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Abstract—Proximity testing is at the core of sev-
eral Location-Based Services (LBS) offered by, e.g.,
Uber, Facebook, and BlaBlaCar, as it determines
closeness to a target. Unfortunately, modern LBS
demand not only that clients disclose their locations
in plain, but also to trust that the services will
not abuse this information. These requirements are
unfounded as there are ways to perform proximity
testing without revealing one’s location.

We propose POLAR, a protocol that imple-
ments privacy-preserving proximity testing for
LBS. POLAR is suitable for clients running mo-
bile devices, and relies on a careful combination
of three well-established multiparty computation
protocols and lightweight cryptography. A point
of originality is the inclusion of two servers into the
proximity testing. The servers may aid multiple
pairs of clients and contribute towards enhancing
privacy, improving efficiency, and reducing the run-
ning time of clients’ procedures.

Index Terms—privacy, proximity-testing, multi-
party computation, active security

1. Introduction

Location-Based Services (LBS) are any services
that rely on user location data to operate. For ex-
ample, a mapping service needs a client’s location to
suggest the relevant places nearby, a taxi service needs
a client’s location to match it with the nearest drivers,
smart home devices may use the owner’s location to
turn on light, music, and air conditioning when they
enter their home.

Proximity testing (PT) is the problem of deciding
whether a two or more inputs lie within a certain
distance of one another. This paper focuses on loca-
tion proximity testing by means of privacy-enhancing
protocols operating on user locations. There exist
approaches to PT that implement it by means of direct
communication and measuring signal strength using,
e.g., Bluetooth [5], [40] (adopted in some COVID-19
contact tracing apps). While these solutions might
provide an accurate distance calculation, our approach

occupies a different niche: indeed, in some LBS it
might not be possible for users to pick each others’
signals (e.g., planning for a shared ride between towns;
matching with proximity radius larger than the signal
range; or matching with offline users).

Modern ridesharing and taxi services match drivers
and passengers according to the proximity of their
routes, or of the start and endpoints of their journeys
so that the passenger can easily walk the remaining
distance to reach the desired destination. Messaging
and dating apps use proximity testing to match users
who are in the same area, and online mapping services
use it to help users discover close-by places (e.g. coffee
shops, supermarkets). Geofencing apps for children,
pets, vehicles, and vessels also draw on proximity
testing.

In current practice, the widely adopted LBS are
centralized and require full-trust from the clients in
order to deliver the desired functionality. A client is
expected to reveal their location to the service; and
clients cannot check if their data has been used the
way they expect, whether it has been misused by the
LBS provider or stolen by an attacker who breached
the security of LBS provider. For example, Snapchat
employees reportedly abused their privileges to spy on
users’ location data [7], and similar cases were reported
about Uber [20], Yahoo [6] and Facebook [8]. This
raises privacy concerns over the existing practices and
motivates the search for solutions that would ensure
the privacy of user data.

This paper considers the problem of constructing a
cryptographic protocol that performs PT in a privacy-
enhancing way. A privacy-enhancing PT protocol is
required to be correct (provide the right answer); and
secure (preserve input privacy) by revealing only the
outcome of the proximity test, and no further informa-
tion about users’ concrete locations. In the remainder
of the paper, whenever we refer to proximity testing,
we will mean privacy-enhancing proximity testing.

Formalizing Proximity Testing. There exist
multiple approaches to formalizing what location is
and what is proximity in proximity testing. The grid-
based approach [13], [26], [28], [29], [30], [38], [39], [41]
divides the whole location space into a grid of cells,
the clients determine the cell they are in and then



simply perform equality test on their cell identifiers.
Although it might be tempting to do proximity testing
at a cost of a simple equality test, this approach
suffers from inherent imprecision since the clients are
matched only if they are in the same grid cell. Another
alternative is polygon-based matching [23], which is
also imprecise and becomes less efficient if one wants
to approximate a circle with a complex polygon. We
follow the line of work on Euclidean distance based
matching [18], [23], [31], [32], because it is precise
and it naturally arises in some important applications,
e.g., messengers and social networks suggesting friends
nearby to a user, geofencing. Euclidean distance may
serve as an approximation of other distance measures
like road distance on a given map or Manhattan dis-
tance.

In this work, we consider users’ locations to be
points on a (discretized) Euclidean plane (which can
be used to approximate distance on a small enough
region of Earth surface). Our functionality matches
two users (outputs 1 instead of 0) if the distance be-
tween their input locations does not exceed a threshold
radius value R, on which they agree beforehand. The
threshold radius R here serves as a parameter of the
protocol, and can be chosen to be any positive integer
when instantiating the protocol; it is fixed and public,
i.e. known to all the parties prior to protocol start. We
focus on the case of 2-dimensional client locations (i.e.
belonging to a Euclidean plane) for a fair comparison
with prior work, but it is not essential for our protocol
which easily generalizes to n-dimensional Euclidean
distance based matching.

