
Proofs
Proof of Theorem 1. It is straightforward because NTNI is
a generalization of TNI where the policy defines all possi-
ble flows explicitly. Hence by considering the transitive and
reflexive closure (⊑∗) of the transitive relation (⊑ ) as the
nontransitive one, the theorem holds.
1) Let L = L ,⊵ = ⊑∗, and Γ = Γ . Then, C(l) =
{l′|l′ ⊵ l} = {l′|l′ ⊑∗l}, and according to the defini-
tions 1 and 3, ∀l.

(

M1
C(l)=  M2 ⇐⇒ M1

l= M2
)

.
2) Considering Definitions 3 and 4,

(

∀l ∈ L .∀M1,M2.
(

M1
C(l)=  M2 ∧

⟨c,M1⟩→
∗
⟨stop,M′

1⟩ ∧ ⟨c,M2⟩→
∗
⟨stop,M′

2⟩
)

⇐⇒

M′
1
l= M′

2

)

⇐⇒
(

∀l ∈ L .∀M1,M2.
(

M1
C(l)=  M2 ∧

⟨c,M1⟩→
∗
⟨stop,M′

1⟩ ∧ ⟨c,M2⟩→
∗
⟨stop,M′

2⟩
)

⇐⇒

M′
1
C(l)=  M′

2

)

, thus the theorem holds.

Proof of Lemma 1. The transformed program c′ is parti-
tioned into three sections such that c′ = initc′ ; origc′ ; finalc′ :
(1) initial assignments for temp variables (initc′ ), (2) the
original program that variables are renamed to temp variables
(origc′ ), and (3) final assignments for sink variables (finalc′ ).
1) The init section only sets the values of xtemp

variables and each assignment is in the form of
xtemp ∶= x for all x ∈ Varc. We also know that
∀x ∈ Varc.xsink ∉ FV(initc′ ). Using the rule (WRITE)
of the semantics by the number of elements in
Varc, we can conclude that the init section always
terminates and ∀M.∃!M′.⟨initc′ ,M⟩→|Varc|

⟨stop,M′
⟩ ∧

∀x ∈ Varc.M′(xtemp) = M′(x) = M(x) ∧ M′(xsink) =
M(xsink).

2) The program c and the origc′ section are identical up
to �-renaming of variables x ∈ Varc with xtemp, and
∀x ∈ Varc. x ∉ FV(origc′ ) ∧ xsink ∉ FV(origc′ ). Thus, we
write ∀M1,M2.∀x ∈ Varc.M1(x) = M2(x) = M2(xtemp) ⇐⇒
∀n ∈ ℕ.⟨c,M1⟩→

n
⟨c1,M′

1⟩ ∧ ⟨origc′ ,M2⟩→
n
⟨c2,M′

2⟩ ∧
M′
1(x) = M′

2(xtemp)∧M
′
2(x) = M2(x) = M1(x)∧M2(xsink) =

M′
2(xsink).

3) The final section includes assignments from the
value of xtemp variables to xsink variables where
assignments are in the form of xsink ∶= xtemp for all
x ∈ Varc. We also know that ∀x ∈ Varc.x ∉ FV(finalc′ ).
Similar to the init section, by applying the rule
(WRITE) by the number of elements in Varc, we
can write ∀M.∃!M′.⟨finalc′ ,M⟩→|Varc|

⟨stop,M′
⟩ ∧

∀x ∈ Varc.M′(xsink) = M′(xtemp) = M(xtemp) ∧ M′(x) =
M(x).

4) If we use the semantic rule (SEQ-I) for the sequence
of these three sections and follow the aforementioned
statements, we can conclude that Lemma 1 holds.

Proof of Lemma 2. Using Lemma 1, we can establish a cor-
respondence between the two security definitions. We have
⟨c,M⟩→∗⟨stop,M′

⟩ ⇐⇒ ⟨Canonical(c),M⟩→∗⟨stop,M′′
⟩,

which means the termination behavior stays the same. Then
given that ∀x ∈ Varc.M′(x) = M′′(xtemp) = M′′(xsink)∧M(x) =
M′′(x), the lemma is proven.

Proof of Lemma 3. For simplicity, we write
c′ = Canonical(c). We know that ∀x.

(

P(x) ⇐⇒ Q(x)
)

⇐⇒
(

∀x.P(x) ⇐⇒ ∀x.Q(x)
)

. So to prove the lemma, we show
the correctness of the following statement:
∀M1,M2.⟨c′,M1⟩→

∗
⟨stop,M′

1⟩ ∧ ⟨c′,M2⟩→
∗
⟨stop,M′

2⟩ ⇐⇒
(

∀l ∈ L .
(

M1
C(l)=  M2 ⇐⇒ M′

1
l= M′

2
)

⇐⇒

∀l′ ∈ L .
(

M1
l′= M2 ⇐⇒ M′

1
l′= M′

2
)

)

.
If the execution of the program c′ for (at least) one of the
two arbitrary memories M1 and M2 does not terminate, then
the premise in both security definitions does not hold, thus
the lemma holds. Assuming the program is terminating for
both memories, we prove the statement as follows:
1) Left to right:

a) Let I = {l ∈ L |M1
C(l)=  M2} be the set of lev-

els in L that the two memories are indistinguish-
able for the set of labels can flow to them. Then,
we have I ∈ L ∧ I = {l′ ∈ L |M1

l′= M2} =
{l′ ∈ L |l ∈ I ∧ l′ ∈ ℘(C(l))} = ℘(I ) based on
Definition 1.

