈free(ϕ) ∆2(v) v ` and

∧
v∈free(ϕ)m1(v) = m2(v). From∧

v∈free(ϕ)m1(v) = m2(v), it follows that q1 = q2. From q1 = q2, LQ(∆1, q1) v `, (2), and Proposition H.2,
it follows that LQ(∆2, q2) v `. From ∆2(pcu) v `, LQ(∆2, q2) v `,

∧
v∈free(ϕ) ∆2(v) v `, and point (3) in

the notion of disclosure order, it follows that ∆2(pcu) t LQ(∆2, q2) t
⊔
v∈free(ϕ) ∆2(v) v `. From this and

∆′2 = ∆2[x 7→ ∆2(pcu)tLQ(∆2, q2)t
⊔
v∈free(ϕ) ∆2(v)], it follows that ∆′2(x) v `, leading to a contradiction.

– ∆′1(x) v `, ∆′1(x) v `, and ∆′1(x) 6= ∆′2(x). From ∆′1(x) v ` and ∆′1 = ∆1[x 7→ ∆1(pcu) t LQ(∆1,
q1) t

⊔
v∈free(ϕ) ∆1(v)], it follows that ∆1(pcu) t LQ(∆1, q1) t

⊔
v∈free(ϕ) ∆1(v) v `. From this, it follows

that ∆1(pcu) v `, LQ(∆1, q1) v `, and
∧
v∈free(ϕ) ∆1(v) v `. From ∆1(pcu) v ` and (2), it follows

that ∆2(pcu) = ∆1(pcu). From
∧
v∈free(ϕ) ∆1(v) v ` and (2), it follows that

∧
v∈free(ϕ) ∆2(v) = ∆1(v)

and
∧
v∈free(ϕ)m1(v) = m2(v). From

∧
v∈free(ϕ)m1(v) = m2(v), it follows that q1 = q2. From LQ(∆1,

q1) v `, it follows that
⊔
Q∈suppD,Γ(q1)

⊔
q′∈Q ∆1(q′) v `. From this,

∧
Q∈suppD,Γ(q1)

∧
q′∈Q ∆1(q′) v `.

From this and (2), it follows that
∧
Q∈suppD,Γ(q1)

∧
q′∈Q ∆1(q′) = ∆2(q′). From this, it follows that∧

Q∈suppD,Γ(q1)

∧
q′∈Q ∆1(q′) =

∧
Q∈suppD,Γ(q1)

∧
q′∈Q ∆2(q′). From this and q1 = q2, it follows that∧

Q∈suppD,Γ(q1)

∧
q′∈Q ∆1(q′) =

∧
Q∈suppD,Γ(q2)

∧
q′∈Q ∆2(q′). From this, it follows that LQ(∆1, q1) = LQ(∆2,

q2). From ∆2(pcu) = ∆1(pcu),
∧
v∈free(ϕ) ∆2(v) = ∆1(v), LQ(∆1, q1) = LQ(∆2, q2), ∆′1 = ∆1[x 7→

∆1(pcu) t LQ(∆1, q1) t
⊔
v∈free(ϕ) ∆1(v)], and ∆′2 = ∆2[x 7→ ∆2(pcu) t LQ(∆2, q2) t

⊔
v∈free(ϕ) ∆2(v)], it

follows that ∆′1(x) = ∆′2(x), leading to a contradiction.
– ∆′1(x) v `, ∆′1(x) v `, and m′1(x) 6= m′2(x). From ∆′1(x) v ` and ∆′1 = ∆1[x 7→ ∆1(pcu) t LQ(∆1,

q1) t
⊔
v∈free(ϕ) ∆1(v)], it follows that ∆1(pcu) t LQ(∆1, q1) t

⊔
v∈free(ϕ) ∆1(v) v `. From this and (2), it

follows that
∧
v∈free(ϕ)m1(v) = m2(v). From this, it follows that q1 = q2. From ∆1(pcu) t LQ(∆1, q1) t⊔

v∈free(ϕ) ∆1(v) v `, it also follows that LQ(∆1, q1) v `. From this, q1 = q2, (2), and Proposition H.2, it follows
that LQ(∆2, q2) v `. From this, LQ(∆2, q2) v `, and (2), it follows that [q1]db1 = [q2]db2 , where db1 and db2 are
the database states in s1 and s2 respectively. From the database semantics, it follows that m′1(x) = r1 = [q1]db1 and
m′2(x) = r2 = [q2]db2 . From this and [db1]s1 = [db2]s2 , it follows that m′1(x) = m′2(x), leading to a contradiction.

• Rule F-UPDATEDATABASEOK. Without loss of generality, we assume that the query is an INSERT query. From
the rule, it follows that c1 = ‖x ← T ⊕ e‖. From this and (4), it follows that c2 = ‖x ← T ⊕ e‖. From
〈∆1, c1,m1, 〈s1, ctx 1〉〉

τ1
u 〈∆′1, c′1,m′1, 〈s′1, ctx ′1〉〉 and c1 = ‖x ← T ⊕ e‖, it follows that ∆′1 = ∆1[T (v1) 7→

∆1(pcu) t
⊔

1≤i≤n ∆1(ei), x 7→ ∆1(pcu) t
⊔

1≤i≤n ∆1(ei)], m′1 = m1[x 7→ r1], τ1 = ε, c′1 = ε, where e = (e1,
. . . , en), v1 = (Je1K(m1), . . . , JenK(m1)), q1 = T ⊕ v1, and Jq1K(〈s1, ctx 1〉) = 〈〈s′1, ctx ′1〉, r1, ε〉. From 〈∆2, c2,

m2, 〈s2, ctx 2〉〉
τ2
u 〈∆′2, c′2,m′2, 〈s′2, ctx ′2〉〉 and c2 = ‖x← T ⊕ e‖, it follows that ∆′2 = ∆2[T (v2) 7→ ∆2(pcu)t⊔

1≤i≤n ∆2(ei), x 7→ ∆2(pcu) t
⊔

1≤i≤n ∆2(ei)], m′2 = m2[x 7→ r2], τ2 = ε, c′2 = ε, where e = (e1, . . . , en),
v2 = (Je1K(m2), . . . , JenK(m2)), q2 = T⊕v2, and Jq2K(〈s2, ctx 2〉) = 〈〈s′2, ctx ′2〉, r2, ε〉. Assume, for contradiction’s
sake, that 〈∆′1, c′1,m′1, 〈s′1, ctx ′1〉〉 6≈` 〈∆′2, c′2,m′2, 〈s′2, ctx ′2〉〉. From this and (2), there are several cases:
1) ∆′1(x) v ` and ∆′2(x) 6v ` (or vice versa). From ∆′1(x) v ` and ∆′1(x) = ∆1(pcu) t

⊔
1≤i≤n ∆1(ei), it

follows that ∆1(pcu) t
⊔

1≤i≤n ∆1(ei) v `. From this, it follows that ∆1(pcu) v ` and
∧

1≤i≤n ∆1(ei) v `.
From ∆1(pcu) v ` and (2), it follows that ∆2(pcu) v `. From

∧
1≤i≤n ∆1(ei) v ` and (2), it follows

that
∧

1≤i≤n ∆2(ei) v `. From this, ∆2(pcu) t
⊔

1≤i≤n ∆2(ei) v `. From this and ∆′2(x) = ∆2(pcu) t⊔
1≤i≤n ∆2(ei), it follows that ∆′2(x) v `, leading to a contradiction.

2) ∆′1(x) v `, ∆′2(x) v `, and ∆1(x) 6= ∆2(x). From ∆′1(x) v ` and ∆′1(x) = ∆1(pcu) t
⊔

1≤i≤n ∆1(ei), it
follows that ∆1(pcu) t

⊔
1≤i≤n ∆1(ei) v `. From this, it follows that ∆1(pcu) v ` and

∧
1≤i≤n ∆1(ei) v `.

From ∆1(pcu) v ` and (2), it follows that ∆2(pcu) = ∆1(pcu). From
∧

1≤i≤n ∆1(ei) v ` and (2), it follows
that

∧
1≤i≤n ∆2(ei) = ∆1(ei). From this, ∆2(pcu) t

⊔
1≤i≤n ∆2(ei) = ∆1(pcu) t

⊔
1≤i≤n ∆1(ei). From this

and ∆′2(x) = ∆2(pcu) t
⊔

1≤i≤n ∆2(ei), it follows that ∆′2(x) = ∆′1(x), leading to a contradiction.
3) ∆′1(x) v `, ∆′2(x) v `, and m′1(x) 6= m′2(x). From the database semantics, both r1 and r2 are >. From this,
m′1(x) = r1, and m′2(x) = r2, it follows that m′1(x) = m′2(x), leading to a contradiction.

4) ∆′1(T (v1)) v ` and ∆′2(T (v1)) 6v `. From ∆′1(T (v1)) v ` and ∆′1(T (v1)) = ∆1(pcu) t
⊔

1≤i≤n ∆1(ei),
it follows that ∆1(pcu) t

⊔
1≤i≤n ∆1(ei) v `. From this, ∆1(pcu) v ` and

∧
1≤i≤n ∆1(ei) v `. From

this and (2), it follows that ∆2(pcu) v `,
∧

1≤i≤n ∆2(ei) v ` and
∧

1≤i≤nJeiK(m1) = JeiK(m2). From∧
1≤i≤nJeiK(m1) = JeiK(m2), it follows that v1 = v2. From ∆2(pcu) v ` and

∧
1≤i≤n ∆2(ei) v `, it follows

that ∆2(pcu)t
⊔

1≤i≤n ∆2(ei) v `. From this, ∆′2(T (v2)) = ∆2(pcu)t
⊔

1≤i≤n ∆2(ei), and v1 = v2, it follows
that ∆′2(T (v2)) v `, leading to a contradiction.

5) ∆′1(T (v2)) v ` and ∆′2(T (v2)) 6v `. There are two cases:
– v1 = v2. We already proved above (case 4) that this leads to a contradiction.
– v1 6= v2. From ∆′2(T (v2)) 6v ` and ∆′2(T (v2)) = ∆2(pcu) t

⊔
1≤i≤n ∆2(ei), it follows that ∆2(pcu) t⊔

1≤i≤n ∆2(ei) 6v `. From (3), it follows that ∆2(pcu) v `. From this and ∆2(pcu)t
⊔

1≤i≤n ∆2(ei) 6v `, it
follows that

⊔
1≤i≤n ∆2(ei) 6v `. From the rule, it follows that

⊔
1≤i≤n ∆2(ei) v ∆2(T (v2)). From this and⊔

1≤i≤n ∆2(ei) 6v `, it follows that ∆2(T (v2)) 6v `. From this and (2), it follows that ∆1(T (v2)) 6v `. From
∆′1 = ∆1[T (v1) 7→ ∆1(pcu)t

⊔
1≤i≤n ∆1(ei), x 7→ ∆1(pcu)t

⊔
1≤i≤n ∆1(ei)] and v1 6= v2, it follows that

∆′1(T (v2)) = ∆1(T (v2)). From this and ∆′1(T (v2)) v `, it follows that ∆1(T (v2)) v `. This contradicts
∆1(T (v2)) 6v `.

6) ∆′2(T (v2)) v ` and ∆′1(T (v2)) 6v `. The proof of this case is similar to that of case 4.
7) ∆′2(T (v1)) v ` and ∆′1(T (v1)) 6v `. The proof of this case is similar to that of case 5.
8) ∆′1(T (v1)) v `, ∆′2(T (v1)) v `, and ∆′1(T (v1)) 6= ∆′2(T (v1)). From ∆′1(T (v1)) v ` and ∆′1(T (v1)) =

∆1(pcu) t
⊔

1≤i≤n ∆1(ei), it follows that ∆1(pcu) t
⊔

1≤i≤n ∆1(ei) v `. From this, ∆1(pcu) v ` and∧
1≤i≤n ∆1(ei) v `. From this and (2), it follows that ∆2(pcu) = ∆1(pcu),

∧
1≤i≤n ∆2(ei) = ∆1(ei) and∧

1≤i≤nJeiK(m1) = JeiK(m2). From
∧

1≤i≤nJeiK(m1) = JeiK(m2), it follows that v1 = v2. From ∆2(pcu) =
∆1(pcu) and

∧
1≤i≤n ∆2(ei) = ∆1(ei), it follows that ∆1(pcu)t

⊔
1≤i≤n ∆1(ei) = ∆2(pcu)t

⊔
1≤i≤n ∆2(ei).

From this, v1 = v2, ∆′1(T (v1)) = ∆1(pcu) t
⊔

1≤i≤n ∆1(ei), ∆′2(T (v2)) = ∆2(pcu) t
⊔

1≤i≤n ∆2(ei), it
follows that ∆′2(T (v1)) = ∆1(T (v1)).

9) ∆′1(T (v2)) v `, ∆′2(T (v2)) v `, and ∆′1(T (v2)) 6= ∆′2(T (v2)). The proof is similar to that of case 8.
10) There is a query q such that LQ(∆′1, q) v `, LQ(∆′2, q) v `, and [q]db

′
1 6= [q]db

′
2 , where db′1 and db′2 are

the databases in s′1 and s′2 respectively. From LQ’s definition, it follows
⊔
Q∈suppD,Γ(q)

⊔
q′∈Q ∆′1(q′) v ` and⊔

Q∈suppD,Γ(q)

⊔
q′∈Q ∆′2(q′) v `. There are two cases:

– There is a Q ∈ suppD,Γ(q) such that T (v1) 6∈ Q and T (v2) 6∈ Q. From LQ(∆′1, q) v `, it follows that∧
q′∈Q ∆′1(q′) v `. From T (v1) 6∈ Q and ∆′1 = ∆1[T (v1) 7→ ∆1(pcu) t

⊔
1≤i≤n ∆1(ei), x 7→ ∆1(pcu) t⊔

1≤i≤n ∆1(ei)], it follows that
∧
q′∈Q ∆′1(q′) = ∆1(q′). From this and

∧
q′∈Q ∆′1(q′) v `, it follows that∧

q′∈Q ∆1(q′) v `. From this, Q ⊂ RC pred , and LQ(∆, q′′) = ∆(q′′) for any q′′ ∈ RC pred (Proposition H.3),

it follows that
∧
q′∈Q LQ(∆1, q

′) v `. From this and (2), it follows that
∧
q′∈Q[q′]db

′
1 = [q′]db

′
2 , where db′1

and db′2 are the database in s′1 and s′2 respectively. From this, T (v1) 6∈ Q, T (v2) 6∈ Q, and the fact that we
modify only the values of T (v1) and T (v2), it follows that

∧
q′∈Q[q′]s

′
1 = [q′]s

′
2 . From this and Q determines

q, it follows that [q]s1 = [q]s2 , leading to a contradiction.
– For all Q ∈ suppD,Γ(q), T (v1) ∈ Q or T (v2) ∈ Q. Assume that T (v1) ∈ Q (the proof in case T (v2) ∈ Q

is analogous). From
⊔
Q∈suppD,Γ(q)

⊔
q′∈Q ∆′1(q′) v `, it follows that

∧
q′∈Q ∆′1(q′) v `. From this and

T (v1) ∈ Q, it follows that ∆′1(T (v1)) v `. From this and ∆′1(T (v1)) = ∆1(pcu)t
⊔

1≤i≤n ∆1(ei), it follows
that ∆1(pcu)t

⊔
1≤i≤n ∆1(ei) v `. From this, it follows that

∧
1≤i≤n ∆1(ei) v `. From this and (2), it follows

that
∧

1≤i≤nJeiK(m1) = JeiK(m2). From this, it follows that v1 = v2. From
⊔
Q∈suppD,Γ(q)

⊔
q′∈Q ∆′1(q′) v `

and Q ∈ suppD,Γ(q), it follows that
∧
q′∈Q ∆′1(q′) v `. Let q′′ be a query in Q \ {T (v1)}. From this

and
∧
q′∈Q ∆′1(q′) v `, it follows that ∆′1(q′′) v `. From this, v1 = v2, q′′ ∈ Q \ {T (v1)}, and ∆′1 =

∆1[T (v1) 7→ ∆1(pcu)t
⊔

1≤i≤n ∆1(ei), x 7→ ∆1(pcu)t
⊔

1≤i≤n ∆1(ei)], it follows that ∆′1(q′′) = ∆1(q′′).
From this and ∆′1(q′′) v `, it follows that ∆1(q′′) v `. From this, q′′ ∈ RC pred , and LQ(∆, q) = ∆(q)
for all q ∈ RC pred (Proposition H.3), it follows that LQ(∆1, q

′′) v `. From this and (2), it follows that
[q′′]db1 = [q′′]db2 , where db1 and db2 are the databases in s1 and s2 respectively. From this, v1 = v2, and the
fact that the update operation only modifies the value of T (v1) and T (v2), it follows that [q′′]db

′
1 = [q′′]db

′
2 ,

where db′1 and db′2 are the databases in s′1 and s′2 respectively. Since q′′ is an arbitrary query in Q \ {T (v1)},
it follows that [q′′]db

′
1 = [q′′]db

′
2 for all q′′ ∈ Q \ {T (v1)}. From v1 = v2 and the database semantics, it

also follows that [T (v1)]db
′
1 = [T (v1)]db

′
2 = >. From this, [q′′]db

′
1 = [q′′]db

′
2 for all q′′ ∈ Q \ {T (v1)}, and

Q = {T (v1)}∪(Q\{T (v1)}), it follows that [q′′]db
′
1 = [q′′]db

′
2 for all q′′ ∈ Q. From this and Q ∈ suppD,Γ(q)

(and therefore Q determines q), it follows that [q]db
′
1 = [q]db

′
2 , leading to a contradiction.