Tools we use. In a nutshell, the protocols we
consider here are expected to compute the function
(where (xA, yA) comes from Alice, (xB , yB) from Bob,
and the result 0 or 1 goes to Alice):

f((xA, yA), (xB , yB)) ={
1, if (xA − xB)

2 + (yA − yB)
2 ≤ R2,

0, otherwise. (1)

Secure Multi-Party Computation (MPC) protocols
allow parties to secret-share some values between each
other, do some operations on the shared values and
then reconstruct the shares of the result. MPC es-
sentially implements a secure, trusted virtual machine
that accepts some values on input, performs compu-
tations and returns the result. Actively secure MPC
protocols stay secure even in the presence of malicious
adversaries that may change the behavior of corrupted
parties that participate in the computation.

Actively secure MPC is as a natural tool to im-
plement functionalities that involve relatively few op-
erations, like the one in Equation (1). Until now,
the high demands imposed by actively secure MPC
on computation and communication have prevented
it from being applied to efficient and scalable PT
solutions. In this work, we finally bypass this obstacle
by leveraging the fact that many MPC protocols run in
two phases: first heavy precomputation phase (which
is often too heavy for resource-constrained mobile de-
vices) that does not depend on the actual inputs of the

parties, but merely generates correlated randomness;
and, secondly, a relatively fast online phase that uses
the correlated randomness from the previous phase
and the party inputs to compute the final output.
Our approach is to include two servers in the PT
and offload to these all precomputations run in the
first phase. This way, the heaviest burden is done
by the servers allowing clients to run only the light
online phase. The privacy cost of this speedup is
moderate: even though the servers are involved in the
protocol, they never get to handle any data that is
derived from client inputs and therefore the impact
of corrupted servers is limited. It is important to note
that in our proposed technique none of the servers can
see or modify the precomputed data that the two of
them are generating: the servers run another MPC
protocol between them that produces the precomputed
data, and then they transfer it properly masked and
authenticated to the clients without ever seeing the
data themselves (assuming that only one of the two
servers is corrupted, and the other one is honest).

In other words, compared to the server-less setting
of the previous protocols [18], [23], [32], our setting
allows better client performance at the cost of intro-
ducing an extra assumption that at least one of the
servers must be honest. Our setting has an additional
practical benefit: a single pair of servers can supply
multiple pairs of clients with precomputed data, and
generate the data in bigger batches more efficiently
(the amortized cost of precomputation phase usually
goes down if one increases the amount of precompu-
tation that must be done in one run). This can be
thought of as an analogue of the economy of scale:
the more clients you serve, the less computation you
have to pay with for each client pair.

Albeit we demonstrate the application of this two-
server aided precomputation setting by applying it to
location privacy problem, we argue it may be useful
in other fields as well. Any setting where resource-
constrained clients want to run an actively secure
MPC protocol with few operations in it may benefit
from augmenting it with two servers to outsource the
precomputation phase to. For example, such setting
can naturally arise in a housing rental app, phonebook
contact discovery (used by messengers), collaborative
planning apps (which may have more than two users).

Overview of our protocol. In our proposed
POLAR (Precomputation fOr LocAtion pRivacy) pro-
tocol, the clients run a combination of Tinier [12],
SPDZ [9] and edaBits [11] in order to compute the
proximity testing functionality. And the servers use
the same combination of protocols (Tinier + SPDZ +
edaBits), in order to create the precomputation data
for the clients. All four parties use the outsourcing
technique of [21] to transfer the precomputed data
from the servers’ MPC protocol to the clients without
revealing it to any of the two servers.

Our contribution. This paper presents PO-
LAR, a novel, actively secure protocol for server-aided
privacy-preserving location proximity testing. In de-
tail, we provide a formal description of the POLAR
protocol and its building blocks. We formally prove
its security in Canetti’s hybrid model [4]. In addi-



tion, we develop a proof of concept implementation of
POLAR and compare its performance against OLIC
[31] which also uses two servers (but for a different
purpose), ABYC

Y and ABYC
AY [23] which work in the

server-less setting. Given that POLAR is the first
server-precomputation aided PT protocol, there is no
clear competitor for comparison. We thus compare
against server-less and server-aided protocols to see
how much of a performance improvement can one gain
by offloading the precomputation to the servers.