b) Using Lemma 1, we can conclude that ∀l ∈ I .∀x ∈
Varc.Γ (x) = l ⇐⇒

(

∃xsink ∈ Varc′ .Γ (xsink) =
C(l) ∧ M′

1(xsink) = M′
2(xsink)

)

∧
(

∃x ∈ Varc′ .Γ (x) =
{l} ∧ M′

1(x) = M′
2(x)

)

∧
(

∃xtemp ∈ Varc′ .Γ (xtemp) =
L ∧M′

1(xtemp) = M′
2(xtemp)

)

∧ l ∈ I ∧ C(l) ∈ I .

c) Therefore, ∀l ∈ I .M′
1

l= M′
2 ⇐⇒ ∀l′ ∈

I .M′
1
l′= M′

2. Hence, ∀l ∈ L .
(

M1
C(l)=  M2 ⇐⇒

M′
1
l= M′

2
)

⇐⇒ ∀l′ ∈ L .
(

M1
l′= M2 ⇐⇒ M′

1
l′=

M′
2
)

.
2) Right to left:

a) Let I = {l′ ∈ L |M1
l′= M2} and I = {l ∈

L |M1
C(l)=  M2} = {l ∈ L |C(l) ∈ I }.

b) According to Lemma 1, we have ∀l′ ∈ I .∃l ∈
L .

(

l′ = {l} ⇐⇒ ℘(C(l)) ⊆ I ∧ ∀x ∈
Varc.Γ (x) = l ⇐⇒

(

∃xsink ∈ Varc′ .Γ (xsink) =
C(l) ∧ M′

1(xsink) = M′
2(xsink)

)

∧
(

∃x ∈ Varc′ .Γ (x) =
l′ ∧ M′

1(x) = M′
2(x)

)

∧
(

∃xtemp ∈ Varc′ .Γ (xtemp) =
L ∧M′

1(xtemp) = M′
2(xtemp)

)

)

.

c) Thus, ∀l′ ∈ I .M′
1
l′= M′

2 ⇐⇒ ∀l ∈ I .M′
1
l=

M′
2. Hence, ∀l′ ∈ L .

(

M1
l′= M2 ⇐⇒ M′

1
l′=

M′
2
)

⇐⇒ ∀l ∈ L .
(

M1
C(l)=  M2 ⇐⇒ M′

1
l= M′

2
)

.



Proof of Theorem 2. By using Lemma 2 and Lemma 3.

Proof of Theorem 3. To show soundness of the type sys-
tem, we prove the following statement: pc⊢Γ{c′} Γ′ ⇐⇒
(

∀l ∈ L .∀M1,M2.
(

M1
l=Γ, M2 ∧ ⟨c′,M1⟩→

∗
⟨stop,M′

1⟩ ∧

⟨c′,M2⟩→
∗
⟨stop,M′

2⟩
)

⇐⇒ M′
1

l=Γ′, M′
2

)

∧ ∀x ∈
Varsink.Γ′(x) = Γ(x), where c′ = Canonical(c) and
M1

l=Γ, M2 ⇐⇒ ∀x ∈ Varc′ .Γ(x)⊑ l ⇐⇒ M1(x) = M2(x).
The first part of the statement denotes the definition of security
in the flow-sensitive style and the second part of the statement
ensures the flow-insensitivity of sink variables.
The first three rules determine the security level of expres-

sion e, which is the join of security levels associated with free
variables of the expression.

By induction on the typing derivation and the structure of c′,
we have ∀M.∀x ∈ Varc′ .

(

⟨c′,M⟩→∗⟨stop,M′
⟩∧pc⊢Γ{c′} Γ′∧

pc⋢Γ′(x)
)

⇐⇒ M(x) = M′(x), where pc⋢Γ′(x) implies that
no assignment to x occurs in c′. Note that in the assignment to
sink variables (rule TT-WRITE-II), the memory gets updated
in a secure way since pc ⊔ Γ(x′)⊑Γ(x) ⇐⇒ pc⊑Γ(x).
It can also be easily proven by induction on the typing

derivation that pc⊢Γ{c′} Γ′ ∧ pc′ ⊑ pc ⇐⇒ pc′ ⊢Γ{c′} Γ′.
By induction on the typing derivation and the structure of c′,

we show that pc⊢Γ{c′} Γ′ ⇐⇒ ∀l ∈ L .∀M1,M2.
(

M1
l=Γ,

M2 ∧ ⟨c′,M1⟩→
∗
⟨stop,M′

1⟩ ∧ ⟨c′,M2⟩→
∗
⟨stop,M′

2⟩
)

⇐⇒

M′
1
l=Γ′, M′

2. We discuss the cases as follows:
∙ Case (TT-SKIP): We directly can write
pc⊢Γ{skip} Γ ⇐⇒ ∀l ∈ L .∀M1,M2.

(

M1
l=Γ, M2 ∧

⟨skip,M1⟩→
∗
⟨stop,M1⟩ ∧ ⟨skip,M2⟩→

∗
⟨stop,M2⟩

)

⇐⇒

M1
l=Γ, M2.