• Rule F-UPDATECONFIGURATIONOK. From the rule, it follows that c1 = ‖x← q‖. From this and (4), it follows
that c2 = ‖x← q‖. From 〈∆1, c1,m1, 〈s1, ctx 1〉〉

τ1
u 〈∆′1, c′1,m′1, 〈s′1, ctx ′1〉〉 and c1 = ‖x← q‖, it follows that

∆′1 = ∆1[x 7→ ∆1(pcu) t
⊔
v∈vars(q) ∆1(v)], m′1 = m1[x 7→ r1], q′1 = q[v1 7→ Jv1K(m1), . . . , vn 7→ JvnK(m1)]

τ1 = 〈public, q′1〉, c′1 = ε, where Jq′1K(〈s1, ctx 1〉) = 〈〈s′1, ctx ′1〉, r1, ε〉. From 〈∆2, c2,m2, 〈s2, ctx 2〉〉
τ2
u 〈∆′2, c′2,

m′2, 〈s′2, ctx ′2〉〉 and c2 = ‖x← q‖, it follows that ∆′2 = ∆2[x 7→ ∆2(pcu)t
⊔
v∈vars(q) ∆2(v)], m′2 = m2[x 7→ r2],

q′2 = q[v1 7→ Jv1K(m2), . . . , vn 7→ JvnK(m2)] τ2 = 〈public, q′2〉, c′2 = ε, where Jq′2K(〈s2, ctx 2〉) = 〈〈s′2, ctx ′2〉, r2, ε〉.
Note that the execution of the query q alters only the database configuration; it does not modify the content of
the database. Assume, for contradiction’s sake, that 〈∆′1, c′1,m′1, 〈s′1, ctx ′1〉〉 6≈` 〈∆′2, c′2,m′2, 〈s′2, ctx ′2〉〉. There are
three cases:
– ∆′1(x) v ` and ∆′2(x) 6v ` (or vice versa). From ∆′1(x) v ` and ∆′1 = ∆1[x 7→ ∆1(pcu) t

⊔
v∈vars(q) ∆1(v)],

it follows that ∆1(pcu) t
⊔
v∈vars(q) ∆1(v) v `. From this and (2), it follows that ∆2(pcu) v ` and∧

v∈vars(q) ∆2(v) v `. From this, it follows that ∆2(pcu)t
⊔
v∈vars(q) ∆2(v) v `. From this and ∆′2 = ∆2[x 7→

∆2(pcu) t
⊔
v∈vars(q) ∆2(v)], it follows that ∆′2(pcu) v `, leading to a contradiction.

– ∆′1(x) v `, ∆′2(x) v `, and ∆′1(x) 6= ∆′2(x). From ∆′1(x) v ` and ∆′1 = ∆1[x 7→ ∆1(pcu)t
⊔
v∈vars(q) ∆1(v)],

it follows that ∆1(pcu) t
⊔
v∈vars(q) ∆1(v) v `. From this and (2), it follows that ∆1(pcu) = ∆2(pcu)

and
∧
v∈vars(q) ∆1(v) = ∆2(v). From this, it follows that ∆1(pcu) t

⊔
v∈vars(q) ∆1(v) = ∆2(pcu) t⊔

v∈vars(q) ∆2(v) v `. From this and ∆′2 = ∆2[x 7→ ∆2(pcu) t
⊔
v∈vars(q) ∆2(v)], it follows that ∆′1(pcu) =

∆′2(pcu), leading to a contradiction.
– ∆′1(x) v `, ∆′2(x) v `, and m′1(x) 6= m′2(x). From ∆′1(x) v ` and ∆′1 = ∆1[x 7→ ∆1(pcu)t

⊔
v∈vars(q) ∆1(v)],

it follows that ∆1(pcu) t
⊔
v∈vars(q) ∆1(v) v `. From this, it follows that

∧
v∈vars(q) ∆1(v) v `. From this and

(2), it follows that
∧
v∈vars(q)m1(v) = m2(v). From this, it follows that q′1 = q′2. From this and (1), it follows

that r1 = r2. From this, m′1 = m1[x 7→ r1], and m′2 = m2[x 7→ r2], it follows that m′1(x) = m′2(x), leading to
a contradiction.

Induction Step. The proof of the induction step directly follows from the induction hypothesis for all rules except F-
ASUSER. For the F-ASUSER rule, the proof can be done by case distinction on the executed query. The proofs for the
various cases are similar to that of the rules F-SELECT, F-UPDATEDATABASEOK, and F-UPDATECONFIGURATIONOK.

Lemma H.9 states that, under appropriate conditions, performing a step of execution in two `-equivalent states with
the same initial code results in the same code.

Lemma H.9. Let sec0 be the policy used to initialize the monitor, 〈∆1, c1,m1, 〈s1, ctx 1〉〉, 〈∆′1, c′1,m′1, 〈s′1, ctx ′1〉〉,
〈∆2, c2,m2, 〈s2, ctx 2〉〉, and 〈∆′2, c′2,m′2, 〈s′2, ctx ′2〉〉 be four local configurations, and ` ∈ L be a label. If the following
conditions hold:

1) s1 ≡cfg s2,
2) 〈∆1, c1,m1, 〈s1, ctx 1〉〉 ≈` 〈∆2, c2,m2, 〈s2, ctx 2〉〉,
3) ∆′1(pcu) v ` and ∆′2(pcu) v `,
4) c1 = c2,
5) 〈∆1, c1,m1, 〈s1, ctx 1〉〉

τ1
u 〈∆′1, c′1,m′1, 〈s′1, ctx ′1〉〉,

6) 〈∆2, c2,m2, 〈s2, ctx 2〉〉
τ2
u 〈∆′2, c′2,m′2, 〈s′2, ctx ′2〉〉,

then c′1 = c′2.

Proof. Let sec0 be the policy used to initialize the monitor, 〈∆1, c1,m1, 〈s1, ctx 1〉〉, 〈∆′1, c′1,m′1, 〈s′1, ctx ′1〉〉, 〈∆2, c2,
m2, 〈s2, ctx 2〉〉, and 〈∆′2, c′2,m′2, 〈s′2, ctx ′2〉〉 be four local configurations, and ` ∈ L be a label such that the following
conditions hold:

1) s1 ≡cfg s2,
2) 〈∆1, c1,m1, 〈s1, ctx 1〉〉 ≈` 〈∆2, c2,m2, 〈s2, ctx 2〉〉,
3) ∆′1(pcu) v ` and ∆′2(pcu) v `,
4) c1 = c2,
5) 〈∆1, c1,m1, 〈s1, ctx 1〉〉

τ1
u 〈∆′1, c′1,m′1, 〈s′1, ctx ′1〉〉,

6) 〈∆2, c2,m2, 〈s2, ctx 2〉〉
τ2
u 〈∆′2, c′2,m′2, 〈s′2, ctx ′2〉〉.

We prove our claim by induction on the rules defining u.
Base Case. The proof of most of the rules, e.g., F-ASSIGN or F-OUT, is trivial. The only interesting cases are the
branching statements and the expansion procedure.
• Rule F-IFTRUE. From the rule, it follows that c1 = if e then c′ else c′′. From this and (4), it follows that
c2 = if e then c′ else c′′. From 〈∆1, c1,m1, 〈s1, ctx 1〉〉

τ1
u 〈∆′1, c′1,m′1, 〈s′1, ctx ′1〉〉 and c1 = if e then c′ else c′′, it

follows that ∆′1 = ∆1[pcu 7→ ∆1(pcu)t∆1(e)], m1 = m′1, τ1 = ε, c′1 = c′ ; set pc to ∆1(pcu), and 〈s1, ctx 1〉 =
〈s′1, ctx ′1〉. From the rule, it also follows that JeK(m1) = tt. From (3) and ∆′1 = ∆1[pcu 7→ ∆1(pcu) t∆1(e)], it
follows that ∆1(pcu) t∆1(e) v `. From this, it follows that ∆1(pcu) v ` and ∆1(e) v `. From this and (2), it
follows that

∧
v∈vars(e)m1(e) = m2(e). From this and JeK(m1) = tt, it follows that JeK(m2) = tt. Therefore, by

applying the rule F-IFTRUE to 〈∆2, c2,m2, 〈s2, ctx 2〉〉, we obtain that 〈∆2, c2,m2, 〈s2, ctx 2〉〉
τ2
u 〈∆′2, c′2,m′2,

〈s′2, ctx ′2〉〉 and c2 = if e then c′ else c′′, it follows that ∆′2 = ∆2[pcu 7→ ∆2(pcu) t∆2(e)], m2 = m′2, τ2 = ε,
c′2 = c′ ; set pc to ∆2(pcu), and 〈s2, ctx 2〉 = 〈s′2, ctx ′2〉. Furthermore, from ∆1(pcu) v ` and (2), it follows that
∆1(pcu) = ∆2(pcu). Therefore, c′1 = c′2.

• Rule F-IFFALSE. The proof is similar to that for the F-IFTRUE case.
• Rule F-WHILETRUE. The proof is similar to that for the F-IFTRUE case.
• Rule F-WHILEFALSE. The proof is similar to that for the F-IFTRUE case.
• Rule F-EXPAND. From the rule, it follows that c1 = x← q. From this and (4), it follows that c2 = x← q. From
〈∆1, c1,m1, 〈s1, ctx 1〉〉

τ1
u 〈∆′1, c′1,m′1, 〈s′1, ctx ′1〉〉 and c1 = x← q, it follows that ∆′1 = ∆1, m1 = m′1, τ1 = ε,

c′1 = expand(s1, x, q, u), and 〈s1, ctx 1〉 = 〈s′1, ctx ′1〉. From 〈∆2, c2,m2, 〈s2, ctx 2〉〉
τ2
u 〈∆′2, c′2,m′2, 〈s′2, ctx ′2〉〉

and c2 = x← q, it follows that ∆′2 = ∆2, m2 = m′2, τ2 = ε, c′2 = expand(s2, x, q, u), and 〈s2, ctx 2〉 = 〈s′2, ctx ′2〉.
There are a number of cases depending on q:
– q is SELECT ϕ. For SELECT queries, the result of the expansion procedure is the same for any two database

states s1 and s2. Therefore, it follows that expand(s1, x, q, u) = expand(s2, x, q, u) and, therefore, c′1 = c′2.
– q is INSERT e INTO T . The expansion procedure relies only on the allowed and apply procedures, which, in

turn, depend only on the configuration of the database state. From this and (1), it follows that expand(s1, x, q,
u) = expand(s2, x, q, u) and, therefore, c′1 = c′2.

– q is DELETE e FROM T . The proof of this case is similar to that of INSERT e INTO T .
– q is GRANT p TO u. The expansion procedure relies only on the allowed and apply procedures, which, in turn,

depend only on the configuration of the database state. From this and (1), it follows that expand(s1, x, q,
u) = expand(s2, x, q, u) and, therefore, c′1 = c′2.

– q is GRANT p TO u WITH GRANT OPTION. The proof of this case is similar to that of GRANT p TO u.
– q is REVOKE p FROM u. The proof of this case is similar to that of GRANT p TO u.
– q is a CREATE queries. For CREATE queries, the result of the expansion procedure is the same for any two database

states s1 and s2. Therefore, it follows that expand(s1, x, q, u) = expand(s2, x, q, u) and, therefore, c′1 = c′2.
– q is ADD USER u′. For ADD USER queries, the result of the expansion procedure is the same for any two database

states s1 and s2. Therefore, it follows that expand(s1, x, q, u) = expand(s2, x, q, u) and, therefore, c′1 = c′2.
Induction Step. The proof of the induction step directly follows from the induction hypothesis.

Lemma H.10 presents some results about computations involving if statements.

Lemma H.10. Let sec0 be the policy used to initialize the monitor, 〈∆1, c1,m1, 〈s1, ctx 1〉〉, 〈∆′1, c′1,m′1, 〈s′1, ctx ′1〉〉,
〈∆2, c2,m2, 〈s2, ctx 2〉〉, and 〈∆′2, c′2,m′2, 〈s′2, ctx ′2〉〉 be four local configurations, and ` ∈ L be a label. If the following
conditions hold:

1) s1 ≡cfg s2,
2) 〈∆1, c1,m1, 〈s1, ctx 1〉〉 ≈` 〈∆2, c2,m2, 〈s2, ctx 2〉〉,
3) ∆1(pcu) v ` and ∆2(pcu) v `,
4) ∆′1(pcu) 6v ` or ∆′2(pcu) 6v ` ,
5) c1 = c2,
6) first(c1) = if e then c′ else c′′,
7) 〈∆1, c1,m1, 〈s1, ctx 1〉〉

τ1
u 〈∆′1, c′1,m′1, 〈s′1, ctx ′1〉〉,

8) 〈∆2, c2,m2, 〈s2, ctx 2〉〉
τ2
u 〈∆′2, c′2,m′2, 〈s′2, ctx ′2〉〉,

then one of the following conditions hold:

(a) JeK(m1) = tt and for all 〈∆′′1 , c′′1 ,m′′1 , 〈s′′1 , ctx ′′1〉〉 such that 〈∆′1, c′,m′1, 〈s′1, ctx ′1〉〉
τ ′1
∗

u 〈∆′′1 , c′′1 ,m′′1 , 〈s′′1 , ctx ′′1〉〉,
c′′1 6= ε,

(b) JeK(m1) = ff and for all 〈∆′′1 , c′′1 ,m′′1 , 〈s′′1 , ctx ′′1〉〉 such that 〈∆′1, c′′,m′1, 〈s′1, ctx ′1〉〉
τ ′1
∗

u 〈∆′′1 , c′′1 ,m′′1 , 〈s′′1 , ctx ′′1〉〉,
c′′1 6= ε,

(c) JeK(m2) = tt and for all 〈∆′′2 , c′′2 ,m′′2 , 〈s′′2 , ctx ′′2〉〉 such that 〈∆′2, c′,m′2, 〈s′2, ctx ′2〉〉
τ ′2
∗

u 〈∆′′2 , c′′2 ,m′′2 , 〈s′′2 , ctx ′′2〉〉,
c′′2 6= ε,

(d) JeK(m2) = ff and for all 〈∆′′2 , c′′2 ,m′′2 , 〈s′′2 , ctx ′′2〉〉 such that 〈∆′2, c′′,m′2, 〈s′2, ctx ′2〉〉
τ ′2
∗

u 〈∆′′2 , c′′2 ,m′′2 , 〈s′′2 , ctx ′′2〉〉,
c′′2 6= ε,

(e) there are 〈∆′′1 , c′′1 ,m′′1 , 〈s′′1 , ctx ′′1〉〉 and 〈∆′′2 , c′′2 ,m′′2 , 〈s′′2 , ctx ′′2〉〉 such that 〈∆′1, c′1,m′1, 〈s′1, ctx ′1〉〉
τ ′1
∗

u 〈∆′′1 , c′′1 ,m′′1 ,

〈s′′1 , ctx ′′1〉〉 and 〈∆′2, c′2,m′2, 〈s′2, ctx ′2〉〉
τ ′2
∗

u 〈∆′′2 , c′′2 ,m′′2 , 〈s′′2 , ctx ′′2〉〉, c′′1 = c′′2 , and ∆′′1(pcu) v ` and ∆′′2(pcu) v `.
Proof. Let sec0 be the policy used to initialize the monitor, 〈∆1, c1,m1, 〈s1, ctx 1〉〉, 〈∆′1, c′1,m′1, 〈s′1, ctx ′1〉〉, 〈∆2, c2,
m2, 〈s2, ctx 2〉〉, and 〈∆′2, c′2,m′2, 〈s′2, ctx ′2〉〉 be four local configurations, and ` ∈ L be a label such that:

1) s1 ≡cfg s2,
2) 〈∆1, c1,m1, 〈s1, ctx 1〉〉 ≈` 〈∆2, c2,m2, 〈s2, ctx 2〉〉,
3) ∆1(pcu) v ` and ∆2(pcu) v `,
4) ∆′1(pcu) 6v ` or ∆′2(pcu) 6v ` ,
5) c1 = c2,
6) first(c1) = if e then c′ else c′′,
7) 〈∆1, c1,m1, 〈s1, ctx 1〉〉

τ1
u 〈∆′1, c′1,m′1, 〈s′1, ctx ′1〉〉,

8) 〈∆2, c2,m2, 〈s2, ctx 2〉〉
τ2
u 〈∆′2, c′2,m′2, 〈s′2, ctx ′2〉〉,

From (5) and (6), it follows that first(c2) = if e then c′ else c′′. Without loss of generality, we assume that
∆′1(pcu) 6v `. From this, ∆′1(pcu) = ∆1(pcu)t∆1(e). From this, (3), and ∆′1(pcu) 6v `, it follows that ∆1(e) 6v `. From
this and (2), it follows that ∆2(e) 6v `. From this, (3), and ∆′2(pcu) = ∆2(pcu) t∆2(e), it follows that ∆′2(pcu) 6v `.
Without loss of generality, we assume that c1 = if e then c′ else c′′ (the proof in case c1 = if e then c′ else c′′ ; c3 is
similar). There are four cases:
• JeK(m1) = JeK(m2) = tt. From the rules F-IFTRUE and F-IFFALSE, it follows that c′1 = [c′ ; set pc to ∆1(pcu)]

and c2 = [c′ ; set pc to ∆1(pcu)]. There are three cases:

– For all 〈∆′′1 , c′′1 ,m′′1 , 〈s′′1 , ctx ′′1〉〉 such that 〈∆′1, c′,m′1, 〈s′1, ctx ′1〉〉
τ ′1
∗

u 〈∆′′1 , c′′1 ,m′′1 , 〈s′′1 , ctx ′′1〉〉, c′′1 6= ε (i.e., c′
never terminates, produces an exception, or stucks starting from 〈∆′1, c′,m′1, 〈s′1, ctx ′1〉〉). In this case our claim
is trivially satisfied.

– For all 〈∆′′2 , c′′2 ,m′′2 , 〈s′′2 , ctx ′′2〉〉 such that 〈∆′2, c′,m′2, 〈s′2, ctx ′2〉〉
τ ′2
∗

u 〈∆′′2 , c′′2 ,m′′2 , 〈s′′2 , ctx ′′2〉〉, c′′2 6= ε (i.e., c′
never terminates, produces an exception, or stucks starting from 〈∆′2, c′,m′2, 〈s′2, ctx ′2〉〉). In this case our claim
is trivially satisfied.