Our evaluations show that the client cost of run-
ning POLAR is negligible (around 10 ms CPU time
and under 2 KB communication). While the resources
required from the servers are quite moderate: below
0.5 seconds CPU time and 84 MB communication per
run when amortized over 2000 runs. 84 MB per client
pair is an acceptable amount of communication for
servers, it is equivalent to streaming a short video.
When compared to other protocols, POLAR’s main
advantages are active security and unmatched client
performance (around 2 ms of CPU time and 2 KB
of total communication). The server performance of
POLAR also beats the server performance of OLIC
for large enough values of radius R (the performance
of OLIC depends on R), but still stays a lot heavier
than the client performance of ABYC

AY and ABYC
Y.

2. Preliminaries
The clients in POLAR run a combination of MPC

protocols in order to implement the PT functionality
(Equation 1). In the following, we explain what this
combination cosists of and how we model it using a
blackbox idea functionality.

MPC protocols are usually limited to operations
in one specific domain. Arithmetic MPC protocols
work with integers modulo some value (prime number
p in our case), binary MPC protocols work with bits.
Arithmetic domain is particularly good for computa-
tions that use a lot of numeric additions and mul-
tiplications, while the binary domain can represent
numbers in their bit-decomposed form and cheaply
evaluate Boolean circuits on them (e.g. comparison,
bit shifts, sorting, indexing). The function that clients
want to compute (shown on Equation 1) in our pro-
tocol tends to mix the two types of operations: on
one hand, it has additions and multiplications, on the
other hand, it has comparison. Therefore, to evaluate
it efficiently we combine two MPC protocols to work
over both domains and we use edaBits [11] technique
to convert the values between two domains.

Ideal Functionality. To model the mixed
arithmetic-binary MPC, we make black-box usage of
the functionality FAB-MPC shown on Figure 1. This
functionality can be implemented by the edaBits [11]
technique. Most of the commands in FAB-MPC re-
peat the functionality on which the edaBits is built,
except for the commands ConvertA2B and Compare
which are implemented using the edaBits technique
itself. The Compare is obtained by combining the
other commands of FAB-MPC, but there are multiple
ways to do that (e.g., using a Boolean comparison
circuit or with probabilistic truncation [11]). For the

sake of generality, we define Compare as a standalone
command and leave its specification up to specific
implementations. The FAB-MPC functionality is im-
plemented by MP-SPDZ [24] framework (which we use
for our benchmarks) using the techniques of daBits
[34] and edaBits [11].

Notation We will use the notation JxKp for value
x ∈ Zp being input into the FAB-MPC with type =
arithmetic, and JxK2 for value x ∈ {0, 1} with type =
binary (the variable names x are assumed to be
unique over both arithmetic and binary domains).
When describing protocols that use FAB-MPC in pseu-
docode, we will use the listed message types as pro-
cedure names, e.g., JxKp ← ConvertB2A(JyK2) means
sending (ConvertB2A, “x”, “y”) to the FAB-MPC. We
will also use values J·Kp in arithmetic expressions andJ·K2 in Boolean expressions (i.e., arithmetics over F2),
implying evaluation of the corresponding expressions
using Mult and LinComb. For a vector of bits v =
(v0, . . . vk−1) we will write J−→v K2 to denote a vector of
bits (Jv0K2, . . . Jvk−1K2), all of which are in the binary
domain of FAB-MPC.

For example, consider the Boolean inner product
function IP(u, v) =

∑k−1
i=0 uivi =

⊕k−1
i=0 ui ∧ vi. If

we have the vectors u and v input into the binary
domain of FAB-MPC as J−→u K2 = (Ju0K2, . . . Juk−1K2)
and J−→v K2 = (Jv0K2, . . . Jvk−1K2), we can write JbK2 ←
IP(J−→u K2, J−→v K2) to denote the computation of inner
product inside FAB-MPC via the operations

Jp0K2 ← Mult(binary, Ju0K2, Jv0K2)
. . .Jpk−1K2 ← Mult(binary, Juk−1K2, Jvk−1K2)

c← (0, 1, . . . , 1) ∈ Fk+1
2

(The next line is computing the sum of all JpiK2)JbK2 ← LinComb(binary, J−→p K2, c).
In real-life, the FAB-MPC will be implemented by

a combination of edaBits, SDPZ [9] and Tinier [12].
Note that all three techniques rely on preprocessing
data (correlated random values held by the parties)
to operate. When the clients implement FAB-MPC,
they will use preprocessing data generated for them by
the servers. The servers will generate the data using
an MPC protocol and then transfer it to the clients
without any of the two servers being able to see or
modify the data (as long as the other server is honest).