∙ Case (TT-WRITE-I): The conclusion part is
pc⊢Γ{x ∶= e} Γ[x → pc ⊔ t], thus Γ and Γ′ only
might differ in x; and similarly for M1 and M2. The
statement holds for this case because pc⊑Γ′(x) = pc ⊔ t.

∙ Case (TT-WRITE-II): The condition pc ⊔ Γ(x′)⊑Γ(x)
checks if the assignment is permitted with regard
to the transitive policy; it captures implicit (pc) and
explicit (Γ(x′)) flows to the variable x. Thus, we have
pc⊢Γ{x ∶= x′} Γ ⇐⇒ ∀l ∈ L .∀M1,M2.

(

M1
l=Γ,

M2 ∧ ⟨x ∶= x′,M1⟩→
∗
⟨stop,M′

1⟩ ∧

⟨x ∶= x′,M2⟩→
∗
⟨stop,M′

2⟩
)

⇐⇒ M′
1
l=Γ, M′

2.
∙ Case (TT-IF): Based on the induction hypothesis,
pc ⊔ t⊢Γ{cb} Γ′ ⇐⇒ TNITI( , cb) for b = true, false.
Since pc⊑ pc ⊔ t, the statement holds for this case.

∙ Case (TT-WHILE): Based on the induction hypothesis,
we have pc ⊔ t⊢Γ{cbody} Γ ⇐⇒ TNITI( , cbody), and
pc⊑ pc ⊔ t, thus pc⊢Γ{c} Γ ⇐⇒ TNITI( , c) for
c = while e do cbody.

∙ Case (TT-Seq): Using the induction hypothesis,
we have pc⊢Γ{c1} Γ′ ⇐⇒ TNITI( , c1) ∧
pc⊢Γ′{c2} Γ′′ ⇐⇒ TNITI( , c2). Therefore,
pc⊢Γ{c1; c2} Γ′′ ⇐⇒ TNITI( , c1; c2).

∙ Case (TT-SUB): Based on the induction hypothesis,
pc1 ⊢Γ1{c} Γ′1 ⇐⇒ TNITI( , c). Considering the con-
ditions pc2 ⊑ pc1 ∧ Γ2 ⊑Γ1 ∧ Γ′1 ⊑Γ

′
2, we can conclude

pc2 ⊢Γ2{c} Γ′2 ⇐⇒ TNITI( , c).
We also prove the second part which requires the levels of

sink variables remain unmodified through the program. There
is no typing rule that updates the level of sink variables of the
program, and the subsumption rule (rule TT-SUB) obviously
guarantees the property. Therefore, by induction on the typing
derivation, we have ∀x ∈ Varsink.Γ′(x) = Γ(x).

Proof of Theorem 4. By induction on the derivation of ex-
pressions, we prove the type for expression e is the union of
the security levels (i.e., the collected information flows) of
free variables of the expression, formally Γ⊢ e ∶ t ⇐⇒ t =
⋃

x∈FV(e) Γ(x):
∙ Case (VALUE): We label values as empty set since they
are visible for all levels and no free variable exists.

∙ Case (NT-READ): The type of variable x (i.e., Γ(x)) is the
set of labels that might affect the value of the variable x
in the program. It must capture all the possible flows to
the variable, including the label of itself.

∙ Case (NT-OPERATION): Based on the induction hypothe-
sis, it is easy to conclude that t1∪ t2 =

⋃

x∈FV(e1⊕e2) Γ(x).
∙ Case (NT-SUB-I): The subtyping rule for expressions
shows adding more security labels to the type of e keeps
the expression well-typed.

By induction on the typing derivation and the structure of
c, we prove the theorem as follows:

∙ Case (NT-SKIP): It is easy to see that
 ,Γ, pc⊢ skip ∶ t ⇐⇒ NTNITI( , skip) for any
 .

∙ Case (NT-WRITE): This rule checks the explicit and
implicit flows to the variable x have been collected in
Γ(x) and permitted by ⊵ relation. The type t is the
union set of Γ(x) (all collected information flows) and the
type of e (the explicit flows). Considering pc (implicit
flows) of the assignment, the premise investigates the
presence of all labels in t ∪ pc in the collected flows
to the variable x (Γ(x)), and guarantees that those are
permitted according to the nontransitive flow. Hence,
∀M1,M2.M1

C(t∪pc)
=  M2 ∧ ⟨x ∶= e,M1⟩→

∗
⟨stop,M′

1⟩ ∧
⟨x ∶= e,M2⟩→

∗
⟨stop,M′

1⟩ ⇐⇒ M′
1

t∪pc
=  M′

2. Thus,
NTNITI( , x ∶= e) holds.

∙ Case (NT-IF): Based on the subtyping rule, we write
 ,Γ, pc ∪ t1 ⊢ ctrue ∶ t2 ⇐⇒  ,Γ, pc⊢ ctrue ∶ t2, and
similarly for cfalse. Aggregating the labels in t1 and t2
and using the induction hypothesis prove the theorem
statement for if commands.

∙ Case (NT-WHILE) Similar to the previous case, if cbody
is well-typed under pc ∪ t1, according to the induction
hypothesis, this case is also proved.

∙ Case (NT-SEQ): Using the induction hypothesis, c1; c2
has type t1 ∪ t2 and NTNI( , c1; c2) holds.



∙ Case (NT-SUB-II): The induction hypothesis shows
NTNI( , c) holds if c is well-typed, for example, has type
t1 under pc1. If we extend the type with more security
labels under a smaller pc, the command c remains well-
typed and satisfies NTNI( , c).