– There exist 〈∆′′1 , ε,m′′1 , 〈s′′1 , ctx ′′1〉〉 and 〈∆′′2 , ε,m′′2 , 〈s′′2 , ctx ′′2〉〉 such that 〈∆′1, c′,m′1, 〈s′1, ctx ′1〉〉
τ ′1
∗

u 〈∆′′1 , ε,

m′′1 , 〈s′′1 , ctx ′′1〉〉 and 〈∆′2, c′2,m′2, 〈s′2, ctx ′2〉〉
τ ′2
∗

u 〈∆′′2 , ε,m′′2 , 〈s′′2 , ctx ′′2〉〉. From this, it follows that 〈∆′1, c′1,

m′1, 〈s′1, ctx ′1〉〉
τ ′1
∗

u 〈∆′′′1 , [ε ; set pc to ∆1(pcu)],m′′1 , 〈s′′1 , ctx ′′1〉〉 and 〈∆′2, c′2,m′2, 〈s′2, ctx ′2〉〉
τ ′2
∗

u 〈∆′′′2 ,
[ε ; set pc to ∆2(pcu)],m′′2 , 〈s′′2 , ctx ′′2〉〉. By applying the F-EXPANDEDCODE and the F-SEQEMPTY rules, we

obtain 〈∆′1, c′1,m′1, 〈s′1, ctx ′1〉〉
τ ′1
∗

u 〈∆′′′1 , [set pc to ∆1(pcu)],m′′1 , 〈s′′1 , ctx ′′1〉〉 and 〈∆′2, c′2,m′2, 〈s′2, ctx ′2〉〉
τ ′2
∗

u

〈∆′′′2 , [set pc to ∆2(pcu)],m′′2 , 〈s′′2 , ctx ′′2〉〉. By applying the F-EXPANDEDCODE and the F-UPDATELABELS

rules, we obtain 〈∆′1, c′1,m′1, 〈s′1, ctx ′1〉〉
τ ′1
∗

u 〈∆′′′1 [pcu 7→ ∆1(pcu)], [ε],m′′1 , 〈s′′1 , ctx ′′1〉〉 and 〈∆′2, c′2,m′2,

〈s′2, ctx ′2〉〉
τ ′2
∗

u 〈∆′′′2 [pcu 7→ ∆2(pcu)], [ε],m′′2 , 〈s′′2 , ctx ′′2〉〉 (observe that ∆′′′1 [pcu 7→ ∆1(pcu)] = ∆′′1 and
∆′′′2 [pcu 7→ ∆2(pcu)] = ∆′′2). From this, it directly follows our claim (since the code is the same in both final
configurations and from (3), it follows that the pcu is below ` in both configurations).

• JeK(m1) = JeK(m2) = ff. The proof of this case is similar to that of JeK(m1) = JeK(m2) = tt.
• JeK(m1) = tt and JeK(m2) = ff. The proof of this case is similar to that of JeK(m1) = JeK(m2) = tt.
• JeK(m1) = ff and JeK(m2) = tt. The proof of this case is similar to that of JeK(m1) = JeK(m2) = tt.

This completes the proof of our claim.

Lemma H.10 presents some results about computations involving while statements.

Lemma H.11. Let sec0 be the policy used to initialize the monitor, 〈∆1, c1,m1, 〈s1, ctx 1〉〉, 〈∆′1, c′1,m′1, 〈s′1, ctx ′1〉〉,
〈∆2, c2,m2, 〈s2, ctx 2〉〉, and 〈∆′2, c′2,m′2, 〈s′2, ctx ′2〉〉 be four local configurations, and ` ∈ L be a label. If the following
conditions hold:

1) s1 ≡cfg s2,
2) 〈∆1, c1,m1, 〈s1, ctx 1〉〉 ≈` 〈∆2, c2,m2, 〈s2, ctx 2〉〉,
3) ∆1(pcu) v ` and ∆2(pcu) v `,
4) ∆′1(pcu) 6v ` or ∆′2(pcu) 6v ` ,
5) c1 = c2,
6) first(c1) = while e do c′,
7) 〈∆1, c1,m1, 〈s1, ctx 1〉〉

τ1
u 〈∆′1, c′1,m′1, 〈s′1, ctx ′1〉〉,

8) 〈∆2, c2,m2, 〈s2, ctx 2〉〉
τ2
u 〈∆′2, c′2,m′2, 〈s′2, ctx ′2〉〉,

then one of the following conditions hold:

(a) JeK(m1) = tt and for all 〈∆′′1 , c′′1 ,m′′1 , 〈s′′1 , ctx ′′1〉〉 such that 〈∆′1, c′,m′1, 〈s′1, ctx ′1〉〉
τ ′1
∗

u 〈∆′′1 , c′′1 ,m′′1 , 〈s′′1 , ctx ′′1〉〉,
c′′1 6= ε,

(b) JeK(m2) = tt and for all 〈∆′′2 , c′′2 ,m′′2 , 〈s′′2 , ctx ′′2〉〉 such that 〈∆′2, c′,m′2, 〈s′2, ctx ′2〉〉
τ ′2
∗

u 〈∆′′2 , c′′2 ,m′′2 , 〈s′′2 , ctx ′′2〉〉,
c′′2 6= ε,

(c) there are 〈∆′′1 , c′′1 ,m′′1 , 〈s′′1 , ctx ′′1〉〉 and 〈∆′′2 , c′′2 ,m′′2 , 〈s′′2 , ctx ′′2〉〉 such that 〈∆′1, c′1,m′1, 〈s′1, ctx ′1〉〉
τ ′1
∗

u 〈∆′′1 , c′′1 ,m′′1 ,

〈s′′1 , ctx ′′1〉〉 and 〈∆′2, c′2,m′2, 〈s′2, ctx ′2〉〉
τ ′2
∗

u 〈∆′′2 , c′′2 ,m′′2 , 〈s′′2 , ctx ′′2〉〉, c′′1 = c′′2 , and ∆′′1(pcu) v ` and ∆′′2(pcu) v `.

Proof. The proof is similar to that of Lemma H.10.

H.7. Lemmas about the global semantics

Here we present some auxiliary results about the global semantics of our enforcement mechanism.
Lemma H.12 states that, under appropriate conditions, performing a step of (global) execution in two `-equivalent

states with the same initial code and scheduler results in configurations with the same code and scheduler.

Lemma H.12. Let sec0 be the policy used to initialize the monitor, 〈∆1, C1,M1, 〈s1, ctx 1〉,S1〉, 〈∆′1, C ′1,M ′1, 〈s′1,
ctx ′1〉,S ′1〉, 〈∆2, C2,M2, 〈s2, ctx 2〉,S2〉, and 〈∆′2, C ′2,M ′2, 〈s′2, ctx ′2〉,S ′2〉 be four global configurations, ` ∈ L be a label,
n′ be the first value in S, n = (n′ mod |C1|) + 1, and u be the user associated with the n-th program in C1. If the
following conditions hold:

1) s1 ≡cfg s2,
2) 〈∆1, C1,M1, 〈s1, ctx 1〉,S1〉 ≈` 〈∆2, C2,M2, 〈s2, ctx 2〉,S2〉,
3) ∆1(pcu) v ` and ∆2(pcu) v `,
4) ∆′1(pcu) v ` and ∆′2(pcu) v `,
5) C1 = C2,
6) S1 = S2,
7) 〈∆1, C1,M1, 〈s1, ctx 1〉,S1〉

τ1
u 〈∆′1, C ′1,M ′1, 〈s′1, ctx ′1〉,S ′1〉,

8) 〈∆2, C2,M2, 〈s2, ctx 2〉,S2〉
τ2
u 〈∆′2, C ′2,M ′2, 〈s′2, ctx ′2〉,S ′2〉,

then C ′1 = C ′2 and S ′1 = S ′2.

Proof. The claim directly follows from (4), (5), and Lemma H.9 (together with (1) and (3)).

Lemma H.13 states some properties of the execution of if statements in the global semantics.

Lemma H.13. Let sec0 be the policy used to initialize the monitor, 〈∆1, C1,M1, 〈s1, ctx 1〉,S1〉, 〈∆′1, C ′1,M ′1, 〈s′1,
ctx ′1〉,S ′1〉, 〈∆2, C2,M2, 〈s2, ctx 2〉,S2〉, and 〈∆′2, C ′2,M ′2, 〈s′2, ctx ′2〉,S ′2〉 be four global configurations, and ` ∈ L be a
label, n′ be the first value in S , n = (n′ mod |C1|) + 1, and u be the user associated with the n-th program in C1. If
the following conditions hold:

1) s1 ≡cfg s2,
2) 〈∆1, C1,M1, 〈s1, ctx 1〉,S1〉 ≈` 〈∆2, C2,M2, 〈s2, ctx 2〉,S2〉,
3) ∆1(pcu) v ` and ∆2(pcu) v `,
4) ∆′1(pcu) 6v ` or ∆′2(pcu) 6v `,
5) C1 = C2,
6) first(C1|n) = if e then c′ else c′′,
7) S1 = S2,
8) 〈∆1, C1,M1, 〈s1, ctx 1〉,S1〉

τ1
u 〈∆′1, C ′1,M ′1, 〈s′1, ctx ′1〉,S ′1〉,

9) 〈∆2, C2,M2, 〈s2, ctx 2〉,S2〉
τ2
u 〈∆′2, C ′2,M ′2, 〈s′2, ctx ′2〉,S ′2〉,

then one of the following conditions hold:

(a) JeK(m1) = tt and for all 〈∆′′1 , c′′1 ,m′′1 , 〈s′′1 , ctx ′′1〉〉 such that 〈∆′1, c′,m′1, 〈s′1, ctx ′1〉〉
τ ′1
∗

u 〈∆′′1 , c′′1 ,m′′1 , 〈s′′1 , ctx ′′1〉〉,
c′′1 6= ε,

(b) JeK(m1) = ff and for all 〈∆′′1 , c′′1 ,m′′1 , 〈s′′1 , ctx ′′1〉〉 such that 〈∆′1, c′′,m′1, 〈s′1, ctx ′1〉〉
τ ′1
∗

u 〈∆′′1 , c′′1 ,m′′1 , 〈s′′1 , ctx ′′1〉〉,
c′′1 6= ε,

(c) JeK(m2) = tt and for all 〈∆′′2 , c′′2 ,m′′2 , 〈s′′2 , ctx ′′2〉〉 such that 〈∆′2, c′,m′2, 〈s′2, ctx ′2〉〉
τ ′2
∗

u 〈∆′′2 , c′′2 ,m′′2 , 〈s′′2 , ctx ′′2〉〉,
c′′2 6= ε,

(d) JeK(m2) = ff and for all 〈∆′′2 , c′′2 ,m′′2 , 〈s′′2 , ctx ′′2〉〉 such that 〈∆′2, c′′,m′2, 〈s′2, ctx ′2〉〉
τ ′2
∗

u 〈∆′′2 , c′′2 ,m′′2 , 〈s′′2 , ctx ′′2〉〉,
c′′2 6= ε,

(e) there are 〈∆′′1 , C ′′1 ,M ′′1 , 〈s′′1 , ctx ′′1〉,S ′′1 〉 and 〈∆′′2 , C ′′2 ,M ′′2 , 〈s′′2 , ctx ′′2〉,S ′′2 〉 such that 〈∆′1, C ′1,M ′1, 〈s′1, ctx ′1〉,

S ′1〉
τ ′1
∗

u 〈∆′′1 , C ′′1 ,M ′′1 , 〈s′′1 , ctx ′′1〉,S ′′1 〉 and 〈∆′2, C ′2,M ′2, 〈s′2, ctx ′2〉,S ′2〉
τ ′2
∗

u 〈∆′′2 , C ′′2 ,M ′′2 , 〈s′′2 , ctx ′′2〉,S ′′2 〉, C ′′1 =
C ′′2 , S ′′1 = S ′′2 , and ∆′′1(pcu) v ` and ∆′′2(pcu) v `.

Proof. From (6) and the rules F-IFTRUE and F-IFFALSE, it follows that the only applicable rule in the global semantics
is F-ATOMIC-STATEMENT. Our claim directly follows from this, (3), (4), Lemma H.10, and the fact that the F-ATOMIC-
STATEMENT rule does not modify the scheduler.

Lemma H.14 states some properties of the execution of while statements in the global semantics.

Lemma H.14. Let sec0 be the policy used to initialize the monitor, 〈∆1, C1,M1, 〈s1, ctx 1〉,S1〉, 〈∆′1, C ′1,M ′1, 〈s′1,
ctx ′1〉,S ′1〉, 〈∆2, C2,M2, 〈s2, ctx 2〉,S2〉, and 〈∆′2, C ′2,M ′2, 〈s′2, ctx ′2〉,S ′2〉 be four global configurations, and ` ∈ L be a
label, n′ be the first value in S , n = (n′ mod |C1|) + 1, and u be the user associated with the n-th program in C1. If
the following conditions hold:

1) s1 ≡cfg s2,
2) 〈∆1, C1,M1, 〈s1, ctx 1〉,S1〉 ≈` 〈∆2, C2,M2, 〈s2, ctx 2〉,S2〉,
3) ∆1(pcu) v ` and ∆2(pcu) v `,
4) ∆′1(pcu) 6v ` or ∆′2(pcu) 6v `,
5) C1 = C2,
6) first(C1|n) = while e do c′,
7) S1 = S2,
8) 〈∆1, C1,M1, 〈s1, ctx 1〉,S1〉

τ1
u 〈∆′1, C ′1,M ′1, 〈s′1, ctx ′1〉,S ′1〉,

9) 〈∆2, C2,M2, 〈s2, ctx 2〉,S2〉
τ2
u 〈∆′2, C ′2,M ′2, 〈s′2, ctx ′2〉,S ′2〉,

then one of the following conditions hold:

(a) JeK(m1) = tt and for all 〈∆′′1 , c′′1 ,m′′1 , 〈s′′1 , ctx ′′1〉〉 such that 〈∆′1, c′,m′1, 〈s′1, ctx ′1〉〉
τ ′1
∗

u 〈∆′′1 , c′′1 ,m′′1 , 〈s′′1 , ctx ′′1〉〉,
c′′1 6= ε,

(b) JeK(m1) = ff and for all 〈∆′′1 , c′′1 ,m′′1 , 〈s′′1 , ctx ′′1〉〉 such that 〈∆′1, c′′,m′1, 〈s′1, ctx ′1〉〉
τ ′1
∗

u 〈∆′′1 , c′′1 ,m′′1 , 〈s′′1 , ctx ′′1〉〉,
c′′1 6= ε,

(c) JeK(m2) = tt and for all 〈∆′′2 , c′′2 ,m′′2 , 〈s′′2 , ctx ′′2〉〉 such that 〈∆′2, c′,m′2, 〈s′2, ctx ′2〉〉
τ ′2
∗

u 〈∆′′2 , c′′2 ,m′′2 , 〈s′′2 , ctx ′′2〉〉,
c′′2 6= ε,

(d) JeK(m2) = ff and for all 〈∆′′2 , c′′2 ,m′′2 , 〈s′′2 , ctx ′′2〉〉 such that 〈∆′2, c′′,m′2, 〈s′2, ctx ′2〉〉
τ ′2
∗

u 〈∆′′2 , c′′2 ,m′′2 , 〈s′′2 , ctx ′′2〉〉,
c′′2 6= ε,

(e) there are 〈∆′′1 , C ′′1 ,M ′′1 , 〈s′′1 , ctx ′′1〉,S ′′1 〉 and 〈∆′′2 , C ′′2 ,M ′′2 , 〈s′′2 , ctx ′′2〉,S ′′2 〉 such that 〈∆′1, C ′1,M ′1, 〈s′1, ctx ′1〉,

S ′1〉
τ ′1
∗

u 〈∆′′1 , C ′′1 ,M ′′1 , 〈s′′1 , ctx ′′1〉,S ′′1 〉 and 〈∆′2, C ′2,M ′2, 〈s′2, ctx ′2〉,S ′2〉
τ ′2
∗

u 〈∆′′2 , C ′′2 ,M ′′2 , 〈s′′2 , ctx ′′2〉,S ′′2 〉, C ′′1 =
C ′′2 , S ′′1 = S ′′2 , and ∆′′1(pcu) v ` and ∆′′2(pcu) v `.

Proof. From (6) and the rules F-WHILETRUE and F-WHILEFALSE, it follows that the only applicable rule in the global
semantics is F-ATOMIC-STATEMENT. Our claim directly follows from this, (3), (4), Lemma H.11, and the fact that the
F-ATOMIC-STATEMENT rule does not modify the schedulers.

H.8. Bisimulations

Here we introduce bisimulations for our setting, and we prove some key results about them.
We first introduce some machinery. Let σ1 = 〈∆1, C1,M1, 〈s1, ctx 1〉,S1〉 and σ2 = 〈∆2, C2,M2, 〈s2, ctx 2〉,S2〉 be

two global configurations and i ∈ N be an integer. We say that σ2 is reachable in at most i steps from σ1, denoted

reachi(σ1, σ2), iff there exists an i′ ≤ i such that σ1
τ i
′

σ2. The current program in σ1, denoted currPrg(σ1), is c and
the current memory currMem(σ1) is m, where n′ is the first element in S1, n = (n′ mod|C1|) + 1, C1|n = 〈u, c〉,
and M |n = 〈u, c〉. Furthermore, the current pc in σ1, denoted currPc(σ1), is ∆1(pcu), where n′ is the first element
in S1, n = (n′ mod|C1|) + 1, and C1|n = 〈u, c〉. Finally, the current user in σ1, denoted currUsr(σ1), is u, where
currPrg(σ1) = 〈u, c〉. Given a local configuration σ and a user u, term(σ, u) = > iff there exists a 〈∆, c,m, 〈s, ctx 〉〉
such that σ τ ∗

u 〈∆, c,m, 〈s, ctx 〉〉 and c = ε. Given a label ` and a user u, we denote by notBelow(σ, `, u) = > iff for
all 〈∆, c,m, 〈s, ctx 〉〉 such that σ τ ∗

u 〈∆, c,m, 〈s, ctx 〉〉, then ∆(pcu) 6v `.
We are now ready to formalize bisimulations.