The servers’ MPC that generates and transfers
the precomputation data to the clients is modelled
by FOut-MPC ideal functionality shown on Figure 2.
The precomputed data for the clients generated by
this functionality consists of SPDZ [9] multiplica-
tion triples, Tinier [12] multiplication triples, random
Tinier shares (to allow the clients to input values into
Tinier), daBits [34] and edaBits [11]. In practice, the
FOut-MPC functionality will be implemented by ap-
plying the outsourcing technique [21] to the combina-
tion of edaBits, SPDZ and Tinier (distinct instances,
not the ones used by clients). The servers, unlike
clients, generate their own preprocessing data using
the relatively expensive precomputation protocols. We
do not show how FOut-MPC is implemented in detail,



Setting: the ideal setting consists of FAB-MPC functionality and
the parties P1 …Pn using it.
Input: On input (Input, Pi, type, id, x) from Pi and

(Input, Pi, type, id) from all other parties, with id a
fresh identifier, type ∈ {binary, arithmetic} and x ∈ Z2

or x ∈ Zp (depending on type), store (type, id, x).
Linear Combination: On input

(LinComb, type, id, (idi)
m
i=1, (cj)

m
j=0), where each idj

is stored in memory and cj ∈ Z2 if type = binary
or cj ∈ Zp if type = arithmetic, retrieve
((type, id1, x1), . . . (type, idm, xm)), compute
y = c0 +

∑m
i=1 xi · ci modulo 2 if type = binary and

modulo p if type = arithmetic, and store (type, id, y).
Multiply: On input (Mult, type, id, id1, id2) from all par-

ties (where id1, id2 are present in memory), retrieve
(type, id1, x), (type, id2, y), compute z = x · y modulo 2
if type = binary and modulo p if type = arithmetic, and
store (id, z).

From Binary to Arithmetic: On input (ConvertB2A, id, id′)
from all parties, retrieve (binary, id′, x) and store
(arithmetic, id, x).

From Arithmetic to Binary: On input
(ConvertA2B, id0 . . . idl−1, id′) from all parties, retrieve
(arithmetic, id′, x), bit-decompose it into (x0, . . . xk−1)
and store ((binary, id0, x0), . . . (binary, idl−1, xl−1)).

Compare: On input (Compare, id, id′, y) from all parties, where
y ∈ Zp, retrieve (arithmetic, id, x), store (binary, id′, 1) if
x ≤ y or (binary, id′, 0) otherwise.

Output: On input (Output, type, id) from all honest parties
(where id is present in memory), retrieve (type, id, y) and
output it to the adversary. Wait for an input from the
adversary; if this is Deliver then output y to all parties,
otherwise output Abort.

Figure 1: Ideal functionality FAB-MPC of MPC arith-
metic blackbox modulo 2 and modulo p [11]

because it is trivial and unnecessarily technical for our
presentation. Full details can be found in the source
code of our implementation.

This functionality works with two servers Server-1 and
Server-2, and two clients Alice and Bob.
Eval. On command Eval from both servers, generate the pre-

computation data for the clients. Save Alice’s data as
zAlice and Bob’s data as zBob. Output Eval to the adversary.
If Alice and Bob are corrupted, deliver the corresponding
z· to the corrupted clients.

Output. On command (Deliver, C) from the adversary where
C is either Alice or Bob, deliver zC to the corresponding
client.

Figure 2: Functionality FOut-MPC for outsourced eval-
uation of precomputation data for FAB-MPC. It is
implemented by the outsourcing technique [21, Figure
3].

3. The POLAR Protocol

Formally, we describe our protocol in the
(FOut-MPC,FAB-MPC)-hybrid model [27]. We model
it as an interaction of clients Alice and Bob, the two
servers and the ideal functionalities FOut-MPC (Figure
2) and FAB-MPC (Figure 1). In practice, the two ideal
functionalities will be replaced by the corresponding
protocols that implement them [11], [21] and yield
a protocol that implements our functionality on four
parties. The FAB-MPC functionality allows Alice and
Bob to compute the function they want (Equation

1). But implementing FAB-MPC directly would be too
costly for them, therefore they also use the FOut-MPC
together with the servers which computes the precom-
putation data (needed for FAB-MPC) and delivers it to
the clients (without revealing it to the servers). In
practice, the FOut-MPC will be implemented via an
MPC protocol (similar to FAB-MPC, but with different
parameters; we do not focus on it much here) ran by
the servers which delivers its result to the clients; while
FAB-MPC will be implemented by an MPC protocol ran
by the clients that uses the precomputation data from
FAB-MPC to ease the computation and communication
load of the clients.

Tinier [12]

SPDZ [9]

edaBits [11] Outsourcing [21]

FAB-MPC

FOut-MPC

Figure 3: The diagram of blackbox applications of
previous works that yields the functionalities that we
use in our hybrid model.