Proof of Theorem 5. First, we start with demonstrating
that  ,Γ1, pc⊢ c ∶ t ⇐⇒  ′,Γ′1, pc⊢ c′ ∶ t, where c′ =
Canonical(c) and we extend the typing context Γ1 to Γ′1
and the labeling function  to  ′ by adding temp and sink
variables with the same mappings for any variable x of the
program, i.e., ∀x ∈ Varc. ′(x) =  ′(xtemp) =  ′(xsink) =
(x) ∧ Γ′1(x) = Γ

′
1(xtemp) = Γ

′
1(xsink) = Γ1(x).

As discussed in Lemma 1, the program is partitioned
in three parts: c′ = initc′ ; origc′ ; finalc′ . By induction on the
derivation of initc′ and using the two rules (NT-WRITE) and
(NT-SEQ), we have  ′,Γ′1, pc⊢ initc′ ∶ t because statements
are assignments of the form xtemp ∶= x and Γ′1(x) = Γ

′
1(xtemp).

Also, since  ,Γ1, pc⊢ c ∶ t holds, then ∀l ∈ Γ1(x)⊵(x),
and thus ∀l ∈ Γ′1(xtemp).l⊵ ′(xtemp).

We know that c and orig(c′) are identical up to
�-renaming of variables x ∈ Varc with xtemp. Therefore,
 ,Γ1, pc⊢ c ∶ t ⇐⇒  ′,Γ′1, pc⊢ c′ ∶ t because Γ1(x) =
Γ′1(xtemp), (x) = (xtemp), and x, xsink ∉ FV(c′).
At the final section, statements are the form of

xsink ∶= xtemp. Similar to the init section, because Γ′1(xtemp) =
Γ′1(xsink) and ∀l ∈ Γ′1(xsink).l⊵ ′(xsink), we can write
 ′,Γ′1, pc⊢ finalc′ ∶ t. Applying the rule (NT-SEQ) two times,
we conclude  ′,Γ′1, pc⊢ initc′ ; origc′ ; finalc′ ∶ t.
Then, we prove  ′,Γ′1, pc⊢ c′ ∶ t ⇐⇒ pc⊢Γ2{c′} Γ3 where

c′ = Canonical(c). Remember that in the transitive type system
L = ℘(L ), ⊑ = ⊆, and ⊔ = ∪. To connect the typing
contexts together meaningfully, the following constraints must
be considered ∀x ∈ Varc:

∙ Γ3(xtemp) ⊑ Γ′1(xtemp): The final type of xtemp contains the
set of labels in the last assignment that flow to the variable
in the program c′, due to flow-sensitivity of the transitive
type system, while Γ′1(xtemp) is the predicted set of all
information flows to the variable xtemp.

∙ Γ2(x) = {(x)},Γ2(xtemp) = L ,Γ2(xsink) = C((x)):
The conditions are based on the labeling function pre-
sented in Definition 5 to adjust the nontransitive mapping
to the transitive one.

∙ Γ3(x) = Γ2(x),Γ3(xsink) = Γ2(xsink): As shown in Fig-
ure 9a, if the program is well-typed, the types for vari-
ables remain untouched except for Vartemp.

There is a one-to-one correspondence between typing rules
for expressions, which yields the union set of Γ(x) for
free variables FV(e) as the type of the expression e. Thus,
Γ′1 ⊢ e ∶ t ⇐⇒ Γ2 ⊢ e ∶ t′.
By induction on the nontransitive typing derivation

 ′,Γ′1, pc⊢ c′ ∶ t and the structure of c′:
∙ Case (NT-SKIP): Based on the rule (TT-SKIP),
pc⊢Γ2{c′} Γ2 holds.

∙ Case (NT-WRITE): We separate this case for two sub-
cases according to the variable on the left side of the
assignment:
– If x ∈ Vartemp, since Γ′1 ⊢ e ∶ t ⇐⇒ Γ2 ⊢ e ∶ t′,
based on the rule (TT-WRITE-I), we write
pc⊢Γ2{c′} Γ2[x → pc ⊔ t′].

– If x ∈ Varsink, we know that e = xtemp is the only case
in program c′ at the finalc′ section. Because Γ3(xtemp) ⊆
Γ′1(xtemp) and ∀l ∈ Γ′1(xtemp) ∪ pc. l ∈ Γ′1(xsink) ∧
l⊵ ′(xsink) ⇐⇒ pc ⊔ Γ3(xtemp)⊑C( ′(xsink)) ⇐⇒
pc⊔Γ3(xtemp)⊑Γ3(xsink). Hence, based on the rule (TT-
WRITE-II), pc⊢Γ3{x ∶= e} Γ3.

∙ Case (NT-IF): Using the induction hypothesis and
Γ′1 ⊢ e ∶ t ⇐⇒ Γ2 ⊢ e ∶ t′, the statement pc⊢Γ2{c′} Γ3
holds for this case with respect to the rule (TT-IF).

∙ Case (NT-WHILE): Similar to the case (NT-IF), and
according to the rule (TT-WHILE).

∙ Case (NT-SEQ): Using the induction hypothesis,
pc⊢Γ2{c1} Γ3 and pc⊢Γ3{c2} Γ4, then
pc⊢Γ2{c1; c2} Γ4 by using the rule (TT-SEQ).