Definition 5. Let σ1 = 〈∆1, C1,M1, 〈s1, ctx 1〉,S1〉 and σ2 = 〈∆2, C2,M2, 〈s2, ctx 2〉,S2〉 be two global configurations,
i, j ∈ N be integers, and ` ∈ L be a label. Furthermore, let R be a binary relation over global configurations. We say that

R is a (σ1, σ2, i, j, `)-bisimulation iff for all σ′1 = 〈∆′1, C ′1,M ′1, 〈s′1, ctx ′1〉,S ′1〉 and σ′2 = 〈∆′2, C ′2,M ′2, 〈s′2, ctx ′2〉,S ′2〉
such that σ′1Rσ

′
2, then the following conditions hold:

1) reachi(σ1, σ
′
1) and reachj(σ2, σ

′
2).

2) σ′1 ≈` σ′2.
3) σ′1 ≡cfg σ′2.
4) C ′1 = C ′2.
5) S ′1 = S ′2.
6) currPc(σ1) v ` and currPc(σ2) v `.
7) If σ′1

τ ′1 σ′′1 , σ′2
τ ′2 σ′′2 , reachi(σ1, σ

′′
1), reachj(σ2, σ

′′
2), and currPc(σ′′1) v ` ∧ currPc(σ′′2) v `, then σ′′1Rσ

′′
2 .

8) If σ′1
τ ′1 σ′′1 , σ′2

τ ′2 σ′′2 , reachi(σ1, σ
′′
1), reachj(σ2, σ

′′
2), and currPc(σ′′1) 6v ` ∨ currPc(σ′′2) 6v `, then one of the

following conditions hold:

a) for all σ′′1 and σ′′2 such that σ′1
τ ′′1
∗

σ′′1 , σ′2
τ ′′2
∗

σ′′2 , reachi(σ1, σ
′′
1), reachj(σ2, σ

′′
2), currPc(σ1) 6v ` or

currPc(σ2) 6v `, or

b) there are σ′′1 and σ′′2 such that σ′1
τ ′′1
∗

σ′′1 , σ′2
τ ′′2
∗

σ′′2 , reachi(σ1, σ
′′
1), reachj(σ2, σ

′′
2), and σ′′1Rσ

′′
2 . �

Lemmas H.15 and H.16 state that, under certain conditions, we can construct bisimulations.

Lemma H.15. Let sec0 be the policy used to initialize the monitor, σ0
1 = 〈∆0

1, C
0
1 ,M

0
1 , 〈s0

1, ctx 0
1〉,S0

1 〉, σ0
2 = 〈∆0

2, C
0
2 ,

M0
2 , 〈s0

2, ctx 0
2〉,S0

2 〉, σ1
1 = 〈∆1

1, C
1
1 ,M

1
1 , 〈s1

1, ctx 1
1〉,S1

1 〉, σ1
2 = 〈∆1

2, C
1
2 ,M

1
2 , 〈s1

2, ctx 1
2〉,S1

2 〉 be four global configurations,
τ1, τ2 be two traces, u be a user, and ` ∈ L be a label. If the following conditions hold:

1) σ0
1
τ1 σ1

1 ,
2) σ0

2
τ2 σ1

2 ,
3) σ0

1 ≈` σ0
2 ,

4) σ0
1 ≡cfg σ0

2 ,
5) C0

1 = C0
2 ,

6) S0
1 = S0

2 ,
7) currPc(σ0

1) v ` and currPc(σ0
2) v `,

8) currPc(σ1
1) v ` and currPc(σ1

2) v `,
9) cl(auth(sec0, atk)) v `,

then {(σ0
1 , σ

0
2), (σ1

1 , σ
1
2)} is a (σ0

1 , σ
0
2 , 1, 1, `)-bisimulation.

Proof. Let sec0 be the policy used to initialize the monitor, σ0
1 = 〈∆0

1, C
0
1 ,M

0
1 , 〈s0

1, ctx 0
1〉,S0

1 〉, σ0
2 = 〈∆0

2, C
0
2 ,M

0
2 , 〈s0

2,
ctx 0

2〉,S0
2 〉, σ1

1 = 〈∆1
1, C

1
1 ,M

1
1 , 〈s1

1, ctx 1
1〉,S1

1 〉, σ1
2 = 〈∆1

2, C
1
2 ,M

1
2 , 〈s1

2, ctx 1
2〉,S1

2 〉 be four global configurations, τ1, τ2
be two traces, u be a user, and ` ∈ L be a label. Furthermore, we assume that following conditions hold:

1) σ0
1
τ1 σ1

1 ,
2) σ0

2
τ2 σ1

2 ,
3) σ0

1 ≈` σ0
2 ,

4) σ0
1 ≡cfg σ0

2 ,
5) C0

1 = C0
2 ,

6) S0
1 = S0

2 ,
7) currPc(σ0

1) v ` and currPc(σ0
2) v `,

8) currPc(σ1
1) v ` and currPc(σ1

2) v `,
9) cl(auth(sec0, atk)) v `.

We now show that {(σ0
1 , σ

0
2), (σ1

1 , σ
1
2)} is a (σ0

1 , σ
0
2 , 1, 1, `)-bisimulation. We first need to show that for all σ′1 = 〈∆′1, C ′1,

M ′1, 〈s′1, ctx ′1〉,S ′1〉 and σ′2 = 〈∆′2, C ′2,M ′2, 〈s′2, ctx ′2〉,S ′2〉 such that σ′1Rσ
′
2, the following conditions hold: (a) reach1(σ0

1 ,
σ′1) and reach1(σ0

2 , σ
′
2), (b) σ′1 ≈` σ′2, (c) σ′1 ≡cfg σ′2, (d) C ′1 = C ′2, (e) S ′1 = S ′2, (f) currPc(σ1) v ` and currPc(σ2) v `.

There are two cases:
• (σ′1, σ

′
2) = (σ0

1 , σ
0
2). Then, (a) trivially follows since reach1(σ, σ) always holds. Moreover, (b)–(f) directly follow

from (3)–(7).
• (σ′1, σ

′
2) = (σ1

1 , σ
1
2). Then, (a) directly follows from (1) and (2). There are two cases:

– (1) is obtained by applying the M-EVAL-END rule. From this and (5), it follows that also (2) is obtained using
the M-EVAL-END rule. From this, (5), and the rule, we eliminate in both run the same components. From this
and (3)–(7), it directly follows that (b)–(f) are satisfied.

– (1) is obtained by applying the M-EVAL-STEP or M-ATOMIC-STATEMENT rules. From this, (5), and (6), it
follows that we perform one step of the local semantics for the same program in both runs. From this and (6),
(e) directly follows. From (3)–(10), Lemmas H.7, H.8, and H.9, conditions (b)–(d) follow. Finally, condition (f)
immediately follows from (8).

Therefore, the fact that R is a bisimulation directly follows from (i) the fact that (a)–(f) hold for (σ0
1 , σ

0
2) and (σ1

1 , σ
1
2),

(ii) assumptions (1), (2), and R = {(σ0
1 , σ

0
2), (σ1

1 , σ
1
2)}, and (3) there are no configurations that are reachable in 1 step

from σ0
1 and σ0

2 other than σ1
1 and σ1

2 .

Lemma H.16. Let sec0 be the policy used to initialize the monitor, σ0
1 = 〈∆0

1, C
0
1 ,M

0
1 , 〈s0

1, ctx 0
1〉,S0

1 〉, σ0
2 = 〈∆0

2, C
0
2 ,

M0
2 , 〈s0

2, ctx 0
2〉,S0

2 〉, σ1
1 = 〈∆1

1, C
1
1 ,M

1
1 , 〈s1

1, ctx 1
1〉,S1

1 〉, σ1
2 = 〈∆1

2, C
1
2 ,M

1
2 , 〈s1

2, ctx 1
2〉,S1

2 〉 be four global configurations,
τ1, τ2 be two traces, u = currUsr(σ1

1) be a user, and ` ∈ L be a label. If the following conditions hold:
1) σ0

1
τ1 σ1

1 ,
2) σ0

2
τ2 σ1

2 ,
3) σ0

1 ≈` σ0
2 ,

4) σ0
1 ≡cfg σ0

2 ,
5) C0

1 = C0
2 ,

6) S0
1 = S0

2 ,
7) currPc(σ0

1) v ` and currPc(σ0
2) v `,

8) currPc(σ1
1) 6v ` or currPc(σ1

2) 6v `,
9) cl(auth(sec0, atk)) v `,

10) for all users u′ 6= currUsr(σ0
1), ∆0

1(pcu′) v ` and ∆0
2(pcu′) v `,

11) whenever first(currPrg(σ0
1)) = if e then c′ else c′′ and JeK(M0

1) = tt, then term(〈∆1
1, c
′, currMem(σ1

1), 〈s1
1,

ctx 1
1〉〉, u) = > and notBelow(〈∆1

1, c
′, currMem(σ1

1), 〈s1
1, ctx 1

1〉〉, `, u) = >,
12) whenever first(currPrg(σ0

1)) = if e then c′ else c′′ and JeK(M0
1) = ff, then term(〈∆1

1, c
′′, currMem(σ1

1), 〈s1
1,

ctx 1
1〉〉, u) = > and notBelow(〈∆1

1, c
′′, currMem(σ1

1), 〈s1
1, ctx 1

1〉〉, `, u) = >,
13) whenever first(currPrg(σ0

2)) = if e then c′ else c′′ and JeK(M0
2) = tt, then term(〈∆1

2, c
′, currMem(σ1

2), 〈s1
2,

ctx 1
2〉〉, u) = > and notBelow(〈∆1

2, c
′, currMem(σ1

2), 〈s1
2, ctx 1

2〉〉, `, u) = >,
14) whenever first(currPrg(σ0

2)) = if e then c′ else c′′ and JeK(M0
2) = ff, then term(〈∆1

2, c
′′, currMem(σ1

2), 〈s1
2,

ctx 1
2〉〉, u) = > and notBelow(〈∆1

2, c
′′, currMem(σ1

2), 〈s1
2, ctx 1

2〉〉, `, u) = >,
15) whenever first(currPrg(σ0

1)) = while e do c′ and JeK(M0
1) = tt, then term(〈∆1

1, c
′; while e do c′, currMem(σ1

1),
〈s1

1, ctx 1
1〉〉, u) = > and notBelow(〈∆1

1, c
′, currMem(σ1

1), 〈s1
1, ctx 1

1〉〉, `, u) = >,
16) whenever first(currPrg(σ0

2)) = while e do c′ and JeK(M0
2) = tt, then term(〈∆1

2, c
′; while e do c′, currMem(σ1

2),
〈s1

2, ctx 1
2〉〉, u) = > and notBelow(〈∆1

2, c
′, currMem(σ1

2), 〈s1
2, ctx 1

2〉〉, `, u) = >,
17) whenever first(currPrg(σ0

1)) = set pc to `′, `′ v currPc(σ0
1),

then there are i, j such that σ0
1
π1

i
σi1, σ0

2
π2

j
σj2, and {(σ0

1 , σ
0
2), (σi1, σ

j
2)} is a (σ0

1 , σ
0
2 , i, j, `)-bisimulation.

Proof. Let sec0 be the policy used to initialize the monitor, σ0
1 = 〈∆0

1, C
0
1 ,M

0
1 , 〈s0

1, ctx 0
1〉,S0

1 〉, σ0
2 = 〈∆0

2, C
0
2 ,M

0
2 , 〈s0

2,
ctx 0

2〉,S0
2 〉, σ1

1 = 〈∆1
1, C

1
1 ,M

1
1 , 〈s1

1, ctx 1
1〉,S1

1 〉, σ1
2 = 〈∆1

2, C
1
2 ,M

1
2 , 〈s1

2, ctx 1
2〉,S1

2 〉 be four global configurations, τ1, τ2
be two traces, u = currUsr(σ1

1) be a user, and ` ∈ L be a label. Furthermore, we assume the following conditions hold:
1) σ0

1
τ1 σ1

1 ,
2) σ0

2
τ2 σ1

2 ,
3) σ0

1 ≈` σ0
2 ,

4) σ0
1 ≡cfg σ0

2 ,
5) C0

1 = C0
2 ,

6) S0
1 = S0

2 ,
7) currPc(σ0

1) v ` and currPc(σ0
2) v `,

8) currPc(σ1
1) 6v ` or currPc(σ1

2) 6v `,
9) cl(auth(sec0, atk)) v `,

10) for all users u′ 6= currUsr(σ0
1), ∆0

1(pcu′) v ` and ∆0
2(pcu′) v `,

11) whenever first(currPrg(σ0
1)) = if e then c′ else c′′ and JeK(M0

1) = tt, then term(〈∆1
1, c
′, currMem(σ1

1), 〈s1
1,

ctx 1
1〉〉, u) = > and notBelow(〈∆1

1, c
′, currMem(σ1

1), 〈s1
1, ctx 1

1〉〉, `, u) = >,
12) whenever first(currPrg(σ0

1)) = if e then c′ else c′′ and JeK(M0
1) = ff, then term(〈∆1

1, c
′′, currMem(σ1

1), 〈s1
1,

ctx 1
1〉〉, u) = > and notBelow(〈∆1

1, c
′′, currMem(σ1

1), 〈s1
1, ctx 1

1〉〉, `, u) = >,
13) whenever first(currPrg(σ0

2)) = if e then c′ else c′′ and JeK(M0
2) = tt, then term(〈∆1

2, c
′, currMem(σ1

2), 〈s1
2,

ctx 1
2〉〉, u) = > and notBelow(〈∆1

2, c
′, currMem(σ1

2), 〈s1
2, ctx 1

2〉〉, `, u) = >,
14) whenever first(currPrg(σ0

2)) = if e then c′ else c′′ and JeK(M0
2) = ff, then term(〈∆1

2, c
′′, currMem(σ1

2), 〈s1
2,

ctx 1
2〉〉, u) = > and notBelow(〈∆1

2, c
′′, currMem(σ1

2), 〈s1
2, ctx 1

2〉〉, `, u) = >,
15) whenever first(currPrg(σ0

1)) = while e do c′ and JeK(M0
1) = tt, then term(〈∆1

1, c
′; while e do c′, currMem(σ1

1),
〈s1

1, ctx 1
1〉〉, u) = > and notBelow(〈∆1

1, c
′, currMem(σ1

1), 〈s1
1, ctx 1

1〉〉, `, u) = >,
16) whenever first(currPrg(σ0

2)) = while e do c′ and JeK(M0
2) = tt, then term(〈∆1

2, c
′; while e do c′, currMem(σ1

2),
〈s1

2, ctx 1
2〉〉, u) = > and notBelow(〈∆1

2, c
′, currMem(σ1

2), 〈s1
2, ctx 1

2〉〉, `, u) = >,
17) whenever first(currPrg(σ0

1)) = set pc to `′, `′ v currPc(σ0
1).

Let c1 = currPrg(σ0
1), u1 = currUsr(σ0

1), c2 = currPrg(σ0
2), and u2 = currUsr(σ0

2). From (5) and (6), it follows
that 〈u1, c1〉 = 〈u2, c2〉. In the following, we denote u1 and u2 using u and c1 and c2 using c. Furthermore, we denote
by n the value such that C0

1 |n = 〈currUsr(σ0
1), currPrg(σ0

1)〉. From Lemma H.2 and (17), there are only two cases:
• first(c1) = if e then c′ else c′′. We assume that c1 = if e then c′ else c′′; c3, where c3 can be an empty program

(the proof for the other cases is almost identical). From this and the F-IFTRUE and F-IFFALSE rules, it follows
that currPrg(σ1

1) = [c∗1; set pc to ∆0
1(pcu)]; c3 and currPrg(σ1

2) = [c∗2; set pc to ∆0
2(pcu)]; c3, where c∗1 ∈ {c′,

c′′}, and c∗2 ∈ {c′, c′′}. Furthermore, from (3) and (7), it follows that ∆0
1(pcu) = ∆0

2(pcu) = `′. Therefore,
currPrg(σ1

1) = [c∗1; set pc to `′]; c3 and currPrg(σ1
2) = [c∗2; set pc to `′]; c3, where c∗1 ∈ {c′, c′′}, and c∗2 ∈ {c′, c′′}.