Figure 3 gives an overview of the order in which
the existing techniques are applied to one another by
the clients in order to obtain the ideal functionalities
that we use. Here, Tinier prodives MPC computations
in the binary domain, SPDZ provides computations
in arithmetic domain, edaBits combines the two to
implement a single MPC capable of doing both and
converting between them, and, finally, the outsourcing
technique allows the clients to securely receive their
precomputed data from the edaBits MPC even if one
of the servers is untrusted. In the following, we give
an overview of how the POLAR protocol works.

FOut-MPC

Server-1 Server-2

Alice Bob
FAB-MPC

Figure 4: Diagram of the hybrid setting we describe
our protocol POLAR in.

POLAR involves four parties (Figure 4): two
servers Server-1 and Server-2; and two clients Alice
and Bob. They also have access to the mentioned
FAB-MPC (only for Alice and Bob) and FOut-MPC
functionalities. Alice and Bob know their respective



locations (xa, ya) and (xb, yb). At the end of the
protocol execution, Alice gets a bit ρ; ρ = 1 if
her distance to Bob is less than or equal to a given
public value R, otherwise ρ = 0. Figure 5 shows
the formal definition of the ideal functionality FPT
that POLAR implements, while Figure 6 shows how
POLAR implements FPT in our hybrid setting.

Parameters: a positive number R, the radius of proximity test-
ing; k, the bit width of clients’ coordinates.
Setup: Four parties, Alice, Bob, Server-1, Server-2. Alice and
Bob hold inputs (xa, ya) ∈ Z2

p and (xb, yb) ∈ Z2
p respectively

1) Receive (xa, ya) from Alice, and (xb, yb) from Bob. Ensure
that each value xa, ya, xb, yb consists of exactly k bits; if
not, abort.

2) Receive Deliver from both servers. If one of them sends
something else, abort.

3) Send ρ = 1 to Alice if (xa − xb)
2 + (ya − yb)

2 ≤ R2, and
ρ = 0 otherwise.

4) Send Received to both servers.

Figure 5: The FPT ideal functionality

Figure 2 shows the workings of POLAR in detail.
The core idea of the protocol is making the clients
use FAB-MPC to compute the proximity testing func-
tion (Equation 1), but reducing their computation
and communication overhead by letting the servers
precompute the correlated randomess for them (using
FOut-MPC). The first steps 1 and 2 provide the clients
with the precomputed data, in the following steps the
clients use FAB-MPC to compute their desired func-
tionality. The precomputed data is not used by the
clients in the hybrid model with ideal functionalities
available, but it is used when we replace the ideal func-
tionalities by their implementations for the real-world
implementation. In that case, the clients will use the
precomputed data to speed-up their implementation
of FAB-MPC.

Parameters: a positive number R, the radius of proximity test-
ing.
Setup: Alice, Bob and the two servers. Alice and Bob access
to the FAB-MPC functionality, all four parties have access to
FOut-MPC functionality. Alice and Bob receive (xa, ya) and
(xb, yb) as inputs.

1) The servers send Eval to FOut-MPC functionality.
2) FOut-MPC sends the precomputed data to the clients Alice

and Bob.
3) The clients input their inputs xa, ya, xb, yb into the
FAB-MPC.

4) The clients compute

JDKp ← (JxaKp − JxbKp)2 + (JyaKp − JybKp)2
using LinComb and Mult operations of FAB-MPC.

5) The clients compare JDKp to R2 via

JρK2 ← Compare(JDKp, R2).

6) The clients output the JρK2 to Alice.

Figure 6: The POLAR protocol

4. Security Analysis
To prove the security of POLAR (Figure 6) we

show that it securely implements the functionality
FPT (Figure 5) in the presence of static active ad-
versary who can corrupt any subset of parties as long

as one of the servers is not corrupted. Formally, it is
stated by Theorem 1.

Theorem 1. The protocol POLAR securely computes
FPT with abort in the presence of static malicious
adversary [27] who is allowed to corrupt any subset
of parties as long as at least one of the servers is
not corrupted.

Informally, the theorem above states that what-
ever an adversary (non-uniform polynomial time algo-
rithm) can achieve by corrupting parties in POLAR,
can be also achieved by some simulator who corrupted
the same parties in FPT (as long as the adversary does
not capture both servers at the same time). In the case
of trivial adversary which does not interfere with the
protocol’s execution, this ensures that both POLAR
and FPT produce the same result. This way, the
FPT serves as a specification of both correctness and
security of POLAR; and whatever leakage is allowed
by FPT, can also happen in POLAR. More details on
this simulation paradigm can be found in the tutorial
by Lindell [27].

Since the protocol POLAR is modular and is built
from off-the-shelf MPC techniques (shown on Figure
3), our proof argument simply combines the proofs
of the corresponding techniques. Showing here all
the details would be too cumbersome and technical,
therefore we only give an overview of the major steps
(but we encourage a curious reader to go through the
formal definitions of the used techniques [9], [11], [12],
[21] and check the details). The main objective of this
section is to show that the techniques from Figure 3
fit each other.