∙ Case (NT-SUB-II): Using the induction hypothesis,
we write pc1 ⊢Γ2{c} Γ′2. Since pc2 ⊑ pc1, Γ3 ⊑Γ2,
Γ′2 ⊑Γ

′
3 and in combination with the rule (NT-SUB-I),

pc2 ⊢Γ3{c} Γ′3 holds.

Proof of Theorem 6. Simliar to the proof of Theorem 1, by
considering the transitive and reflexive closure (⊑∗) of the
transitive relation (⊑ ) as the nontransitive one, the theorem
holds.
1) Let L = L ,⊵ = ⊑∗, and Γ = Γ .

Then, C(l) = {l′|l′ ⊵ l} = {l′|l′ ⊑∗l},
and according to the definitions 8 and 12,
∀l.

(

I1
C(l)=  I2 ⇐⇒ I1

l= I2
)

, and based on the

defintions 7 and 11, ∀l.
(

O1
C(l)=  O2 ⇐⇒ O1

l= O2
)

.
2) Considering Definitions 11 and 14,

(

∀l ∈ L .∀M.∀I1, I2.
(

I1
C(l)=  I2 ∧ ⟨c,M, I1,∅⟩ ⇝

O1
)

⇐⇒ ∃O2.⟨c,M, I2,∅⟩ ⇝ O2 ∧ O1
l= O2

)

⇐⇒
(

∀l ∈ L .∀M.∀I1, I2.
(

I1
C(l)=  I2 ∧ ⟨c,M, I1,∅⟩ ⇝

O1
)

⇐⇒ ∃O2.⟨c,M, I2,∅⟩ ⇝ O2 ∧ O1
C(l)=  O2

)

, thus
the theorem holds.

Proof of Lemma 4. It is clear that the transformation only
modifies the labels in the input and output commands of the
given program, thus the behavior of the rest of the program
stays unaffected. The changes in the labels of the input
commands can be formulated as ∀l.I(l) = I′({l}), where
I is the input for the program c and I′ is the input for the
program c′.
By induction on the semantic rules shown in Figure 23, it is

proven that c′ progresses the same as c with the difference that
outputs are sent to the channel C(l) in lieu of l. Therefore,



we formulate it for the two outputs O and O′ of programs c
and c′ respectively as O′ = O [vl → vC(l)], which means the
only difference between the output sequences O and O′ are
the labels of output values; ones with the label l in O are
recorded at the same index in O′ with the label C(l).

Proof of Theorem 7. Let c′ = Transform(c), L = ℘(L ),
⊑ =⊆ and ∀x ∈ Varc.Γ (x) = {Γ (x)}.

1) We have ∀l ∈ L .∀I1, I2. I1
C(l)=  I2 ⇐⇒ ∀l′ ∈

L .∀I′1, I
′
2. I

′
1
l′= I′2 because of Definitions 8 and 12.

Based on Lemma 4, we also know ∀l ∈ L .I(l) =
I′({l}).

2) According to Definitions 10 and 14, and the
semantic relation presented in Lemma 4, the
statement ∀M.

(

∀l ∈ L .∀I1, I2.
(

I1
C(l)=  I2 ∧

⟨c,M, I1,∅⟩ ⇝ O1
)

⇐⇒ ∃O2.⟨c,M, I2,∅⟩ ⇝

O2 ∧ O1
l= O2

)

⇐⇒
(

∀l′ ∈ L .∀I′1, I
′
2.
(

I′1
l′= I′2 ∧

⟨c′,M, I′1,∅⟩ ⇝ O′1
)

⇐⇒ ∃O′2.⟨c
′,M, I′2,∅⟩ ⇝

O′2 ∧ O′1
l′= O′2

)

holds if O1
l= O2 ⇐⇒ O′1

l′= O′2.
3) As stated in Lemma 4, we conclude O′1 =

O1 [vl → vC(l)] ∧ O′2 = O2 [vl → vC(l)]. Hence,

O1
l= O2 ⇐⇒ O′1

l′= O′2 and consequently, the
theorem holds.

Proof of Theorem 8. We prove the following statement
by induction on the typing derivation and the
structure of c′ = Transform(c): pc⊢Γ{c′} Γ′ ⇐⇒

∀l ∈ L .∀M.∀I1, I2. I1
l= I2 ∧ ⟨c,M, I1,∅⟩ ⇝ O1 ⇐⇒

∃O2.⟨c,M, I2,∅⟩ ⇝ O2 ∧ O1
l= O2.

The first three rules calculate the security level for expres-
sion e, by joining the security levels of its free variables.
The commands that update the security level of

a variable are assignment (rules IO-TT-WRITE) and
input (rule IO-TT-INPUT). Therefore, by induction on
the typing derivation and the structure of c′, we can
write ∀I.∀M.∀x ∈ Varc′ .

(

⟨c′,M, I,∅⟩→∗⟨c′′,M′, I′,O⟩ ∧
pc⊢Γ{c′} Γ′ ∧ pc⋢Γ′(x)

)

⇐⇒ M(x) = M′(x), where
pc⋢Γ′(x) implies that no input or assignment to x occurs in
c′. Note that for input commands (rule TT-WRITE-II), the
memory gets updated in a secure way since pc⊑Γ′(x).
It can be easily proven by induction on the typing derivation

that pc⊢Γ{c} Γ′ ∧ pc′ ⊑ pc ⇐⇒ pc′ ⊢Γ{c} Γ′.
Next, we investigate each case as follows:
∙ Case (IO-TT-SKIP): It is easy to see that
pc⊢Γ{skip} Γ ⇐⇒ ∀l ∈ L .∀M.∀I1, I2. I1

l= I2 ∧
⟨skip,M, I1,O⟩ ⇝ O ⇐⇒ ⟨skip,M, I2,O⟩ ⇝ O ∧O l= O.