From this and (11)–(14), it follows that there are 〈∆i
1, [ε]; c3,m

i
1, 〈si1, ctx i1〉〉 and 〈∆j

2, [ε]; c3,m
j
2, 〈s

j
2, ctx j2〉〉 such that

〈∆0
1, [c

∗
1; set pc to `′]; c3, currMem(σ0

1), 〈s0
1, ctx 0

1〉〉
τ i

u 〈∆i
1, ε; c3,m

i
1, 〈si1, ctx i1〉〉 and 〈∆0

2, [c
∗
2; set pc to `′]; c3,

currMem(σ0
2), 〈s0

2, ctx 0
2〉〉

τ ′
j

u 〈∆
j
2, ε; c3,m

j
2, 〈s

j
2, ctx j2〉〉, where ∆i

1(pcu) = `′ and ∆i
2(pcu) = `′. From (11)–(14),

it follows that during both computations pcu is never below ` before executing the last set pc to `′ statement. From
this and (8), it follows that ∆i′

1 (pcu) 6v ` and ∆j′

2 (pcu) 6v ` for all 1 ≤ i′ ≤ i−1 and 1 ≤ j′ ≤ j−1. By repeatedly
applying Lemma H.3 and Lemma H.4 and ∆i′

1 (pcu) 6v ` and ∆j′

2 (pcu) 6v ` for all 1 ≤ i′ ≤ i−1 and 1 ≤ j′ ≤ j−1,
we obtain that 〈∆i′

1 , c
i′

1 ,m
i′

1 , 〈si
′

1 , ctx i
′

1 〉〉 ≈` 〈∆
j′

2 , c
j′

2 ,m
j′

2 , 〈s
j′

2 , ctx j
′

2 〉〉 for all 1 ≤ i′ ≤ i− 1 and 1 ≤ j′ ≤ j − 1.
From this and the fact that in the last step of the execution we set pcu to `′ in both runs, 〈∆i

1, c
i
1,m

i
1, 〈si1, ctx i1〉〉 ≈`

〈∆j
2, c

j
2,m

j
2, 〈s

j
2, ctx j2〉〉. Similarly, by repeatedly applying Lemma H.5, we obtain that 〈∆i

1, c
i
1,m

i
1, 〈si1, ctx i1〉〉 ≡cfg

〈∆j
2, c

j
2,m

j
2, 〈s

j
2, ctx j2〉〉. By repeatedly applying the F-ATOMIC-STATEMENT rule both to σ0

1 and σ0
2 , we obtain that

σ0
1

τ i 〈∆i
1, C

i
1,M

i
1, 〈si1, ctx i1〉,S0

1 〉 and σ0
2

τ ′
i

〈∆j
2, C

j
2 ,M

j
2 , 〈s

j
2, ctx j2〉,S0

2 〉, where Ci1 = Ci1|1· . . . ·Ci1|n−1·〈u,
[ε]; c3〉·Ci1|n+1 . . . ·Ci1||Ci

1|, C
i
2 = Ci2|1· . . . ·Ci2|n−1·〈u, [ε]; c3〉·Ci2|n+1 . . . ·Ci2||Ci

2|, M
i
1 = M i

1|1· . . . ·M i
1|n−1·〈u,

mi
1〉·M i

1|n+1 . . . ·M i
1||Mi

1|, and M i
2 = M i

2|1· . . . ·M i
2|n−1·〈u,mi

2〉·M i
2|n+1 . . . ·M i

2||Mi
2|. In the following, let σi1 =

〈∆i
1, C

i
1,M

i
1, 〈si1, ctx i1〉,S0

1 〉 and σj2 = 〈∆j
2, C

j
2 ,M

j
2 , 〈s

j
2, ctx j2〉,S0

2 〉. We now show that R = {(σ0
1 , σ

0
2), (σi1, σ

j
2)} is

a (σ0
1 , σ

0
2 , i, j, `)-bisimulation. We first need to show that for all σ′1 = 〈∆′1, C ′1,M ′1, 〈s′1, ctx ′1〉,S ′1〉 and σ′2 = 〈∆′2, C ′2,

M ′2, 〈s′2, ctx ′2〉,S ′2〉 such that σ′1Rσ
′
2, the following conditions hold: (a) reachi(σ0

1 , σ
′
1) and reachj(σ0

2 , σ
′
2), (b) σ′1 ≈`

σ′2, (c) σ′1 ≡cfg σ′2, (d) C ′1 = C ′2, (e) S ′1 = S ′2, (f) currPc(σ′1) v ` and currPc(σ′2) v `. There are two cases:
– (σ′1, σ

′
2) = (σ0

1 , σ
0
2). Then, (a) trivially follows since reachk(σ, σ) always holds for all k > 0 and both i, j > 0.

Morever, (b)–(f) directly follow from (3)–(7).

– (σ′1, σ
′
2) = (σi1, σ

j
2). Then, (a) directly follows from σ0

1
τ i σi1 and σ0

2
τ ′
i

σj2. Condition (b) follows from (3),
〈∆i

1, c
i
1,m

i
1, 〈si1, ctx i1〉〉 ≈` 〈∆

j
2, c

j
2,m

j
2, 〈s

j
2, ctx j2〉〉, and ∆i

1(pcu) = ∆j
2(pcu) = `′. Condition (c) follows from

〈∆i
1, c

i
1,m

i
1, 〈si1, ctx i1〉〉 ≡cfg 〈∆j

2, c
j
2,m

j
2, 〈s

j
2, ctx j2〉〉. Condition (d) follows from (6), Si1 = S0

1 , and Sj2 = S0
2 .

Condition (e) follows from (5) and the fact that we applied only the F-ATOMICSTATEMENT rule, which does not
modify the scheduler. Condition (f) follows from (7), ∆i

1(pcu) = ∆0
1(pcu), and ∆i

2(pcu) = ∆0
2(pcu).

Therefore, the fact that R is a bisimulation directly follows from (i) the fact that (a)–(f) hold for (σ0
1 , σ

0
2) and

(σ1
1 , σ

1
2), (ii) assumptions (1), (2), and {(σ0

1 , σ
0
2), (σ1

1 , σ
1
2)}, and (3) there are no configurations that are reachable

in i steps from σ0
1 and j steps from σ0

2 other than σi1 and σj2.
• first(c1) = while e do c′. The proof of this case is similar to that of first(c1) = if e then c′ else c′′.

This completes the proof of our claim.

Finally, Lemma H.17 states a composition result for bisimulations.

Lemma H.17. Let R1 be a (σ0
0 , σ

0
1 , i, j, `)-bisimulation and R2 be a (ρ0

0, ρ
0
1, x, y, `

′)-bisimulation. If the following
conditions hold:

1) (σ0
0 , σ

0
1) ∈ R1,

2) (ρ0
0, ρ

0
1) ∈ R1 ∩R2,

3) ` = `′,
4) σ0

0
τ i ρ0

0, and
5) σ0

1
τ j ρ0

1,
then R1 ∪R2 is a (σ0

0 , σ
0
1 , i+ x, j + y, `)-bisimulation.

Proof. Let R1 be a (σ0
0 , σ

0
1 , i, j, `)-bisimulation and R2 be a (ρ0

0, ρ
0
1, x, y, `

′)-bisimulation. Assume, for contradiction’s
sake, that R1 ∪ R2 is not a (σ0

0 , σ
0
1 , i + x, j + y, `)-bisimulation. This happens iff there is a (ν0, ν1) ∈ R1 ∪ R2 that

violates one of the following constraints:
1) ¬reachi+x(σ0

0 , ν0) or ¬reachj+y(σ0
1 , ν

1). Without loss of generality, we assume that reachi+x(σ0
0 , ν0) does not

hold. If (ν0, ν1) ∈ R1, then reachi(σ0
0 , ν0) holds and reachi+x(σ0

0 , ν0) follows, leading to a contradiction. If (ν0,

ν1) ∈ R2 \R1, then from σ0
0
τ i ρ0

0 and reachx(ρ0
0, ν0), it follows that reachi+x(σ0

0 , ν0), leading to a contradiction.
2) ν0 6≈` ν1. This contradicts (ν0, ν1) ∈ R1 or (ν0, ν1) ∈ R2.
3) ν0 6≡cfg ν1. This contradicts (ν0, ν1) ∈ R1 or (ν0, ν1) ∈ R2.
4) C0 6= C1, where C0 is the code in ν0 and C1 is the code in ν1. This contradicts (ν0, ν1) ∈ R1 or (ν0, ν1) ∈ R2.
5) S0 6= S1, where S0 is the scheduler in ν0 and S1 is the scheduler in ν1. This contradicts (ν0, ν1) ∈ R1 or (ν0,

ν1) ∈ R2.
6) currPc(ν0) 6v ` or currPc(ν1) 6v `. This contradicts (ν0, ν1) ∈ R1 or (ν0, ν1) ∈ R2.
7) ν0

τ0 ν′0, ν1
τ1 ν′1, reachi+x(σ0

0 , ν
′
0), reachj+y(σ0

1 , ν
′
1), and currPc(ν′0) v `, but (ν′0, ν

′
1) 6∈ R1 ∪R2. There are

three cases:
• (ν0, ν1) ∈ R0, reachi(σ0

0 , ν
′
0), and reachj(σ0

1 , ν
′
1). From this and R1 is a (σ0

0 , σ
0
1 , i, j, `)-bisimulation, it follows

that (ν′0, ν
′
1) ∈ R1. Hence, (ν′0, ν

′
1) ∈ R1 ∪R2, leading to a contradiction.

• (ν0, ν1) ∈ R1, reachx(ρ0
0, ν
′
0), and reachy(ρ0

1, ν
′
1). From this and R2 is a (ρ0

0, ρ
0
1, x, y, `)-bisimulation, it follows

that (ν′0, ν
′
1) ∈ R2. Hence, (ν′0, ν

′
1) ∈ R1 ∪R2, leading to a contradiction.

• (ν0, ν1) ∈ R0, reachi+x(σ0
0 , ν
′
0), reachj+y(σ0

1 , ν
′
1), but ¬reachi(σ0

0 , ν
′
0) or ¬reachj(σ0

1 , ν
′
1). This happens iff

(ν0, ν1) = (ρ0, ρ1). From this, (ρ0, ρ1) ∈ R1 ∩ R2, σ0
0
τ i ρ0

0, σ0
1
τ j ρ0

1, reachi+x(σ0
0 , ν
′
0), and reachj+y(σ0

1 ,
ν′1), it follows that reachx(ρ0

0, ν
′
0) and reachy(ρ0

1, ν
′
1). From this and R2 is a (ρ0

0, ρ
0
1, x, y, `)-bisimulation, it

follows that (ν′0, ν
′
1) ∈ R2. Hence, (ν′0, ν

′
1) ∈ R1 ∪R2, leading to a contradiction.

8) ν0
τ0 ν′0, ν1

τ1 ν′1, reachi+x(σ0
0 , ν
′
0), reachj+y(σ0

1 , ν
′
1), currPc(ν′0) 6v `, and there are ν′′0 and ν′′1 such that

ν0
τ ′0
∗

ν′′0 , ν1
τ ′1
∗

ν′′1 , reachi+x(σ0
0 , ν
′′
0), reachj+y(σ0

1 , ν
′′
1), currPc(ν′′0) v `, currPc(ν′′1) v `, and (ν′′0 , ν

′′
1) 6∈

R1 ∪ R2. If reachi(σ0
0 , ν
′′
0) and reachj(σ0

1 , ν
′′
1), then (ν′′0 , ν

′′
1) ∈ R1 and, therefore, (ν′′0 , ν

′′
1) ∈ R1 ∪ R2, leading

to a contradiction. If reachx(ρ0
0, ν
′′
0) and reachy(ρ0

1, ν
′′
1), then (ν′′0 , ν

′′
1) ∈ R2 and, therefore, (ν′′0 , ν

′′
1) ∈ R1 ∪R2,

leading to a contradiction. Note that from (ρ0, ρ1) ∈ R1 ∩R2, it follows that the above cases are the only possible.
Since all cases lead to a contradiction, this completes the proof of our claim.

H.9. Proof of the main result

We are now ready to prove the main result of §5, namely that our mechanism provides security with respect to an
external attacker atk .

Theorem 4. For all programs C = c1· . . . ·ck ∈ Comk
UID , scheduler S, memories M = m1· . . . ·mk ∈ Memk

UID ,
and initial runtime state s, whenever r = 〈∆0, C,M, 〈s, ε〉,S〉 τ n 〈∆′, C ′,M ′, 〈s′, ctx′〉,S ′〉, then for all 1 ≤ i ≤ n,
K atk (〈M, s〉, C,S, trace(ri−1)) ∩Aatk ,sec(M, s) ⊆ K atk (〈M, s〉, C,S, trace(ri)), where the database in r’s (i− 1)-th
configuration is 〈db, U, sec, T, V 〉 and K atk refers to Definition 2 with as the underlying evaluation relation.

Proof. Let k ∈ N, C0 = c1· . . . ·ck ∈ Comk
UID be WHILESQL programs, S0 be a scheduler, M0 = m1· . . . ·mk ∈

Memk
UID be memories, s0 be a database state, σ0 be the global state 〈∆0, C0,M0, 〈s0, ε〉,S0〉. Let σ1 be a global state

and n be a value in N such that r = σ0
τ n σ1. Assume, for contradiction’s sake, that our claim does not hold. Namely,

there exists a value 1 ≤ i ≤ n such that K atk (〈M0, s0〉, C0,S0, trace(ri−1)) ∩Aatk ,sec(M0, s0) 6⊆ K atk (〈M0, s0〉, C0,
S, trace(ri)), where sec is the security policy in the (i−1)-th configuration in r. From this, it follows that there is a state
〈M1, s1〉 such that 〈M1, s1〉 ∈ K atk (〈M0, s0〉, C0,S0, trace(ri−1)) ∩ Aatk ,sec(M0, s0) and 〈M1, s1〉 6∈ K atk (〈M0, s0〉,
C0,S, trace(ri)). From 〈M1, s1〉 ∈ K atk (〈M0, s0〉, C0,S0, trace(ri−1)), it follows that s0 ≈atk s1, M0 ≈atk M1, and

for all ctx ′, ∆′, τ ′, C ′, M ′, s′, S ′ such that 〈∆0, C0,M1, 〈s1, ε〉,S0〉 τ
′ ∗
〈∆′, C ′,M ′, 〈s′, ctx ′〉,S ′〉, trace(ri−1) ∼atk τ

′.
From 〈M1, s1〉 ∈ Aatk ,sec(M, s), it follows that s1 ≈sec,atk s and M1 ≈atk M . Finally, from 〈M1, s1〉 6∈ K atk (〈M0,
s0〉, C0,S, trace(ri)), it follows that s0 6≈atks1, M0 6≈atkM1, or there are ctx ′, ∆′, τ ′, C ′, M ′, s′, S ′ such that 〈∆0,

C0,M1, 〈s1, ε〉,S0〉 τ ′
∗
〈∆′, C ′,M ′, 〈s′, ctx ′〉,S ′〉 and trace(ri) 6∼atk τ

′. Note that only the last case is interesting
(since s0 6≈atks1 and M0 6≈atkM1 immediately contradict 〈M1, s1〉 ∈ K atk (〈M0, s0〉, C0,S, trace(ri−1))). Therefore, the
following conditions hold:

1) s1 ≈atk s0,
2) s1 ≈sec,atk s0,
3) M1 ≈atk M0,
4) there are j, ctx j1, ∆j

1, τ j1 , Cj1 , M j
1 , sj1, Sj1 such that:

a) 〈∆0, C0,M1, 〈s1, ε〉,S0〉
τ ′−→

j

〈∆j
1, C

j
1 ,M

j
1 , 〈s

j
1, ctx j1〉,S

j
1〉,

b) trace(ri−1) ∼atk τ
′, and

c) trace(ri) 6∼atk τ
′.

In the following, let sec0 be the policy in the state s0 (which, from s1 ≈atk s0, is the same as in s1), sec be the policy in
the (i− 1)-th configuration in r, and Varatk be the variables occurring in atk ’s program. Furthermore, let ` be the label
cl(auth(sec0, atk) ∪ auth(sec, atk) ∪

⋃
x∈Varatk

MEM x) (observe that cl(auth(sec0, atk)) v ` holds), σi−1
0 = 〈∆i−1

0 ,

Ci−1
0 ,M i−1

0 , 〈si−1
0 , ctx i−1

0 〉,Si−1
0 〉 be (i− 1)-th configuration in r, and σj−1

1 be the configuration 〈∆j−1
1 , Cj−1

1 ,M j−1
1 ,

〈sj−1
1 , ctx j−1

1 〉,Sj−1
1 〉. From (4.b) and (4.c), it follows that the only interesting cases are those for which trace(ri)�atk =

trace(ri−1)�atk ·obs0 (since if trace(ri)�atk = trace(ri−1)�atk , then (4.b) and (4.c) are contradictory statements), where
obs1 is an observation. Therefore, there is a non-empty trace π1 such that trace(ri−1)�atk = π1 and trace(ri)�atk =
π1·obs1. Let σi0 and σi−1

0 be the last global states in ri and ri−1. From trace(ri)�atk = trace(ri−1)�atk ·obs0, it follows

that σi−1
0

obs0 σi0. From trace(ri−1) ∼atk τ
′, trace(ri) 6∼atk τ

′, and trace(ri)�u = trace(ri−1)�u·obs0, it follows that
τ ′�atk = π1·obs1·π4, where obs1 is an observation different from obs0 (it this is not the case, this would contradict (4.b)
and (4.c) since this would imply trace(ri) ∼atk τ

′). Without loss of generality, we assume that π4 = ε and that obs1 is

produced in the last step of 〈∆0, C0,M1, 〈s1, ε〉,S0〉
τ ′−→

j

〈∆j
1, C

j
1 ,M

j
1 , 〈s

j
1, ctx j1〉,S

j
1〉, i.e., σj−1

1
obs1 σj1. We claim

that that (1) σi−1
0 ≈` σj−1

1 , (2) Ci−1
0 = Cj−1

1 , (3) Si−1
0 = Sj−1

1 , (4) si−1
0 ≡cfg sj−1

1 . Furthermore, we also claim that
currPc(σi−1

0) v ` and LU (si−1
0 , atk) v `. From (1) and currPc(σi−1

0) v `, it follows that currPc(σj−1
1) v `. From

(4) and LU (si−1
0 , atk) v `, it follows that LU (sj−1

1 , atk) v `. From this and Lemma H.6, it follows that obs0 = obs1,
leading to a contradiction.

Below, we prove our claims together with other intermediate facts.
Fact 1. We now prove that σ0

0 ≈` σ0
1 , where σ0

0 = 〈∆0, C0,M0, 〈s0, ε〉,S0〉, σ0
1 = 〈∆0, C0,M1, 〈s1, ε〉,S0〉, s0 = 〈db0,

U0, sec0, T0, V0〉, and s1 = 〈db1, U1, sec1, T1, V1〉. To do so, we need to show that:

• For all queries q ∈ RC such that LQ(∆0, q) v `, [q]db0 = [q]db1 . From ` = cl(auth(sec0, atk) ∪
auth(sec, atk) ∪

⋃
x∈Varatk

MEM x) and q is a query (i.e., it does not refer to MEM x for any x), it follows
that LQ(∆0, q) v cl(auth(sec0, atk) ∪ auth(sec, atk)). From LQ’s definition, it follows that LQ(∆0, q) =⊔
Q∈suppD,Γ(q)

⊔
q′∈Q ∆0(q′). From this and ∆0’s definition, it follows that ∆0(q) = cl(q) for all q ∈ RC pred .