Combining of edaBits with Tinier and SPDZ is
trivial, since the latter two are the standard MPC
protocols working over their corresponding domains,
and edaBits was intended to work with exactly this
type of protocols. It is also worth noting that the
combination of these three techniques is implemented
out of the box by the MP-SPDZ [24] framework.

Combination of edaBits with the outsourcing of
computation technique is not as straightforward: out-
sourcing of computation can be applied to either an
arithmetic MPC or a binary one, but edaBits (which
implements the ideal functionality FAB-MPC shown on
Figure 1) combines both. But it is easy to resolve
since outsourcing can be applied to both binary and
arithmetic domains independently, then both types of
values can be outsourced.

We also claim that if the two servers are corrupted
while both clients are honest, then only the correctness
of the end result can be violated, but the adversary
can learn nothing about the client inputs. This is due
to servers never receiving any messages that would
depend on client data; in fact, the protocol flow can
be reordered so that all the interaction of clients with
servers happens without clients ever using their inputs.
Note that this claim is not captured by the statement
of the Theorem 1, which requires one of the servers to
stay uncorrupted.



5. Evaluation

To evaluate the performance of POLAR, we im-
plemented the algorithms of servers and clients in the
MP-SPDZ [24] cryptographic framework and made it
available online 1. We compare it to the performance
of ABYC

AY and ABYC
Y [23], OLIC [31]. The former

two are the state of the art in server-less proximity
testing and the latter one is a server-aided protocol,
but the servers in OLIC are involved in the protocol
to a greater extent and actually do computations on
the client data.

For the performance comparison, we focus on total
execution time (on a single CPU core) and on total
data exchanged by parties.

To achieve a more fair comparison, we ran all the
protocols on the same Linux machine having Intel(R)
Core(TM) i7-8700 CPU and 32 GB of RAM. We used
the implementation provided by the original paper
for each of the protocols: the C++ implementation
using ABY [10] framework for ABYC

AY and ABYC
Y,

the Python implementation using the GMP library for
OLIC. Although the protocols are implemented using
different tools, the bulk of their computations is done
by low-level C libraries (and the communication cost is
independent of the tools), therefore such comparison
is useful nevertheless. We do not introduce any in-
tentional network latency. For each protocols, all the
parties are executed on the same machine (one CPU
core per party) and communicate through loopback
network device. The following list shows the parame-
ters with which we instantiated each of the protocols.
ABYC

AY and ABYC
Y. We use ABY [10] parameters

of the original paper [23]: bits = 64, secparam =
128. In other words, the values domain is 264

and the symmetric security key length is 128 bits,
as used by the original implementation. We do
not increase the key lenght to keep our analysis
conservative, since doing so could make these
protocols slower.

OLIC. We use the most efficient one of the two in-
stantiations presented in the original paper [31],
namely, the (EC) which is based on Curve25519
and M383 elliptic curves.

POLAR. For the FAB-MPC executed by the clients,
we instantiate SPDZ and Tinier with the secu-
rity parameter of 48 bits, and plaintext of values
SPDZ consist of 64 bits.
For the FAB-MPC that is executed by the servers
(as part of FOut-MPC), the SPDZ plaintext values
are 64 bits (modulo a prime), and all the other
parameters are as above. The statistical security
parameter for edaBits is 40, the bucket size is B =
4. The preprocessing protocols used for SPDZ is
MASCOT [25].

We do not include the performance of clients in our
benchmarks of POLAR since it is negligible: the CPU
time is under 2 ms while the total communication is
under 2 KB.

1. https://www.cse.chalmers.se/research/group/security/
polar/

Figure 7 shows the amortized performance of
servers in POLAR depending on the number of times
the protocol is repeated. These measurements include
both setup time and the actual protocol execution.
As the number of repetitions approaches 5000, the
amortized execution time reaches 0.4 seconds, and the
total communication cost reaches 80.5 MB. We use
these two numbers as constants in the next plots,
where we compare POLAR to other protocols. (There
is an unusual spike at 5200 repetitions, which we
expect was caused by some internal details of MP-
SPDZ library which we use. We speculate it could be
due to MP-SPDZ generating precomputation data in
large batches, and 5200 could be the threshold which
causes an extra batch to be generated.)