∙ Case (IO-TT-WRITE): For this case, we can write
pc⊢Γ{x ∶= e} Γ′ ⇐⇒ ∀l ∈ L .∀M.∀I1, I2. I1

l=
I2 ∧ ⟨x ∶= e,M, I1,O⟩ ⇝ O ⇐⇒ ⟨x ∶= e,M, I2,O⟩ ⇝

O ∧ O l= O. Note that the security label of the variable
after the execution of the command carries both implicit
(pc) and explicit (t) dependencies.

∙ Case (IO-TT-IF): Based on the induction hypothesis,
pc ⊔ t⊢Γ{cb} Γ′ ⇐⇒ TNIPI( , cb) for b = true, false.
Since pc⊑ pc ⊔ t, the statement holds for this case.

∙ Case (IO-TT-WHILE): Based on the induction hypothesis,
we have pc ⊔ t⊢Γ{cbody} Γ ⇐⇒ TNIPI( , cbody), and
pc⊑ pc ⊔ t, thus pc⊢Γ{c} Γ ⇐⇒ TNIPI( , c) for c =
while e do cbody.

∙ Case (IO-TT-SEQ): Using the induction hypothe-
sis, we have pc⊢Γ{c1} Γ′ ⇐⇒ TNIPI( , c1) ∧
pc⊢Γ′{c2} Γ′′ ⇐⇒ TNIPI( , c2). Therefore,
pc⊢Γ{c1; c2} Γ′′ ⇐⇒ TNIPI( , c1; c2).

∙ Case (IO-TT-INPUT): Taking the condition pc⊑ l into
account, the type system only accepts input commands
in the same context as the label l or lower. Leaving
the premise empty makes the type system unsound, due
to not considering implicit flow (pc) to inputs from
the level l. Hence, pc⊢Γ{input(x, l′)} Γ′ ⇐⇒ ∀l ∈
L .∀M.∀I1, I2. I1

l= I2∧⟨input(x, l′),M, I1,O⟩ ⇝ O ⇐⇒

⟨input(x, l′),M, I2,O⟩ ⇝ O ∧ O l= O.
∙ Case (IO-TT-OUTPUT): The condition pc ⊔ Γ(x)⊑ l
controls if the output is permitted with regard to the
transitive policy; the premise monitors implicit flow (pc)
and explicit flow (Γ(x)) to the output channel at the level
l. Thus, we have pc⊢Γ{output(x, l′)} Γ ⇐⇒ ∀l ∈
L .∀M.∀I1, I2. I1

l= I2 ∧ ⟨output(x, l′),M, I1,O⟩ ⇝

O1 ⇐⇒ ⟨output(x, l′),M, I2,O⟩ ⇝ O2 ∧ O1
l= O2 since

O1 = O2 = O .M(x)l′ .
∙ Case (IO-TT-SUB): pc1 ⊢Γ1{c} Γ′1 ⇐⇒ TNIPI( , c).
Considering the conditions pc2 ⊑ pc1 ∧Γ2 ⊑Γ1 ∧Γ′1 ⊑Γ

′
2,

we can conclude pc2 ⊢Γ2{c} Γ′2 ⇐⇒ TNIPI( , c).

Proof of Lemma 5. For simplicity, we write
c′ = Canonical(c). We know that ∀x.

(

P(x) ⇐⇒ Q(x)
)

⇐⇒
(

∀x.P(x) ⇐⇒ ∀x.Q(x)
)

. So to prove the lemma, we show
the correctness of the following statement:
∀M1,M2.⟨c′,M1⟩→

∗
⟨stop,M′

1⟩ ∧ ⟨c′,M2⟩→
∗
⟨stop,M′

2⟩ ⇐⇒
(

∀l ∈ L .
(

M1
C(l)=  M2 ⇐⇒ M′

1
l= M′

2
)

⇐⇒

∀l′ ∈ L .
(

M1
l′= M2 ⇐⇒ M′

1
l′= M′

2
)

)

.
If the execution of the program c′ for (at least) one of the
two arbitrary memories M1 and M2 does not terminate, then
the premise in both security definitions does not hold, thus
the lemma holds. Assuming the program is terminating for
both memories, we prove the statement as follows:

1) Left to right:

a) Let I = {l ∈ L |M1
C(l)=  M2} be the set of levels

in L that the two memories are indistinguishable for
the set of labels can flow to them. Then, we have I =



{l′ ∈ L |M1
l′= M2} = {lsnk, lsrc ∈ L |l ∈ I }.