From this and LQ(∆0, q) =
⊔
Q∈suppD,Γ(q)

⊔
q′∈Q ∆0(q′), it follows that LQ(∆0, q) =

⊔
Q∈suppD,Γ(q)

⊔
q′∈Q cl(q′).

From this and LQ(∆0, q) v cl(auth(sec0, atk) ∪ auth(sec, atk)), it follows
⊔
Q∈suppD,Γ(q)

⊔
q′∈Q cl(q′) v

cl(auth(sec0, atk) ∪ auth(sec, atk)). Furthermore, from the definition of suppD,Γ(q), it follows that cl(q) v⊔
Q∈suppD,Γ(q)

⊔
q′∈Q cl(q′). Therefore, the tables and views in auth(sec0, atk)∪auth(sec, atk) determine the values

of the queries in suppD,Γ(q), which in turn determine the value of q, i.e., cl(q) v cl(auth(sec0, atk) ∪ auth(sec,
atk)). From s1 ≈atk s0, it follows that the content of all tables and views in auth(sec0, atk) is the same in s0 and
s1. From s1 ≈sec,atk s0, it follows that the content of all tables and views in auth(sec, atk) is the same in s0 and
s1. From this and cl(q) v cl(auth(sec0, atk) ∪ auth(sec, atk)), it follows that [q]db0 = [q]db1 .

• For all variables x ∈ Var such that ∆0(x) v `, JM0K(x) = JM1K(x). From ` = cl(auth(sec0, atk) ∪ auth(sec,
atk)∪

⋃
x∈Varatk

MEM x), it follows that ∆0(x) v cl(auth(sec0, atk)∪auth(sec, atk)∪
⋃
x∈Varatk

MEM x). From
this and ∆0(x) = > if x 6∈ Varatk and ∆0(x) = MEM x otherwise, it follows that ∆0(x) = MEM x. From this, it
follows that x ∈ Varatk . From this and s1 ≈atk s0, it follows that JM0K(x) = JM1K(x).

These facts together with the fact that the monitor state is the same in σ0
0 and σ0

1 , leads to σ0
0 ≈` σ0

1 .
Fact 2. We now prove that s0 ≡cfg s1. Let s0 = 〈db0, U0, S0, T0, V0〉 and s1 = 〈db1, U1, S1, T1, V1〉. From s1 ≈atk s0

and ≈atk ’s definition, it follows that U0 = U1, S0 = S1, T0 = T1, and V0 = V1. From this and ≡cfg ’s definition, it
follows that s0 ≡cfg s1.
Fact 3. We now show that currPc(σi−1

0) v ` and LU (si−1
0 , atk) v `. From ` = cl(auth(sec0, atk) ∪ auth(sec,

atk) ∪
⋃
x∈Varatk

MEM x) and sec is the policy in σi−1
0 , it immediately follows that LU (si−1

0 , atk) v `. Assume, for

contradiction’s sake, that currPc(σi−1
0) 6v `. From σi−1

0
obs0 σi0 and obs0 6= ε, it follows that the executed rule produced

an event. In the following, let currUsr(σi−1
0) = u. Observe that ∆i−1

0 (pcu) = currPc(σi−1
0). There are two cases:

• Rule F-EVAL-STEP. From the rule, it follows that 〈∆i−1
0 , ci−1

0 ,mi−1
0 , 〈si−1

0 , ctx i−1
0 〉〉 obs0

u 〈∆i
0, c

i
0,m

i
0, 〈si0, ctx i0〉〉

(which we denote r). From this and Lemma H.1, it follows that ∆i−1
0 (deps(obs0, r)) t∆i−1

0 (pcu) v LU (si−1
0 ,

user(obs0)). From this, it follows that ∆i−1
0 (pcu) v LU (si−1

0 , user(obs0)). Furthermore, since trace(ri)�atk =
trace(ri−1)�atk ·obs0, it follows that user(obs0) = atk . From this and ∆i−1

0 (pcu) v LU (si−1
0 , user(obs0)), it

follows that ∆i−1
0 (pcu) v LU (si−1

0 , atk). From this and LU (si−1
0 , atk) v `, it follows that ∆i−1

0 (pcu) v `, leading
to a contradiction.

• Rule F-ATOMIC-STATEMENT. The proof is similar to that of F-EVAL-STEP.
Since all cases lead to a contradiction, this completes the proof of Fact 3.

Fact 4. We prove that si−1
0 ≡cfg sj−1

1 . From σ0
0

τ0
∗
σi−1

0
obs0 σi0, σ0

1
τ1
∗
σj−1

1
obs1 σj1, τ0�atk = τ1�atk , all

configuration changes are associated with public events, and the code produced by the expansion process either terminates
or gets stuck, it follows that the configuration has been modified in the same way in σ0

0
τ0
∗
σi−1

0 and σ0
1
τ1
∗
σj−1

1 .
Therefore, si−1

0 ≡cfg sj−1
1 .

Fact 5. We now prove that currPc(σj−1
1) v `. From σj−1

1
obs1 σj1, there are two cases:

1) We applied the F-OUT rule. From the rule, it follows that currPc(σj−1
1) v LU (sj−1

1 , u′). Furthermore, since obs1

is visible to atk , it follows that u′ = atk . Hence, currPc(σj−1
1) v LU (sj−1

1 , atk). From this and si−1
0 ≡cfg sj−1

1

(Fact 4), it follows that currPc(σj−1
1) v LU (si−1

0 , atk). From this and LU (si−1
0 , atk) v ` (Fact 3), it follows that

currPc(σj−1
1) v `.

2) We applied the F-UPDATECONFIGURATIONOK. From the rule, it follows that currPc(σj−1
1) v auth(sec0,

atk) v LU (sj−1
1 , atk). From this and si−1

0 ≡cfg sj−1
1 (Fact 4), it follows that currPc(σj−1

1) v LU (si−1
0 , atk).

From this and LU (si−1
0 , atk) v ` (Fact 3), it follows that currPc(σj−1

1) v `.
Fact 6. We now prove that (1) σi−1

0 ≈` σj−1
1 , (2) Ci−1

0 = Cj−1
1 , and (3) Si−1

0 = Sj−1
1 . From Facts 1 and 2, it follows

that initially σ0
0 ≈` σ0

1 , C0
0 = C0

1 , S0
0 = S0

1 , and s0
0 ≡cfg s0

1. Furthermore, currPc(σ0
0) = currPc(σ0

1) = ⊥ given that
both runs start from the initial monitor state ∆0. Therefore, we can repeatedly apply Lemmas H.15 and H.16 (depending
on whether we are in a low or high context given `) to construct bisimulations among states in the two runs and use
Lemma H.17 to compose the various bisimulations in a unique bisimulation R. We remark that during the construction
of the bisimulation we can always apply either Lemma H.15 or Lemma H.16. In particular, currPc(σi−1

0) v ` (Fact 3)
and currPc(σj−1

1) v ` (Fact 5) ensure that the execution of branching statements leading to high contexts with respect
to ` always terminates before σj−1

0 and σj−1
1 . Finally, observe that {(σ0

0 , σ
1
0), (σi−1

0 , σj−1
1)} ⊆ R by construction. From

this, σi−1
0 ≈` σj−1

1 , Ci−1
0 = Cj−1

1 , and Si−1
0 = Sj−1

1 directly follow.

Appendix I.
Approximations for disclosure lattices

Here, we provide all the proofs about approximations of disclosure lattices (see §6).

I.1. Soundness criteria

Equipping our monitor with arbitrary approximations may break the monitor’s security guarantees. To avoid that, we
introduce sound approximations, and we prove that they preserve the monitor’s guarantees. We say that an approximation
〈Labs ,vabs ,tabs ,∆abs

0 , Labs
Q , Labs

U , authabs , γ−, γ+〉 is sound if:
1) The lower and upper bounds functions are well-defined. Namely, we require that for each label ` ∈ Labs ,

γ−(`) v γ+(`).
2) The abstract ordering relation vabs approximates v. Formally, for any two abstract labels `1, `2 ∈ Labs , we require

that whenever `1 vabs `2 holds, then γ+(`1) v γ−(`2).
By using the upper bound γ+ on the left-hand side of v and the lower bound γ− on the right-hand side, we ensure
that whenever the monitor (equipped with the approximation) determines that a check is satisfied, then the check is
satisfied as well with respect to the disclosure lattice.

3) The abstract join operator tabs approximates t. Formally, we require that, for any two abstract labels `1, `2 ∈ Labs ,
γ−(`1 tabs `2) v γ−(`1)t γ−(t2) and γ+(`1)t γ+(`2) v γ+(`1 tabs `2). This ensures that joining abstract labels
does not lose information with respect to the disclosure lattice.

4) The initial abstract monitor state ∆abs
0 approximates ∆0. Formally, we require ∆abs

0 v−
Var∪RC pred∪{pcu|u∈UID}

∆0 v+
Var∪RC pred∪{pcu|u∈UID} ∆abs

0 , where ∆abs v−V ∆ denotes that γ−(∆abs(x)) v ∆(x) and ∆ v+
V ∆abs

denotes that ∆(x) v γ+(∆abs(x)) for all x ∈ V . This ensures that the abstract initial state ∆abs
0 contains at least

as much information as ∆0 about all variables and tuples.
5) The abstract mapping Labs

Q approximates LQ. More precisely, we require that Labs
Q (∆abs , q) approximates LQ(∆,

q) whenever ∆abs approximates ∆ for all predicate queries in q’s support. Formally, whenever ∆abs v−supp(q)

∆ v+
supp(q) ∆abs , then γ−(Labs

Q (∆abs , q)) v LQ(∆, q) v γ+(Labs
Q (∆abs , q)) must hold. This guarantees that

Labs
Q (∆abs , q) always captures at least as much information as LQ(∆, q). Moreover, we also require that Labs

Q (∆abs ,

q) = ∆abs(q) for any abstract state ∆abs and predicate query q ∈ RC pred .
6) The abstract mapping Labs

U approximates LU . That is, for any system state s ∈ ΩM and user u ∈ UID , we require
that γ−(Labs

U (s, u)) v LU (s, u) v γ+(Labs
U (s, u)). Since LU (s, u) maps u to the element in L that captures u’s

privileges given the current policy, this requirement in particular ensures that γ−(Labs
U (s, u)) does not grant more

privileges to u than specified in the policy.
7) The abstract mapping authabs approximates auth. Formally, for any security policy sec and user u ∈ UID , we

require γ−(authabs(sec, u)) v auth(sec, u) v γ+(authabs(sec, u)).

I.2. Using approximations

Let A be an approximation 〈Labs ,vabs ,tabs ,∆abs
0 , Labs

Q , Labs
U , authabs , γ−, γ+〉. In the following, we use the phrase

“equipping our monitor with A” to denote the evaluation relation obtained by replacing v with vabs , t with tabs , ∆0

with ∆abs
0 , LQ with Labs

Q , LU with Labs
U , and cl(auth(sec0, atk)) with authabs(sec0, atk).

I.3. Sound approximations preserve security

Proposition I.1 states that equipping our monitor with a sound approximation does not introduce new behaviors in
the monitor’s semantics.

Proposition I.1. Let V = Var ∪RC pred ∪{pcu | u ∈ UID} and A be a sound approximation and A be the evaluation
relation obtained by equipping our monitor with A. Whenever there is a run r = 〈∆abs

0 , C,M, 〈s, ε〉,S〉 τ
n

A 〈∆abs ′,
C ′,M ′, 〈s′, ctx′〉,S ′〉, then there is a concrete monitor state ∆′ and a sequence of programs C ′′ such that (1) 〈∆0,

C,M, 〈s, ε〉,S〉 τ
n
〈∆′, C ′′,M ′, 〈s′, ctx′〉,S ′〉, (2) ∆abs ′ v−V ∆′ v+

V ∆abs ′, and (3) C and C ′ are identical except for
statements of the form set pc to ` and for each set pc to ` statement in C ′ the corresponding set pc to `′ statement in
C ′′ is such that γ−(`) v `′ v γ+(`).

Proof. We prove our claim by induction on the length n of the run r.
For the base case, let n = 0. Then, r = 〈∆abs

0 , C,M, 〈s, ε〉,S〉 0
A 〈∆abs

0 , C,M, 〈s, ε〉,S〉. The corresponding
run is 〈∆0, C,M, 〈s, ε〉,S〉 0 〈∆0, C,M, 〈s, ε〉,S〉 and ∆abs

0 v−V ∆0 v+
V ∆abs

0 directly follows from A’s soundness
(requirement 4).

For the induction’s step, we assume that the claim holds for all runs of length n − 1 and we show that it holds
also for r = 〈∆abs

0 , C,M, 〈s, ε〉,S〉 τ n

A 〈∆abs ′, C ′,M ′, 〈s′, ctx′〉,S ′〉. From the induction hypothesis, we know that

given 〈∆abs
0 , C,M, 〈s, ε〉,S〉 τ n−1

A 〈∆abs ′′, C ′′,M ′′, 〈s′′, ctx′′〉,S ′′〉, there is a corresponding run 〈∆0, C,M, 〈s, ε〉,
S〉 τ

n−1
〈∆′′, C ′′1 ,M ′′, 〈s′′, ctx′′〉,S ′′〉 such that (a) ∆abs ′′ v−V ∆′′ v+

V ∆abs ′′, and (b) for each set pc to ` statement
in C ′′ the corresponding set pc to `′ statement in C ′′1 is such that γ−(`) v `′ v γ+(`). We assume that we can make
another step of the execution according to A, that is, 〈∆abs ′′, C ′′,M ′′, 〈s′′, ctx′′〉,S ′′〉 τ A 〈∆abs ′, C ′,M ′, 〈s′, ctx′〉,
S ′〉. We now prove our claim by case distinction depending on the applied rule in the local semantics (with a slight
abuse of notation, we ignore the global semantics):

• Rule F-ASSIGN. Since we successfully applied the rule according to A, it follows that (i) ∆abs ′′(pcu) vabs

authabs(sec0, atk) ∨∆abs ′′(pcu) vabs ∆abs ′′(x) and (ii) ∆abs ′ = ∆abs ′′[x 7→ ∆abs ′′(pcu) tabs ∆abs ′′(e)]. From
(i), there are two cases:
– Assume ∆abs ′′(pcu) vabs authabs(sec0, atk) holds. From A’s soundness (requirement 2), it follows that
γ+(∆abs ′′(pcu)) v γ−(authabs(sec0, atk)). From ∆′′ v+

V ∆abs ′′ (see (a)), it follows that ∆′′(pcu) v
γ+(∆abs ′′(pcu)). From A’s soundness (requirement 7), it follows that γ−(authabs(sec0, atk)) v cl(auth(sec0,

atk)). From γ+(∆abs ′′(pcu)) v γ−(authabs(sec0, atk)), ∆′′(pcu) v γ+(∆abs ′′(pcu)), and γ−(authabs(sec0,
atk)) v cl(auth(sec0, atk)), we therefore have ∆′′(pcu) v cl(auth(sec0, atk)). Hence, ∆′′(pcu) v
cl(auth(sec0, atk)) ∨∆′′(pcu) v ∆′′(x) holds.

– Assume that ∆abs ′′(pcu) vabs ∆abs ′′(x) holds. From A’s soundness (requirement 2), it follows that
γ+(∆abs ′′(pcu)) v γ−(∆abs ′′(x)). From ∆′′ v+

V ∆abs ′′ (see (a)), it follows that ∆′′(pcu) v γ+(∆abs ′′(pcu)).
From ∆abs ′′ v−V ∆′′ (see (a)), it follows that γ−(∆abs ′′(x)) v ∆′′(x). From γ+(∆abs ′′(pcu)) v γ−(∆abs ′′(x)),
∆′′(pcu) v γ+(∆abs ′′(pcu)), and γ−(∆abs ′′(x)) v ∆′′(x), we have ∆′′(pcu) v ∆′′(x). Hence, ∆′′(pcu) v
cl(auth(sec0, atk)) ∨∆′′(pcu) v ∆′′(x) holds.

Since ∆′′(pcu) v cl(auth(sec0, atk)) ∨∆′′(pcu) v ∆′′(x) holds in both cases, we can apply the rule F-ASSIGN
even according to . Hence, we have 〈∆′′, C ′′1 ,M ′′, 〈s′′, ctx′′〉,S ′′〉 〈∆′, C ′1,M ′, 〈s′, ctx′〉,S ′〉, where ∆′ =
∆′′[x 7→ ∆′′(pcu) t∆′′(e)]. We still have to show that ∆abs ′ v−V ∆′ v+

V ∆abs ′ and that the labels occurring in
C ′1 are consistent with those in C ′. The requirement on C ′1 follows directly from the induction hypothesis (see (b)).
Showing ∆abs ′ v−V ∆′ v+

V ∆abs ′ is equivalent to showing that γ−(∆abs ′(x)) v ∆′(x) v γ+(∆abs ′(x)). We remark
that ∆abs ′(x) = ∆abs ′′(pcu) tabs ∆abs ′′(e) (from (2)) and ∆′(x) = ∆′′(pcu) t∆′′(e) (from the F-ASSIGN rule).
We first show that γ−(∆abs ′(x)) v ∆′(x). From A’s soundness (requirement 3), γ−(∆abs ′′(pcu)tabs ∆abs ′′(e)) v
γ−(∆abs ′′(pcu))t γ−(∆abs ′′(e)). From ∆abs ′′ v−V ∆′′ (see (a)), it follows that γ−(∆abs ′′(pcu)) v ∆′′(pcu) and
γ−(∆abs ′′(e)) v ∆′′(e), and, therefore, γ−(∆abs ′′(pcu)) t γ−(∆abs ′′(e)) v ∆′′(pcu) t ∆′′(e). From this and
γ−(∆abs ′′(pcu) tabs ∆abs ′′(e)) v γ−(∆abs ′′(pcu)) t γ−(∆abs ′′(e)), we have γ−(∆abs ′′(pcu) tabs ∆abs ′′(e)) v
∆′′(pcu) t∆′′(e) or, equivalently, γ−(∆abs ′(x)) v ∆′(x).
We now show that ∆′(x) v γ+(∆abs ′(x)). FromA’s soundness (requirement 3), γ+(∆abs ′′(pcu))tγ+(∆abs ′′(e)) v
γ+(∆abs ′′(pcu) tabs ∆abs ′′(e)). From ∆′′ v+

V ∆abs ′′ (see (a)), it follows that ∆′′(pcu) v γ+(∆abs ′′(pcu))

and ∆′′(e) v γ+(∆abs ′′(e)). Hence, ∆′′(pcu) t ∆′′(e) v γ+(∆abs ′′(pcu)) t γ+(∆abs ′′(e)). From this
and γ+(∆abs ′′(pcu)) t γ+(∆abs ′′(e)) v γ+(∆abs ′′(pcu) tabs ∆abs ′′(e)), we have ∆′′(pcu) t ∆′′(e) v
γ+(∆abs ′′(pcu) tabs ∆abs ′′(e)) or, equivalently, ∆′(x) v γ+(∆abs ′(x)).