The performance of OLIC depends on the specific
value used for the radius R, this is reflected in the
measurements presented on Figure 8. The protocols
that have performance independent of R are shown
there as straight horizontal lines. Notably, POLAR
is less efficient than ABYC

AY and ABYC
Y, but it still

becomes more efficient than OLIC for large enough
values of R. We consider it a minor price to pay
given that POLAR is the only protocol that achieves
malicious security (all other works are only passively
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Figure 7: Amortized performance of servers in PO-
LAR by the number of repetitions
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secure, and in OLIC the servers work with client data
directly).
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6. Related Work

Zhong et al. [41] propose the Louis, Lester and
Pierre protocols for location proximity. The Louis
protocol computes the distance between Alice and Bob
using additively homomorphic encryption. It relies
on a third party to perform the proximity test, and
the thirst party is trusted with handling user data; in
particular it learns the result of protocol execution.
The Lester protocol does not use a third party but
rather than performing proximity testing computes
the actual distance between Alice and Bob. The Pierre
protocol divides the space into a grid of cells and
reveals the cell distance between Alice and Bob. All
three protocols are only passively secure.

Narayanan et al. [29] present protocols for proxim-
ity testing. They cast the proximity testing problem
as equality testing on a grid system of hexagons. One
of the proposed protocols utilizes an oblivious server

that aids clients in computations on their data. Par-
ties in this protocol uses symmetric encryption, which
leads to better performance. However, this requires
having preshared keys among parties, which is less
amenable to one-to-many proximity testing. Saldamli
et al. [36] build on the protocol with the oblivious
server and suggest optimizations based on properties
from geometry and linear algebra. Nielsen et al. [30]
and Kotzanikolaou et al. [26] also propose grid-based
solutions.

Hide&Crypt by Freni et al. [13] splits proximity
into two steps. First, it performs filtering between a
third party and the initiating principal. Second, the
two principals execute computation to achieve finer
granularity. In both steps, the granule in which a
principal is located is sent to the other party. C-
Hide&Hash by Mascetti et al. [28] is a centralized
protocol, where the principals do not need to commu-
nicate pairwise but otherwise share many aspects with
Hide&Crypt. FriendLocator by Šikšnys et al. [39] is a
centralized protocol where clients map their positions
to different granularities, similarly to Hide&Crypt,
but instead of refining via the second principal, each
iteration is done via the third party. VicinityLocator
also by Šikšnys et al. [38] is an extension of FriendLo-
cator, which allows the proximity of a principal to be
represented not only in terms of any shape.

Šeděnka and Gasti [37] homomorphically compute
distances using the UTM projection, ECEF (Earth-
Centered Earth-Fixed) coordinates, and the Haversine
formula that makes it possible to consider the cur-
vature of the Earth. Hallgren et al. [18] introduce
InnerCircle for parallelizable decentralized proximity
testing. They use linerly homomorphic encryption to
perform proximity testing between two clients. The
MaxPace [19] protocol builds on the speed constraints
of an InnerCircle-style protocol as to limit the effects
of trilateration attacks. Polakis [33] study different
distance and proximity disclosure strategies employed
in the wild and experiment with practical effects of
trilateration.

Sakib and Huang [35] explore proximity testing
using elliptic curves. They do not use any third
party. Järvinen et al. [23] design efficient schemes
for Euclidean distance-based privacy-preserving loca-
tion proximity, as well as schemes for polygon-based
matching. They demonstrate performance improve-
ments over InnerCircle. Yet their protocol offers only
passive security. Hallgren et al. [17] show how to lever-
age proximity testing for endpoint-based ridesharing,
building on the InnerCircle protocol (and also be-
ing only passively secure), and compare this method
with a method of matching trajectories. Oleynikov
et al. [31] build OLIC, a natural extension of Inner-
Circle to the two-server setting to perform Euclidean
distance based matching. They also propose the “nap-
ping party” model with two servers that formalizes
the possibility for parties to submit their locations at
independent moments of time. The “napping party”
setting requires that the clients communicate with
servers at disjoint intervals of time and that they do
not share any secret data (e.g. cryptographic keys)
before the protocol starts. It is necessary to have at



least two servers to achieve this property. As shown
by Hallevi et al. [16], using one server for this purpose
will leak the clients’ data to it. Further works on
generic MPC in client-server settings [1], [2], [14],
[15], [22] also consider one-server scenarios. Even
though in OLIC the clients use the help of the two
servers in order to run the protocol, the computational
and communicational requrements on clients there are
quite high. And the servers still handle (encrypted,
masked) clients data; and in case both server collude,
they will be able to learn some extra information about
client data.