Based on Definition 1, M1
lsnk=  M2 ⇐⇒ M1

lsrc=  M2.
b) Using Lemma 1, we can conclude that ∀l ∈ I .∀x ∈

Varc.Γ (x) = l ⇐⇒
(

∃xsink ∈ Varc′ .Γ (xsink) = lsnk∧
M′
1(xsink) = M′

2(xsink)
)

∧
(

∃x ∈ Varc′ .Γ (x) = lsrc ∧
M′
1(x) = M′

2(x)
)

∧
(

∃xtemp ∈ Varc′ .Γ (xtemp) = ⊤ ∧
M′
1(xtemp) = M′

2(xtemp)
)

∧ lsrc, lsnk ∈ I .

c) Therefore, ∀l ∈ I .M′
1

l= M′
2 ⇐⇒ ∀l′ ∈

I .M′
1
l′= M′

2. Hence, ∀l ∈ L .
(

M1
C(l)=  M2 ⇐⇒

M′
1
l= M′

2
)

⇐⇒ ∀l′ ∈ L .
(

M1
l′= M2 ⇐⇒ M′

1
l′=

M′
2
)

.
2) Right to left:

a) Let I = {l′ ∈ L |M1
l′= M2} and I = {l ∈

L |M1
C(l)=  M2} = {l ∈ L |lsnk ∈ I }.

b) According to Lemma 1, we have ∀l′ ∈ I .∃l ∈
L .

(

lsnk, lsrc ∈ I ∧ ∀x ∈ Varc.Γ (x) = l ⇐⇒
(

∃xsink ∈ Varc′ .Γ (xsink) = lsnk ∧ M′
1(xsink) =

M′
2(xsink)

)

∧
(

∃x ∈ Varc′ .Γ (x) = lsrc ∧ M′
1(x) =

M′
2(x)

)

∧
(

∃xtemp ∈ Varc′ .Γ (xtemp) = ⊤ ∧M′
1(xtemp) =

M′
2(xtemp)

)

)

.

c) Thus, ∀l′ ∈ I .M′
1
l′= M′

2 ⇐⇒ ∀l ∈ I .M′
1
l=

M′
2. Hence, ∀l′ ∈ L .

(

M1
l′= M2 ⇐⇒ M′

1
l′=

M′
2
)

⇐⇒ ∀l ∈ L .
(

M1
C(l)=  M2 ⇐⇒ M′

1
l= M′

2
)

.

Proof of Theorem 9. By using Lemma 2 and Lemma 5.

Proof of Theorem 10. Similar to the proof of Theorem 3.

Proof of Theorem 11. We start with showing
that  ,Γ1, pc⊢ c ∶ t ⇐⇒  ′,Γ′1, pc⊢ c′ ∶ t, where
c′ = Canonical(c) and we extend the typing context Γ1
to Γ′1 and the labeling function  to  ′ by adding temp and
sink variables with the same mappings for any variable x of
the program, i.e., ∀x ∈ Varc. ′(x) =  ′(xtemp) =  ′(xsink) =
(x) ∧ Γ′1(x) = Γ

′
1(xtemp) = Γ

′
1(xsink) = Γ1(x).

As discussed in Lemma 1, the program is partitioned
in three parts: c′ = initc′ ; origc′ ; finalc′ . By induction on the
derivation of initc′ and using the two rules (NT-WRITE) and
(NT-SEQ), we have  ′,Γ′1, pc⊢ initc′ ∶ t because statements
are assignments of the form xtemp ∶= x and Γ′1(x) = Γ

′
1(xtemp).

Also, since  ,Γ1, pc⊢ c ∶ t holds, then ∀l ∈ Γ1(x)⊵(x),
and thus ∀l ∈ Γ′1(xtemp).l⊵ ′(xtemp).

We know that c and orig(c′) are identical up to
�-renaming of variables x ∈ Varc with xtemp. Therefore,
 ,Γ1, pc⊢ c ∶ t ⇐⇒  ′,Γ′1, pc⊢ c′ ∶ t because Γ1(x) =
Γ′1(xtemp), (x) = (xtemp), and x, xsink ∉ FV(c′).
At the final section, statements are the form of

xsink ∶= xtemp. Similar to the init section, because Γ′1(xtemp) =
Γ′1(xsink) and ∀l ∈ Γ′1(xsink).l⊵ ′(xsink), we can write

 ′,Γ′1, pc⊢ finalc′ ∶ t. Applying the rule (NT-SEQ) two times,
we conclude  ′,Γ′1, pc⊢ initc′ ; origc′ ; finalc′ ∶ t.
Then, we prove  ′,Γ′1, pc⊢ c′ ∶ t ⇐⇒ pc⊢Γ2{c′} Γ3

where c′ = Canonical(c). Remember that in the tran-
sitive type system L ⊇ {lsrc, lsnk|l ∈ L } ∪ {⊤,⊥} and
∀l, l′ ∈ L .l⊵ l′ ⇐⇒ lsrc ⊑ l′snk such that ⟨L , ⊑⟩ is a
lattice. To connect the typing contexts together meaningfully,
the following constraints must be considered ∀x ∈ Varc:

∙ Γ3(xtemp)⊑
⨆

l∈Γ1(x)
lsrc: The final type of xtemp is the join

of the set of source labels in the last assignment that flow
to the variable in the program c′, due to flow-sensitivity of
the transitive type system, while Γ′1(xtemp) is the predicted
set of all information flows to the variable xtemp. Thus,
Γ3(xtemp) should be lower than or equal to the join of
corresponding source labels of Γ′1(xtemp) =

⨆

l∈Γ1(x)
lsrc.

∙ (x) = l ⇐⇒ Γ2(x) = lsrc,Γ2(xtemp) = ⊤,Γ2(xsink) =
lsnk: The conditions are based on the labeling function
presented in Definition 15 to adjust the nontransitive
mapping to the transitive one.