• Rule F-OUT. Since we successfully applied the rule according to A, it follows that ∆abs ′′(e)tabs∆abs ′′(pcu) vabs

Labs
U (〈s′′, ctx ′′〉, u′) and τ = 〈u′, JeK(m′′)〉 (where m′′ is the current memory in M ′′). From ∆abs ′′(e) tabs

∆abs ′′(pcu) vabs Labs
U (〈s′′, ctx ′′〉, u′) and A’s soundness (requirement 2), it follows that γ+(∆abs ′′(e) tabs

∆abs ′′(pcu)) v γ−(Labs
U (〈s′′, ctx ′′〉, u′)). From A’s soundness (requirement 6), it follows that γ−(Labs

U (〈s′′, ctx ′′〉,
u′)) v LU (〈s′′, ctx ′′〉, u′). From A’s soundness (requirement 3), it follows that γ+(∆abs ′′(e))tγ+(∆abs ′′(pcu))) v
γ+(∆abs ′′(e) tabs ∆abs ′′(pcu)). From ∆′′ v+

V ∆abs ′′ (see (a)), it follows that ∆′′(pcu) v γ+(∆abs ′′(pcu))

and ∆′′(e) v γ+(∆abs ′′(e)) and, therefore, ∆′′(e) t ∆′′(pcu) v γ+(∆abs ′′(e)) t γ+(∆abs ′′(pcu))). Hence,
∆′′(e) t∆′′(pcu) v LU (〈s′′, ctx ′′〉, u′). Therefore, we can apply the rule F-OUT even according to . Hence,
we have 〈∆′′, C ′′1 ,M ′′, 〈s′′, ctx′′〉,S ′′〉

τ 〈∆′, C ′1,M ′, 〈s′, ctx′〉,S ′〉, where ∆′ = ∆′′ and τ = 〈u′, JeK(m′′)〉.
Observe that ∆abs ′ v−V ∆′ v+

V ∆abs ′ directly follows from ∆abs ′′ v−V ∆′′ v+
V ∆abs ′′ (see (a)), ∆′ = ∆′′, and

∆abs ′ = ∆abs ′′. Moreover, the requirement on C ′1 and C ′ directly follows from the induction hypothesis (see (b)).
• Rule F-IFTRUE. We can immediately apply the rule F-IFTRUE also according to and we get 〈∆′′, C ′′1 ,M ′′, 〈s′′,
ctx′′〉,S ′′〉 τ 〈∆′, C ′1,M ′, 〈s′, ctx′〉,S ′〉. Then, ∆′ = ∆′′[pcu 7→ ∆′′(e) t∆′′(pcu)] and ∆abs ′ = ∆abs ′′[pcu 7→
∆abs ′′(e) tabs ∆abs ′′(pcu)]. From ∆abs ′′ v−V ∆′′ v+

V ∆abs ′′ (see (a)), it follows that γ−(∆abs ′′(e)) v ∆′′(e) v
γ+(∆abs ′′(e)) and γ−(∆abs ′′(pcu)) v ∆′′(pcu) v γ+(∆abs ′′(pcu)). From A’s soundness (requirement 3), we have
that γ−(∆abs ′′(e)tabs ∆abs ′′(pcu)) v γ−(∆abs ′′(e))t γ−(∆abs ′′(pcu)) and γ+(∆abs ′′(e))t γ+(∆abs ′′(pcu)) v
γ+(∆abs ′′(e) tabs ∆abs ′′(pcu)). From γ−(∆abs ′′(e) tabs ∆abs ′′(pcu)) v γ−(∆abs ′′(e)) t γ−(∆abs ′′(pcu)),
γ−(∆abs ′′(e)) v ∆′′(e), and γ−(∆abs ′′(pcu)) v ∆′′(pcu), it follows γ−(∆abs ′′(e) tabs ∆abs ′′(pcu)) v
∆′′(e) t ∆′′(pcu) or, equivalently, γ−(∆abs ′(pcu)) v ∆abs ′(pcu). From γ+(∆abs ′′(e)) t γ+(∆abs ′′(pcu)) v
γ+(∆abs ′′(e) tabs ∆abs ′′(pcu)), ∆′′(e) v γ+(∆abs ′′(e)), and ∆′′(pcu) v γ+(∆abs ′′(pcu)), it follows ∆′′(e) t
∆′′(pcu) v γ+(∆abs ′′(e)tabs ∆abs ′′(pcu)) or, equivalently, ∆′(pcu) v γ+(∆abs ′(pcu)). From γ−(∆abs ′(pcu)) v

∆abs ′(pcu) v γ+(∆abs ′(pcu)), ∆′ = ∆′′[pcu 7→ ∆′′(e) t ∆′′(pcu)], ∆abs ′ = ∆abs ′′[pcu 7→ ∆abs ′′(e) tabs
∆abs ′′(pcu)], and ∆abs ′′ v−V ∆′′ v+

V ∆abs ′′ (see (a)), we have ∆abs ′ v−V ∆′ v+
V ∆abs ′.

We still have to check that the requirement on C ′1 and C ′ is satisfied. This immediately follows from
∆abs ′′ v−V ∆′′ v+

V ∆abs ′′ (see (a)) and the fact that the rule adds statements of the form set pc to ∆′′(pcu) and
set pc to ∆abs ′′(pcu).

• Rule F-UPDATELABELS. We can immediately apply the rule F-UPDATELABELS also according to and we get 〈∆′′,
C ′′1 ,M

′′, 〈s′′, ctx′′〉,S ′′〉 τ 〈∆′, C ′1,M ′, 〈s′, ctx′〉,S ′〉. Then, ∆′ = ∆′′[pcu 7→ `1] and ∆abs ′ = ∆abs ′′[pcu 7→ `].
From the induction hypothesis (see (b)), we know that γ−(`) v `1 v γ+(`). From this, ∆abs ′′ v−V ∆′′ v+

V ∆abs ′′

(see (a)), ∆′ = ∆′′[pcu 7→ `1], ∆abs ′ = ∆abs ′′[pcu 7→ `], it follows that ∆abs ′ v−V ∆′ v+
V ∆abs ′. Again, the

requirement on C ′1 and C ′ directly follows from the induction hypothesis (see (b)) and the fact that the rule does
not introduce new statements.

• Rule F-SELECT. Most of the proof for this case is similar to that of F-ASSIGN. The only part that differs is
showing that part is proving ∆abs ′ v−V ∆′ v+

V ∆abs ′. From the rules’ definitions, we have that ∆′ = ∆′′[x 7→
∆′′(pcu) t LQ(∆′′, ϕ) t

⊔
v∈vars(ϕ) ∆′′(v)] and ∆abs ′ = ∆abs ′′[x 7→ ∆abs ′′(pcu) tabs Labs

Q (∆abs ′′, ϕ) tabs⊔
v∈vars(ϕ) ∆abs ′′(v)]. Moreover, from the induction hypothesis, we have that ∆abs ′′ v−V ∆′′ v+

V ∆abs ′′. To prove
that ∆abs ′ v−V ∆′ v+

V ∆abs ′, it is enough to prove that γ−(∆abs ′(x)) v ∆′(x) v γ+(∆abs ′(x)).
We first show that γ−(∆abs ′(x)) v ∆′(x). From A’s soundness (requirement 3), we have γ−(∆abs ′′(pcu) tabs
Labs
Q (∆abs ′′, ϕ)tabs

⊔
v∈vars(ϕ) ∆abs ′′(v)) v γ−(∆abs ′′(pcu))t γ−(Labs

Q (∆abs ′′, ϕ))t
⊔
v∈vars(ϕ) γ

−(∆abs ′′(v))

or, equivalently, γ−(∆abs ′(x)) v γ−(∆abs ′′(pcu)) t γ−(Labs
Q (∆abs ′′, ϕ)) t

⊔
v∈vars(ϕ) γ

−(∆abs ′′(v)). From
∆abs ′′ v−V ∆′′ v+

V ∆abs ′′, we also have that γ−(∆abs ′′(pcu)) v ∆′′(pcu) and γ−(∆abs ′′(v)) v ∆′′(v) for
all v ∈ vars(ϕ). Finally, from A’s soundness (requirement 5) and ∆abs ′′ v−V ∆′′ v+

V ∆abs ′′, we have that
γ−(Labs

Q (∆abs ′′, ϕ)) v LQ(∆′′, ϕ). Hence, γ−(∆abs ′′(pcu))tγ−(Labs
Q (∆abs ′′, ϕ))t

⊔
v∈vars(ϕ) γ

−(∆abs ′′(v)) v
∆′′(pcu))tLQ(∆′′, ϕ)t

⊔
v∈vars(ϕ) ∆′′(v). From this, ∆′ = ∆′′[x 7→ ∆′′(pcu)tLQ(∆′′, ϕ)t

⊔
v∈vars(ϕ) ∆′′(v)],

and γ−(∆abs ′(x)) v γ−(∆abs ′′(pcu)) t γ−(Labs
Q (∆abs ′′, ϕ)) t

⊔
v∈vars(ϕ) γ

−(∆abs ′′(v)), we finally have that
γ−(∆abs ′(x)) v ∆′(x).
We now show that ∆′(x) v γ+(∆abs ′(x)). From A’s soundness (requirement 3), we have γ+(∆abs ′′(pcu)) t
γ+(Labs

Q (∆abs ′′, ϕ))t
⊔
v∈vars(ϕ) γ

+(∆abs ′′(v)) v γ+(∆abs ′′(pcu)tabsLabs
Q (∆abs ′′, ϕ)tabs

⊔
v∈vars(ϕ) ∆abs ′′(v))

or, equivalently, γ+(∆abs ′′(pcu)) t γ+(Labs
Q (∆abs ′′, ϕ)) t

⊔
v∈vars(ϕ) γ

+(∆abs ′′(v)) v γ+(∆abs ′(x)). From
∆abs ′′ v−V ∆′′ v+

V ∆abs ′′, we also have that ∆′′(pcu) v γ+(∆abs ′′(pcu)) and ∆′′(v) v γ+(∆abs ′′(v)) for all
v ∈ vars(ϕ). Finally, from A’s soundness (requirement 5) and ∆abs ′′ v−V ∆′′ v+

V ∆abs ′′, we have that LQ(∆′′, ϕ) v
γ+(Labs

Q (∆abs ′′, ϕ)). Hence, ∆′′(pcu) t LQ(∆′′, ϕ) t
⊔
v∈vars(ϕ) ∆′′(v) v γ+(∆abs ′′(pcu)) t γ+(Labs

Q (∆abs ′′,

ϕ)) t
⊔
v∈vars(ϕ) γ

+(∆abs ′′(v)). From this, ∆′ = ∆′′[x 7→ ∆′′(pcu) t LQ(∆′′, ϕ) t
⊔
v∈vars(ϕ) ∆′′(v)], and

γ+(∆abs ′′(pcu))tγ+(Labs
Q (∆abs ′′, ϕ))t

⊔
v∈vars(ϕ) γ

+(∆abs ′′(v)) v γ+(∆abs ′(x)), we finally have that ∆′(x) v
γ+(∆abs ′(x)).

• Rule F-UPDATEDATABASEOK. The proof of this case is similar to that of F-ASSIGN.
• Rule F-UPDATECONFIGURATIONOK. The proof of this case is similar to that of F-ASSIGN.
• The proof for the other rules is either trivial or can be derived from the above cases.

This completes the proof of our claim.

Proposition I.2 states that our security monitor equipped with a sound approximation is still secure.

Proposition I.2. Let A be a sound approximation and A be the evaluation relation obtained by equipping our
monitor with A. For all programs C ∈ Com∗UID , schedulers S, memories M ∈ Mem∗UID , and system states s,
whenever r = 〈∆abs

0 , C,M, 〈s, ε〉,S〉 τ n

A 〈∆abs ′, C ′,M ′, 〈s′, ctx′〉,S ′〉, then for all 1 ≤ i ≤ n, K Aatk (〈M, s〉, C,S,
trace(ri−1)) ∩ Aatk ,sec(M, s) ⊆ K Aatk (〈M, s〉, C,S, trace(ri)), where K Aatk refers to Def. 1 with A as evaluation
relation and the system state in r’s (i− 1)-th configuration is 〈db, U, sec, T, V 〉.

Proof. We prove our claim by contradiction. Namely, assumes that the monitor defined by A is not sound. This
happens iff there is a run r = 〈∆abs

0 , C,M, 〈s, ε〉,S〉 τ n

A 〈∆abs ′, C ′,M ′, 〈s′, ctx′〉,S ′〉 and an index 1 ≤ i ≤ n, such
that K Aatk (〈M, s〉, C,S, trace(ri−1)) ∩ Aatk ,sec(M, s) 6⊆ K Aatk (〈M, s〉, C,S, trace(ri)), where K Aatk refers to Def. 1
with A as evaluation relation and the system state in r’s (i− 1)-th configuration is 〈db, U, sec, T, V 〉. From this, it
follows that there is a global state 〈M1, s1〉 such that 〈M1, s1〉 ∈ K Aatk (〈M, s〉, C,S, trace(ri−1)) ∩Aatk ,sec(M, s) but
〈M1, s1〉 6∈ K Aatk (〈M, s〉, C,S, trace(ri)). This happens iff 〈∆abs

0 , C,M1, 〈s1, ε〉,S〉 τ
∗
A 〈∆abs ′, C ′,M ′, 〈s′, ctx ′〉,S ′〉,

trace(ri−1) ≈atk τ , and trace(ri)6≈atkτ . From Proposition I.1, it follows that 〈∆0, C,M1, 〈s1, ε〉,S〉 τ
∗
〈∆′, C ′′,M ′,

〈s′, ctx ′〉,S ′〉, trace(ri−1) ≈atk τ , and trace(ri)6≈atkτ . We claim that 〈M1, s1〉 ∈ K atk (〈M, s〉, C,S, trace(ri−1)). From
this and 〈M1, s1〉 ∈ Aatk ,sec(M, s), we have 〈M1, s1〉 ∈ K atk (〈M, s〉, C,S, trace(ri−1)) ∩ Aatk ,sec(M, s). Moreover,
from 〈∆0, C,M1, 〈s1, ε〉,S〉 τ ∗ 〈∆′, C ′′,M ′, 〈s′, ctx ′〉,S ′〉 and trace(ri) 6≈atkτ , we have 〈M1, s1〉 6∈ K atk (〈M, s〉, C,

S, trace(ri)). Hence, K atk (〈M, s〉, C,S, trace(ri−1)) ∩ Aatk ,sec(M, s) 6⊆ K atk (〈M, s〉, C,S, trace(ri)), contradicting
the soundness of our monitor (Theorem 1).

We now prove our claim that 〈M1, s1〉 ∈ K atk (〈M, s〉, C,S, trace(ri−1)). From 〈∆0, C,M1, 〈s1, ε〉,S〉 τ ∗ 〈∆′,
C ′′,M ′, 〈s′, ctx ′〉,S ′〉 and trace(ri)6≈atkτ , it follows that there exists a trace τ ′′ and two distinct observations obs1 and
obs2 such that trace(ri)�atk = τ ′′·obs1 and τ�atk = τ ′′·obs2. Moreover, trace(ri−1)�atk = τ ′′·obs1, trace(ri) 6≈atkτ ,
and trace(ri−1) ≈atk τ , it follows that trace(ri−1)�atk = τ ′′. From this and τ�atk = τ ′′·obs2, it follows that
trace(ri−1)�atk � τ�atk . Hence, for any run 〈∆0, C,M1, 〈s1, ε〉,S〉 τ ∗ 〈∆′, C ′′,M ′, 〈s′, ctx ′〉,S ′〉 ν ∗ 〈∆′1, C ′′1 ,M ′1,
〈s′1, ctx ′1〉,S ′1〉, we have that trace(ri−1)�atk � τ ·ν�atk and therefore trace(ri−1) ≈atk τ ·ν. Moreover, for any prefix of
the run 〈∆0, C,M1, 〈s1, ε〉,S〉 τ ∗ 〈∆′, C ′′,M ′, 〈s′, ctx ′〉,S ′〉 we also know that the observations are consistent with
trace(ri−1) (this directly follows from trace(ri−1) ≈atk τ). Hence, 〈M1, s1〉 ∈ K atk (〈M, s〉, C,S, trace(ri−1)).

I.4. Soundness of symbolic tuples

We now prove the soundness of our approximation based on symbolic tuples. Note that we split the proof in several
lemmas, one per component in the approximation.

Lemma I.1. The abstract order vabs approximates v.