The main challenge of Euclidean distance based
proximity testing is efficiently combining the arith-
metic operations (like computing the squared dis-
tance) with the comparison operation; many existing
tools for multiparty computation tend to be efficient
only for one of the two kinds of operations, and per-
forming the other one introduces great overhead. We
overcome this in our POLAR by mixing the MASCOT
[25] and Tinier [12] MPC protocols for computations
in the two different domains, and the edaBits [11] tech-
nique to convert between the two domains. All three
mentioned techniques are quite efficient in the amor-
tized sense: i.e. when the number of MPC operations
done is high, the cost of running the MPC protocol per
operation is low. This is a major challenge to applying
these techniques to a client-client setting where clients
want to compute a relatively simple functionality. We
overcome this obstacle by introducing a pair of servers
and letting the servers do the heavy precomputation
phase for many different pairs of clients in one batch,
taking advantage of the amortization.

Very recently, in lieu of preventing the spreading
of COVID-19, privacy-preserving proximity testing
witness a boom of protocols that rely on Bluetooth
communication, e.g., [5], [40]. These solutions real-
ize proximity testing without relying on knowing the
exact location of clients. Such solutions are effective
only for shorter radius (Bluetooth range) and the
distance between users cannot be accurately computed
(e.g., signal strength varies in the presence of physical
barriers and with weather conditions). In contrast,
this work does not want to rely on a specific technology
(e.g., Bluetooth communication) and aims at provid-
ing precise matching using the Euclidean distance. We
remark that purely protocol-based solutions which are
the focus on this work aim to privately implement
the partial functionality of global services like social
networks, messengers and taxi services.

To summarize, most [13], [18], [19], [23], [29],
[31], [35], [36], [37], [38], [39], [41] of the existing
approaches to proximity testings offer protocols with
limited practical applicability since they either not
actively secure, or are too heavy to be executed to
resource-constrained clients. POLAR is also modular
and is composed of state of the art MPC techniques,
so any performance improvement to those techniques
will automatically improve POLAR as well.

7. Discussion

Assumptions. POLAR is not yet a fully-featured
protocol to implement LBS out of the box. Rather,
it is best seen as a fundamental building block that
can be used by a privacy-enhancing LBS. It works in
the standard setting of MPC protocols [27], the same
setting was used for a number of previous proximity
testing protocols [18], [23], [31], [32] albeit the (pas-
sive) adversary was more limited in those protocols.
The assumptions of this model are: parties commu-
nicate through secure point-to-point channels (can
be implemented in real life by means of Public Key
Infrastructure), in the beginning of the protocol the
(active) adversary can corrupt some of the parties and
arbitrarily change their behavior attempting to learn
something about the other parties’ inputs and cause
the other parties’ outputs to be incorrect. As long
as one of the servers is honest, POLAR ensures the
security and the correctness of the protocol. But even
if both servers are corrupted, they can only interfere
with the protocol result, but not learn anything about
client data. The only case when the adversary can
infer something about client inputs is if both servers
and one of the clients is corrupted at the same time.

Scope. The setting of POLAR does not address
the data leakage inherit to the functionality itself, e.g.,
knowing whether some user is close to you or not in-
evitably reveals something about that user’s location,
or when two users perform the matching the servers
will learn the fact that matching happened (since they
know what users they communicated with and when)
but not the result of that matching.

Generalizations. Our approach is trivially aug-
mentable to support time-based matching [32], i.e. to
allow clients to submit the time interval during which
they plan to be in the specified location and make the
protocol match them only if the locations are close and
the time intervals intersect. This can be useful for
friend-finding services as well as ridesharing and taxi
applications (e.g. BlaBlaCar [3]), where drivers need
to be close to pick up the passengers at the right time
(and get the actual passenger location if the matching
succeeded).

POLAR can be easily generalized to use more than
two servers, so that it stays secure as long as at least
one of the servers is honest. This significantly weakens
the security assumption it depends on, making the
protocol more reliable at a cost of certain server-side
performance overhead. Since the real-life purpose of
having two servers was to allow distributing trust
between two independent organizations that are pro-
viding the LBS together, distributing it over a larger
number of organizations makes the task of compromis-
ing the whole system a lot harder.

8. Conclusion

We presented POLAR, a secure and privacy-
enhancing protocol for proximity testing, which per-
forms exact Euclidean distance based matching. PO-
LAR introduces two servers to the client-to-client set-
ting to aid in protocol. This allows the clients to run



an actively secure MPC protocol offloading the MPC
protocol’s precomputations to the servers.

Our evaluation results confirm that the amortized
performance of POLAR is practical: the clients run-
ning time per client pair is close to negligible, and the
communication cost is around 84 MB (if amortized
over 2000 repetitions) which is acceptable given that in
real life the servers will not be as resource constrained
as clients; and 84 MB is equivalent to streaming a
short video.

We leave a more extensive evaluation of POLAR’s
performance in the presence of realistic network la-
tency for the future work, as well as the evaluation
of time-based matching. Another direction for future
work is to apply the proposed server-aided precom-
putation technique to other problems where resource-
constrained clients want to run a lightweight MPC
protocol.
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