∙ Γ3(x) = Γ2(x),Γ3(xsink) = Γ2(xsink): As shown in Fig-
ure 9a, if the program is well-typed, the types for vari-
ables remain untouched except for Vartemp.

There is a one-to-one correspondence between typing rules
for expressions, which yields the join of Γ(x) for free variables
FV(e) as the type of the expression e. Thus, Γ′1 ⊢ e ∶ t ⇐⇒
Γ2 ⊢ e ∶ t′.
By induction on the nontransitive typing derivation

 ′,Γ′1, pc⊢ c′ ∶ t and the structure of c′:
∙ Case (NT-SKIP): Based on the rule (TT-SKIP),
pc⊢Γ2{c′} Γ2 holds.

∙ Case (NT-WRITE): We separate this case for two sub-
cases according to the variable on the left side of the
assignment:
– If x ∈ Vartemp, since Γ′1 ⊢ e ∶ t ⇐⇒ Γ2 ⊢ e ∶ t′,
based on the rule (TT-WRITE-I), we write
pc⊢Γ2{c′} Γ2[x → pc ⊔ t′].

– If x ∈ Varsink, we know that e = xtemp is the only
case in program c′ at the finalc′ section. Because
if  ′(xsink) = l′, then ∀l ∈ Γ′1(xtemp) ∪ pc. l ∈
Γ′1(xsink) ∧ l⊵ l′ ⇐⇒ pc ⊔ Γ3(xtemp)⊑ l′snk ⇐⇒
pc⊔Γ3(xtemp)⊑Γ3(xsink). Hence, based on the rule (TT-
WRITE-II), pc⊢Γ3{x ∶= e} Γ3.

∙ Case (NT-IF): Using the induction hypothesis and
Γ′1 ⊢ e ∶ t ⇐⇒ Γ2 ⊢ e ∶ t′, the statement pc⊢Γ2{c′} Γ3
holds for this case with respect to the rule (TT-IF).

∙ Case (NT-WHILE): Similar to the case (NT-IF), and
according to the rule (TT-WHILE).

∙ Case (NT-SEQ): Using the induction hypothesis,
pc⊢Γ2{c1} Γ3 and pc⊢Γ3{c2} Γ4, then
pc⊢Γ2{c1; c2} Γ4 by using the rule (TT-SEQ).

∙ Case (NT-SUB-II): Using the induction hypothesis,
we write pc1 ⊢Γ2{c} Γ′2. Since pc2 ⊑ pc1, Γ3 ⊑Γ2,
Γ′2 ⊑Γ

′
3 and in combination with the rule (NT-SUB-I),

pc2 ⊢Γ3{c} Γ′3 holds.



Proof of Lemma 6. Clearly, the transformation only modifies
the labels in the input and output commands of the given
program, thus the behavior of the rest of the program stays
unaffected. The changes in the labels of the input commands
can be formulated as ∀l.I(l) = I′(lsrc), where I is the input
for the program c and I′ is the input for the program c′.

By induction on the semantic rules shown in Figure 23, it is
proven that c′ progresses the same as c with the difference that
outputs are sent to the channel lsnk instead of l. Therefore, we
formulate it for the two outputs O and O′ of programs c and c′
respectively as O′ = O [vl → vlsnk ]. Thus the only difference
between the output sequences O and O′ are the labels of output
values; ones with the label l in O are recorded at the same
index in O′ with the label lsnk.

Proof of Theorem 12. Let c′ = Transform(c),
L ⊇ {lsrc, lsnk|l ∈ L } ∪ {⊤,⊥} and
∀l, l′ ∈ L .l⊵ l′ ⇐⇒ lsrc ⊑ l′snk (⊵ is reflexive)
such that ⟨L , ⊑⟩ is a lattice, and ∀x ∈ Varc. Γ (x) = l ⇐⇒
Γ (x) = lsrc.

1) We have ∀l ∈ L .∀I1, I2. I1
C(l)=  I2 ⇐⇒ ∀l′ ∈

L .∀I′1, I
′
2. I

′
1
l′= I′2 because of Definitions 8 and 12.

Based on Lemma 6, we also know ∀l ∈ L .I(l) =
I′(lsrc).

2) According to Definitions 10 and 14, and the
semantic relation presented in Lemma 6, the
statement ∀M.

(

∀l ∈ L .∀I1, I2.
(

I1
C(l)=  I2 ∧

⟨c,M, I1,∅⟩ ⇝ O1
)

⇐⇒ ∃O2.⟨c,M, I2,∅⟩ ⇝

O2 ∧ O1
l= O2

)

⇐⇒
(

∀l′ ∈ L .∀I′1, I
′
2.
(

I′1
l′= I′2 ∧

⟨c′,M, I′1,∅⟩ ⇝ O′1
)

⇐⇒ ∃O′2.⟨c
′,M, I′2,∅⟩ ⇝

O′2 ∧ O′1
l′= O′2

)

holds if O1
l= O2 ⇐⇒ O′1

l′= O′2.
3) As stated in Lemma 6, we conclude O′1 =

O1 [vl → vlsnk ] ∧ O′2 = O2 [vl → vlsnk ]. Hence,

O1
l= O2 ⇐⇒ O′1

l′= O′2 and consequently, the
theorem holds.