Proof. Let 〈S−1 , S
+
1 〉, 〈S

−
2 , S

+
2 〉 be two abstract labels such that 〈S−1 , S

+
1 〉 vabs 〈S−2 , S

+
2 〉. From this, we have (1)

∀〈T, ϕ〉 ∈ S+
1 . ∃〈T, ϕ′〉 ∈ S−2 . ϕ |= ϕ′, and (2) ∀MEM x ∈ S+

1 . MEM x ∈ S−2 . From (1), ∀〈T, ϕ〉 ∈ S+
1 . ∃〈T,

ϕ′〉 ∈ S−2 . γ(〈T, ϕ〉) ⊆ γ(〈T, ϕ′〉). From this and (2), it follows that
⋃
〈T,ϕ〉∈S+

1
γ(〈T, ϕ〉)∪{MEM x ∈ S+

1 | x ∈ Var} ⊆⋃
〈T,ϕ〉∈S−2

γ(〈T, ϕ〉)∪ {MEM x ∈ S−2 | x ∈ Var}. From this and property (1) of disclosure orders, cl(
⋃
〈T,ϕ〉∈S+

1
γ(〈T,

ϕ〉) ∪ {MEM x ∈ S+
1 | x ∈ Var}) v cl(

⋃
〈T,ϕ〉∈S−2

γ(〈T, ϕ〉) ∪ {MEM x ∈ S−2 | x ∈ Var}). This is equivalent to
γ+(〈S−1 , S

+
1 〉) v γ−(〈S−2 , S

+
2 〉).

Lemma I.2. The abstract join tabs approximates t.

Proof. Let `1 = 〈S−1 , S
+
1 〉 and `2 = 〈S−2 , S

+
2 〉 be two abstract labels. Furthermore, let `3 be their join 〈S−1 ∪S

−
2 , S

+
1 ∪S

+
2 〉.

Note that, for simplicity, in the following we ignore symbols of the form MEM x. The proof for the general case is identical.
We first show that `3 is well-defined, that is, γ−(`3) v γ+(`3). Assume, for contradiction’s sake, that this is

not the case. This follows iff there is at least one query q′ in
⋃
〈T,ϕ〉∈S−1 ∪S

−
2
γ(〈T, ϕ〉) that is not determined by the

queries in
⋃
〈T,ϕ〉∈S+

1 ∪S
+
2
γ(〈T, ϕ〉). Equivalently, there are two database states db and db′ such that all queries in⋃

〈T,ϕ〉∈S+
1 ∪S

+
2
γ(〈T, ϕ〉) produce the same results but the query q′ differs. There are two cases:

• There is a symbolic tuple 〈T, ϕ〉 ∈ S+
1 such that q′ ∈ γ(〈T, ϕ〉). From γ−(〈S−1 , S

+
1 〉) v γ+(〈S−1 , S

+
1 〉), it

follows that the queries in
⋃
〈T,ϕ〉∈S+

1
γ(〈T, ϕ〉) determine q′ (i.e., cl(q′) v γ+(〈S−1 , S

+
1 〉)). Since all queries in⋃

〈T,ϕ〉∈S+
1 ∪S

+
2
γ(〈T, ϕ〉) produce the same results on db and db′, then all queries in

⋃
〈T,ϕ〉∈S+

1
γ(〈T, ϕ〉) produce

the same results on db and db′. From this and cl(q′) v γ+(〈S−1 , S
+
1 〉), it follows that the result of q′ is the same

on db and db′, leading to a contradiction.
• There is a symbolic tuple 〈T, ϕ〉 ∈ S+

2 such that q′ ∈ γ(〈T, ϕ〉). The proof of this case is analogous.
Since both cases lead to a contradiction, it follows that `3 is well-defined, i.e., γ−(`3) v γ+(`3).

We now show that tabs approximates t.
First, we show that γ+(`1) t γ+(`2) v γ+(`3). By construction, γ+(`1) = cl(

⋃
〈T,ϕ〉∈S+

1
γ(〈T, ϕ〉)), γ+(`2) =

cl(
⋃
〈T,ϕ〉∈S+

2
γ(〈T, ϕ〉)), and γ+(`3) = cl(

⋃
〈T,ϕ〉∈S+

1 ∪S
+
2
γ(〈T, ϕ〉)). From this and t’s definition (property 4 of

disclosure lattices), γ+(`1) t γ+(`2) is equivalent to cl(
⋃
〈T,ϕ〉∈S+

1
γ(〈T, ϕ〉) ∪

⋃
〈T,ϕ〉∈S+

2
γ(〈T, ϕ〉)). This is, in turn,

equivalent to cl(
⋃
〈T,ϕ〉∈S+

1 ∪S
+
2
γ(〈T, ϕ〉)), which is exactly γ+(`3). Hence, γ+(`1) t γ+(`2) v γ+(`3).

Second, we show that γ−(`3) v γ−(`1) t γ−(`2). By construction, γ+(`1) = cl(
⋃
〈T,ϕ〉∈S−1

γ(〈T, ϕ〉)), γ+(`2) =

cl(
⋃
〈T,ϕ〉∈S−2

γ(〈T, ϕ〉)), and γ+(`3) = cl(
⋃
〈T,ϕ〉∈S−1 ∪S

−
2
γ(〈T, ϕ〉)). As before, we can show that cl(

⋃
〈T,ϕ〉∈S−1

γ(〈T,
ϕ〉)) t cl(

⋃
〈T,ϕ〉∈S−2

γ(〈T, ϕ〉)) is equivalent to cl(
⋃
〈T,ϕ〉∈S−1 ∪S

−
2
γ(〈T, ϕ〉)). Hence, γ+(`1) t γ+(`2) is equivalent to

γ+(`3), and therefore, γ+(`1) t γ+(`2) v γ+(`3).

Lemma I.3. The mapping Labs
Q approximates LQ.

Proof. The proposition directly follows from the results for `−
∆abs ,q

(Lemma I.5) and `+
∆abs ,q

(Lemma I.6).

Lemma I.4. The mapping Labs
Q is exact over predicate queries.

Proof. By construction.

Lemma I.5. Let ∆ ∈ ∆∆, ∆abs ∈ ∆∆abs , and q ∈ Q be a query. If ∆abs v−supp(q) ∆, then γ−(Labs
Q (∆abs , q)) v LQ(∆,

q).

Proof. Let ∆ ∈ ∆∆, ∆abs ∈ ∆∆abs , and q ∈ Q be such that ∆abs v−supp(q) ∆. We now show that γ−(Labs
Q (∆abs ,

q)) v LQ(∆, q). Note that LQ(∆, q) =
⊔
Q∈supp(q)

⊔
q′∈Q ∆(q′). Given a table identifier T , we denote {T (v) ∈

⋃
Q∈supp(q)Q} as Qq,T . From this, we have that LQ(∆, q) v

⊔
T∈D

⊔
q′∈Qq,T

∆(q′). Without loss of generality, we
assume that q does not refer to views. Observe that the only interesting case is if q is a well-formed query. If that is not
the case, `−

∆abs ,q
= ∅ and, therefore, γ−(Labs

Q (∆abs , q)) v LQ(∆, q) (since γ−(Labs
Q (∆abs , q)) = ⊥). Hence, assume

that q is well-formed. We claim that, for each T ∈ D,
⋃
〈T,ϕ〉∈AT,q

γ(〈T, ϕ〉) ⊆ Qq,T , where Aq = {〈T, ϕ〉 ∈ cstrs(q)}.
From this, `−

∆abs ,q
’s definition, and ∆abs v−supp(q) ∆, it immediately follows that γ−(Labs

Q (∆abs , q)) v LQ(∆, q).
We now prove our claim that, given a T ∈ D,

⋃
〈T,ϕ〉∈AT,q

γ(〈T, ϕ〉) ⊆ Qq,T , where Aq = {〈T, ϕ〉 ∈ cstrs(q)}. For
contradiction’s sake, assume that this is not the case. Namely, there is a predicate query T (v) ∈

⋃
〈T,ϕ〉∈AT,q

γ(〈T, ϕ〉)
such that T (v) 6∈ supp(q). For simplicity, we assume that q is of the form ∃x. T (x) ∧ ϕ such that ϕ is satisfiable and
in normal form. From this, it follows that supp(q) contains all T (v′) where v′ satisfies ϕ (they are the only values that
may influence q’s result). Therefore, T (v) ∈ supp(q) and T (v) ∈ Qq,T , leading to a contradiction. The reason why it is
sufficient to consider queries of the form ∃x. T (x)∧ϕ is that for more complex well-formed queries (which are boolean
combinations of formulae of the form ∃x. T (x)∧ϕ) we have that supp(¬q) = supp(q), supp(q∨q′) = supp(q)∪supp(q′),
and supp(q ∧ q′) = supp(q) ∪ supp(q′) (this directly follows from the well-formedness requirements).

Lemma I.6. Let ∆ ∈ ∆∆, ∆abs ∈ ∆∆abs , and q ∈ Q be a query. If ∆ v+
supp(q) ∆abs , then LQ(∆, q) v γ+(Labs

Q (∆abs ,

q)).

Proof. Let ∆ ∈ ∆∆, ∆abs ∈ ∆∆abs , and q ∈ Q be such that ∆ v+
supp(q) ∆abs . We now show that LQ(∆, q) v

γ+(Labs
Q (∆abs , q)). Note that LQ(∆, q) =

⊔
Q∈supp(q)

⊔
q′∈Q ∆(q′). Given a table identifier T , we denote {T (v) ∈⋃

Q∈supp(q)Q} as Qq,T . From this, we have that LQ(∆, q) v
⊔
T∈D

⊔
q′∈Qq,T

∆(q′). We claim that, for each table
identifier T such that 〈T, ϕ〉 ∈ cstrs(q),

⊔
q′∈Qq,T

∆(q′) v
⊔
T (v)∈γ(〈T,ϕ〉)∩MT

∆abs(T (v))|+ t R(〈T, ϕ〉,MT). From
this and LQ(∆, q) v

⊔
T∈D

⊔
q′∈Qq,T

∆(q′), we have LQ(∆, q) v γ+(Labs
Q (∆abs , q)).

We now prove our first claim. Let T be a table identifier and 〈T, ϕ〉 be the corresponding symbolic tuple
in cstrs(q). Furthermore, let T (v) be a tuple in Qq,T . We claim that T (v) ∈ γ(〈T, ϕ〉). Therefore, there are
two cases: (1) T (v) ∈ MT , or (2) T (v) 6∈ MT . In the first case, ∆(T (v)) v γ(∆abs(T (v))|+) follows from
∆ v+

supp(q) ∆abs and T (v) ∈ supp(q). In the second case, ∆(T (v)) = ∆0(T (v)) = cl(T (v)). Moreover, by construction
T (v) ∈ γ(R(〈T, ϕ〉,MT)). From this, cl(T (v)) v γ(R(〈T, ϕ〉,MT)) and ∆(T (v)) v γ(R(〈T, ϕ〉,MT)). Hence, it
follows that ∆(T (v)) v γ(∆abs(T (v))|+ tabs γ(R(〈T, ϕ〉,MT))) for all T (v) ∈ Qq,T . Thus,

⊔
q′∈Qq,T

∆(q′) v⊔
T (v)∈γ(〈T,ϕ〉)∩MT

∆abs(T (v))|+ tR(〈T, ϕ〉,MT).
We now prove our second claim that whenever T (v) ∈ Qq,T , then there is a symbolic tuple 〈T, v〉 ∈ cstrs(q) such

that T (v) ∈ γ(〈T, v〉). For simplicity, we assume that q does not refer to views (if this is not the case, we can just
inline their definitions). From T (v) ∈ Qq,T , it follows that there is a sub-formula T (x) ∧ ϕ occurring in q for some
x and some (possibly empty) ϕ such that [x1 7→ v|1, . . . , x|T | 7→ v||T |] is a satisfying assignment for ϕ. From this
and cstrs(q)’s definition, 〈T, ϕ′〉 ∈ cstrs(q) where ϕ |= ϕ′. From this and [x1 7→ v|1, . . . , x|T | 7→ v||T |] is a satisfying
assignment for ϕ, it follows that T (v) ∈ γ(〈T, ϕ′〉) where 〈T, ϕ′〉 ∈ cstrs(q).

Lemma I.7. The mapping authabs approximates auth .

Proof. Let sec be a policy and u be a user. Observe that authabs(sec, u) is always well-defined since γ−(authabs(sec,
u)) v γ+(authabs(sec, u)) follows from the upper bound being >abs . Moreover, observe also that cl(auth(sec, u)) v
γ+(authabs(sec, u)) also follows from the upper bound being >abs . Hence, we just need to show that γ−(authabs(sec,
u)) v cl(auth(sec, u)). Let K1 and K2 be the set of abstract tuples K1 = {〈T,>〉 | T ∈ auth(s, u)∩T} and K2 = {〈T,
ϕ〉 | V is a view ∧ V ∈ auth(s, u) ∧ def (V) = (T (x) ∧ ϕ) ∧ nf (def (V))}. Let T (v) be a concrete tuple in γ(t) for
t ∈ K1 ∪K2. There are two cases: (1) t ∈ K1 and T (v) ∈ γ(t), or (2) t ∈ K2 and T (v) ∈ γ(t). In the first case, u
is authorized to read the table T in auth(sec, atk). Hence, T (v) ∈ cl({x | T (x)}) v cl(auth(sec, atk)). In the second
case, u is authorized to read a view V in auth(sec, atk) of the form T (x)∧ϕ such that the assignment of variables to v
satisfies ϕ. Again, T (v) ∈ cl({x | V (x)}) v cl(auth(sec, atk)). From this and γ−(authabs(sec, u)) =

⋃
t∈K1∪K2

γ(t),
it follows that γ−(authabs(sec, u)) v cl(auth(sec, atk)).

Lemma I.8. The mapping Labs
U approximates LU .

Proof. Let s be a state, sec be the policy in s, and sec0 be the initial policy. First, assume that u = atk . Then, Labs
U (s,

atk) = authabs(sec0, atk) tabs authabs(sec, atk) tabs 〈{MEM x | x ∈ Varatk},>abs〉 and LU (s, atk) = cl(auth(sec,
atk)) t cl(auth(sec0, atk)) t cl({MEM x | x ∈ Varatk}). Observe that Labs

U (s, atk) is well defined since it is the
result of a join of well-defined labels. Moreover, observe that LU (s, atk) v γ+(Labs

U (s, atk)) follows from the upper
bound of Labs

U being >abs . Hence, we just have to show that γ−(Labs
U (s, atk)) v LU (s, atk) holds. From the above

proposition, we know that γ−(authabs(sec0, atk)) v cl(auth(sec0, atk)) and γ−(authabs(sec, atk)) v cl(auth(sec,
atk)). Moreover, we also have that γ−(〈{MEM x | x ∈ Varatk},>abs〉) v cl({MEM x | x ∈ Varatk}). Since
tabs approximates t (see Lemma I.2), we have that γ−(Labs

U (s, atk)) v γ−(authabs(sec0, atk)) t γ−(authabs(sec,
atk))tγ−(〈{MEM x | x ∈ Varatk},>abs〉). From this, γ−(authabs(sec0, atk)) v cl(auth(sec0, atk)), γ−(authabs(sec,
atk)) v cl(auth(sec, atk)), and γ−(〈{MEM x | x ∈ Varatk},>abs〉) v cl({MEM x | x ∈ Varatk}), it follows that
γ−(Labs

U (s, atk)) v cl(auth(sec0, atk)) t cl(auth(sec, atk)) t cl({MEM x | x ∈ Varatk}). From this and LU (s,
atk) = cl(auth(sec, atk))t cl(auth(sec0, atk))t cl({MEM x | x ∈ Varatk}), we have γ−(Labs

U (s, atk)) v LU (s, atk).

Next, consider u 6= atk . Then, Labs
U (s, u) = 〈>abs ,>abs〉 and LU (s, u) = >. From γ+(Labs

U (s, u)) = > and
γ+(Labs

U (s, u)) = ⊥, it immediately follows that γ−(Labs
U (s, u)) v LU (s, u) v γ+(Labs

U (s, u)).

Lemma I.9. The abstract state ∆abs
0 is an over-approximation of ∆0.

Proof. It directly follows from ∆0(x) = γ−(∆abs
0 (x)) = γ+(∆abs

0 (x)) for any x ∈ Var ∪ RC pred ∪ {pcu | u ∈
UID}.

Proposition I.3. The approximation presented in §6 is sound.

Proof. The proposition immediately follows from Lemmas I.1–I.9.

	Introduction
	Overview
	WhileSQL
	Syntax and notation
	Local semantics
	Global semantics

	Security model
	Preliminaries
	Knowledge
	Security condition

	Enforcement
	Preliminaries
	Security monitor
	Discussion

	Disclosure lattices in practice
	Approximating disclosure lattices
	Symbolic tuples

	Implementation and case studies
	Securing Scala programs
	Case studies
	Social network
	Assignment grading system
	Calendar
	Conference management system
	Performance

	Related work
	Conclusion
	References
	Appendix A: Tracking dependencies between tuples and columns
	Appendix B: Progress-sensitivity
	Appendix C: Relaxing NSU checks
	Appendix D: Social Networking example
	Appendix E: WhileSQL
	Syntax
	Local Semantics
	Global Semantics
	From WhileSQL to the database operational semantics of guarnieriMB16

	Appendix F: Enforcement – Extended version
	Enforcement Operational Semantics
	Expansion Process

	Appendix G: Monitor's transparency
	Local semantics
	Global semantics

	Appendix H: Monitor's soundness
	Auxiliary notation
	Equivalence definitions
	Results about
	Results about LQ
	Results about relaxed NSU checks
	Lemmas about the local semantics
	Lemmas about the global semantics
	Bisimulations
	Proof of the main result

	Appendix I: Approximations for disclosure lattices
	Soundness criteria
	Using approximations
	Sound approximations preserve security
	Soundness of symbolic tuples

